1 /*
2 * (C) COPYRIGHT 2016 ARM Limited. All rights reserved.
3 * Author: Liviu Dudau <Liviu.Dudau@arm.com>
4 *
5 * This program is free software and is provided to you under the terms of the
6 * GNU General Public License version 2 as published by the Free Software
7 * Foundation, and any use by you of this program is subject to the terms
8 * of such GNU licence.
9 *
10 * ARM Mali DP500/DP550/DP650 driver (crtc operations)
11 */
12
13 #include <drm/drmP.h>
14 #include <drm/drm_atomic.h>
15 #include <drm/drm_atomic_helper.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_crtc_helper.h>
18 #include <linux/clk.h>
19 #include <linux/pm_runtime.h>
20 #include <video/videomode.h>
21
22 #include "malidp_drv.h"
23 #include "malidp_hw.h"
24
malidp_crtc_mode_valid(struct drm_crtc * crtc,const struct drm_display_mode * mode)25 static enum drm_mode_status malidp_crtc_mode_valid(struct drm_crtc *crtc,
26 const struct drm_display_mode *mode)
27 {
28 struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
29 struct malidp_hw_device *hwdev = malidp->dev;
30
31 /*
32 * check that the hardware can drive the required clock rate,
33 * but skip the check if the clock is meant to be disabled (req_rate = 0)
34 */
35 long rate, req_rate = mode->crtc_clock * 1000;
36
37 if (req_rate) {
38 rate = clk_round_rate(hwdev->pxlclk, req_rate);
39 if (rate != req_rate) {
40 DRM_DEBUG_DRIVER("pxlclk doesn't support %ld Hz\n",
41 req_rate);
42 return MODE_NOCLOCK;
43 }
44 }
45
46 return MODE_OK;
47 }
48
malidp_crtc_atomic_enable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)49 static void malidp_crtc_atomic_enable(struct drm_crtc *crtc,
50 struct drm_crtc_state *old_state)
51 {
52 struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
53 struct malidp_hw_device *hwdev = malidp->dev;
54 struct videomode vm;
55 int err = pm_runtime_get_sync(crtc->dev->dev);
56
57 if (err < 0) {
58 DRM_DEBUG_DRIVER("Failed to enable runtime power management: %d\n", err);
59 return;
60 }
61
62 drm_display_mode_to_videomode(&crtc->state->adjusted_mode, &vm);
63 clk_prepare_enable(hwdev->pxlclk);
64
65 /* We rely on firmware to set mclk to a sensible level. */
66 clk_set_rate(hwdev->pxlclk, crtc->state->adjusted_mode.crtc_clock * 1000);
67
68 hwdev->modeset(hwdev, &vm);
69 hwdev->leave_config_mode(hwdev);
70 drm_crtc_vblank_on(crtc);
71 }
72
malidp_crtc_atomic_disable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)73 static void malidp_crtc_atomic_disable(struct drm_crtc *crtc,
74 struct drm_crtc_state *old_state)
75 {
76 struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
77 struct malidp_hw_device *hwdev = malidp->dev;
78 int err;
79
80 drm_crtc_vblank_off(crtc);
81 hwdev->enter_config_mode(hwdev);
82 clk_disable_unprepare(hwdev->pxlclk);
83
84 err = pm_runtime_put(crtc->dev->dev);
85 if (err < 0) {
86 DRM_DEBUG_DRIVER("Failed to disable runtime power management: %d\n", err);
87 }
88 }
89
90 static const struct gamma_curve_segment {
91 u16 start;
92 u16 end;
93 } segments[MALIDP_COEFFTAB_NUM_COEFFS] = {
94 /* sector 0 */
95 { 0, 0 }, { 1, 1 }, { 2, 2 }, { 3, 3 },
96 { 4, 4 }, { 5, 5 }, { 6, 6 }, { 7, 7 },
97 { 8, 8 }, { 9, 9 }, { 10, 10 }, { 11, 11 },
98 { 12, 12 }, { 13, 13 }, { 14, 14 }, { 15, 15 },
99 /* sector 1 */
100 { 16, 19 }, { 20, 23 }, { 24, 27 }, { 28, 31 },
101 /* sector 2 */
102 { 32, 39 }, { 40, 47 }, { 48, 55 }, { 56, 63 },
103 /* sector 3 */
104 { 64, 79 }, { 80, 95 }, { 96, 111 }, { 112, 127 },
105 /* sector 4 */
106 { 128, 159 }, { 160, 191 }, { 192, 223 }, { 224, 255 },
107 /* sector 5 */
108 { 256, 319 }, { 320, 383 }, { 384, 447 }, { 448, 511 },
109 /* sector 6 */
110 { 512, 639 }, { 640, 767 }, { 768, 895 }, { 896, 1023 },
111 { 1024, 1151 }, { 1152, 1279 }, { 1280, 1407 }, { 1408, 1535 },
112 { 1536, 1663 }, { 1664, 1791 }, { 1792, 1919 }, { 1920, 2047 },
113 { 2048, 2175 }, { 2176, 2303 }, { 2304, 2431 }, { 2432, 2559 },
114 { 2560, 2687 }, { 2688, 2815 }, { 2816, 2943 }, { 2944, 3071 },
115 { 3072, 3199 }, { 3200, 3327 }, { 3328, 3455 }, { 3456, 3583 },
116 { 3584, 3711 }, { 3712, 3839 }, { 3840, 3967 }, { 3968, 4095 },
117 };
118
119 #define DE_COEFTAB_DATA(a, b) ((((a) & 0xfff) << 16) | (((b) & 0xfff)))
120
malidp_generate_gamma_table(struct drm_property_blob * lut_blob,u32 coeffs[MALIDP_COEFFTAB_NUM_COEFFS])121 static void malidp_generate_gamma_table(struct drm_property_blob *lut_blob,
122 u32 coeffs[MALIDP_COEFFTAB_NUM_COEFFS])
123 {
124 struct drm_color_lut *lut = (struct drm_color_lut *)lut_blob->data;
125 int i;
126
127 for (i = 0; i < MALIDP_COEFFTAB_NUM_COEFFS; ++i) {
128 u32 a, b, delta_in, out_start, out_end;
129
130 delta_in = segments[i].end - segments[i].start;
131 /* DP has 12-bit internal precision for its LUTs. */
132 out_start = drm_color_lut_extract(lut[segments[i].start].green,
133 12);
134 out_end = drm_color_lut_extract(lut[segments[i].end].green, 12);
135 a = (delta_in == 0) ? 0 : ((out_end - out_start) * 256) / delta_in;
136 b = out_start;
137 coeffs[i] = DE_COEFTAB_DATA(a, b);
138 }
139 }
140
141 /*
142 * Check if there is a new gamma LUT and if it is of an acceptable size. Also,
143 * reject any LUTs that use distinct red, green, and blue curves.
144 */
malidp_crtc_atomic_check_gamma(struct drm_crtc * crtc,struct drm_crtc_state * state)145 static int malidp_crtc_atomic_check_gamma(struct drm_crtc *crtc,
146 struct drm_crtc_state *state)
147 {
148 struct malidp_crtc_state *mc = to_malidp_crtc_state(state);
149 struct drm_color_lut *lut;
150 size_t lut_size;
151 int i;
152
153 if (!state->color_mgmt_changed || !state->gamma_lut)
154 return 0;
155
156 if (crtc->state->gamma_lut &&
157 (crtc->state->gamma_lut->base.id == state->gamma_lut->base.id))
158 return 0;
159
160 if (state->gamma_lut->length % sizeof(struct drm_color_lut))
161 return -EINVAL;
162
163 lut_size = state->gamma_lut->length / sizeof(struct drm_color_lut);
164 if (lut_size != MALIDP_GAMMA_LUT_SIZE)
165 return -EINVAL;
166
167 lut = (struct drm_color_lut *)state->gamma_lut->data;
168 for (i = 0; i < lut_size; ++i)
169 if (!((lut[i].red == lut[i].green) &&
170 (lut[i].red == lut[i].blue)))
171 return -EINVAL;
172
173 if (!state->mode_changed) {
174 int ret;
175
176 state->mode_changed = true;
177 /*
178 * Kerneldoc for drm_atomic_helper_check_modeset mandates that
179 * it be invoked when the driver sets ->mode_changed. Since
180 * changing the gamma LUT doesn't depend on any external
181 * resources, it is safe to call it only once.
182 */
183 ret = drm_atomic_helper_check_modeset(crtc->dev, state->state);
184 if (ret)
185 return ret;
186 }
187
188 malidp_generate_gamma_table(state->gamma_lut, mc->gamma_coeffs);
189 return 0;
190 }
191
192 /*
193 * Check if there is a new CTM and if it contains valid input. Valid here means
194 * that the number is inside the representable range for a Q3.12 number,
195 * excluding truncating the fractional part of the input data.
196 *
197 * The COLORADJ registers can be changed atomically.
198 */
malidp_crtc_atomic_check_ctm(struct drm_crtc * crtc,struct drm_crtc_state * state)199 static int malidp_crtc_atomic_check_ctm(struct drm_crtc *crtc,
200 struct drm_crtc_state *state)
201 {
202 struct malidp_crtc_state *mc = to_malidp_crtc_state(state);
203 struct drm_color_ctm *ctm;
204 int i;
205
206 if (!state->color_mgmt_changed)
207 return 0;
208
209 if (!state->ctm)
210 return 0;
211
212 if (crtc->state->ctm && (crtc->state->ctm->base.id ==
213 state->ctm->base.id))
214 return 0;
215
216 /*
217 * The size of the ctm is checked in
218 * drm_atomic_replace_property_blob_from_id.
219 */
220 ctm = (struct drm_color_ctm *)state->ctm->data;
221 for (i = 0; i < ARRAY_SIZE(ctm->matrix); ++i) {
222 /* Convert from S31.32 to Q3.12. */
223 s64 val = ctm->matrix[i];
224 u32 mag = ((((u64)val) & ~BIT_ULL(63)) >> 20) &
225 GENMASK_ULL(14, 0);
226
227 /*
228 * Convert to 2s complement and check the destination's top bit
229 * for overflow. NB: Can't check before converting or it'd
230 * incorrectly reject the case:
231 * sign == 1
232 * mag == 0x2000
233 */
234 if (val & BIT_ULL(63))
235 mag = ~mag + 1;
236 if (!!(val & BIT_ULL(63)) != !!(mag & BIT(14)))
237 return -EINVAL;
238 mc->coloradj_coeffs[i] = mag;
239 }
240
241 return 0;
242 }
243
malidp_crtc_atomic_check_scaling(struct drm_crtc * crtc,struct drm_crtc_state * state)244 static int malidp_crtc_atomic_check_scaling(struct drm_crtc *crtc,
245 struct drm_crtc_state *state)
246 {
247 struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
248 struct malidp_hw_device *hwdev = malidp->dev;
249 struct malidp_crtc_state *cs = to_malidp_crtc_state(state);
250 struct malidp_se_config *s = &cs->scaler_config;
251 struct drm_plane *plane;
252 struct videomode vm;
253 const struct drm_plane_state *pstate;
254 u32 h_upscale_factor = 0; /* U16.16 */
255 u32 v_upscale_factor = 0; /* U16.16 */
256 u8 scaling = cs->scaled_planes_mask;
257 int ret;
258
259 if (!scaling) {
260 s->scale_enable = false;
261 goto mclk_calc;
262 }
263
264 /* The scaling engine can only handle one plane at a time. */
265 if (scaling & (scaling - 1))
266 return -EINVAL;
267
268 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
269 struct malidp_plane *mp = to_malidp_plane(plane);
270 u32 phase;
271
272 if (!(mp->layer->id & scaling))
273 continue;
274
275 /*
276 * Convert crtc_[w|h] to U32.32, then divide by U16.16 src_[w|h]
277 * to get the U16.16 result.
278 */
279 h_upscale_factor = div_u64((u64)pstate->crtc_w << 32,
280 pstate->src_w);
281 v_upscale_factor = div_u64((u64)pstate->crtc_h << 32,
282 pstate->src_h);
283
284 s->enhancer_enable = ((h_upscale_factor >> 16) >= 2 ||
285 (v_upscale_factor >> 16) >= 2);
286
287 s->input_w = pstate->src_w >> 16;
288 s->input_h = pstate->src_h >> 16;
289 s->output_w = pstate->crtc_w;
290 s->output_h = pstate->crtc_h;
291
292 #define SE_N_PHASE 4
293 #define SE_SHIFT_N_PHASE 12
294 /* Calculate initial_phase and delta_phase for horizontal. */
295 phase = s->input_w;
296 s->h_init_phase =
297 ((phase << SE_N_PHASE) / s->output_w + 1) / 2;
298
299 phase = s->input_w;
300 phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE);
301 s->h_delta_phase = phase / s->output_w;
302
303 /* Same for vertical. */
304 phase = s->input_h;
305 s->v_init_phase =
306 ((phase << SE_N_PHASE) / s->output_h + 1) / 2;
307
308 phase = s->input_h;
309 phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE);
310 s->v_delta_phase = phase / s->output_h;
311 #undef SE_N_PHASE
312 #undef SE_SHIFT_N_PHASE
313 s->plane_src_id = mp->layer->id;
314 }
315
316 s->scale_enable = true;
317 s->hcoeff = malidp_se_select_coeffs(h_upscale_factor);
318 s->vcoeff = malidp_se_select_coeffs(v_upscale_factor);
319
320 mclk_calc:
321 drm_display_mode_to_videomode(&state->adjusted_mode, &vm);
322 ret = hwdev->se_calc_mclk(hwdev, s, &vm);
323 if (ret < 0)
324 return -EINVAL;
325 return 0;
326 }
327
malidp_crtc_atomic_check(struct drm_crtc * crtc,struct drm_crtc_state * state)328 static int malidp_crtc_atomic_check(struct drm_crtc *crtc,
329 struct drm_crtc_state *state)
330 {
331 struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
332 struct malidp_hw_device *hwdev = malidp->dev;
333 struct drm_plane *plane;
334 const struct drm_plane_state *pstate;
335 u32 rot_mem_free, rot_mem_usable;
336 int rotated_planes = 0;
337 int ret;
338
339 /*
340 * check if there is enough rotation memory available for planes
341 * that need 90° and 270° rotation. Each plane has set its required
342 * memory size in the ->plane_check() callback, here we only make
343 * sure that the sums are less that the total usable memory.
344 *
345 * The rotation memory allocation algorithm (for each plane):
346 * a. If no more rotated planes exist, all remaining rotate
347 * memory in the bank is available for use by the plane.
348 * b. If other rotated planes exist, and plane's layer ID is
349 * DE_VIDEO1, it can use all the memory from first bank if
350 * secondary rotation memory bank is available, otherwise it can
351 * use up to half the bank's memory.
352 * c. If other rotated planes exist, and plane's layer ID is not
353 * DE_VIDEO1, it can use half of the available memory
354 *
355 * Note: this algorithm assumes that the order in which the planes are
356 * checked always has DE_VIDEO1 plane first in the list if it is
357 * rotated. Because that is how we create the planes in the first
358 * place, under current DRM version things work, but if ever the order
359 * in which drm_atomic_crtc_state_for_each_plane() iterates over planes
360 * changes, we need to pre-sort the planes before validation.
361 */
362
363 /* first count the number of rotated planes */
364 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
365 if (pstate->rotation & MALIDP_ROTATED_MASK)
366 rotated_planes++;
367 }
368
369 rot_mem_free = hwdev->rotation_memory[0];
370 /*
371 * if we have more than 1 plane using rotation memory, use the second
372 * block of rotation memory as well
373 */
374 if (rotated_planes > 1)
375 rot_mem_free += hwdev->rotation_memory[1];
376
377 /* now validate the rotation memory requirements */
378 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
379 struct malidp_plane *mp = to_malidp_plane(plane);
380 struct malidp_plane_state *ms = to_malidp_plane_state(pstate);
381
382 if (pstate->rotation & MALIDP_ROTATED_MASK) {
383 /* process current plane */
384 rotated_planes--;
385
386 if (!rotated_planes) {
387 /* no more rotated planes, we can use what's left */
388 rot_mem_usable = rot_mem_free;
389 } else {
390 if ((mp->layer->id != DE_VIDEO1) ||
391 (hwdev->rotation_memory[1] == 0))
392 rot_mem_usable = rot_mem_free / 2;
393 else
394 rot_mem_usable = hwdev->rotation_memory[0];
395 }
396
397 rot_mem_free -= rot_mem_usable;
398
399 if (ms->rotmem_size > rot_mem_usable)
400 return -EINVAL;
401 }
402 }
403
404 ret = malidp_crtc_atomic_check_gamma(crtc, state);
405 ret = ret ? ret : malidp_crtc_atomic_check_ctm(crtc, state);
406 ret = ret ? ret : malidp_crtc_atomic_check_scaling(crtc, state);
407
408 return ret;
409 }
410
411 static const struct drm_crtc_helper_funcs malidp_crtc_helper_funcs = {
412 .mode_valid = malidp_crtc_mode_valid,
413 .atomic_check = malidp_crtc_atomic_check,
414 .atomic_enable = malidp_crtc_atomic_enable,
415 .atomic_disable = malidp_crtc_atomic_disable,
416 };
417
malidp_crtc_duplicate_state(struct drm_crtc * crtc)418 static struct drm_crtc_state *malidp_crtc_duplicate_state(struct drm_crtc *crtc)
419 {
420 struct malidp_crtc_state *state, *old_state;
421
422 if (WARN_ON(!crtc->state))
423 return NULL;
424
425 old_state = to_malidp_crtc_state(crtc->state);
426 state = kmalloc(sizeof(*state), GFP_KERNEL);
427 if (!state)
428 return NULL;
429
430 __drm_atomic_helper_crtc_duplicate_state(crtc, &state->base);
431 memcpy(state->gamma_coeffs, old_state->gamma_coeffs,
432 sizeof(state->gamma_coeffs));
433 memcpy(state->coloradj_coeffs, old_state->coloradj_coeffs,
434 sizeof(state->coloradj_coeffs));
435 memcpy(&state->scaler_config, &old_state->scaler_config,
436 sizeof(state->scaler_config));
437 state->scaled_planes_mask = 0;
438
439 return &state->base;
440 }
441
malidp_crtc_reset(struct drm_crtc * crtc)442 static void malidp_crtc_reset(struct drm_crtc *crtc)
443 {
444 struct malidp_crtc_state *state = NULL;
445
446 if (crtc->state) {
447 state = to_malidp_crtc_state(crtc->state);
448 __drm_atomic_helper_crtc_destroy_state(crtc->state);
449 }
450
451 kfree(state);
452 state = kzalloc(sizeof(*state), GFP_KERNEL);
453 if (state) {
454 crtc->state = &state->base;
455 crtc->state->crtc = crtc;
456 }
457 }
458
malidp_crtc_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)459 static void malidp_crtc_destroy_state(struct drm_crtc *crtc,
460 struct drm_crtc_state *state)
461 {
462 struct malidp_crtc_state *mali_state = NULL;
463
464 if (state) {
465 mali_state = to_malidp_crtc_state(state);
466 __drm_atomic_helper_crtc_destroy_state(state);
467 }
468
469 kfree(mali_state);
470 }
471
malidp_crtc_enable_vblank(struct drm_crtc * crtc)472 static int malidp_crtc_enable_vblank(struct drm_crtc *crtc)
473 {
474 struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
475 struct malidp_hw_device *hwdev = malidp->dev;
476
477 malidp_hw_enable_irq(hwdev, MALIDP_DE_BLOCK,
478 hwdev->map.de_irq_map.vsync_irq);
479 return 0;
480 }
481
malidp_crtc_disable_vblank(struct drm_crtc * crtc)482 static void malidp_crtc_disable_vblank(struct drm_crtc *crtc)
483 {
484 struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
485 struct malidp_hw_device *hwdev = malidp->dev;
486
487 malidp_hw_disable_irq(hwdev, MALIDP_DE_BLOCK,
488 hwdev->map.de_irq_map.vsync_irq);
489 }
490
491 static const struct drm_crtc_funcs malidp_crtc_funcs = {
492 .gamma_set = drm_atomic_helper_legacy_gamma_set,
493 .destroy = drm_crtc_cleanup,
494 .set_config = drm_atomic_helper_set_config,
495 .page_flip = drm_atomic_helper_page_flip,
496 .reset = malidp_crtc_reset,
497 .atomic_duplicate_state = malidp_crtc_duplicate_state,
498 .atomic_destroy_state = malidp_crtc_destroy_state,
499 .enable_vblank = malidp_crtc_enable_vblank,
500 .disable_vblank = malidp_crtc_disable_vblank,
501 };
502
malidp_crtc_init(struct drm_device * drm)503 int malidp_crtc_init(struct drm_device *drm)
504 {
505 struct malidp_drm *malidp = drm->dev_private;
506 struct drm_plane *primary = NULL, *plane;
507 int ret;
508
509 ret = malidp_de_planes_init(drm);
510 if (ret < 0) {
511 DRM_ERROR("Failed to initialise planes\n");
512 return ret;
513 }
514
515 drm_for_each_plane(plane, drm) {
516 if (plane->type == DRM_PLANE_TYPE_PRIMARY) {
517 primary = plane;
518 break;
519 }
520 }
521
522 if (!primary) {
523 DRM_ERROR("no primary plane found\n");
524 ret = -EINVAL;
525 goto crtc_cleanup_planes;
526 }
527
528 ret = drm_crtc_init_with_planes(drm, &malidp->crtc, primary, NULL,
529 &malidp_crtc_funcs, NULL);
530 if (ret)
531 goto crtc_cleanup_planes;
532
533 drm_crtc_helper_add(&malidp->crtc, &malidp_crtc_helper_funcs);
534 drm_mode_crtc_set_gamma_size(&malidp->crtc, MALIDP_GAMMA_LUT_SIZE);
535 /* No inverse-gamma: it is per-plane. */
536 drm_crtc_enable_color_mgmt(&malidp->crtc, 0, true, MALIDP_GAMMA_LUT_SIZE);
537
538 malidp_se_set_enh_coeffs(malidp->dev);
539
540 return 0;
541
542 crtc_cleanup_planes:
543 malidp_de_planes_destroy(drm);
544
545 return ret;
546 }
547