1 /*
2 * GTT virtualization
3 *
4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 * Authors:
26 * Zhi Wang <zhi.a.wang@intel.com>
27 * Zhenyu Wang <zhenyuw@linux.intel.com>
28 * Xiao Zheng <xiao.zheng@intel.com>
29 *
30 * Contributors:
31 * Min He <min.he@intel.com>
32 * Bing Niu <bing.niu@intel.com>
33 *
34 */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 static bool enable_out_of_sync = false;
42 static int preallocated_oos_pages = 8192;
43
44 /*
45 * validate a gm address and related range size,
46 * translate it to host gm address
47 */
intel_gvt_ggtt_validate_range(struct intel_vgpu * vgpu,u64 addr,u32 size)48 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
49 {
50 if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
51 && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
52 gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
53 addr, size);
54 return false;
55 }
56 return true;
57 }
58
59 /* translate a guest gmadr to host gmadr */
intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu * vgpu,u64 g_addr,u64 * h_addr)60 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
61 {
62 if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
63 "invalid guest gmadr %llx\n", g_addr))
64 return -EACCES;
65
66 if (vgpu_gmadr_is_aperture(vgpu, g_addr))
67 *h_addr = vgpu_aperture_gmadr_base(vgpu)
68 + (g_addr - vgpu_aperture_offset(vgpu));
69 else
70 *h_addr = vgpu_hidden_gmadr_base(vgpu)
71 + (g_addr - vgpu_hidden_offset(vgpu));
72 return 0;
73 }
74
75 /* translate a host gmadr to guest gmadr */
intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu * vgpu,u64 h_addr,u64 * g_addr)76 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
77 {
78 if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
79 "invalid host gmadr %llx\n", h_addr))
80 return -EACCES;
81
82 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
83 *g_addr = vgpu_aperture_gmadr_base(vgpu)
84 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
85 else
86 *g_addr = vgpu_hidden_gmadr_base(vgpu)
87 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
88 return 0;
89 }
90
intel_gvt_ggtt_index_g2h(struct intel_vgpu * vgpu,unsigned long g_index,unsigned long * h_index)91 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
92 unsigned long *h_index)
93 {
94 u64 h_addr;
95 int ret;
96
97 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << GTT_PAGE_SHIFT,
98 &h_addr);
99 if (ret)
100 return ret;
101
102 *h_index = h_addr >> GTT_PAGE_SHIFT;
103 return 0;
104 }
105
intel_gvt_ggtt_h2g_index(struct intel_vgpu * vgpu,unsigned long h_index,unsigned long * g_index)106 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
107 unsigned long *g_index)
108 {
109 u64 g_addr;
110 int ret;
111
112 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << GTT_PAGE_SHIFT,
113 &g_addr);
114 if (ret)
115 return ret;
116
117 *g_index = g_addr >> GTT_PAGE_SHIFT;
118 return 0;
119 }
120
121 #define gtt_type_is_entry(type) \
122 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
123 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
124 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
125
126 #define gtt_type_is_pt(type) \
127 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
128
129 #define gtt_type_is_pte_pt(type) \
130 (type == GTT_TYPE_PPGTT_PTE_PT)
131
132 #define gtt_type_is_root_pointer(type) \
133 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
134
135 #define gtt_init_entry(e, t, p, v) do { \
136 (e)->type = t; \
137 (e)->pdev = p; \
138 memcpy(&(e)->val64, &v, sizeof(v)); \
139 } while (0)
140
141 /*
142 * Mappings between GTT_TYPE* enumerations.
143 * Following information can be found according to the given type:
144 * - type of next level page table
145 * - type of entry inside this level page table
146 * - type of entry with PSE set
147 *
148 * If the given type doesn't have such a kind of information,
149 * e.g. give a l4 root entry type, then request to get its PSE type,
150 * give a PTE page table type, then request to get its next level page
151 * table type, as we know l4 root entry doesn't have a PSE bit,
152 * and a PTE page table doesn't have a next level page table type,
153 * GTT_TYPE_INVALID will be returned. This is useful when traversing a
154 * page table.
155 */
156
157 struct gtt_type_table_entry {
158 int entry_type;
159 int next_pt_type;
160 int pse_entry_type;
161 };
162
163 #define GTT_TYPE_TABLE_ENTRY(type, e_type, npt_type, pse_type) \
164 [type] = { \
165 .entry_type = e_type, \
166 .next_pt_type = npt_type, \
167 .pse_entry_type = pse_type, \
168 }
169
170 static struct gtt_type_table_entry gtt_type_table[] = {
171 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
172 GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
173 GTT_TYPE_PPGTT_PML4_PT,
174 GTT_TYPE_INVALID),
175 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
176 GTT_TYPE_PPGTT_PML4_ENTRY,
177 GTT_TYPE_PPGTT_PDP_PT,
178 GTT_TYPE_INVALID),
179 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
180 GTT_TYPE_PPGTT_PML4_ENTRY,
181 GTT_TYPE_PPGTT_PDP_PT,
182 GTT_TYPE_INVALID),
183 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
184 GTT_TYPE_PPGTT_PDP_ENTRY,
185 GTT_TYPE_PPGTT_PDE_PT,
186 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
187 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
188 GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
189 GTT_TYPE_PPGTT_PDE_PT,
190 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
191 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
192 GTT_TYPE_PPGTT_PDP_ENTRY,
193 GTT_TYPE_PPGTT_PDE_PT,
194 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
195 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
196 GTT_TYPE_PPGTT_PDE_ENTRY,
197 GTT_TYPE_PPGTT_PTE_PT,
198 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
199 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
200 GTT_TYPE_PPGTT_PDE_ENTRY,
201 GTT_TYPE_PPGTT_PTE_PT,
202 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
203 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
204 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
205 GTT_TYPE_INVALID,
206 GTT_TYPE_INVALID),
207 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
208 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
209 GTT_TYPE_INVALID,
210 GTT_TYPE_INVALID),
211 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
212 GTT_TYPE_PPGTT_PDE_ENTRY,
213 GTT_TYPE_INVALID,
214 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
215 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
216 GTT_TYPE_PPGTT_PDP_ENTRY,
217 GTT_TYPE_INVALID,
218 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
220 GTT_TYPE_GGTT_PTE,
221 GTT_TYPE_INVALID,
222 GTT_TYPE_INVALID),
223 };
224
get_next_pt_type(int type)225 static inline int get_next_pt_type(int type)
226 {
227 return gtt_type_table[type].next_pt_type;
228 }
229
get_entry_type(int type)230 static inline int get_entry_type(int type)
231 {
232 return gtt_type_table[type].entry_type;
233 }
234
get_pse_type(int type)235 static inline int get_pse_type(int type)
236 {
237 return gtt_type_table[type].pse_entry_type;
238 }
239
read_pte64(struct drm_i915_private * dev_priv,unsigned long index)240 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
241 {
242 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
243
244 return readq(addr);
245 }
246
gtt_invalidate(struct drm_i915_private * dev_priv)247 static void gtt_invalidate(struct drm_i915_private *dev_priv)
248 {
249 mmio_hw_access_pre(dev_priv);
250 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
251 mmio_hw_access_post(dev_priv);
252 }
253
write_pte64(struct drm_i915_private * dev_priv,unsigned long index,u64 pte)254 static void write_pte64(struct drm_i915_private *dev_priv,
255 unsigned long index, u64 pte)
256 {
257 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
258
259 writeq(pte, addr);
260 }
261
gtt_get_entry64(void * pt,struct intel_gvt_gtt_entry * e,unsigned long index,bool hypervisor_access,unsigned long gpa,struct intel_vgpu * vgpu)262 static inline int gtt_get_entry64(void *pt,
263 struct intel_gvt_gtt_entry *e,
264 unsigned long index, bool hypervisor_access, unsigned long gpa,
265 struct intel_vgpu *vgpu)
266 {
267 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
268 int ret;
269
270 if (WARN_ON(info->gtt_entry_size != 8))
271 return -EINVAL;
272
273 if (hypervisor_access) {
274 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
275 (index << info->gtt_entry_size_shift),
276 &e->val64, 8);
277 if (WARN_ON(ret))
278 return ret;
279 } else if (!pt) {
280 e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
281 } else {
282 e->val64 = *((u64 *)pt + index);
283 }
284 return 0;
285 }
286
gtt_set_entry64(void * pt,struct intel_gvt_gtt_entry * e,unsigned long index,bool hypervisor_access,unsigned long gpa,struct intel_vgpu * vgpu)287 static inline int gtt_set_entry64(void *pt,
288 struct intel_gvt_gtt_entry *e,
289 unsigned long index, bool hypervisor_access, unsigned long gpa,
290 struct intel_vgpu *vgpu)
291 {
292 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
293 int ret;
294
295 if (WARN_ON(info->gtt_entry_size != 8))
296 return -EINVAL;
297
298 if (hypervisor_access) {
299 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
300 (index << info->gtt_entry_size_shift),
301 &e->val64, 8);
302 if (WARN_ON(ret))
303 return ret;
304 } else if (!pt) {
305 write_pte64(vgpu->gvt->dev_priv, index, e->val64);
306 } else {
307 *((u64 *)pt + index) = e->val64;
308 }
309 return 0;
310 }
311
312 #define GTT_HAW 46
313
314 #define ADDR_1G_MASK (((1UL << (GTT_HAW - 30)) - 1) << 30)
315 #define ADDR_2M_MASK (((1UL << (GTT_HAW - 21)) - 1) << 21)
316 #define ADDR_4K_MASK (((1UL << (GTT_HAW - 12)) - 1) << 12)
317
gen8_gtt_get_pfn(struct intel_gvt_gtt_entry * e)318 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
319 {
320 unsigned long pfn;
321
322 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
323 pfn = (e->val64 & ADDR_1G_MASK) >> 12;
324 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
325 pfn = (e->val64 & ADDR_2M_MASK) >> 12;
326 else
327 pfn = (e->val64 & ADDR_4K_MASK) >> 12;
328 return pfn;
329 }
330
gen8_gtt_set_pfn(struct intel_gvt_gtt_entry * e,unsigned long pfn)331 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
332 {
333 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
334 e->val64 &= ~ADDR_1G_MASK;
335 pfn &= (ADDR_1G_MASK >> 12);
336 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
337 e->val64 &= ~ADDR_2M_MASK;
338 pfn &= (ADDR_2M_MASK >> 12);
339 } else {
340 e->val64 &= ~ADDR_4K_MASK;
341 pfn &= (ADDR_4K_MASK >> 12);
342 }
343
344 e->val64 |= (pfn << 12);
345 }
346
gen8_gtt_test_pse(struct intel_gvt_gtt_entry * e)347 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
348 {
349 /* Entry doesn't have PSE bit. */
350 if (get_pse_type(e->type) == GTT_TYPE_INVALID)
351 return false;
352
353 e->type = get_entry_type(e->type);
354 if (!(e->val64 & (1 << 7)))
355 return false;
356
357 e->type = get_pse_type(e->type);
358 return true;
359 }
360
gen8_gtt_test_present(struct intel_gvt_gtt_entry * e)361 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
362 {
363 /*
364 * i915 writes PDP root pointer registers without present bit,
365 * it also works, so we need to treat root pointer entry
366 * specifically.
367 */
368 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
369 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
370 return (e->val64 != 0);
371 else
372 return (e->val64 & (1 << 0));
373 }
374
gtt_entry_clear_present(struct intel_gvt_gtt_entry * e)375 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
376 {
377 e->val64 &= ~(1 << 0);
378 }
379
380 /*
381 * Per-platform GMA routines.
382 */
gma_to_ggtt_pte_index(unsigned long gma)383 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
384 {
385 unsigned long x = (gma >> GTT_PAGE_SHIFT);
386
387 trace_gma_index(__func__, gma, x);
388 return x;
389 }
390
391 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
392 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
393 { \
394 unsigned long x = (exp); \
395 trace_gma_index(__func__, gma, x); \
396 return x; \
397 }
398
399 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
400 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
401 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
402 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
403 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
404
405 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
406 .get_entry = gtt_get_entry64,
407 .set_entry = gtt_set_entry64,
408 .clear_present = gtt_entry_clear_present,
409 .test_present = gen8_gtt_test_present,
410 .test_pse = gen8_gtt_test_pse,
411 .get_pfn = gen8_gtt_get_pfn,
412 .set_pfn = gen8_gtt_set_pfn,
413 };
414
415 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
416 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
417 .gma_to_pte_index = gen8_gma_to_pte_index,
418 .gma_to_pde_index = gen8_gma_to_pde_index,
419 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
420 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
421 .gma_to_pml4_index = gen8_gma_to_pml4_index,
422 };
423
gtt_entry_p2m(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * p,struct intel_gvt_gtt_entry * m)424 static int gtt_entry_p2m(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *p,
425 struct intel_gvt_gtt_entry *m)
426 {
427 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
428 unsigned long gfn, mfn;
429
430 *m = *p;
431
432 if (!ops->test_present(p))
433 return 0;
434
435 gfn = ops->get_pfn(p);
436
437 mfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, gfn);
438 if (mfn == INTEL_GVT_INVALID_ADDR) {
439 gvt_vgpu_err("fail to translate gfn: 0x%lx\n", gfn);
440 return -ENXIO;
441 }
442
443 ops->set_pfn(m, mfn);
444 return 0;
445 }
446
447 /*
448 * MM helpers.
449 */
intel_vgpu_mm_get_entry(struct intel_vgpu_mm * mm,void * page_table,struct intel_gvt_gtt_entry * e,unsigned long index)450 int intel_vgpu_mm_get_entry(struct intel_vgpu_mm *mm,
451 void *page_table, struct intel_gvt_gtt_entry *e,
452 unsigned long index)
453 {
454 struct intel_gvt *gvt = mm->vgpu->gvt;
455 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
456 int ret;
457
458 e->type = mm->page_table_entry_type;
459
460 ret = ops->get_entry(page_table, e, index, false, 0, mm->vgpu);
461 if (ret)
462 return ret;
463
464 ops->test_pse(e);
465 return 0;
466 }
467
intel_vgpu_mm_set_entry(struct intel_vgpu_mm * mm,void * page_table,struct intel_gvt_gtt_entry * e,unsigned long index)468 int intel_vgpu_mm_set_entry(struct intel_vgpu_mm *mm,
469 void *page_table, struct intel_gvt_gtt_entry *e,
470 unsigned long index)
471 {
472 struct intel_gvt *gvt = mm->vgpu->gvt;
473 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
474
475 return ops->set_entry(page_table, e, index, false, 0, mm->vgpu);
476 }
477
478 /*
479 * PPGTT shadow page table helpers.
480 */
ppgtt_spt_get_entry(struct intel_vgpu_ppgtt_spt * spt,void * page_table,int type,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)481 static inline int ppgtt_spt_get_entry(
482 struct intel_vgpu_ppgtt_spt *spt,
483 void *page_table, int type,
484 struct intel_gvt_gtt_entry *e, unsigned long index,
485 bool guest)
486 {
487 struct intel_gvt *gvt = spt->vgpu->gvt;
488 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
489 int ret;
490
491 e->type = get_entry_type(type);
492
493 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
494 return -EINVAL;
495
496 ret = ops->get_entry(page_table, e, index, guest,
497 spt->guest_page.gfn << GTT_PAGE_SHIFT,
498 spt->vgpu);
499 if (ret)
500 return ret;
501
502 ops->test_pse(e);
503 return 0;
504 }
505
ppgtt_spt_set_entry(struct intel_vgpu_ppgtt_spt * spt,void * page_table,int type,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)506 static inline int ppgtt_spt_set_entry(
507 struct intel_vgpu_ppgtt_spt *spt,
508 void *page_table, int type,
509 struct intel_gvt_gtt_entry *e, unsigned long index,
510 bool guest)
511 {
512 struct intel_gvt *gvt = spt->vgpu->gvt;
513 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
514
515 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
516 return -EINVAL;
517
518 return ops->set_entry(page_table, e, index, guest,
519 spt->guest_page.gfn << GTT_PAGE_SHIFT,
520 spt->vgpu);
521 }
522
523 #define ppgtt_get_guest_entry(spt, e, index) \
524 ppgtt_spt_get_entry(spt, NULL, \
525 spt->guest_page_type, e, index, true)
526
527 #define ppgtt_set_guest_entry(spt, e, index) \
528 ppgtt_spt_set_entry(spt, NULL, \
529 spt->guest_page_type, e, index, true)
530
531 #define ppgtt_get_shadow_entry(spt, e, index) \
532 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
533 spt->shadow_page.type, e, index, false)
534
535 #define ppgtt_set_shadow_entry(spt, e, index) \
536 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
537 spt->shadow_page.type, e, index, false)
538
539 /**
540 * intel_vgpu_init_guest_page - init a guest page data structure
541 * @vgpu: a vGPU
542 * @p: a guest page data structure
543 * @gfn: guest memory page frame number
544 * @handler: function will be called when target guest memory page has
545 * been modified.
546 *
547 * This function is called when user wants to track a guest memory page.
548 *
549 * Returns:
550 * Zero on success, negative error code if failed.
551 */
intel_vgpu_init_guest_page(struct intel_vgpu * vgpu,struct intel_vgpu_guest_page * p,unsigned long gfn,int (* handler)(void *,u64,void *,int),void * data)552 int intel_vgpu_init_guest_page(struct intel_vgpu *vgpu,
553 struct intel_vgpu_guest_page *p,
554 unsigned long gfn,
555 int (*handler)(void *, u64, void *, int),
556 void *data)
557 {
558 INIT_HLIST_NODE(&p->node);
559
560 p->writeprotection = false;
561 p->gfn = gfn;
562 p->handler = handler;
563 p->data = data;
564 p->oos_page = NULL;
565 p->write_cnt = 0;
566
567 hash_add(vgpu->gtt.guest_page_hash_table, &p->node, p->gfn);
568 return 0;
569 }
570
571 static int detach_oos_page(struct intel_vgpu *vgpu,
572 struct intel_vgpu_oos_page *oos_page);
573
574 /**
575 * intel_vgpu_clean_guest_page - release the resource owned by guest page data
576 * structure
577 * @vgpu: a vGPU
578 * @p: a tracked guest page
579 *
580 * This function is called when user tries to stop tracking a guest memory
581 * page.
582 */
intel_vgpu_clean_guest_page(struct intel_vgpu * vgpu,struct intel_vgpu_guest_page * p)583 void intel_vgpu_clean_guest_page(struct intel_vgpu *vgpu,
584 struct intel_vgpu_guest_page *p)
585 {
586 if (!hlist_unhashed(&p->node))
587 hash_del(&p->node);
588
589 if (p->oos_page)
590 detach_oos_page(vgpu, p->oos_page);
591
592 if (p->writeprotection)
593 intel_gvt_hypervisor_unset_wp_page(vgpu, p);
594 }
595
596 /**
597 * intel_vgpu_find_guest_page - find a guest page data structure by GFN.
598 * @vgpu: a vGPU
599 * @gfn: guest memory page frame number
600 *
601 * This function is called when emulation logic wants to know if a trapped GFN
602 * is a tracked guest page.
603 *
604 * Returns:
605 * Pointer to guest page data structure, NULL if failed.
606 */
intel_vgpu_find_guest_page(struct intel_vgpu * vgpu,unsigned long gfn)607 struct intel_vgpu_guest_page *intel_vgpu_find_guest_page(
608 struct intel_vgpu *vgpu, unsigned long gfn)
609 {
610 struct intel_vgpu_guest_page *p;
611
612 hash_for_each_possible(vgpu->gtt.guest_page_hash_table,
613 p, node, gfn) {
614 if (p->gfn == gfn)
615 return p;
616 }
617 return NULL;
618 }
619
init_shadow_page(struct intel_vgpu * vgpu,struct intel_vgpu_shadow_page * p,int type)620 static inline int init_shadow_page(struct intel_vgpu *vgpu,
621 struct intel_vgpu_shadow_page *p, int type)
622 {
623 struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
624 dma_addr_t daddr;
625
626 daddr = dma_map_page(kdev, p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
627 if (dma_mapping_error(kdev, daddr)) {
628 gvt_vgpu_err("fail to map dma addr\n");
629 return -EINVAL;
630 }
631
632 p->vaddr = page_address(p->page);
633 p->type = type;
634
635 INIT_HLIST_NODE(&p->node);
636
637 p->mfn = daddr >> GTT_PAGE_SHIFT;
638 hash_add(vgpu->gtt.shadow_page_hash_table, &p->node, p->mfn);
639 return 0;
640 }
641
clean_shadow_page(struct intel_vgpu * vgpu,struct intel_vgpu_shadow_page * p)642 static inline void clean_shadow_page(struct intel_vgpu *vgpu,
643 struct intel_vgpu_shadow_page *p)
644 {
645 struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
646
647 dma_unmap_page(kdev, p->mfn << GTT_PAGE_SHIFT, 4096,
648 PCI_DMA_BIDIRECTIONAL);
649
650 if (!hlist_unhashed(&p->node))
651 hash_del(&p->node);
652 }
653
find_shadow_page(struct intel_vgpu * vgpu,unsigned long mfn)654 static inline struct intel_vgpu_shadow_page *find_shadow_page(
655 struct intel_vgpu *vgpu, unsigned long mfn)
656 {
657 struct intel_vgpu_shadow_page *p;
658
659 hash_for_each_possible(vgpu->gtt.shadow_page_hash_table,
660 p, node, mfn) {
661 if (p->mfn == mfn)
662 return p;
663 }
664 return NULL;
665 }
666
667 #define guest_page_to_ppgtt_spt(ptr) \
668 container_of(ptr, struct intel_vgpu_ppgtt_spt, guest_page)
669
670 #define shadow_page_to_ppgtt_spt(ptr) \
671 container_of(ptr, struct intel_vgpu_ppgtt_spt, shadow_page)
672
alloc_spt(gfp_t gfp_mask)673 static void *alloc_spt(gfp_t gfp_mask)
674 {
675 struct intel_vgpu_ppgtt_spt *spt;
676
677 spt = kzalloc(sizeof(*spt), gfp_mask);
678 if (!spt)
679 return NULL;
680
681 spt->shadow_page.page = alloc_page(gfp_mask);
682 if (!spt->shadow_page.page) {
683 kfree(spt);
684 return NULL;
685 }
686 return spt;
687 }
688
free_spt(struct intel_vgpu_ppgtt_spt * spt)689 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
690 {
691 __free_page(spt->shadow_page.page);
692 kfree(spt);
693 }
694
ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt * spt)695 static void ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
696 {
697 trace_spt_free(spt->vgpu->id, spt, spt->shadow_page.type);
698
699 clean_shadow_page(spt->vgpu, &spt->shadow_page);
700 intel_vgpu_clean_guest_page(spt->vgpu, &spt->guest_page);
701 list_del_init(&spt->post_shadow_list);
702
703 free_spt(spt);
704 }
705
ppgtt_free_all_shadow_page(struct intel_vgpu * vgpu)706 static void ppgtt_free_all_shadow_page(struct intel_vgpu *vgpu)
707 {
708 struct hlist_node *n;
709 struct intel_vgpu_shadow_page *sp;
710 int i;
711
712 hash_for_each_safe(vgpu->gtt.shadow_page_hash_table, i, n, sp, node)
713 ppgtt_free_shadow_page(shadow_page_to_ppgtt_spt(sp));
714 }
715
716 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
717 u64 pa, void *p_data, int bytes);
718
ppgtt_write_protection_handler(void * gp,u64 pa,void * p_data,int bytes)719 static int ppgtt_write_protection_handler(void *gp, u64 pa,
720 void *p_data, int bytes)
721 {
722 struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
723 int ret;
724
725 if (bytes != 4 && bytes != 8)
726 return -EINVAL;
727
728 if (!gpt->writeprotection)
729 return -EINVAL;
730
731 ret = ppgtt_handle_guest_write_page_table_bytes(gp,
732 pa, p_data, bytes);
733 if (ret)
734 return ret;
735 return ret;
736 }
737
738 static int reclaim_one_mm(struct intel_gvt *gvt);
739
ppgtt_alloc_shadow_page(struct intel_vgpu * vgpu,int type,unsigned long gfn)740 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_shadow_page(
741 struct intel_vgpu *vgpu, int type, unsigned long gfn)
742 {
743 struct intel_vgpu_ppgtt_spt *spt = NULL;
744 int ret;
745
746 retry:
747 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
748 if (!spt) {
749 if (reclaim_one_mm(vgpu->gvt))
750 goto retry;
751
752 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
753 return ERR_PTR(-ENOMEM);
754 }
755
756 spt->vgpu = vgpu;
757 spt->guest_page_type = type;
758 atomic_set(&spt->refcount, 1);
759 INIT_LIST_HEAD(&spt->post_shadow_list);
760
761 /*
762 * TODO: guest page type may be different with shadow page type,
763 * when we support PSE page in future.
764 */
765 ret = init_shadow_page(vgpu, &spt->shadow_page, type);
766 if (ret) {
767 gvt_vgpu_err("fail to initialize shadow page for spt\n");
768 goto err;
769 }
770
771 ret = intel_vgpu_init_guest_page(vgpu, &spt->guest_page,
772 gfn, ppgtt_write_protection_handler, NULL);
773 if (ret) {
774 gvt_vgpu_err("fail to initialize guest page for spt\n");
775 goto err;
776 }
777
778 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
779 return spt;
780 err:
781 ppgtt_free_shadow_page(spt);
782 return ERR_PTR(ret);
783 }
784
ppgtt_find_shadow_page(struct intel_vgpu * vgpu,unsigned long mfn)785 static struct intel_vgpu_ppgtt_spt *ppgtt_find_shadow_page(
786 struct intel_vgpu *vgpu, unsigned long mfn)
787 {
788 struct intel_vgpu_shadow_page *p = find_shadow_page(vgpu, mfn);
789
790 if (p)
791 return shadow_page_to_ppgtt_spt(p);
792
793 gvt_vgpu_err("fail to find ppgtt shadow page: 0x%lx\n", mfn);
794 return NULL;
795 }
796
797 #define pt_entry_size_shift(spt) \
798 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
799
800 #define pt_entries(spt) \
801 (GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
802
803 #define for_each_present_guest_entry(spt, e, i) \
804 for (i = 0; i < pt_entries(spt); i++) \
805 if (!ppgtt_get_guest_entry(spt, e, i) && \
806 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
807
808 #define for_each_present_shadow_entry(spt, e, i) \
809 for (i = 0; i < pt_entries(spt); i++) \
810 if (!ppgtt_get_shadow_entry(spt, e, i) && \
811 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
812
ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt * spt)813 static void ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
814 {
815 int v = atomic_read(&spt->refcount);
816
817 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
818
819 atomic_inc(&spt->refcount);
820 }
821
822 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
823
ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * e)824 static int ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu *vgpu,
825 struct intel_gvt_gtt_entry *e)
826 {
827 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
828 struct intel_vgpu_ppgtt_spt *s;
829 intel_gvt_gtt_type_t cur_pt_type;
830
831 if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(e->type))))
832 return -EINVAL;
833
834 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
835 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
836 cur_pt_type = get_next_pt_type(e->type) + 1;
837 if (ops->get_pfn(e) ==
838 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
839 return 0;
840 }
841 s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
842 if (!s) {
843 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
844 ops->get_pfn(e));
845 return -ENXIO;
846 }
847 return ppgtt_invalidate_shadow_page(s);
848 }
849
ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt * spt)850 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
851 {
852 struct intel_vgpu *vgpu = spt->vgpu;
853 struct intel_gvt_gtt_entry e;
854 unsigned long index;
855 int ret;
856 int v = atomic_read(&spt->refcount);
857
858 trace_spt_change(spt->vgpu->id, "die", spt,
859 spt->guest_page.gfn, spt->shadow_page.type);
860
861 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
862
863 if (atomic_dec_return(&spt->refcount) > 0)
864 return 0;
865
866 if (gtt_type_is_pte_pt(spt->shadow_page.type))
867 goto release;
868
869 for_each_present_shadow_entry(spt, &e, index) {
870 if (!gtt_type_is_pt(get_next_pt_type(e.type))) {
871 gvt_vgpu_err("GVT doesn't support pse bit for now\n");
872 return -EINVAL;
873 }
874 ret = ppgtt_invalidate_shadow_page_by_shadow_entry(
875 spt->vgpu, &e);
876 if (ret)
877 goto fail;
878 }
879 release:
880 trace_spt_change(spt->vgpu->id, "release", spt,
881 spt->guest_page.gfn, spt->shadow_page.type);
882 ppgtt_free_shadow_page(spt);
883 return 0;
884 fail:
885 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
886 spt, e.val64, e.type);
887 return ret;
888 }
889
890 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
891
ppgtt_populate_shadow_page_by_guest_entry(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * we)892 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_shadow_page_by_guest_entry(
893 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
894 {
895 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
896 struct intel_vgpu_ppgtt_spt *s = NULL;
897 struct intel_vgpu_guest_page *g;
898 int ret;
899
900 if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(we->type)))) {
901 ret = -EINVAL;
902 goto fail;
903 }
904
905 g = intel_vgpu_find_guest_page(vgpu, ops->get_pfn(we));
906 if (g) {
907 s = guest_page_to_ppgtt_spt(g);
908 ppgtt_get_shadow_page(s);
909 } else {
910 int type = get_next_pt_type(we->type);
911
912 s = ppgtt_alloc_shadow_page(vgpu, type, ops->get_pfn(we));
913 if (IS_ERR(s)) {
914 ret = PTR_ERR(s);
915 goto fail;
916 }
917
918 ret = intel_gvt_hypervisor_set_wp_page(vgpu, &s->guest_page);
919 if (ret)
920 goto fail;
921
922 ret = ppgtt_populate_shadow_page(s);
923 if (ret)
924 goto fail;
925
926 trace_spt_change(vgpu->id, "new", s, s->guest_page.gfn,
927 s->shadow_page.type);
928 }
929 return s;
930 fail:
931 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
932 s, we->val64, we->type);
933 return ERR_PTR(ret);
934 }
935
ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry * se,struct intel_vgpu_ppgtt_spt * s,struct intel_gvt_gtt_entry * ge)936 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
937 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
938 {
939 struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
940
941 se->type = ge->type;
942 se->val64 = ge->val64;
943
944 ops->set_pfn(se, s->shadow_page.mfn);
945 }
946
ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt * spt)947 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
948 {
949 struct intel_vgpu *vgpu = spt->vgpu;
950 struct intel_vgpu_ppgtt_spt *s;
951 struct intel_gvt_gtt_entry se, ge;
952 unsigned long i;
953 int ret;
954
955 trace_spt_change(spt->vgpu->id, "born", spt,
956 spt->guest_page.gfn, spt->shadow_page.type);
957
958 if (gtt_type_is_pte_pt(spt->shadow_page.type)) {
959 for_each_present_guest_entry(spt, &ge, i) {
960 ret = gtt_entry_p2m(vgpu, &ge, &se);
961 if (ret)
962 goto fail;
963 ppgtt_set_shadow_entry(spt, &se, i);
964 }
965 return 0;
966 }
967
968 for_each_present_guest_entry(spt, &ge, i) {
969 if (!gtt_type_is_pt(get_next_pt_type(ge.type))) {
970 gvt_vgpu_err("GVT doesn't support pse bit now\n");
971 ret = -EINVAL;
972 goto fail;
973 }
974
975 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
976 if (IS_ERR(s)) {
977 ret = PTR_ERR(s);
978 goto fail;
979 }
980 ppgtt_get_shadow_entry(spt, &se, i);
981 ppgtt_generate_shadow_entry(&se, s, &ge);
982 ppgtt_set_shadow_entry(spt, &se, i);
983 }
984 return 0;
985 fail:
986 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
987 spt, ge.val64, ge.type);
988 return ret;
989 }
990
ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page * gpt,struct intel_gvt_gtt_entry * se,unsigned long index)991 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page *gpt,
992 struct intel_gvt_gtt_entry *se, unsigned long index)
993 {
994 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
995 struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
996 struct intel_vgpu *vgpu = spt->vgpu;
997 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
998 int ret;
999
1000 trace_gpt_change(spt->vgpu->id, "remove", spt, sp->type, se->val64,
1001 index);
1002
1003 if (!ops->test_present(se))
1004 return 0;
1005
1006 if (ops->get_pfn(se) == vgpu->gtt.scratch_pt[sp->type].page_mfn)
1007 return 0;
1008
1009 if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1010 struct intel_vgpu_ppgtt_spt *s =
1011 ppgtt_find_shadow_page(vgpu, ops->get_pfn(se));
1012 if (!s) {
1013 gvt_vgpu_err("fail to find guest page\n");
1014 ret = -ENXIO;
1015 goto fail;
1016 }
1017 ret = ppgtt_invalidate_shadow_page(s);
1018 if (ret)
1019 goto fail;
1020 }
1021 return 0;
1022 fail:
1023 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1024 spt, se->val64, se->type);
1025 return ret;
1026 }
1027
ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page * gpt,struct intel_gvt_gtt_entry * we,unsigned long index)1028 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page *gpt,
1029 struct intel_gvt_gtt_entry *we, unsigned long index)
1030 {
1031 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1032 struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1033 struct intel_vgpu *vgpu = spt->vgpu;
1034 struct intel_gvt_gtt_entry m;
1035 struct intel_vgpu_ppgtt_spt *s;
1036 int ret;
1037
1038 trace_gpt_change(spt->vgpu->id, "add", spt, sp->type,
1039 we->val64, index);
1040
1041 if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1042 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, we);
1043 if (IS_ERR(s)) {
1044 ret = PTR_ERR(s);
1045 goto fail;
1046 }
1047 ppgtt_get_shadow_entry(spt, &m, index);
1048 ppgtt_generate_shadow_entry(&m, s, we);
1049 ppgtt_set_shadow_entry(spt, &m, index);
1050 } else {
1051 ret = gtt_entry_p2m(vgpu, we, &m);
1052 if (ret)
1053 goto fail;
1054 ppgtt_set_shadow_entry(spt, &m, index);
1055 }
1056 return 0;
1057 fail:
1058 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1059 spt, we->val64, we->type);
1060 return ret;
1061 }
1062
sync_oos_page(struct intel_vgpu * vgpu,struct intel_vgpu_oos_page * oos_page)1063 static int sync_oos_page(struct intel_vgpu *vgpu,
1064 struct intel_vgpu_oos_page *oos_page)
1065 {
1066 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1067 struct intel_gvt *gvt = vgpu->gvt;
1068 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1069 struct intel_vgpu_ppgtt_spt *spt =
1070 guest_page_to_ppgtt_spt(oos_page->guest_page);
1071 struct intel_gvt_gtt_entry old, new, m;
1072 int index;
1073 int ret;
1074
1075 trace_oos_change(vgpu->id, "sync", oos_page->id,
1076 oos_page->guest_page, spt->guest_page_type);
1077
1078 old.type = new.type = get_entry_type(spt->guest_page_type);
1079 old.val64 = new.val64 = 0;
1080
1081 for (index = 0; index < (GTT_PAGE_SIZE >> info->gtt_entry_size_shift);
1082 index++) {
1083 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1084 ops->get_entry(NULL, &new, index, true,
1085 oos_page->guest_page->gfn << PAGE_SHIFT, vgpu);
1086
1087 if (old.val64 == new.val64
1088 && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1089 continue;
1090
1091 trace_oos_sync(vgpu->id, oos_page->id,
1092 oos_page->guest_page, spt->guest_page_type,
1093 new.val64, index);
1094
1095 ret = gtt_entry_p2m(vgpu, &new, &m);
1096 if (ret)
1097 return ret;
1098
1099 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1100 ppgtt_set_shadow_entry(spt, &m, index);
1101 }
1102
1103 oos_page->guest_page->write_cnt = 0;
1104 list_del_init(&spt->post_shadow_list);
1105 return 0;
1106 }
1107
detach_oos_page(struct intel_vgpu * vgpu,struct intel_vgpu_oos_page * oos_page)1108 static int detach_oos_page(struct intel_vgpu *vgpu,
1109 struct intel_vgpu_oos_page *oos_page)
1110 {
1111 struct intel_gvt *gvt = vgpu->gvt;
1112 struct intel_vgpu_ppgtt_spt *spt =
1113 guest_page_to_ppgtt_spt(oos_page->guest_page);
1114
1115 trace_oos_change(vgpu->id, "detach", oos_page->id,
1116 oos_page->guest_page, spt->guest_page_type);
1117
1118 oos_page->guest_page->write_cnt = 0;
1119 oos_page->guest_page->oos_page = NULL;
1120 oos_page->guest_page = NULL;
1121
1122 list_del_init(&oos_page->vm_list);
1123 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1124
1125 return 0;
1126 }
1127
attach_oos_page(struct intel_vgpu * vgpu,struct intel_vgpu_oos_page * oos_page,struct intel_vgpu_guest_page * gpt)1128 static int attach_oos_page(struct intel_vgpu *vgpu,
1129 struct intel_vgpu_oos_page *oos_page,
1130 struct intel_vgpu_guest_page *gpt)
1131 {
1132 struct intel_gvt *gvt = vgpu->gvt;
1133 int ret;
1134
1135 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpt->gfn << GTT_PAGE_SHIFT,
1136 oos_page->mem, GTT_PAGE_SIZE);
1137 if (ret)
1138 return ret;
1139
1140 oos_page->guest_page = gpt;
1141 gpt->oos_page = oos_page;
1142
1143 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1144
1145 trace_oos_change(vgpu->id, "attach", gpt->oos_page->id,
1146 gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1147 return 0;
1148 }
1149
ppgtt_set_guest_page_sync(struct intel_vgpu * vgpu,struct intel_vgpu_guest_page * gpt)1150 static int ppgtt_set_guest_page_sync(struct intel_vgpu *vgpu,
1151 struct intel_vgpu_guest_page *gpt)
1152 {
1153 int ret;
1154
1155 ret = intel_gvt_hypervisor_set_wp_page(vgpu, gpt);
1156 if (ret)
1157 return ret;
1158
1159 trace_oos_change(vgpu->id, "set page sync", gpt->oos_page->id,
1160 gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1161
1162 list_del_init(&gpt->oos_page->vm_list);
1163 return sync_oos_page(vgpu, gpt->oos_page);
1164 }
1165
ppgtt_allocate_oos_page(struct intel_vgpu * vgpu,struct intel_vgpu_guest_page * gpt)1166 static int ppgtt_allocate_oos_page(struct intel_vgpu *vgpu,
1167 struct intel_vgpu_guest_page *gpt)
1168 {
1169 struct intel_gvt *gvt = vgpu->gvt;
1170 struct intel_gvt_gtt *gtt = &gvt->gtt;
1171 struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1172 int ret;
1173
1174 WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1175
1176 if (list_empty(>t->oos_page_free_list_head)) {
1177 oos_page = container_of(gtt->oos_page_use_list_head.next,
1178 struct intel_vgpu_oos_page, list);
1179 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1180 if (ret)
1181 return ret;
1182 ret = detach_oos_page(vgpu, oos_page);
1183 if (ret)
1184 return ret;
1185 } else
1186 oos_page = container_of(gtt->oos_page_free_list_head.next,
1187 struct intel_vgpu_oos_page, list);
1188 return attach_oos_page(vgpu, oos_page, gpt);
1189 }
1190
ppgtt_set_guest_page_oos(struct intel_vgpu * vgpu,struct intel_vgpu_guest_page * gpt)1191 static int ppgtt_set_guest_page_oos(struct intel_vgpu *vgpu,
1192 struct intel_vgpu_guest_page *gpt)
1193 {
1194 struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1195
1196 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1197 return -EINVAL;
1198
1199 trace_oos_change(vgpu->id, "set page out of sync", gpt->oos_page->id,
1200 gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1201
1202 list_add_tail(&oos_page->vm_list, &vgpu->gtt.oos_page_list_head);
1203 return intel_gvt_hypervisor_unset_wp_page(vgpu, gpt);
1204 }
1205
1206 /**
1207 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1208 * @vgpu: a vGPU
1209 *
1210 * This function is called before submitting a guest workload to host,
1211 * to sync all the out-of-synced shadow for vGPU
1212 *
1213 * Returns:
1214 * Zero on success, negative error code if failed.
1215 */
intel_vgpu_sync_oos_pages(struct intel_vgpu * vgpu)1216 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1217 {
1218 struct list_head *pos, *n;
1219 struct intel_vgpu_oos_page *oos_page;
1220 int ret;
1221
1222 if (!enable_out_of_sync)
1223 return 0;
1224
1225 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1226 oos_page = container_of(pos,
1227 struct intel_vgpu_oos_page, vm_list);
1228 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1229 if (ret)
1230 return ret;
1231 }
1232 return 0;
1233 }
1234
1235 /*
1236 * The heart of PPGTT shadow page table.
1237 */
ppgtt_handle_guest_write_page_table(struct intel_vgpu_guest_page * gpt,struct intel_gvt_gtt_entry * we,unsigned long index)1238 static int ppgtt_handle_guest_write_page_table(
1239 struct intel_vgpu_guest_page *gpt,
1240 struct intel_gvt_gtt_entry *we, unsigned long index)
1241 {
1242 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1243 struct intel_vgpu *vgpu = spt->vgpu;
1244 int type = spt->shadow_page.type;
1245 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1246 struct intel_gvt_gtt_entry se;
1247
1248 int ret;
1249 int new_present;
1250
1251 new_present = ops->test_present(we);
1252
1253 /*
1254 * Adding the new entry first and then removing the old one, that can
1255 * guarantee the ppgtt table is validated during the window between
1256 * adding and removal.
1257 */
1258 ppgtt_get_shadow_entry(spt, &se, index);
1259
1260 if (new_present) {
1261 ret = ppgtt_handle_guest_entry_add(gpt, we, index);
1262 if (ret)
1263 goto fail;
1264 }
1265
1266 ret = ppgtt_handle_guest_entry_removal(gpt, &se, index);
1267 if (ret)
1268 goto fail;
1269
1270 if (!new_present) {
1271 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1272 ppgtt_set_shadow_entry(spt, &se, index);
1273 }
1274
1275 return 0;
1276 fail:
1277 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1278 spt, we->val64, we->type);
1279 return ret;
1280 }
1281
can_do_out_of_sync(struct intel_vgpu_guest_page * gpt)1282 static inline bool can_do_out_of_sync(struct intel_vgpu_guest_page *gpt)
1283 {
1284 return enable_out_of_sync
1285 && gtt_type_is_pte_pt(
1286 guest_page_to_ppgtt_spt(gpt)->guest_page_type)
1287 && gpt->write_cnt >= 2;
1288 }
1289
ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt * spt,unsigned long index)1290 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1291 unsigned long index)
1292 {
1293 set_bit(index, spt->post_shadow_bitmap);
1294 if (!list_empty(&spt->post_shadow_list))
1295 return;
1296
1297 list_add_tail(&spt->post_shadow_list,
1298 &spt->vgpu->gtt.post_shadow_list_head);
1299 }
1300
1301 /**
1302 * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1303 * @vgpu: a vGPU
1304 *
1305 * This function is called before submitting a guest workload to host,
1306 * to flush all the post shadows for a vGPU.
1307 *
1308 * Returns:
1309 * Zero on success, negative error code if failed.
1310 */
intel_vgpu_flush_post_shadow(struct intel_vgpu * vgpu)1311 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1312 {
1313 struct list_head *pos, *n;
1314 struct intel_vgpu_ppgtt_spt *spt;
1315 struct intel_gvt_gtt_entry ge;
1316 unsigned long index;
1317 int ret;
1318
1319 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1320 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1321 post_shadow_list);
1322
1323 for_each_set_bit(index, spt->post_shadow_bitmap,
1324 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1325 ppgtt_get_guest_entry(spt, &ge, index);
1326
1327 ret = ppgtt_handle_guest_write_page_table(
1328 &spt->guest_page, &ge, index);
1329 if (ret)
1330 return ret;
1331 clear_bit(index, spt->post_shadow_bitmap);
1332 }
1333 list_del_init(&spt->post_shadow_list);
1334 }
1335 return 0;
1336 }
1337
ppgtt_handle_guest_write_page_table_bytes(void * gp,u64 pa,void * p_data,int bytes)1338 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
1339 u64 pa, void *p_data, int bytes)
1340 {
1341 struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
1342 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1343 struct intel_vgpu *vgpu = spt->vgpu;
1344 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1345 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1346 struct intel_gvt_gtt_entry we, se;
1347 unsigned long index;
1348 int ret;
1349
1350 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1351
1352 ppgtt_get_guest_entry(spt, &we, index);
1353
1354 ops->test_pse(&we);
1355
1356 if (bytes == info->gtt_entry_size) {
1357 ret = ppgtt_handle_guest_write_page_table(gpt, &we, index);
1358 if (ret)
1359 return ret;
1360 } else {
1361 if (!test_bit(index, spt->post_shadow_bitmap)) {
1362 int type = spt->shadow_page.type;
1363
1364 ppgtt_get_shadow_entry(spt, &se, index);
1365 ret = ppgtt_handle_guest_entry_removal(gpt, &se, index);
1366 if (ret)
1367 return ret;
1368 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1369 ppgtt_set_shadow_entry(spt, &se, index);
1370 }
1371 ppgtt_set_post_shadow(spt, index);
1372 }
1373
1374 if (!enable_out_of_sync)
1375 return 0;
1376
1377 gpt->write_cnt++;
1378
1379 if (gpt->oos_page)
1380 ops->set_entry(gpt->oos_page->mem, &we, index,
1381 false, 0, vgpu);
1382
1383 if (can_do_out_of_sync(gpt)) {
1384 if (!gpt->oos_page)
1385 ppgtt_allocate_oos_page(vgpu, gpt);
1386
1387 ret = ppgtt_set_guest_page_oos(vgpu, gpt);
1388 if (ret < 0)
1389 return ret;
1390 }
1391 return 0;
1392 }
1393
1394 /*
1395 * mm page table allocation policy for bdw+
1396 * - for ggtt, only virtual page table will be allocated.
1397 * - for ppgtt, dedicated virtual/shadow page table will be allocated.
1398 */
gen8_mm_alloc_page_table(struct intel_vgpu_mm * mm)1399 static int gen8_mm_alloc_page_table(struct intel_vgpu_mm *mm)
1400 {
1401 struct intel_vgpu *vgpu = mm->vgpu;
1402 struct intel_gvt *gvt = vgpu->gvt;
1403 const struct intel_gvt_device_info *info = &gvt->device_info;
1404 void *mem;
1405
1406 if (mm->type == INTEL_GVT_MM_PPGTT) {
1407 mm->page_table_entry_cnt = 4;
1408 mm->page_table_entry_size = mm->page_table_entry_cnt *
1409 info->gtt_entry_size;
1410 mem = kzalloc(mm->has_shadow_page_table ?
1411 mm->page_table_entry_size * 2
1412 : mm->page_table_entry_size, GFP_KERNEL);
1413 if (!mem)
1414 return -ENOMEM;
1415 mm->virtual_page_table = mem;
1416 if (!mm->has_shadow_page_table)
1417 return 0;
1418 mm->shadow_page_table = mem + mm->page_table_entry_size;
1419 } else if (mm->type == INTEL_GVT_MM_GGTT) {
1420 mm->page_table_entry_cnt =
1421 (gvt_ggtt_gm_sz(gvt) >> GTT_PAGE_SHIFT);
1422 mm->page_table_entry_size = mm->page_table_entry_cnt *
1423 info->gtt_entry_size;
1424 mem = vzalloc(mm->page_table_entry_size);
1425 if (!mem)
1426 return -ENOMEM;
1427 mm->virtual_page_table = mem;
1428 }
1429 return 0;
1430 }
1431
gen8_mm_free_page_table(struct intel_vgpu_mm * mm)1432 static void gen8_mm_free_page_table(struct intel_vgpu_mm *mm)
1433 {
1434 if (mm->type == INTEL_GVT_MM_PPGTT) {
1435 kfree(mm->virtual_page_table);
1436 } else if (mm->type == INTEL_GVT_MM_GGTT) {
1437 if (mm->virtual_page_table)
1438 vfree(mm->virtual_page_table);
1439 }
1440 mm->virtual_page_table = mm->shadow_page_table = NULL;
1441 }
1442
invalidate_mm(struct intel_vgpu_mm * mm)1443 static void invalidate_mm(struct intel_vgpu_mm *mm)
1444 {
1445 struct intel_vgpu *vgpu = mm->vgpu;
1446 struct intel_gvt *gvt = vgpu->gvt;
1447 struct intel_gvt_gtt *gtt = &gvt->gtt;
1448 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1449 struct intel_gvt_gtt_entry se;
1450 int i;
1451
1452 if (WARN_ON(!mm->has_shadow_page_table || !mm->shadowed))
1453 return;
1454
1455 for (i = 0; i < mm->page_table_entry_cnt; i++) {
1456 ppgtt_get_shadow_root_entry(mm, &se, i);
1457 if (!ops->test_present(&se))
1458 continue;
1459 ppgtt_invalidate_shadow_page_by_shadow_entry(
1460 vgpu, &se);
1461 se.val64 = 0;
1462 ppgtt_set_shadow_root_entry(mm, &se, i);
1463
1464 trace_gpt_change(vgpu->id, "destroy root pointer",
1465 NULL, se.type, se.val64, i);
1466 }
1467 mm->shadowed = false;
1468 }
1469
1470 /**
1471 * intel_vgpu_destroy_mm - destroy a mm object
1472 * @mm: a kref object
1473 *
1474 * This function is used to destroy a mm object for vGPU
1475 *
1476 */
intel_vgpu_destroy_mm(struct kref * mm_ref)1477 void intel_vgpu_destroy_mm(struct kref *mm_ref)
1478 {
1479 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1480 struct intel_vgpu *vgpu = mm->vgpu;
1481 struct intel_gvt *gvt = vgpu->gvt;
1482 struct intel_gvt_gtt *gtt = &gvt->gtt;
1483
1484 if (!mm->initialized)
1485 goto out;
1486
1487 list_del(&mm->list);
1488 list_del(&mm->lru_list);
1489
1490 if (mm->has_shadow_page_table)
1491 invalidate_mm(mm);
1492
1493 gtt->mm_free_page_table(mm);
1494 out:
1495 kfree(mm);
1496 }
1497
shadow_mm(struct intel_vgpu_mm * mm)1498 static int shadow_mm(struct intel_vgpu_mm *mm)
1499 {
1500 struct intel_vgpu *vgpu = mm->vgpu;
1501 struct intel_gvt *gvt = vgpu->gvt;
1502 struct intel_gvt_gtt *gtt = &gvt->gtt;
1503 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1504 struct intel_vgpu_ppgtt_spt *spt;
1505 struct intel_gvt_gtt_entry ge, se;
1506 int i;
1507 int ret;
1508
1509 if (WARN_ON(!mm->has_shadow_page_table || mm->shadowed))
1510 return 0;
1511
1512 mm->shadowed = true;
1513
1514 for (i = 0; i < mm->page_table_entry_cnt; i++) {
1515 ppgtt_get_guest_root_entry(mm, &ge, i);
1516 if (!ops->test_present(&ge))
1517 continue;
1518
1519 trace_gpt_change(vgpu->id, __func__, NULL,
1520 ge.type, ge.val64, i);
1521
1522 spt = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
1523 if (IS_ERR(spt)) {
1524 gvt_vgpu_err("fail to populate guest root pointer\n");
1525 ret = PTR_ERR(spt);
1526 goto fail;
1527 }
1528 ppgtt_generate_shadow_entry(&se, spt, &ge);
1529 ppgtt_set_shadow_root_entry(mm, &se, i);
1530
1531 trace_gpt_change(vgpu->id, "populate root pointer",
1532 NULL, se.type, se.val64, i);
1533 }
1534 return 0;
1535 fail:
1536 invalidate_mm(mm);
1537 return ret;
1538 }
1539
1540 /**
1541 * intel_vgpu_create_mm - create a mm object for a vGPU
1542 * @vgpu: a vGPU
1543 * @mm_type: mm object type, should be PPGTT or GGTT
1544 * @virtual_page_table: page table root pointers. Could be NULL if user wants
1545 * to populate shadow later.
1546 * @page_table_level: describe the page table level of the mm object
1547 * @pde_base_index: pde root pointer base in GGTT MMIO.
1548 *
1549 * This function is used to create a mm object for a vGPU.
1550 *
1551 * Returns:
1552 * Zero on success, negative error code in pointer if failed.
1553 */
intel_vgpu_create_mm(struct intel_vgpu * vgpu,int mm_type,void * virtual_page_table,int page_table_level,u32 pde_base_index)1554 struct intel_vgpu_mm *intel_vgpu_create_mm(struct intel_vgpu *vgpu,
1555 int mm_type, void *virtual_page_table, int page_table_level,
1556 u32 pde_base_index)
1557 {
1558 struct intel_gvt *gvt = vgpu->gvt;
1559 struct intel_gvt_gtt *gtt = &gvt->gtt;
1560 struct intel_vgpu_mm *mm;
1561 int ret;
1562
1563 mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1564 if (!mm) {
1565 ret = -ENOMEM;
1566 goto fail;
1567 }
1568
1569 mm->type = mm_type;
1570
1571 if (page_table_level == 1)
1572 mm->page_table_entry_type = GTT_TYPE_GGTT_PTE;
1573 else if (page_table_level == 3)
1574 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1575 else if (page_table_level == 4)
1576 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1577 else {
1578 WARN_ON(1);
1579 ret = -EINVAL;
1580 goto fail;
1581 }
1582
1583 mm->page_table_level = page_table_level;
1584 mm->pde_base_index = pde_base_index;
1585
1586 mm->vgpu = vgpu;
1587 mm->has_shadow_page_table = !!(mm_type == INTEL_GVT_MM_PPGTT);
1588
1589 kref_init(&mm->ref);
1590 atomic_set(&mm->pincount, 0);
1591 INIT_LIST_HEAD(&mm->list);
1592 INIT_LIST_HEAD(&mm->lru_list);
1593 list_add_tail(&mm->list, &vgpu->gtt.mm_list_head);
1594
1595 ret = gtt->mm_alloc_page_table(mm);
1596 if (ret) {
1597 gvt_vgpu_err("fail to allocate page table for mm\n");
1598 goto fail;
1599 }
1600
1601 mm->initialized = true;
1602
1603 if (virtual_page_table)
1604 memcpy(mm->virtual_page_table, virtual_page_table,
1605 mm->page_table_entry_size);
1606
1607 if (mm->has_shadow_page_table) {
1608 ret = shadow_mm(mm);
1609 if (ret)
1610 goto fail;
1611 list_add_tail(&mm->lru_list, &gvt->gtt.mm_lru_list_head);
1612 }
1613 return mm;
1614 fail:
1615 gvt_vgpu_err("fail to create mm\n");
1616 if (mm)
1617 intel_gvt_mm_unreference(mm);
1618 return ERR_PTR(ret);
1619 }
1620
1621 /**
1622 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1623 * @mm: a vGPU mm object
1624 *
1625 * This function is called when user doesn't want to use a vGPU mm object
1626 */
intel_vgpu_unpin_mm(struct intel_vgpu_mm * mm)1627 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1628 {
1629 if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1630 return;
1631
1632 atomic_dec_if_positive(&mm->pincount);
1633 }
1634
1635 /**
1636 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1637 * @vgpu: a vGPU
1638 *
1639 * This function is called when user wants to use a vGPU mm object. If this
1640 * mm object hasn't been shadowed yet, the shadow will be populated at this
1641 * time.
1642 *
1643 * Returns:
1644 * Zero on success, negative error code if failed.
1645 */
intel_vgpu_pin_mm(struct intel_vgpu_mm * mm)1646 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1647 {
1648 int ret;
1649
1650 if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1651 return 0;
1652
1653 atomic_inc(&mm->pincount);
1654
1655 if (!mm->shadowed) {
1656 ret = shadow_mm(mm);
1657 if (ret)
1658 return ret;
1659 }
1660
1661 list_del_init(&mm->lru_list);
1662 list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head);
1663 return 0;
1664 }
1665
reclaim_one_mm(struct intel_gvt * gvt)1666 static int reclaim_one_mm(struct intel_gvt *gvt)
1667 {
1668 struct intel_vgpu_mm *mm;
1669 struct list_head *pos, *n;
1670
1671 list_for_each_safe(pos, n, &gvt->gtt.mm_lru_list_head) {
1672 mm = container_of(pos, struct intel_vgpu_mm, lru_list);
1673
1674 if (mm->type != INTEL_GVT_MM_PPGTT)
1675 continue;
1676 if (atomic_read(&mm->pincount))
1677 continue;
1678
1679 list_del_init(&mm->lru_list);
1680 invalidate_mm(mm);
1681 return 1;
1682 }
1683 return 0;
1684 }
1685
1686 /*
1687 * GMA translation APIs.
1688 */
ppgtt_get_next_level_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)1689 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1690 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1691 {
1692 struct intel_vgpu *vgpu = mm->vgpu;
1693 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1694 struct intel_vgpu_ppgtt_spt *s;
1695
1696 if (WARN_ON(!mm->has_shadow_page_table))
1697 return -EINVAL;
1698
1699 s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
1700 if (!s)
1701 return -ENXIO;
1702
1703 if (!guest)
1704 ppgtt_get_shadow_entry(s, e, index);
1705 else
1706 ppgtt_get_guest_entry(s, e, index);
1707 return 0;
1708 }
1709
1710 /**
1711 * intel_vgpu_gma_to_gpa - translate a gma to GPA
1712 * @mm: mm object. could be a PPGTT or GGTT mm object
1713 * @gma: graphics memory address in this mm object
1714 *
1715 * This function is used to translate a graphics memory address in specific
1716 * graphics memory space to guest physical address.
1717 *
1718 * Returns:
1719 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1720 */
intel_vgpu_gma_to_gpa(struct intel_vgpu_mm * mm,unsigned long gma)1721 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1722 {
1723 struct intel_vgpu *vgpu = mm->vgpu;
1724 struct intel_gvt *gvt = vgpu->gvt;
1725 struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1726 struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1727 unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1728 unsigned long gma_index[4];
1729 struct intel_gvt_gtt_entry e;
1730 int i, index;
1731 int ret;
1732
1733 if (mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT)
1734 return INTEL_GVT_INVALID_ADDR;
1735
1736 if (mm->type == INTEL_GVT_MM_GGTT) {
1737 if (!vgpu_gmadr_is_valid(vgpu, gma))
1738 goto err;
1739
1740 ret = ggtt_get_guest_entry(mm, &e,
1741 gma_ops->gma_to_ggtt_pte_index(gma));
1742 if (ret)
1743 goto err;
1744 gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1745 + (gma & ~GTT_PAGE_MASK);
1746
1747 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1748 return gpa;
1749 }
1750
1751 switch (mm->page_table_level) {
1752 case 4:
1753 ret = ppgtt_get_shadow_root_entry(mm, &e, 0);
1754 if (ret)
1755 goto err;
1756 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1757 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1758 gma_index[2] = gma_ops->gma_to_pde_index(gma);
1759 gma_index[3] = gma_ops->gma_to_pte_index(gma);
1760 index = 4;
1761 break;
1762 case 3:
1763 ret = ppgtt_get_shadow_root_entry(mm, &e,
1764 gma_ops->gma_to_l3_pdp_index(gma));
1765 if (ret)
1766 goto err;
1767 gma_index[0] = gma_ops->gma_to_pde_index(gma);
1768 gma_index[1] = gma_ops->gma_to_pte_index(gma);
1769 index = 2;
1770 break;
1771 case 2:
1772 ret = ppgtt_get_shadow_root_entry(mm, &e,
1773 gma_ops->gma_to_pde_index(gma));
1774 if (ret)
1775 goto err;
1776 gma_index[0] = gma_ops->gma_to_pte_index(gma);
1777 index = 1;
1778 break;
1779 default:
1780 WARN_ON(1);
1781 goto err;
1782 }
1783
1784 /* walk into the shadow page table and get gpa from guest entry */
1785 for (i = 0; i < index; i++) {
1786 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1787 (i == index - 1));
1788 if (ret)
1789 goto err;
1790
1791 if (!pte_ops->test_present(&e)) {
1792 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
1793 goto err;
1794 }
1795 }
1796
1797 gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1798 + (gma & ~GTT_PAGE_MASK);
1799
1800 trace_gma_translate(vgpu->id, "ppgtt", 0,
1801 mm->page_table_level, gma, gpa);
1802 return gpa;
1803 err:
1804 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1805 return INTEL_GVT_INVALID_ADDR;
1806 }
1807
emulate_gtt_mmio_read(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)1808 static int emulate_gtt_mmio_read(struct intel_vgpu *vgpu,
1809 unsigned int off, void *p_data, unsigned int bytes)
1810 {
1811 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1812 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1813 unsigned long index = off >> info->gtt_entry_size_shift;
1814 struct intel_gvt_gtt_entry e;
1815
1816 if (bytes != 4 && bytes != 8)
1817 return -EINVAL;
1818
1819 ggtt_get_guest_entry(ggtt_mm, &e, index);
1820 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1821 bytes);
1822 return 0;
1823 }
1824
1825 /**
1826 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1827 * @vgpu: a vGPU
1828 * @off: register offset
1829 * @p_data: data will be returned to guest
1830 * @bytes: data length
1831 *
1832 * This function is used to emulate the GTT MMIO register read
1833 *
1834 * Returns:
1835 * Zero on success, error code if failed.
1836 */
intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)1837 int intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1838 void *p_data, unsigned int bytes)
1839 {
1840 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1841 int ret;
1842
1843 if (bytes != 4 && bytes != 8)
1844 return -EINVAL;
1845
1846 off -= info->gtt_start_offset;
1847 ret = emulate_gtt_mmio_read(vgpu, off, p_data, bytes);
1848 return ret;
1849 }
1850
emulate_gtt_mmio_write(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)1851 static int emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1852 void *p_data, unsigned int bytes)
1853 {
1854 struct intel_gvt *gvt = vgpu->gvt;
1855 const struct intel_gvt_device_info *info = &gvt->device_info;
1856 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1857 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1858 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1859 unsigned long gma;
1860 struct intel_gvt_gtt_entry e, m;
1861 int ret;
1862
1863 if (bytes != 4 && bytes != 8)
1864 return -EINVAL;
1865
1866 gma = g_gtt_index << GTT_PAGE_SHIFT;
1867
1868 /* the VM may configure the whole GM space when ballooning is used */
1869 if (!vgpu_gmadr_is_valid(vgpu, gma))
1870 return 0;
1871
1872 ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1873
1874 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1875 bytes);
1876
1877 if (ops->test_present(&e)) {
1878 ret = gtt_entry_p2m(vgpu, &e, &m);
1879 if (ret) {
1880 gvt_vgpu_err("fail to translate guest gtt entry\n");
1881 /* guest driver may read/write the entry when partial
1882 * update the entry in this situation p2m will fail
1883 * settting the shadow entry to point to a scratch page
1884 */
1885 ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn);
1886 }
1887 } else {
1888 m = e;
1889 ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn);
1890 }
1891
1892 ggtt_set_shadow_entry(ggtt_mm, &m, g_gtt_index);
1893 gtt_invalidate(gvt->dev_priv);
1894 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1895 return 0;
1896 }
1897
1898 /*
1899 * intel_vgpu_emulate_gtt_mmio_write - emulate GTT MMIO register write
1900 * @vgpu: a vGPU
1901 * @off: register offset
1902 * @p_data: data from guest write
1903 * @bytes: data length
1904 *
1905 * This function is used to emulate the GTT MMIO register write
1906 *
1907 * Returns:
1908 * Zero on success, error code if failed.
1909 */
intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)1910 int intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1911 void *p_data, unsigned int bytes)
1912 {
1913 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1914 int ret;
1915
1916 if (bytes != 4 && bytes != 8)
1917 return -EINVAL;
1918
1919 off -= info->gtt_start_offset;
1920 ret = emulate_gtt_mmio_write(vgpu, off, p_data, bytes);
1921 return ret;
1922 }
1923
alloc_scratch_pages(struct intel_vgpu * vgpu,intel_gvt_gtt_type_t type)1924 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
1925 intel_gvt_gtt_type_t type)
1926 {
1927 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1928 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1929 int page_entry_num = GTT_PAGE_SIZE >>
1930 vgpu->gvt->device_info.gtt_entry_size_shift;
1931 void *scratch_pt;
1932 int i;
1933 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1934 dma_addr_t daddr;
1935
1936 if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
1937 return -EINVAL;
1938
1939 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
1940 if (!scratch_pt) {
1941 gvt_vgpu_err("fail to allocate scratch page\n");
1942 return -ENOMEM;
1943 }
1944
1945 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
1946 4096, PCI_DMA_BIDIRECTIONAL);
1947 if (dma_mapping_error(dev, daddr)) {
1948 gvt_vgpu_err("fail to dmamap scratch_pt\n");
1949 __free_page(virt_to_page(scratch_pt));
1950 return -ENOMEM;
1951 }
1952 gtt->scratch_pt[type].page_mfn =
1953 (unsigned long)(daddr >> GTT_PAGE_SHIFT);
1954 gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
1955 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
1956 vgpu->id, type, gtt->scratch_pt[type].page_mfn);
1957
1958 /* Build the tree by full filled the scratch pt with the entries which
1959 * point to the next level scratch pt or scratch page. The
1960 * scratch_pt[type] indicate the scratch pt/scratch page used by the
1961 * 'type' pt.
1962 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
1963 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
1964 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
1965 */
1966 if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) {
1967 struct intel_gvt_gtt_entry se;
1968
1969 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
1970 se.type = get_entry_type(type - 1);
1971 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
1972
1973 /* The entry parameters like present/writeable/cache type
1974 * set to the same as i915's scratch page tree.
1975 */
1976 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
1977 if (type == GTT_TYPE_PPGTT_PDE_PT)
1978 se.val64 |= PPAT_CACHED_INDEX;
1979
1980 for (i = 0; i < page_entry_num; i++)
1981 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
1982 }
1983
1984 return 0;
1985 }
1986
release_scratch_page_tree(struct intel_vgpu * vgpu)1987 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
1988 {
1989 int i;
1990 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1991 dma_addr_t daddr;
1992
1993 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1994 if (vgpu->gtt.scratch_pt[i].page != NULL) {
1995 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
1996 GTT_PAGE_SHIFT);
1997 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
1998 __free_page(vgpu->gtt.scratch_pt[i].page);
1999 vgpu->gtt.scratch_pt[i].page = NULL;
2000 vgpu->gtt.scratch_pt[i].page_mfn = 0;
2001 }
2002 }
2003
2004 return 0;
2005 }
2006
create_scratch_page_tree(struct intel_vgpu * vgpu)2007 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2008 {
2009 int i, ret;
2010
2011 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2012 ret = alloc_scratch_pages(vgpu, i);
2013 if (ret)
2014 goto err;
2015 }
2016
2017 return 0;
2018
2019 err:
2020 release_scratch_page_tree(vgpu);
2021 return ret;
2022 }
2023
2024 /**
2025 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2026 * @vgpu: a vGPU
2027 *
2028 * This function is used to initialize per-vGPU graphics memory virtualization
2029 * components.
2030 *
2031 * Returns:
2032 * Zero on success, error code if failed.
2033 */
intel_vgpu_init_gtt(struct intel_vgpu * vgpu)2034 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2035 {
2036 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2037 struct intel_vgpu_mm *ggtt_mm;
2038
2039 hash_init(gtt->guest_page_hash_table);
2040 hash_init(gtt->shadow_page_hash_table);
2041
2042 INIT_LIST_HEAD(>t->mm_list_head);
2043 INIT_LIST_HEAD(>t->oos_page_list_head);
2044 INIT_LIST_HEAD(>t->post_shadow_list_head);
2045
2046 intel_vgpu_reset_ggtt(vgpu);
2047
2048 ggtt_mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_GGTT,
2049 NULL, 1, 0);
2050 if (IS_ERR(ggtt_mm)) {
2051 gvt_vgpu_err("fail to create mm for ggtt.\n");
2052 return PTR_ERR(ggtt_mm);
2053 }
2054
2055 gtt->ggtt_mm = ggtt_mm;
2056
2057 return create_scratch_page_tree(vgpu);
2058 }
2059
intel_vgpu_free_mm(struct intel_vgpu * vgpu,int type)2060 static void intel_vgpu_free_mm(struct intel_vgpu *vgpu, int type)
2061 {
2062 struct list_head *pos, *n;
2063 struct intel_vgpu_mm *mm;
2064
2065 list_for_each_safe(pos, n, &vgpu->gtt.mm_list_head) {
2066 mm = container_of(pos, struct intel_vgpu_mm, list);
2067 if (mm->type == type) {
2068 vgpu->gvt->gtt.mm_free_page_table(mm);
2069 list_del(&mm->list);
2070 list_del(&mm->lru_list);
2071 kfree(mm);
2072 }
2073 }
2074 }
2075
2076 /**
2077 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2078 * @vgpu: a vGPU
2079 *
2080 * This function is used to clean up per-vGPU graphics memory virtualization
2081 * components.
2082 *
2083 * Returns:
2084 * Zero on success, error code if failed.
2085 */
intel_vgpu_clean_gtt(struct intel_vgpu * vgpu)2086 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2087 {
2088 ppgtt_free_all_shadow_page(vgpu);
2089 release_scratch_page_tree(vgpu);
2090
2091 intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2092 intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_GGTT);
2093 }
2094
clean_spt_oos(struct intel_gvt * gvt)2095 static void clean_spt_oos(struct intel_gvt *gvt)
2096 {
2097 struct intel_gvt_gtt *gtt = &gvt->gtt;
2098 struct list_head *pos, *n;
2099 struct intel_vgpu_oos_page *oos_page;
2100
2101 WARN(!list_empty(>t->oos_page_use_list_head),
2102 "someone is still using oos page\n");
2103
2104 list_for_each_safe(pos, n, >t->oos_page_free_list_head) {
2105 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2106 list_del(&oos_page->list);
2107 kfree(oos_page);
2108 }
2109 }
2110
setup_spt_oos(struct intel_gvt * gvt)2111 static int setup_spt_oos(struct intel_gvt *gvt)
2112 {
2113 struct intel_gvt_gtt *gtt = &gvt->gtt;
2114 struct intel_vgpu_oos_page *oos_page;
2115 int i;
2116 int ret;
2117
2118 INIT_LIST_HEAD(>t->oos_page_free_list_head);
2119 INIT_LIST_HEAD(>t->oos_page_use_list_head);
2120
2121 for (i = 0; i < preallocated_oos_pages; i++) {
2122 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2123 if (!oos_page) {
2124 ret = -ENOMEM;
2125 goto fail;
2126 }
2127
2128 INIT_LIST_HEAD(&oos_page->list);
2129 INIT_LIST_HEAD(&oos_page->vm_list);
2130 oos_page->id = i;
2131 list_add_tail(&oos_page->list, >t->oos_page_free_list_head);
2132 }
2133
2134 gvt_dbg_mm("%d oos pages preallocated\n", i);
2135
2136 return 0;
2137 fail:
2138 clean_spt_oos(gvt);
2139 return ret;
2140 }
2141
2142 /**
2143 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2144 * @vgpu: a vGPU
2145 * @page_table_level: PPGTT page table level
2146 * @root_entry: PPGTT page table root pointers
2147 *
2148 * This function is used to find a PPGTT mm object from mm object pool
2149 *
2150 * Returns:
2151 * pointer to mm object on success, NULL if failed.
2152 */
intel_vgpu_find_ppgtt_mm(struct intel_vgpu * vgpu,int page_table_level,void * root_entry)2153 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2154 int page_table_level, void *root_entry)
2155 {
2156 struct list_head *pos;
2157 struct intel_vgpu_mm *mm;
2158 u64 *src, *dst;
2159
2160 list_for_each(pos, &vgpu->gtt.mm_list_head) {
2161 mm = container_of(pos, struct intel_vgpu_mm, list);
2162 if (mm->type != INTEL_GVT_MM_PPGTT)
2163 continue;
2164
2165 if (mm->page_table_level != page_table_level)
2166 continue;
2167
2168 src = root_entry;
2169 dst = mm->virtual_page_table;
2170
2171 if (page_table_level == 3) {
2172 if (src[0] == dst[0]
2173 && src[1] == dst[1]
2174 && src[2] == dst[2]
2175 && src[3] == dst[3])
2176 return mm;
2177 } else {
2178 if (src[0] == dst[0])
2179 return mm;
2180 }
2181 }
2182 return NULL;
2183 }
2184
2185 /**
2186 * intel_vgpu_g2v_create_ppgtt_mm - create a PPGTT mm object from
2187 * g2v notification
2188 * @vgpu: a vGPU
2189 * @page_table_level: PPGTT page table level
2190 *
2191 * This function is used to create a PPGTT mm object from a guest to GVT-g
2192 * notification.
2193 *
2194 * Returns:
2195 * Zero on success, negative error code if failed.
2196 */
intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu * vgpu,int page_table_level)2197 int intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu *vgpu,
2198 int page_table_level)
2199 {
2200 u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2201 struct intel_vgpu_mm *mm;
2202
2203 if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2204 return -EINVAL;
2205
2206 mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2207 if (mm) {
2208 intel_gvt_mm_reference(mm);
2209 } else {
2210 mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_PPGTT,
2211 pdp, page_table_level, 0);
2212 if (IS_ERR(mm)) {
2213 gvt_vgpu_err("fail to create mm\n");
2214 return PTR_ERR(mm);
2215 }
2216 }
2217 return 0;
2218 }
2219
2220 /**
2221 * intel_vgpu_g2v_destroy_ppgtt_mm - destroy a PPGTT mm object from
2222 * g2v notification
2223 * @vgpu: a vGPU
2224 * @page_table_level: PPGTT page table level
2225 *
2226 * This function is used to create a PPGTT mm object from a guest to GVT-g
2227 * notification.
2228 *
2229 * Returns:
2230 * Zero on success, negative error code if failed.
2231 */
intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu * vgpu,int page_table_level)2232 int intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu *vgpu,
2233 int page_table_level)
2234 {
2235 u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2236 struct intel_vgpu_mm *mm;
2237
2238 if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2239 return -EINVAL;
2240
2241 mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2242 if (!mm) {
2243 gvt_vgpu_err("fail to find ppgtt instance.\n");
2244 return -EINVAL;
2245 }
2246 intel_gvt_mm_unreference(mm);
2247 return 0;
2248 }
2249
2250 /**
2251 * intel_gvt_init_gtt - initialize mm components of a GVT device
2252 * @gvt: GVT device
2253 *
2254 * This function is called at the initialization stage, to initialize
2255 * the mm components of a GVT device.
2256 *
2257 * Returns:
2258 * zero on success, negative error code if failed.
2259 */
intel_gvt_init_gtt(struct intel_gvt * gvt)2260 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2261 {
2262 int ret;
2263 void *page;
2264 struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2265 dma_addr_t daddr;
2266
2267 gvt_dbg_core("init gtt\n");
2268
2269 if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
2270 || IS_KABYLAKE(gvt->dev_priv)) {
2271 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2272 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2273 gvt->gtt.mm_alloc_page_table = gen8_mm_alloc_page_table;
2274 gvt->gtt.mm_free_page_table = gen8_mm_free_page_table;
2275 } else {
2276 return -ENODEV;
2277 }
2278
2279 page = (void *)get_zeroed_page(GFP_KERNEL);
2280 if (!page) {
2281 gvt_err("fail to allocate scratch ggtt page\n");
2282 return -ENOMEM;
2283 }
2284
2285 daddr = dma_map_page(dev, virt_to_page(page), 0,
2286 4096, PCI_DMA_BIDIRECTIONAL);
2287 if (dma_mapping_error(dev, daddr)) {
2288 gvt_err("fail to dmamap scratch ggtt page\n");
2289 __free_page(virt_to_page(page));
2290 return -ENOMEM;
2291 }
2292 gvt->gtt.scratch_ggtt_page = virt_to_page(page);
2293 gvt->gtt.scratch_ggtt_mfn = (unsigned long)(daddr >> GTT_PAGE_SHIFT);
2294
2295 if (enable_out_of_sync) {
2296 ret = setup_spt_oos(gvt);
2297 if (ret) {
2298 gvt_err("fail to initialize SPT oos\n");
2299 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2300 __free_page(gvt->gtt.scratch_ggtt_page);
2301 return ret;
2302 }
2303 }
2304 INIT_LIST_HEAD(&gvt->gtt.mm_lru_list_head);
2305 return 0;
2306 }
2307
2308 /**
2309 * intel_gvt_clean_gtt - clean up mm components of a GVT device
2310 * @gvt: GVT device
2311 *
2312 * This function is called at the driver unloading stage, to clean up the
2313 * the mm components of a GVT device.
2314 *
2315 */
intel_gvt_clean_gtt(struct intel_gvt * gvt)2316 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2317 {
2318 struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2319 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_ggtt_mfn <<
2320 GTT_PAGE_SHIFT);
2321
2322 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2323
2324 __free_page(gvt->gtt.scratch_ggtt_page);
2325
2326 if (enable_out_of_sync)
2327 clean_spt_oos(gvt);
2328 }
2329
2330 /**
2331 * intel_vgpu_reset_ggtt - reset the GGTT entry
2332 * @vgpu: a vGPU
2333 *
2334 * This function is called at the vGPU create stage
2335 * to reset all the GGTT entries.
2336 *
2337 */
intel_vgpu_reset_ggtt(struct intel_vgpu * vgpu)2338 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu)
2339 {
2340 struct intel_gvt *gvt = vgpu->gvt;
2341 struct drm_i915_private *dev_priv = gvt->dev_priv;
2342 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2343 u32 index;
2344 u32 offset;
2345 u32 num_entries;
2346 struct intel_gvt_gtt_entry e;
2347
2348 memset(&e, 0, sizeof(struct intel_gvt_gtt_entry));
2349 e.type = GTT_TYPE_GGTT_PTE;
2350 ops->set_pfn(&e, gvt->gtt.scratch_ggtt_mfn);
2351 e.val64 |= _PAGE_PRESENT;
2352
2353 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2354 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2355 for (offset = 0; offset < num_entries; offset++)
2356 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2357
2358 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2359 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2360 for (offset = 0; offset < num_entries; offset++)
2361 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2362
2363 gtt_invalidate(dev_priv);
2364 }
2365
2366 /**
2367 * intel_vgpu_reset_gtt - reset the all GTT related status
2368 * @vgpu: a vGPU
2369 *
2370 * This function is called from vfio core to reset reset all
2371 * GTT related status, including GGTT, PPGTT, scratch page.
2372 *
2373 */
intel_vgpu_reset_gtt(struct intel_vgpu * vgpu)2374 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2375 {
2376 int i;
2377
2378 ppgtt_free_all_shadow_page(vgpu);
2379
2380 /* Shadow pages are only created when there is no page
2381 * table tracking data, so remove page tracking data after
2382 * removing the shadow pages.
2383 */
2384 intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2385
2386 intel_vgpu_reset_ggtt(vgpu);
2387
2388 /* clear scratch page for security */
2389 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2390 if (vgpu->gtt.scratch_pt[i].page != NULL)
2391 memset(page_address(vgpu->gtt.scratch_pt[i].page),
2392 0, PAGE_SIZE);
2393 }
2394 }
2395