• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27 
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33 
34 #include <asm/set_memory.h>
35 
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38 
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44 
45 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
46 
47 /**
48  * DOC: Global GTT views
49  *
50  * Background and previous state
51  *
52  * Historically objects could exists (be bound) in global GTT space only as
53  * singular instances with a view representing all of the object's backing pages
54  * in a linear fashion. This view will be called a normal view.
55  *
56  * To support multiple views of the same object, where the number of mapped
57  * pages is not equal to the backing store, or where the layout of the pages
58  * is not linear, concept of a GGTT view was added.
59  *
60  * One example of an alternative view is a stereo display driven by a single
61  * image. In this case we would have a framebuffer looking like this
62  * (2x2 pages):
63  *
64  *    12
65  *    34
66  *
67  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68  * rendering. In contrast, fed to the display engine would be an alternative
69  * view which could look something like this:
70  *
71  *   1212
72  *   3434
73  *
74  * In this example both the size and layout of pages in the alternative view is
75  * different from the normal view.
76  *
77  * Implementation and usage
78  *
79  * GGTT views are implemented using VMAs and are distinguished via enum
80  * i915_ggtt_view_type and struct i915_ggtt_view.
81  *
82  * A new flavour of core GEM functions which work with GGTT bound objects were
83  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84  * renaming  in large amounts of code. They take the struct i915_ggtt_view
85  * parameter encapsulating all metadata required to implement a view.
86  *
87  * As a helper for callers which are only interested in the normal view,
88  * globally const i915_ggtt_view_normal singleton instance exists. All old core
89  * GEM API functions, the ones not taking the view parameter, are operating on,
90  * or with the normal GGTT view.
91  *
92  * Code wanting to add or use a new GGTT view needs to:
93  *
94  * 1. Add a new enum with a suitable name.
95  * 2. Extend the metadata in the i915_ggtt_view structure if required.
96  * 3. Add support to i915_get_vma_pages().
97  *
98  * New views are required to build a scatter-gather table from within the
99  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100  * exists for the lifetime of an VMA.
101  *
102  * Core API is designed to have copy semantics which means that passed in
103  * struct i915_ggtt_view does not need to be persistent (left around after
104  * calling the core API functions).
105  *
106  */
107 
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110 
gen6_ggtt_invalidate(struct drm_i915_private * dev_priv)111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113 	/* Note that as an uncached mmio write, this should flush the
114 	 * WCB of the writes into the GGTT before it triggers the invalidate.
115 	 */
116 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
117 }
118 
guc_ggtt_invalidate(struct drm_i915_private * dev_priv)119 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
120 {
121 	gen6_ggtt_invalidate(dev_priv);
122 	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
123 }
124 
gmch_ggtt_invalidate(struct drm_i915_private * dev_priv)125 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
126 {
127 	intel_gtt_chipset_flush();
128 }
129 
i915_ggtt_invalidate(struct drm_i915_private * i915)130 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
131 {
132 	i915->ggtt.invalidate(i915);
133 }
134 
intel_sanitize_enable_ppgtt(struct drm_i915_private * dev_priv,int enable_ppgtt)135 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
136 			       	int enable_ppgtt)
137 {
138 	bool has_aliasing_ppgtt;
139 	bool has_full_ppgtt;
140 	bool has_full_48bit_ppgtt;
141 
142 	has_aliasing_ppgtt = dev_priv->info.has_aliasing_ppgtt;
143 	has_full_ppgtt = dev_priv->info.has_full_ppgtt;
144 	has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
145 
146 	if (intel_vgpu_active(dev_priv)) {
147 		/* GVT-g has no support for 32bit ppgtt */
148 		has_full_ppgtt = false;
149 		has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
150 	}
151 
152 	if (!has_aliasing_ppgtt)
153 		return 0;
154 
155 	/*
156 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
157 	 * execlists, the sole mechanism available to submit work.
158 	 */
159 	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
160 		return 0;
161 
162 	/* Full PPGTT is required by the Gen9 cmdparser */
163 	if (enable_ppgtt == 1 && INTEL_GEN(dev_priv) != 9)
164 		return 1;
165 
166 	if (enable_ppgtt == 2 && has_full_ppgtt)
167 		return 2;
168 
169 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
170 		return 3;
171 
172 	/* Disable ppgtt on SNB if VT-d is on. */
173 	if (IS_GEN6(dev_priv) && intel_vtd_active()) {
174 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
175 		return 0;
176 	}
177 
178 	/* Early VLV doesn't have this */
179 	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
180 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
181 		return 0;
182 	}
183 
184 	if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists) {
185 		if (has_full_48bit_ppgtt)
186 			return 3;
187 
188 		if (has_full_ppgtt)
189 			return 2;
190 	}
191 
192 	return has_aliasing_ppgtt ? 1 : 0;
193 }
194 
ppgtt_bind_vma(struct i915_vma * vma,enum i915_cache_level cache_level,u32 unused)195 static int ppgtt_bind_vma(struct i915_vma *vma,
196 			  enum i915_cache_level cache_level,
197 			  u32 unused)
198 {
199 	u32 pte_flags;
200 	int ret;
201 
202 	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
203 		ret = vma->vm->allocate_va_range(vma->vm, vma->node.start,
204 						 vma->size);
205 		if (ret)
206 			return ret;
207 	}
208 
209 	vma->pages = vma->obj->mm.pages;
210 
211 	/* Applicable to VLV, and gen8+ */
212 	pte_flags = 0;
213 	if (i915_gem_object_is_readonly(vma->obj))
214 		pte_flags |= PTE_READ_ONLY;
215 
216 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
217 
218 	return 0;
219 }
220 
ppgtt_unbind_vma(struct i915_vma * vma)221 static void ppgtt_unbind_vma(struct i915_vma *vma)
222 {
223 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
224 }
225 
gen8_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)226 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
227 				  enum i915_cache_level level,
228 				  u32 flags)
229 {
230 	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
231 
232 	if (unlikely(flags & PTE_READ_ONLY))
233 		pte &= ~_PAGE_RW;
234 
235 	switch (level) {
236 	case I915_CACHE_NONE:
237 		pte |= PPAT_UNCACHED_INDEX;
238 		break;
239 	case I915_CACHE_WT:
240 		pte |= PPAT_DISPLAY_ELLC_INDEX;
241 		break;
242 	default:
243 		pte |= PPAT_CACHED_INDEX;
244 		break;
245 	}
246 
247 	return pte;
248 }
249 
gen8_pde_encode(const dma_addr_t addr,const enum i915_cache_level level)250 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
251 				  const enum i915_cache_level level)
252 {
253 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
254 	pde |= addr;
255 	if (level != I915_CACHE_NONE)
256 		pde |= PPAT_CACHED_PDE_INDEX;
257 	else
258 		pde |= PPAT_UNCACHED_INDEX;
259 	return pde;
260 }
261 
262 #define gen8_pdpe_encode gen8_pde_encode
263 #define gen8_pml4e_encode gen8_pde_encode
264 
snb_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 unused)265 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
266 				 enum i915_cache_level level,
267 				 u32 unused)
268 {
269 	gen6_pte_t pte = GEN6_PTE_VALID;
270 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
271 
272 	switch (level) {
273 	case I915_CACHE_L3_LLC:
274 	case I915_CACHE_LLC:
275 		pte |= GEN6_PTE_CACHE_LLC;
276 		break;
277 	case I915_CACHE_NONE:
278 		pte |= GEN6_PTE_UNCACHED;
279 		break;
280 	default:
281 		MISSING_CASE(level);
282 	}
283 
284 	return pte;
285 }
286 
ivb_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 unused)287 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
288 				 enum i915_cache_level level,
289 				 u32 unused)
290 {
291 	gen6_pte_t pte = GEN6_PTE_VALID;
292 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
293 
294 	switch (level) {
295 	case I915_CACHE_L3_LLC:
296 		pte |= GEN7_PTE_CACHE_L3_LLC;
297 		break;
298 	case I915_CACHE_LLC:
299 		pte |= GEN6_PTE_CACHE_LLC;
300 		break;
301 	case I915_CACHE_NONE:
302 		pte |= GEN6_PTE_UNCACHED;
303 		break;
304 	default:
305 		MISSING_CASE(level);
306 	}
307 
308 	return pte;
309 }
310 
byt_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)311 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
312 				 enum i915_cache_level level,
313 				 u32 flags)
314 {
315 	gen6_pte_t pte = GEN6_PTE_VALID;
316 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
317 
318 	if (!(flags & PTE_READ_ONLY))
319 		pte |= BYT_PTE_WRITEABLE;
320 
321 	if (level != I915_CACHE_NONE)
322 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
323 
324 	return pte;
325 }
326 
hsw_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 unused)327 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
328 				 enum i915_cache_level level,
329 				 u32 unused)
330 {
331 	gen6_pte_t pte = GEN6_PTE_VALID;
332 	pte |= HSW_PTE_ADDR_ENCODE(addr);
333 
334 	if (level != I915_CACHE_NONE)
335 		pte |= HSW_WB_LLC_AGE3;
336 
337 	return pte;
338 }
339 
iris_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 unused)340 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
341 				  enum i915_cache_level level,
342 				  u32 unused)
343 {
344 	gen6_pte_t pte = GEN6_PTE_VALID;
345 	pte |= HSW_PTE_ADDR_ENCODE(addr);
346 
347 	switch (level) {
348 	case I915_CACHE_NONE:
349 		break;
350 	case I915_CACHE_WT:
351 		pte |= HSW_WT_ELLC_LLC_AGE3;
352 		break;
353 	default:
354 		pte |= HSW_WB_ELLC_LLC_AGE3;
355 		break;
356 	}
357 
358 	return pte;
359 }
360 
vm_alloc_page(struct i915_address_space * vm,gfp_t gfp)361 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
362 {
363 	struct page *page;
364 
365 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
366 		i915_gem_shrink_all(vm->i915);
367 
368 	if (vm->free_pages.nr)
369 		return vm->free_pages.pages[--vm->free_pages.nr];
370 
371 	page = alloc_page(gfp);
372 	if (!page)
373 		return NULL;
374 
375 	if (vm->pt_kmap_wc)
376 		set_pages_array_wc(&page, 1);
377 
378 	return page;
379 }
380 
vm_free_pages_release(struct i915_address_space * vm)381 static void vm_free_pages_release(struct i915_address_space *vm)
382 {
383 	GEM_BUG_ON(!pagevec_count(&vm->free_pages));
384 
385 	if (vm->pt_kmap_wc)
386 		set_pages_array_wb(vm->free_pages.pages,
387 				   pagevec_count(&vm->free_pages));
388 
389 	__pagevec_release(&vm->free_pages);
390 }
391 
vm_free_page(struct i915_address_space * vm,struct page * page)392 static void vm_free_page(struct i915_address_space *vm, struct page *page)
393 {
394 	if (!pagevec_add(&vm->free_pages, page))
395 		vm_free_pages_release(vm);
396 }
397 
__setup_page_dma(struct i915_address_space * vm,struct i915_page_dma * p,gfp_t gfp)398 static int __setup_page_dma(struct i915_address_space *vm,
399 			    struct i915_page_dma *p,
400 			    gfp_t gfp)
401 {
402 	p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY);
403 	if (unlikely(!p->page))
404 		return -ENOMEM;
405 
406 	p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
407 				PCI_DMA_BIDIRECTIONAL);
408 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
409 		vm_free_page(vm, p->page);
410 		return -ENOMEM;
411 	}
412 
413 	return 0;
414 }
415 
setup_page_dma(struct i915_address_space * vm,struct i915_page_dma * p)416 static int setup_page_dma(struct i915_address_space *vm,
417 			  struct i915_page_dma *p)
418 {
419 	return __setup_page_dma(vm, p, I915_GFP_DMA);
420 }
421 
cleanup_page_dma(struct i915_address_space * vm,struct i915_page_dma * p)422 static void cleanup_page_dma(struct i915_address_space *vm,
423 			     struct i915_page_dma *p)
424 {
425 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
426 	vm_free_page(vm, p->page);
427 }
428 
429 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
430 
431 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
432 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
433 #define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v))
434 #define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v))
435 
fill_page_dma(struct i915_address_space * vm,struct i915_page_dma * p,const u64 val)436 static void fill_page_dma(struct i915_address_space *vm,
437 			  struct i915_page_dma *p,
438 			  const u64 val)
439 {
440 	u64 * const vaddr = kmap_atomic(p->page);
441 	int i;
442 
443 	for (i = 0; i < 512; i++)
444 		vaddr[i] = val;
445 
446 	kunmap_atomic(vaddr);
447 }
448 
fill_page_dma_32(struct i915_address_space * vm,struct i915_page_dma * p,const u32 v)449 static void fill_page_dma_32(struct i915_address_space *vm,
450 			     struct i915_page_dma *p,
451 			     const u32 v)
452 {
453 	fill_page_dma(vm, p, (u64)v << 32 | v);
454 }
455 
456 static int
setup_scratch_page(struct i915_address_space * vm,gfp_t gfp)457 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
458 {
459 	return __setup_page_dma(vm, &vm->scratch_page, gfp | __GFP_ZERO);
460 }
461 
cleanup_scratch_page(struct i915_address_space * vm)462 static void cleanup_scratch_page(struct i915_address_space *vm)
463 {
464 	cleanup_page_dma(vm, &vm->scratch_page);
465 }
466 
alloc_pt(struct i915_address_space * vm)467 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
468 {
469 	struct i915_page_table *pt;
470 
471 	pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN);
472 	if (unlikely(!pt))
473 		return ERR_PTR(-ENOMEM);
474 
475 	if (unlikely(setup_px(vm, pt))) {
476 		kfree(pt);
477 		return ERR_PTR(-ENOMEM);
478 	}
479 
480 	pt->used_ptes = 0;
481 	return pt;
482 }
483 
free_pt(struct i915_address_space * vm,struct i915_page_table * pt)484 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
485 {
486 	cleanup_px(vm, pt);
487 	kfree(pt);
488 }
489 
gen8_initialize_pt(struct i915_address_space * vm,struct i915_page_table * pt)490 static void gen8_initialize_pt(struct i915_address_space *vm,
491 			       struct i915_page_table *pt)
492 {
493 	fill_px(vm, pt,
494 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
495 }
496 
gen6_initialize_pt(struct i915_address_space * vm,struct i915_page_table * pt)497 static void gen6_initialize_pt(struct i915_address_space *vm,
498 			       struct i915_page_table *pt)
499 {
500 	fill32_px(vm, pt,
501 		  vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
502 }
503 
alloc_pd(struct i915_address_space * vm)504 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
505 {
506 	struct i915_page_directory *pd;
507 
508 	pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN);
509 	if (unlikely(!pd))
510 		return ERR_PTR(-ENOMEM);
511 
512 	if (unlikely(setup_px(vm, pd))) {
513 		kfree(pd);
514 		return ERR_PTR(-ENOMEM);
515 	}
516 
517 	pd->used_pdes = 0;
518 	return pd;
519 }
520 
free_pd(struct i915_address_space * vm,struct i915_page_directory * pd)521 static void free_pd(struct i915_address_space *vm,
522 		    struct i915_page_directory *pd)
523 {
524 	cleanup_px(vm, pd);
525 	kfree(pd);
526 }
527 
gen8_initialize_pd(struct i915_address_space * vm,struct i915_page_directory * pd)528 static void gen8_initialize_pd(struct i915_address_space *vm,
529 			       struct i915_page_directory *pd)
530 {
531 	unsigned int i;
532 
533 	fill_px(vm, pd,
534 		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
535 	for (i = 0; i < I915_PDES; i++)
536 		pd->page_table[i] = vm->scratch_pt;
537 }
538 
__pdp_init(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp)539 static int __pdp_init(struct i915_address_space *vm,
540 		      struct i915_page_directory_pointer *pdp)
541 {
542 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
543 	unsigned int i;
544 
545 	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
546 					    GFP_KERNEL | __GFP_NOWARN);
547 	if (unlikely(!pdp->page_directory))
548 		return -ENOMEM;
549 
550 	for (i = 0; i < pdpes; i++)
551 		pdp->page_directory[i] = vm->scratch_pd;
552 
553 	return 0;
554 }
555 
__pdp_fini(struct i915_page_directory_pointer * pdp)556 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
557 {
558 	kfree(pdp->page_directory);
559 	pdp->page_directory = NULL;
560 }
561 
use_4lvl(const struct i915_address_space * vm)562 static inline bool use_4lvl(const struct i915_address_space *vm)
563 {
564 	return i915_vm_is_48bit(vm);
565 }
566 
567 static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space * vm)568 alloc_pdp(struct i915_address_space *vm)
569 {
570 	struct i915_page_directory_pointer *pdp;
571 	int ret = -ENOMEM;
572 
573 	WARN_ON(!use_4lvl(vm));
574 
575 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
576 	if (!pdp)
577 		return ERR_PTR(-ENOMEM);
578 
579 	ret = __pdp_init(vm, pdp);
580 	if (ret)
581 		goto fail_bitmap;
582 
583 	ret = setup_px(vm, pdp);
584 	if (ret)
585 		goto fail_page_m;
586 
587 	return pdp;
588 
589 fail_page_m:
590 	__pdp_fini(pdp);
591 fail_bitmap:
592 	kfree(pdp);
593 
594 	return ERR_PTR(ret);
595 }
596 
free_pdp(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp)597 static void free_pdp(struct i915_address_space *vm,
598 		     struct i915_page_directory_pointer *pdp)
599 {
600 	__pdp_fini(pdp);
601 
602 	if (!use_4lvl(vm))
603 		return;
604 
605 	cleanup_px(vm, pdp);
606 	kfree(pdp);
607 }
608 
gen8_initialize_pdp(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp)609 static void gen8_initialize_pdp(struct i915_address_space *vm,
610 				struct i915_page_directory_pointer *pdp)
611 {
612 	gen8_ppgtt_pdpe_t scratch_pdpe;
613 
614 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
615 
616 	fill_px(vm, pdp, scratch_pdpe);
617 }
618 
gen8_initialize_pml4(struct i915_address_space * vm,struct i915_pml4 * pml4)619 static void gen8_initialize_pml4(struct i915_address_space *vm,
620 				 struct i915_pml4 *pml4)
621 {
622 	unsigned int i;
623 
624 	fill_px(vm, pml4,
625 		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
626 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++)
627 		pml4->pdps[i] = vm->scratch_pdp;
628 }
629 
630 /* Broadwell Page Directory Pointer Descriptors */
gen8_write_pdp(struct drm_i915_gem_request * req,unsigned entry,dma_addr_t addr)631 static int gen8_write_pdp(struct drm_i915_gem_request *req,
632 			  unsigned entry,
633 			  dma_addr_t addr)
634 {
635 	struct intel_engine_cs *engine = req->engine;
636 	u32 *cs;
637 
638 	BUG_ON(entry >= 4);
639 
640 	cs = intel_ring_begin(req, 6);
641 	if (IS_ERR(cs))
642 		return PTR_ERR(cs);
643 
644 	*cs++ = MI_LOAD_REGISTER_IMM(1);
645 	*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry));
646 	*cs++ = upper_32_bits(addr);
647 	*cs++ = MI_LOAD_REGISTER_IMM(1);
648 	*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry));
649 	*cs++ = lower_32_bits(addr);
650 	intel_ring_advance(req, cs);
651 
652 	return 0;
653 }
654 
gen8_mm_switch_3lvl(struct i915_hw_ppgtt * ppgtt,struct drm_i915_gem_request * req)655 static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt,
656 			       struct drm_i915_gem_request *req)
657 {
658 	int i, ret;
659 
660 	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
661 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
662 
663 		ret = gen8_write_pdp(req, i, pd_daddr);
664 		if (ret)
665 			return ret;
666 	}
667 
668 	return 0;
669 }
670 
gen8_mm_switch_4lvl(struct i915_hw_ppgtt * ppgtt,struct drm_i915_gem_request * req)671 static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt,
672 			       struct drm_i915_gem_request *req)
673 {
674 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
675 }
676 
677 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
678  * the page table structures, we mark them dirty so that
679  * context switching/execlist queuing code takes extra steps
680  * to ensure that tlbs are flushed.
681  */
mark_tlbs_dirty(struct i915_hw_ppgtt * ppgtt)682 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
683 {
684 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
685 }
686 
687 /* Removes entries from a single page table, releasing it if it's empty.
688  * Caller can use the return value to update higher-level entries.
689  */
gen8_ppgtt_clear_pt(struct i915_address_space * vm,struct i915_page_table * pt,u64 start,u64 length)690 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
691 				struct i915_page_table *pt,
692 				u64 start, u64 length)
693 {
694 	unsigned int num_entries = gen8_pte_count(start, length);
695 	unsigned int pte = gen8_pte_index(start);
696 	unsigned int pte_end = pte + num_entries;
697 	const gen8_pte_t scratch_pte =
698 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
699 	gen8_pte_t *vaddr;
700 
701 	GEM_BUG_ON(num_entries > pt->used_ptes);
702 
703 	pt->used_ptes -= num_entries;
704 	if (!pt->used_ptes)
705 		return true;
706 
707 	vaddr = kmap_atomic_px(pt);
708 	while (pte < pte_end)
709 		vaddr[pte++] = scratch_pte;
710 	kunmap_atomic(vaddr);
711 
712 	return false;
713 }
714 
gen8_ppgtt_set_pde(struct i915_address_space * vm,struct i915_page_directory * pd,struct i915_page_table * pt,unsigned int pde)715 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
716 			       struct i915_page_directory *pd,
717 			       struct i915_page_table *pt,
718 			       unsigned int pde)
719 {
720 	gen8_pde_t *vaddr;
721 
722 	pd->page_table[pde] = pt;
723 
724 	vaddr = kmap_atomic_px(pd);
725 	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
726 	kunmap_atomic(vaddr);
727 }
728 
gen8_ppgtt_clear_pd(struct i915_address_space * vm,struct i915_page_directory * pd,u64 start,u64 length)729 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
730 				struct i915_page_directory *pd,
731 				u64 start, u64 length)
732 {
733 	struct i915_page_table *pt;
734 	u32 pde;
735 
736 	gen8_for_each_pde(pt, pd, start, length, pde) {
737 		GEM_BUG_ON(pt == vm->scratch_pt);
738 
739 		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
740 			continue;
741 
742 		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
743 		GEM_BUG_ON(!pd->used_pdes);
744 		pd->used_pdes--;
745 
746 		free_pt(vm, pt);
747 	}
748 
749 	return !pd->used_pdes;
750 }
751 
gen8_ppgtt_set_pdpe(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp,struct i915_page_directory * pd,unsigned int pdpe)752 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
753 				struct i915_page_directory_pointer *pdp,
754 				struct i915_page_directory *pd,
755 				unsigned int pdpe)
756 {
757 	gen8_ppgtt_pdpe_t *vaddr;
758 
759 	pdp->page_directory[pdpe] = pd;
760 	if (!use_4lvl(vm))
761 		return;
762 
763 	vaddr = kmap_atomic_px(pdp);
764 	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
765 	kunmap_atomic(vaddr);
766 }
767 
768 /* Removes entries from a single page dir pointer, releasing it if it's empty.
769  * Caller can use the return value to update higher-level entries
770  */
gen8_ppgtt_clear_pdp(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp,u64 start,u64 length)771 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
772 				 struct i915_page_directory_pointer *pdp,
773 				 u64 start, u64 length)
774 {
775 	struct i915_page_directory *pd;
776 	unsigned int pdpe;
777 
778 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
779 		GEM_BUG_ON(pd == vm->scratch_pd);
780 
781 		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
782 			continue;
783 
784 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
785 		GEM_BUG_ON(!pdp->used_pdpes);
786 		pdp->used_pdpes--;
787 
788 		free_pd(vm, pd);
789 	}
790 
791 	return !pdp->used_pdpes;
792 }
793 
gen8_ppgtt_clear_3lvl(struct i915_address_space * vm,u64 start,u64 length)794 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
795 				  u64 start, u64 length)
796 {
797 	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
798 }
799 
gen8_ppgtt_set_pml4e(struct i915_pml4 * pml4,struct i915_page_directory_pointer * pdp,unsigned int pml4e)800 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
801 				 struct i915_page_directory_pointer *pdp,
802 				 unsigned int pml4e)
803 {
804 	gen8_ppgtt_pml4e_t *vaddr;
805 
806 	pml4->pdps[pml4e] = pdp;
807 
808 	vaddr = kmap_atomic_px(pml4);
809 	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
810 	kunmap_atomic(vaddr);
811 }
812 
813 /* Removes entries from a single pml4.
814  * This is the top-level structure in 4-level page tables used on gen8+.
815  * Empty entries are always scratch pml4e.
816  */
gen8_ppgtt_clear_4lvl(struct i915_address_space * vm,u64 start,u64 length)817 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
818 				  u64 start, u64 length)
819 {
820 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
821 	struct i915_pml4 *pml4 = &ppgtt->pml4;
822 	struct i915_page_directory_pointer *pdp;
823 	unsigned int pml4e;
824 
825 	GEM_BUG_ON(!use_4lvl(vm));
826 
827 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
828 		GEM_BUG_ON(pdp == vm->scratch_pdp);
829 
830 		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
831 			continue;
832 
833 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
834 
835 		free_pdp(vm, pdp);
836 	}
837 }
838 
839 static inline struct sgt_dma {
840 	struct scatterlist *sg;
841 	dma_addr_t dma, max;
sgt_dma(struct i915_vma * vma)842 } sgt_dma(struct i915_vma *vma) {
843 	struct scatterlist *sg = vma->pages->sgl;
844 	dma_addr_t addr = sg_dma_address(sg);
845 	return (struct sgt_dma) { sg, addr, addr + sg->length };
846 }
847 
848 struct gen8_insert_pte {
849 	u16 pml4e;
850 	u16 pdpe;
851 	u16 pde;
852 	u16 pte;
853 };
854 
gen8_insert_pte(u64 start)855 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
856 {
857 	return (struct gen8_insert_pte) {
858 		 gen8_pml4e_index(start),
859 		 gen8_pdpe_index(start),
860 		 gen8_pde_index(start),
861 		 gen8_pte_index(start),
862 	};
863 }
864 
865 static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt * ppgtt,struct i915_page_directory_pointer * pdp,struct sgt_dma * iter,struct gen8_insert_pte * idx,enum i915_cache_level cache_level,u32 flags)866 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
867 			      struct i915_page_directory_pointer *pdp,
868 			      struct sgt_dma *iter,
869 			      struct gen8_insert_pte *idx,
870 			      enum i915_cache_level cache_level,
871 			      u32 flags)
872 {
873 	struct i915_page_directory *pd;
874 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
875 	gen8_pte_t *vaddr;
876 	bool ret;
877 
878 	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
879 	pd = pdp->page_directory[idx->pdpe];
880 	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
881 	do {
882 		vaddr[idx->pte] = pte_encode | iter->dma;
883 
884 		iter->dma += PAGE_SIZE;
885 		if (iter->dma >= iter->max) {
886 			iter->sg = __sg_next(iter->sg);
887 			if (!iter->sg) {
888 				ret = false;
889 				break;
890 			}
891 
892 			iter->dma = sg_dma_address(iter->sg);
893 			iter->max = iter->dma + iter->sg->length;
894 		}
895 
896 		if (++idx->pte == GEN8_PTES) {
897 			idx->pte = 0;
898 
899 			if (++idx->pde == I915_PDES) {
900 				idx->pde = 0;
901 
902 				/* Limited by sg length for 3lvl */
903 				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
904 					idx->pdpe = 0;
905 					ret = true;
906 					break;
907 				}
908 
909 				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
910 				pd = pdp->page_directory[idx->pdpe];
911 			}
912 
913 			kunmap_atomic(vaddr);
914 			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
915 		}
916 	} while (1);
917 	kunmap_atomic(vaddr);
918 
919 	return ret;
920 }
921 
gen8_ppgtt_insert_3lvl(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)922 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
923 				   struct i915_vma *vma,
924 				   enum i915_cache_level cache_level,
925 				   u32 flags)
926 {
927 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
928 	struct sgt_dma iter = sgt_dma(vma);
929 	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
930 
931 	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
932 				      cache_level, flags);
933 }
934 
gen8_ppgtt_insert_4lvl(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)935 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
936 				   struct i915_vma *vma,
937 				   enum i915_cache_level cache_level,
938 				   u32 flags)
939 {
940 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
941 	struct sgt_dma iter = sgt_dma(vma);
942 	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
943 	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
944 
945 	while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++], &iter,
946 					     &idx, cache_level, flags))
947 		GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
948 }
949 
gen8_free_page_tables(struct i915_address_space * vm,struct i915_page_directory * pd)950 static void gen8_free_page_tables(struct i915_address_space *vm,
951 				  struct i915_page_directory *pd)
952 {
953 	int i;
954 
955 	if (!px_page(pd))
956 		return;
957 
958 	for (i = 0; i < I915_PDES; i++) {
959 		if (pd->page_table[i] != vm->scratch_pt)
960 			free_pt(vm, pd->page_table[i]);
961 	}
962 }
963 
gen8_init_scratch(struct i915_address_space * vm)964 static int gen8_init_scratch(struct i915_address_space *vm)
965 {
966 	int ret;
967 
968 	ret = setup_scratch_page(vm, I915_GFP_DMA);
969 	if (ret)
970 		return ret;
971 
972 	vm->scratch_pt = alloc_pt(vm);
973 	if (IS_ERR(vm->scratch_pt)) {
974 		ret = PTR_ERR(vm->scratch_pt);
975 		goto free_scratch_page;
976 	}
977 
978 	vm->scratch_pd = alloc_pd(vm);
979 	if (IS_ERR(vm->scratch_pd)) {
980 		ret = PTR_ERR(vm->scratch_pd);
981 		goto free_pt;
982 	}
983 
984 	if (use_4lvl(vm)) {
985 		vm->scratch_pdp = alloc_pdp(vm);
986 		if (IS_ERR(vm->scratch_pdp)) {
987 			ret = PTR_ERR(vm->scratch_pdp);
988 			goto free_pd;
989 		}
990 	}
991 
992 	gen8_initialize_pt(vm, vm->scratch_pt);
993 	gen8_initialize_pd(vm, vm->scratch_pd);
994 	if (use_4lvl(vm))
995 		gen8_initialize_pdp(vm, vm->scratch_pdp);
996 
997 	return 0;
998 
999 free_pd:
1000 	free_pd(vm, vm->scratch_pd);
1001 free_pt:
1002 	free_pt(vm, vm->scratch_pt);
1003 free_scratch_page:
1004 	cleanup_scratch_page(vm);
1005 
1006 	return ret;
1007 }
1008 
gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt * ppgtt,bool create)1009 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1010 {
1011 	struct i915_address_space *vm = &ppgtt->base;
1012 	struct drm_i915_private *dev_priv = vm->i915;
1013 	enum vgt_g2v_type msg;
1014 	int i;
1015 
1016 	if (use_4lvl(vm)) {
1017 		const u64 daddr = px_dma(&ppgtt->pml4);
1018 
1019 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1020 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1021 
1022 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1023 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1024 	} else {
1025 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1026 			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1027 
1028 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1029 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1030 		}
1031 
1032 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1033 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1034 	}
1035 
1036 	I915_WRITE(vgtif_reg(g2v_notify), msg);
1037 
1038 	return 0;
1039 }
1040 
gen8_free_scratch(struct i915_address_space * vm)1041 static void gen8_free_scratch(struct i915_address_space *vm)
1042 {
1043 	if (use_4lvl(vm))
1044 		free_pdp(vm, vm->scratch_pdp);
1045 	free_pd(vm, vm->scratch_pd);
1046 	free_pt(vm, vm->scratch_pt);
1047 	cleanup_scratch_page(vm);
1048 }
1049 
gen8_ppgtt_cleanup_3lvl(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp)1050 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1051 				    struct i915_page_directory_pointer *pdp)
1052 {
1053 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1054 	int i;
1055 
1056 	for (i = 0; i < pdpes; i++) {
1057 		if (pdp->page_directory[i] == vm->scratch_pd)
1058 			continue;
1059 
1060 		gen8_free_page_tables(vm, pdp->page_directory[i]);
1061 		free_pd(vm, pdp->page_directory[i]);
1062 	}
1063 
1064 	free_pdp(vm, pdp);
1065 }
1066 
gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt * ppgtt)1067 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1068 {
1069 	int i;
1070 
1071 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1072 		if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp)
1073 			continue;
1074 
1075 		gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]);
1076 	}
1077 
1078 	cleanup_px(&ppgtt->base, &ppgtt->pml4);
1079 }
1080 
gen8_ppgtt_cleanup(struct i915_address_space * vm)1081 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1082 {
1083 	struct drm_i915_private *dev_priv = vm->i915;
1084 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1085 
1086 	if (intel_vgpu_active(dev_priv))
1087 		gen8_ppgtt_notify_vgt(ppgtt, false);
1088 
1089 	if (use_4lvl(vm))
1090 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1091 	else
1092 		gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp);
1093 
1094 	gen8_free_scratch(vm);
1095 }
1096 
gen8_ppgtt_alloc_pd(struct i915_address_space * vm,struct i915_page_directory * pd,u64 start,u64 length)1097 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1098 			       struct i915_page_directory *pd,
1099 			       u64 start, u64 length)
1100 {
1101 	struct i915_page_table *pt;
1102 	u64 from = start;
1103 	unsigned int pde;
1104 
1105 	gen8_for_each_pde(pt, pd, start, length, pde) {
1106 		if (pt == vm->scratch_pt) {
1107 			pt = alloc_pt(vm);
1108 			if (IS_ERR(pt))
1109 				goto unwind;
1110 
1111 			gen8_initialize_pt(vm, pt);
1112 
1113 			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1114 			pd->used_pdes++;
1115 			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1116 		}
1117 
1118 		pt->used_ptes += gen8_pte_count(start, length);
1119 	}
1120 	return 0;
1121 
1122 unwind:
1123 	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1124 	return -ENOMEM;
1125 }
1126 
gen8_ppgtt_alloc_pdp(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp,u64 start,u64 length)1127 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1128 				struct i915_page_directory_pointer *pdp,
1129 				u64 start, u64 length)
1130 {
1131 	struct i915_page_directory *pd;
1132 	u64 from = start;
1133 	unsigned int pdpe;
1134 	int ret;
1135 
1136 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1137 		if (pd == vm->scratch_pd) {
1138 			pd = alloc_pd(vm);
1139 			if (IS_ERR(pd))
1140 				goto unwind;
1141 
1142 			gen8_initialize_pd(vm, pd);
1143 			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1144 			pdp->used_pdpes++;
1145 			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1146 
1147 			mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1148 		}
1149 
1150 		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1151 		if (unlikely(ret))
1152 			goto unwind_pd;
1153 	}
1154 
1155 	return 0;
1156 
1157 unwind_pd:
1158 	if (!pd->used_pdes) {
1159 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1160 		GEM_BUG_ON(!pdp->used_pdpes);
1161 		pdp->used_pdpes--;
1162 		free_pd(vm, pd);
1163 	}
1164 unwind:
1165 	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1166 	return -ENOMEM;
1167 }
1168 
gen8_ppgtt_alloc_3lvl(struct i915_address_space * vm,u64 start,u64 length)1169 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1170 				 u64 start, u64 length)
1171 {
1172 	return gen8_ppgtt_alloc_pdp(vm,
1173 				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
1174 }
1175 
gen8_ppgtt_alloc_4lvl(struct i915_address_space * vm,u64 start,u64 length)1176 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1177 				 u64 start, u64 length)
1178 {
1179 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1180 	struct i915_pml4 *pml4 = &ppgtt->pml4;
1181 	struct i915_page_directory_pointer *pdp;
1182 	u64 from = start;
1183 	u32 pml4e;
1184 	int ret;
1185 
1186 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1187 		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1188 			pdp = alloc_pdp(vm);
1189 			if (IS_ERR(pdp))
1190 				goto unwind;
1191 
1192 			gen8_initialize_pdp(vm, pdp);
1193 			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1194 		}
1195 
1196 		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1197 		if (unlikely(ret))
1198 			goto unwind_pdp;
1199 	}
1200 
1201 	return 0;
1202 
1203 unwind_pdp:
1204 	if (!pdp->used_pdpes) {
1205 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1206 		free_pdp(vm, pdp);
1207 	}
1208 unwind:
1209 	gen8_ppgtt_clear_4lvl(vm, from, start - from);
1210 	return -ENOMEM;
1211 }
1212 
gen8_dump_pdp(struct i915_hw_ppgtt * ppgtt,struct i915_page_directory_pointer * pdp,u64 start,u64 length,gen8_pte_t scratch_pte,struct seq_file * m)1213 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1214 			  struct i915_page_directory_pointer *pdp,
1215 			  u64 start, u64 length,
1216 			  gen8_pte_t scratch_pte,
1217 			  struct seq_file *m)
1218 {
1219 	struct i915_address_space *vm = &ppgtt->base;
1220 	struct i915_page_directory *pd;
1221 	u32 pdpe;
1222 
1223 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1224 		struct i915_page_table *pt;
1225 		u64 pd_len = length;
1226 		u64 pd_start = start;
1227 		u32 pde;
1228 
1229 		if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd)
1230 			continue;
1231 
1232 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1233 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1234 			u32 pte;
1235 			gen8_pte_t *pt_vaddr;
1236 
1237 			if (pd->page_table[pde] == ppgtt->base.scratch_pt)
1238 				continue;
1239 
1240 			pt_vaddr = kmap_atomic_px(pt);
1241 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1242 				u64 va = (pdpe << GEN8_PDPE_SHIFT |
1243 					  pde << GEN8_PDE_SHIFT |
1244 					  pte << GEN8_PTE_SHIFT);
1245 				int i;
1246 				bool found = false;
1247 
1248 				for (i = 0; i < 4; i++)
1249 					if (pt_vaddr[pte + i] != scratch_pte)
1250 						found = true;
1251 				if (!found)
1252 					continue;
1253 
1254 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1255 				for (i = 0; i < 4; i++) {
1256 					if (pt_vaddr[pte + i] != scratch_pte)
1257 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1258 					else
1259 						seq_puts(m, "  SCRATCH ");
1260 				}
1261 				seq_puts(m, "\n");
1262 			}
1263 			kunmap_atomic(pt_vaddr);
1264 		}
1265 	}
1266 }
1267 
gen8_dump_ppgtt(struct i915_hw_ppgtt * ppgtt,struct seq_file * m)1268 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1269 {
1270 	struct i915_address_space *vm = &ppgtt->base;
1271 	const gen8_pte_t scratch_pte =
1272 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1273 	u64 start = 0, length = ppgtt->base.total;
1274 
1275 	if (use_4lvl(vm)) {
1276 		u64 pml4e;
1277 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1278 		struct i915_page_directory_pointer *pdp;
1279 
1280 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1281 			if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp)
1282 				continue;
1283 
1284 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1285 			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1286 		}
1287 	} else {
1288 		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1289 	}
1290 }
1291 
gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt * ppgtt)1292 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1293 {
1294 	struct i915_address_space *vm = &ppgtt->base;
1295 	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1296 	struct i915_page_directory *pd;
1297 	u64 start = 0, length = ppgtt->base.total;
1298 	u64 from = start;
1299 	unsigned int pdpe;
1300 
1301 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1302 		pd = alloc_pd(vm);
1303 		if (IS_ERR(pd))
1304 			goto unwind;
1305 
1306 		gen8_initialize_pd(vm, pd);
1307 		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1308 		pdp->used_pdpes++;
1309 	}
1310 
1311 	pdp->used_pdpes++; /* never remove */
1312 	return 0;
1313 
1314 unwind:
1315 	start -= from;
1316 	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1317 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1318 		free_pd(vm, pd);
1319 	}
1320 	pdp->used_pdpes = 0;
1321 	return -ENOMEM;
1322 }
1323 
1324 /*
1325  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1326  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1327  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1328  * space.
1329  *
1330  */
gen8_ppgtt_init(struct i915_hw_ppgtt * ppgtt)1331 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1332 {
1333 	struct i915_address_space *vm = &ppgtt->base;
1334 	struct drm_i915_private *dev_priv = vm->i915;
1335 	int ret;
1336 
1337 	ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ?
1338 		1ULL << 48 :
1339 		1ULL << 32;
1340 
1341 	ret = gen8_init_scratch(&ppgtt->base);
1342 	if (ret) {
1343 		ppgtt->base.total = 0;
1344 		return ret;
1345 	}
1346 
1347 	/*
1348 	 * From bdw, there is support for read-only pages in the PPGTT.
1349 	 *
1350 	 * XXX GVT is not honouring the lack of RW in the PTE bits.
1351 	 */
1352 	ppgtt->base.has_read_only = !intel_vgpu_active(dev_priv);
1353 
1354 	/* There are only few exceptions for gen >=6. chv and bxt.
1355 	 * And we are not sure about the latter so play safe for now.
1356 	 */
1357 	if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
1358 		ppgtt->base.pt_kmap_wc = true;
1359 
1360 	if (use_4lvl(vm)) {
1361 		ret = setup_px(&ppgtt->base, &ppgtt->pml4);
1362 		if (ret)
1363 			goto free_scratch;
1364 
1365 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1366 
1367 		ppgtt->switch_mm = gen8_mm_switch_4lvl;
1368 		ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1369 		ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl;
1370 		ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl;
1371 	} else {
1372 		ret = __pdp_init(&ppgtt->base, &ppgtt->pdp);
1373 		if (ret)
1374 			goto free_scratch;
1375 
1376 		if (intel_vgpu_active(dev_priv)) {
1377 			ret = gen8_preallocate_top_level_pdp(ppgtt);
1378 			if (ret) {
1379 				__pdp_fini(&ppgtt->pdp);
1380 				goto free_scratch;
1381 			}
1382 		}
1383 
1384 		ppgtt->switch_mm = gen8_mm_switch_3lvl;
1385 		ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1386 		ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl;
1387 		ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl;
1388 	}
1389 
1390 	if (intel_vgpu_active(dev_priv))
1391 		gen8_ppgtt_notify_vgt(ppgtt, true);
1392 
1393 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1394 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1395 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1396 	ppgtt->debug_dump = gen8_dump_ppgtt;
1397 
1398 	return 0;
1399 
1400 free_scratch:
1401 	gen8_free_scratch(&ppgtt->base);
1402 	return ret;
1403 }
1404 
gen6_dump_ppgtt(struct i915_hw_ppgtt * ppgtt,struct seq_file * m)1405 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1406 {
1407 	struct i915_address_space *vm = &ppgtt->base;
1408 	struct i915_page_table *unused;
1409 	gen6_pte_t scratch_pte;
1410 	u32 pd_entry, pte, pde;
1411 	u32 start = 0, length = ppgtt->base.total;
1412 
1413 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1414 				     I915_CACHE_LLC, 0);
1415 
1416 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1417 		u32 expected;
1418 		gen6_pte_t *pt_vaddr;
1419 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1420 		pd_entry = readl(ppgtt->pd_addr + pde);
1421 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1422 
1423 		if (pd_entry != expected)
1424 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1425 				   pde,
1426 				   pd_entry,
1427 				   expected);
1428 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1429 
1430 		pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]);
1431 
1432 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1433 			unsigned long va =
1434 				(pde * PAGE_SIZE * GEN6_PTES) +
1435 				(pte * PAGE_SIZE);
1436 			int i;
1437 			bool found = false;
1438 			for (i = 0; i < 4; i++)
1439 				if (pt_vaddr[pte + i] != scratch_pte)
1440 					found = true;
1441 			if (!found)
1442 				continue;
1443 
1444 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1445 			for (i = 0; i < 4; i++) {
1446 				if (pt_vaddr[pte + i] != scratch_pte)
1447 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1448 				else
1449 					seq_puts(m, "  SCRATCH ");
1450 			}
1451 			seq_puts(m, "\n");
1452 		}
1453 		kunmap_atomic(pt_vaddr);
1454 	}
1455 }
1456 
1457 /* Write pde (index) from the page directory @pd to the page table @pt */
gen6_write_pde(const struct i915_hw_ppgtt * ppgtt,const unsigned int pde,const struct i915_page_table * pt)1458 static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt,
1459 				  const unsigned int pde,
1460 				  const struct i915_page_table *pt)
1461 {
1462 	/* Caller needs to make sure the write completes if necessary */
1463 	writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1464 		       ppgtt->pd_addr + pde);
1465 }
1466 
1467 /* Write all the page tables found in the ppgtt structure to incrementing page
1468  * directories. */
gen6_write_page_range(struct i915_hw_ppgtt * ppgtt,u32 start,u32 length)1469 static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt,
1470 				  u32 start, u32 length)
1471 {
1472 	struct i915_page_table *pt;
1473 	unsigned int pde;
1474 
1475 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde)
1476 		gen6_write_pde(ppgtt, pde, pt);
1477 
1478 	mark_tlbs_dirty(ppgtt);
1479 	wmb();
1480 }
1481 
get_pd_offset(struct i915_hw_ppgtt * ppgtt)1482 static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1483 {
1484 	GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1485 	return ppgtt->pd.base.ggtt_offset << 10;
1486 }
1487 
hsw_mm_switch(struct i915_hw_ppgtt * ppgtt,struct drm_i915_gem_request * req)1488 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1489 			 struct drm_i915_gem_request *req)
1490 {
1491 	struct intel_engine_cs *engine = req->engine;
1492 	u32 *cs;
1493 
1494 	/* NB: TLBs must be flushed and invalidated before a switch */
1495 	cs = intel_ring_begin(req, 6);
1496 	if (IS_ERR(cs))
1497 		return PTR_ERR(cs);
1498 
1499 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1500 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1501 	*cs++ = PP_DIR_DCLV_2G;
1502 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1503 	*cs++ = get_pd_offset(ppgtt);
1504 	*cs++ = MI_NOOP;
1505 	intel_ring_advance(req, cs);
1506 
1507 	return 0;
1508 }
1509 
gen7_mm_switch(struct i915_hw_ppgtt * ppgtt,struct drm_i915_gem_request * req)1510 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1511 			  struct drm_i915_gem_request *req)
1512 {
1513 	struct intel_engine_cs *engine = req->engine;
1514 	u32 *cs;
1515 
1516 	/* NB: TLBs must be flushed and invalidated before a switch */
1517 	cs = intel_ring_begin(req, 6);
1518 	if (IS_ERR(cs))
1519 		return PTR_ERR(cs);
1520 
1521 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1522 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1523 	*cs++ = PP_DIR_DCLV_2G;
1524 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1525 	*cs++ = get_pd_offset(ppgtt);
1526 	*cs++ = MI_NOOP;
1527 	intel_ring_advance(req, cs);
1528 
1529 	return 0;
1530 }
1531 
gen6_mm_switch(struct i915_hw_ppgtt * ppgtt,struct drm_i915_gem_request * req)1532 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1533 			  struct drm_i915_gem_request *req)
1534 {
1535 	struct intel_engine_cs *engine = req->engine;
1536 	struct drm_i915_private *dev_priv = req->i915;
1537 
1538 	I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1539 	I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1540 	return 0;
1541 }
1542 
gen8_ppgtt_enable(struct drm_i915_private * dev_priv)1543 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1544 {
1545 	struct intel_engine_cs *engine;
1546 	enum intel_engine_id id;
1547 
1548 	for_each_engine(engine, dev_priv, id) {
1549 		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1550 				 GEN8_GFX_PPGTT_48B : 0;
1551 		I915_WRITE(RING_MODE_GEN7(engine),
1552 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1553 	}
1554 }
1555 
gen7_ppgtt_enable(struct drm_i915_private * dev_priv)1556 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1557 {
1558 	struct intel_engine_cs *engine;
1559 	u32 ecochk, ecobits;
1560 	enum intel_engine_id id;
1561 
1562 	ecobits = I915_READ(GAC_ECO_BITS);
1563 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1564 
1565 	ecochk = I915_READ(GAM_ECOCHK);
1566 	if (IS_HASWELL(dev_priv)) {
1567 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1568 	} else {
1569 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1570 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1571 	}
1572 	I915_WRITE(GAM_ECOCHK, ecochk);
1573 
1574 	for_each_engine(engine, dev_priv, id) {
1575 		/* GFX_MODE is per-ring on gen7+ */
1576 		I915_WRITE(RING_MODE_GEN7(engine),
1577 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1578 	}
1579 }
1580 
gen6_ppgtt_enable(struct drm_i915_private * dev_priv)1581 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1582 {
1583 	u32 ecochk, gab_ctl, ecobits;
1584 
1585 	ecobits = I915_READ(GAC_ECO_BITS);
1586 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1587 		   ECOBITS_PPGTT_CACHE64B);
1588 
1589 	gab_ctl = I915_READ(GAB_CTL);
1590 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1591 
1592 	ecochk = I915_READ(GAM_ECOCHK);
1593 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1594 
1595 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1596 }
1597 
1598 /* PPGTT support for Sandybdrige/Gen6 and later */
gen6_ppgtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)1599 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1600 				   u64 start, u64 length)
1601 {
1602 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1603 	unsigned int first_entry = start >> PAGE_SHIFT;
1604 	unsigned int pde = first_entry / GEN6_PTES;
1605 	unsigned int pte = first_entry % GEN6_PTES;
1606 	unsigned int num_entries = length >> PAGE_SHIFT;
1607 	gen6_pte_t scratch_pte =
1608 		vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1609 
1610 	while (num_entries) {
1611 		struct i915_page_table *pt = ppgtt->pd.page_table[pde++];
1612 		unsigned int end = min(pte + num_entries, GEN6_PTES);
1613 		gen6_pte_t *vaddr;
1614 
1615 		num_entries -= end - pte;
1616 
1617 		/* Note that the hw doesn't support removing PDE on the fly
1618 		 * (they are cached inside the context with no means to
1619 		 * invalidate the cache), so we can only reset the PTE
1620 		 * entries back to scratch.
1621 		 */
1622 
1623 		vaddr = kmap_atomic_px(pt);
1624 		do {
1625 			vaddr[pte++] = scratch_pte;
1626 		} while (pte < end);
1627 		kunmap_atomic(vaddr);
1628 
1629 		pte = 0;
1630 	}
1631 }
1632 
gen6_ppgtt_insert_entries(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)1633 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1634 				      struct i915_vma *vma,
1635 				      enum i915_cache_level cache_level,
1636 				      u32 flags)
1637 {
1638 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1639 	unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1640 	unsigned act_pt = first_entry / GEN6_PTES;
1641 	unsigned act_pte = first_entry % GEN6_PTES;
1642 	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1643 	struct sgt_dma iter = sgt_dma(vma);
1644 	gen6_pte_t *vaddr;
1645 
1646 	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1647 	do {
1648 		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1649 
1650 		iter.dma += PAGE_SIZE;
1651 		if (iter.dma == iter.max) {
1652 			iter.sg = __sg_next(iter.sg);
1653 			if (!iter.sg)
1654 				break;
1655 
1656 			iter.dma = sg_dma_address(iter.sg);
1657 			iter.max = iter.dma + iter.sg->length;
1658 		}
1659 
1660 		if (++act_pte == GEN6_PTES) {
1661 			kunmap_atomic(vaddr);
1662 			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1663 			act_pte = 0;
1664 		}
1665 	} while (1);
1666 	kunmap_atomic(vaddr);
1667 }
1668 
gen6_alloc_va_range(struct i915_address_space * vm,u64 start,u64 length)1669 static int gen6_alloc_va_range(struct i915_address_space *vm,
1670 			       u64 start, u64 length)
1671 {
1672 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1673 	struct i915_page_table *pt;
1674 	u64 from = start;
1675 	unsigned int pde;
1676 	bool flush = false;
1677 
1678 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1679 		if (pt == vm->scratch_pt) {
1680 			pt = alloc_pt(vm);
1681 			if (IS_ERR(pt))
1682 				goto unwind_out;
1683 
1684 			gen6_initialize_pt(vm, pt);
1685 			ppgtt->pd.page_table[pde] = pt;
1686 			gen6_write_pde(ppgtt, pde, pt);
1687 			flush = true;
1688 		}
1689 	}
1690 
1691 	if (flush) {
1692 		mark_tlbs_dirty(ppgtt);
1693 		wmb();
1694 	}
1695 
1696 	return 0;
1697 
1698 unwind_out:
1699 	gen6_ppgtt_clear_range(vm, from, start);
1700 	return -ENOMEM;
1701 }
1702 
gen6_init_scratch(struct i915_address_space * vm)1703 static int gen6_init_scratch(struct i915_address_space *vm)
1704 {
1705 	int ret;
1706 
1707 	ret = setup_scratch_page(vm, I915_GFP_DMA);
1708 	if (ret)
1709 		return ret;
1710 
1711 	vm->scratch_pt = alloc_pt(vm);
1712 	if (IS_ERR(vm->scratch_pt)) {
1713 		cleanup_scratch_page(vm);
1714 		return PTR_ERR(vm->scratch_pt);
1715 	}
1716 
1717 	gen6_initialize_pt(vm, vm->scratch_pt);
1718 
1719 	return 0;
1720 }
1721 
gen6_free_scratch(struct i915_address_space * vm)1722 static void gen6_free_scratch(struct i915_address_space *vm)
1723 {
1724 	free_pt(vm, vm->scratch_pt);
1725 	cleanup_scratch_page(vm);
1726 }
1727 
gen6_ppgtt_cleanup(struct i915_address_space * vm)1728 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1729 {
1730 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1731 	struct i915_page_directory *pd = &ppgtt->pd;
1732 	struct i915_page_table *pt;
1733 	u32 pde;
1734 
1735 	drm_mm_remove_node(&ppgtt->node);
1736 
1737 	gen6_for_all_pdes(pt, pd, pde)
1738 		if (pt != vm->scratch_pt)
1739 			free_pt(vm, pt);
1740 
1741 	gen6_free_scratch(vm);
1742 }
1743 
gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt * ppgtt)1744 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1745 {
1746 	struct i915_address_space *vm = &ppgtt->base;
1747 	struct drm_i915_private *dev_priv = ppgtt->base.i915;
1748 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1749 	int ret;
1750 
1751 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1752 	 * allocator works in address space sizes, so it's multiplied by page
1753 	 * size. We allocate at the top of the GTT to avoid fragmentation.
1754 	 */
1755 	BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
1756 
1757 	ret = gen6_init_scratch(vm);
1758 	if (ret)
1759 		return ret;
1760 
1761 	ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node,
1762 				  GEN6_PD_SIZE, GEN6_PD_ALIGN,
1763 				  I915_COLOR_UNEVICTABLE,
1764 				  0, ggtt->base.total,
1765 				  PIN_HIGH);
1766 	if (ret)
1767 		goto err_out;
1768 
1769 	if (ppgtt->node.start < ggtt->mappable_end)
1770 		DRM_DEBUG("Forced to use aperture for PDEs\n");
1771 
1772 	ppgtt->pd.base.ggtt_offset =
1773 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1774 
1775 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
1776 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
1777 
1778 	return 0;
1779 
1780 err_out:
1781 	gen6_free_scratch(vm);
1782 	return ret;
1783 }
1784 
gen6_ppgtt_alloc(struct i915_hw_ppgtt * ppgtt)1785 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1786 {
1787 	return gen6_ppgtt_allocate_page_directories(ppgtt);
1788 }
1789 
gen6_scratch_va_range(struct i915_hw_ppgtt * ppgtt,u64 start,u64 length)1790 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1791 				  u64 start, u64 length)
1792 {
1793 	struct i915_page_table *unused;
1794 	u32 pde;
1795 
1796 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
1797 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
1798 }
1799 
gen6_ppgtt_init(struct i915_hw_ppgtt * ppgtt)1800 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1801 {
1802 	struct drm_i915_private *dev_priv = ppgtt->base.i915;
1803 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1804 	int ret;
1805 
1806 	ppgtt->base.pte_encode = ggtt->base.pte_encode;
1807 	if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
1808 		ppgtt->switch_mm = gen6_mm_switch;
1809 	else if (IS_HASWELL(dev_priv))
1810 		ppgtt->switch_mm = hsw_mm_switch;
1811 	else if (IS_GEN7(dev_priv))
1812 		ppgtt->switch_mm = gen7_mm_switch;
1813 	else
1814 		BUG();
1815 
1816 	ret = gen6_ppgtt_alloc(ppgtt);
1817 	if (ret)
1818 		return ret;
1819 
1820 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1821 
1822 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1823 	gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
1824 
1825 	ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total);
1826 	if (ret) {
1827 		gen6_ppgtt_cleanup(&ppgtt->base);
1828 		return ret;
1829 	}
1830 
1831 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1832 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1833 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1834 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1835 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1836 	ppgtt->debug_dump = gen6_dump_ppgtt;
1837 
1838 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1839 			 ppgtt->node.size >> 20,
1840 			 ppgtt->node.start / PAGE_SIZE);
1841 
1842 	DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n",
1843 			 ppgtt->pd.base.ggtt_offset << 10);
1844 
1845 	return 0;
1846 }
1847 
__hw_ppgtt_init(struct i915_hw_ppgtt * ppgtt,struct drm_i915_private * dev_priv)1848 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
1849 			   struct drm_i915_private *dev_priv)
1850 {
1851 	ppgtt->base.i915 = dev_priv;
1852 	ppgtt->base.dma = &dev_priv->drm.pdev->dev;
1853 
1854 	if (INTEL_INFO(dev_priv)->gen < 8)
1855 		return gen6_ppgtt_init(ppgtt);
1856 	else
1857 		return gen8_ppgtt_init(ppgtt);
1858 }
1859 
i915_address_space_init(struct i915_address_space * vm,struct drm_i915_private * dev_priv,const char * name)1860 static void i915_address_space_init(struct i915_address_space *vm,
1861 				    struct drm_i915_private *dev_priv,
1862 				    const char *name)
1863 {
1864 	i915_gem_timeline_init(dev_priv, &vm->timeline, name);
1865 
1866 	drm_mm_init(&vm->mm, 0, vm->total);
1867 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
1868 
1869 	INIT_LIST_HEAD(&vm->active_list);
1870 	INIT_LIST_HEAD(&vm->inactive_list);
1871 	INIT_LIST_HEAD(&vm->unbound_list);
1872 
1873 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
1874 	pagevec_init(&vm->free_pages, false);
1875 }
1876 
i915_address_space_fini(struct i915_address_space * vm)1877 static void i915_address_space_fini(struct i915_address_space *vm)
1878 {
1879 	if (pagevec_count(&vm->free_pages))
1880 		vm_free_pages_release(vm);
1881 
1882 	i915_gem_timeline_fini(&vm->timeline);
1883 	drm_mm_takedown(&vm->mm);
1884 	list_del(&vm->global_link);
1885 }
1886 
gtt_write_workarounds(struct drm_i915_private * dev_priv)1887 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
1888 {
1889 	/* This function is for gtt related workarounds. This function is
1890 	 * called on driver load and after a GPU reset, so you can place
1891 	 * workarounds here even if they get overwritten by GPU reset.
1892 	 */
1893 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl */
1894 	if (IS_BROADWELL(dev_priv))
1895 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
1896 	else if (IS_CHERRYVIEW(dev_priv))
1897 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
1898 	else if (IS_GEN9_BC(dev_priv))
1899 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
1900 	else if (IS_GEN9_LP(dev_priv))
1901 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
1902 }
1903 
i915_ppgtt_init_hw(struct drm_i915_private * dev_priv)1904 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
1905 {
1906 	gtt_write_workarounds(dev_priv);
1907 
1908 	/* In the case of execlists, PPGTT is enabled by the context descriptor
1909 	 * and the PDPs are contained within the context itself.  We don't
1910 	 * need to do anything here. */
1911 	if (i915.enable_execlists)
1912 		return 0;
1913 
1914 	if (!USES_PPGTT(dev_priv))
1915 		return 0;
1916 
1917 	if (IS_GEN6(dev_priv))
1918 		gen6_ppgtt_enable(dev_priv);
1919 	else if (IS_GEN7(dev_priv))
1920 		gen7_ppgtt_enable(dev_priv);
1921 	else if (INTEL_GEN(dev_priv) >= 8)
1922 		gen8_ppgtt_enable(dev_priv);
1923 	else
1924 		MISSING_CASE(INTEL_GEN(dev_priv));
1925 
1926 	return 0;
1927 }
1928 
1929 struct i915_hw_ppgtt *
i915_ppgtt_create(struct drm_i915_private * dev_priv,struct drm_i915_file_private * fpriv,const char * name)1930 i915_ppgtt_create(struct drm_i915_private *dev_priv,
1931 		  struct drm_i915_file_private *fpriv,
1932 		  const char *name)
1933 {
1934 	struct i915_hw_ppgtt *ppgtt;
1935 	int ret;
1936 
1937 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1938 	if (!ppgtt)
1939 		return ERR_PTR(-ENOMEM);
1940 
1941 	ret = __hw_ppgtt_init(ppgtt, dev_priv);
1942 	if (ret) {
1943 		kfree(ppgtt);
1944 		return ERR_PTR(ret);
1945 	}
1946 
1947 	kref_init(&ppgtt->ref);
1948 	i915_address_space_init(&ppgtt->base, dev_priv, name);
1949 	ppgtt->base.file = fpriv;
1950 
1951 	trace_i915_ppgtt_create(&ppgtt->base);
1952 
1953 	return ppgtt;
1954 }
1955 
i915_ppgtt_close(struct i915_address_space * vm)1956 void i915_ppgtt_close(struct i915_address_space *vm)
1957 {
1958 	struct list_head *phases[] = {
1959 		&vm->active_list,
1960 		&vm->inactive_list,
1961 		&vm->unbound_list,
1962 		NULL,
1963 	}, **phase;
1964 
1965 	GEM_BUG_ON(vm->closed);
1966 	vm->closed = true;
1967 
1968 	for (phase = phases; *phase; phase++) {
1969 		struct i915_vma *vma, *vn;
1970 
1971 		list_for_each_entry_safe(vma, vn, *phase, vm_link)
1972 			if (!i915_vma_is_closed(vma))
1973 				i915_vma_close(vma);
1974 	}
1975 }
1976 
i915_ppgtt_release(struct kref * kref)1977 void i915_ppgtt_release(struct kref *kref)
1978 {
1979 	struct i915_hw_ppgtt *ppgtt =
1980 		container_of(kref, struct i915_hw_ppgtt, ref);
1981 
1982 	trace_i915_ppgtt_release(&ppgtt->base);
1983 
1984 	/* vmas should already be unbound and destroyed */
1985 	WARN_ON(!list_empty(&ppgtt->base.active_list));
1986 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1987 	WARN_ON(!list_empty(&ppgtt->base.unbound_list));
1988 
1989 	ppgtt->base.cleanup(&ppgtt->base);
1990 	i915_address_space_fini(&ppgtt->base);
1991 	kfree(ppgtt);
1992 }
1993 
1994 /* Certain Gen5 chipsets require require idling the GPU before
1995  * unmapping anything from the GTT when VT-d is enabled.
1996  */
needs_idle_maps(struct drm_i915_private * dev_priv)1997 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
1998 {
1999 	/* Query intel_iommu to see if we need the workaround. Presumably that
2000 	 * was loaded first.
2001 	 */
2002 	return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2003 }
2004 
i915_check_and_clear_faults(struct drm_i915_private * dev_priv)2005 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2006 {
2007 	struct intel_engine_cs *engine;
2008 	enum intel_engine_id id;
2009 
2010 	if (INTEL_INFO(dev_priv)->gen < 6)
2011 		return;
2012 
2013 	for_each_engine(engine, dev_priv, id) {
2014 		u32 fault_reg;
2015 		fault_reg = I915_READ(RING_FAULT_REG(engine));
2016 		if (fault_reg & RING_FAULT_VALID) {
2017 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2018 					 "\tAddr: 0x%08lx\n"
2019 					 "\tAddress space: %s\n"
2020 					 "\tSource ID: %d\n"
2021 					 "\tType: %d\n",
2022 					 fault_reg & PAGE_MASK,
2023 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2024 					 RING_FAULT_SRCID(fault_reg),
2025 					 RING_FAULT_FAULT_TYPE(fault_reg));
2026 			I915_WRITE(RING_FAULT_REG(engine),
2027 				   fault_reg & ~RING_FAULT_VALID);
2028 		}
2029 	}
2030 
2031 	/* Engine specific init may not have been done till this point. */
2032 	if (dev_priv->engine[RCS])
2033 		POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2034 }
2035 
i915_gem_suspend_gtt_mappings(struct drm_i915_private * dev_priv)2036 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2037 {
2038 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2039 
2040 	/* Don't bother messing with faults pre GEN6 as we have little
2041 	 * documentation supporting that it's a good idea.
2042 	 */
2043 	if (INTEL_GEN(dev_priv) < 6)
2044 		return;
2045 
2046 	i915_check_and_clear_faults(dev_priv);
2047 
2048 	ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
2049 
2050 	i915_ggtt_invalidate(dev_priv);
2051 }
2052 
i915_gem_gtt_prepare_pages(struct drm_i915_gem_object * obj,struct sg_table * pages)2053 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2054 			       struct sg_table *pages)
2055 {
2056 	do {
2057 		if (dma_map_sg(&obj->base.dev->pdev->dev,
2058 			       pages->sgl, pages->nents,
2059 			       PCI_DMA_BIDIRECTIONAL))
2060 			return 0;
2061 
2062 		/* If the DMA remap fails, one cause can be that we have
2063 		 * too many objects pinned in a small remapping table,
2064 		 * such as swiotlb. Incrementally purge all other objects and
2065 		 * try again - if there are no more pages to remove from
2066 		 * the DMA remapper, i915_gem_shrink will return 0.
2067 		 */
2068 		GEM_BUG_ON(obj->mm.pages == pages);
2069 	} while (i915_gem_shrink(to_i915(obj->base.dev),
2070 				 obj->base.size >> PAGE_SHIFT, NULL,
2071 				 I915_SHRINK_BOUND |
2072 				 I915_SHRINK_UNBOUND |
2073 				 I915_SHRINK_ACTIVE));
2074 
2075 	return -ENOSPC;
2076 }
2077 
gen8_set_pte(void __iomem * addr,gen8_pte_t pte)2078 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2079 {
2080 	writeq(pte, addr);
2081 }
2082 
gen8_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level level,u32 unused)2083 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2084 				  dma_addr_t addr,
2085 				  u64 offset,
2086 				  enum i915_cache_level level,
2087 				  u32 unused)
2088 {
2089 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2090 	gen8_pte_t __iomem *pte =
2091 		(gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2092 
2093 	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2094 
2095 	ggtt->invalidate(vm->i915);
2096 }
2097 
gen8_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level level,u32 flags)2098 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2099 				     struct i915_vma *vma,
2100 				     enum i915_cache_level level,
2101 				     u32 flags)
2102 {
2103 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2104 	struct sgt_iter sgt_iter;
2105 	gen8_pte_t __iomem *gtt_entries;
2106 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2107 	dma_addr_t addr;
2108 
2109 	/*
2110 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
2111 	 * not to allow the user to override access to a read only page.
2112 	 */
2113 
2114 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2115 	gtt_entries += vma->node.start >> PAGE_SHIFT;
2116 	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2117 		gen8_set_pte(gtt_entries++, pte_encode | addr);
2118 
2119 	wmb();
2120 
2121 	/* This next bit makes the above posting read even more important. We
2122 	 * want to flush the TLBs only after we're certain all the PTE updates
2123 	 * have finished.
2124 	 */
2125 	ggtt->invalidate(vm->i915);
2126 }
2127 
gen6_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level level,u32 flags)2128 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2129 				  dma_addr_t addr,
2130 				  u64 offset,
2131 				  enum i915_cache_level level,
2132 				  u32 flags)
2133 {
2134 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2135 	gen6_pte_t __iomem *pte =
2136 		(gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2137 
2138 	iowrite32(vm->pte_encode(addr, level, flags), pte);
2139 
2140 	ggtt->invalidate(vm->i915);
2141 }
2142 
2143 /*
2144  * Binds an object into the global gtt with the specified cache level. The object
2145  * will be accessible to the GPU via commands whose operands reference offsets
2146  * within the global GTT as well as accessible by the GPU through the GMADR
2147  * mapped BAR (dev_priv->mm.gtt->gtt).
2148  */
gen6_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level level,u32 flags)2149 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2150 				     struct i915_vma *vma,
2151 				     enum i915_cache_level level,
2152 				     u32 flags)
2153 {
2154 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2155 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2156 	unsigned int i = vma->node.start >> PAGE_SHIFT;
2157 	struct sgt_iter iter;
2158 	dma_addr_t addr;
2159 	for_each_sgt_dma(addr, iter, vma->pages)
2160 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2161 	wmb();
2162 
2163 	/* This next bit makes the above posting read even more important. We
2164 	 * want to flush the TLBs only after we're certain all the PTE updates
2165 	 * have finished.
2166 	 */
2167 	ggtt->invalidate(vm->i915);
2168 }
2169 
nop_clear_range(struct i915_address_space * vm,u64 start,u64 length)2170 static void nop_clear_range(struct i915_address_space *vm,
2171 			    u64 start, u64 length)
2172 {
2173 }
2174 
gen8_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)2175 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2176 				  u64 start, u64 length)
2177 {
2178 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2179 	unsigned first_entry = start >> PAGE_SHIFT;
2180 	unsigned num_entries = length >> PAGE_SHIFT;
2181 	const gen8_pte_t scratch_pte =
2182 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
2183 	gen8_pte_t __iomem *gtt_base =
2184 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2185 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2186 	int i;
2187 
2188 	if (WARN(num_entries > max_entries,
2189 		 "First entry = %d; Num entries = %d (max=%d)\n",
2190 		 first_entry, num_entries, max_entries))
2191 		num_entries = max_entries;
2192 
2193 	for (i = 0; i < num_entries; i++)
2194 		gen8_set_pte(&gtt_base[i], scratch_pte);
2195 }
2196 
bxt_vtd_ggtt_wa(struct i915_address_space * vm)2197 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2198 {
2199 	struct drm_i915_private *dev_priv = vm->i915;
2200 
2201 	/*
2202 	 * Make sure the internal GAM fifo has been cleared of all GTT
2203 	 * writes before exiting stop_machine(). This guarantees that
2204 	 * any aperture accesses waiting to start in another process
2205 	 * cannot back up behind the GTT writes causing a hang.
2206 	 * The register can be any arbitrary GAM register.
2207 	 */
2208 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2209 }
2210 
2211 struct insert_page {
2212 	struct i915_address_space *vm;
2213 	dma_addr_t addr;
2214 	u64 offset;
2215 	enum i915_cache_level level;
2216 };
2217 
bxt_vtd_ggtt_insert_page__cb(void * _arg)2218 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2219 {
2220 	struct insert_page *arg = _arg;
2221 
2222 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2223 	bxt_vtd_ggtt_wa(arg->vm);
2224 
2225 	return 0;
2226 }
2227 
bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level level,u32 unused)2228 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2229 					  dma_addr_t addr,
2230 					  u64 offset,
2231 					  enum i915_cache_level level,
2232 					  u32 unused)
2233 {
2234 	struct insert_page arg = { vm, addr, offset, level };
2235 
2236 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2237 }
2238 
2239 struct insert_entries {
2240 	struct i915_address_space *vm;
2241 	struct i915_vma *vma;
2242 	enum i915_cache_level level;
2243 	u32 flags;
2244 };
2245 
bxt_vtd_ggtt_insert_entries__cb(void * _arg)2246 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2247 {
2248 	struct insert_entries *arg = _arg;
2249 
2250 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2251 	bxt_vtd_ggtt_wa(arg->vm);
2252 
2253 	return 0;
2254 }
2255 
bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level level,u32 flags)2256 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2257 					     struct i915_vma *vma,
2258 					     enum i915_cache_level level,
2259 					     u32 flags)
2260 {
2261 	struct insert_entries arg = { vm, vma, level, flags };
2262 
2263 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2264 }
2265 
2266 struct clear_range {
2267 	struct i915_address_space *vm;
2268 	u64 start;
2269 	u64 length;
2270 };
2271 
bxt_vtd_ggtt_clear_range__cb(void * _arg)2272 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2273 {
2274 	struct clear_range *arg = _arg;
2275 
2276 	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2277 	bxt_vtd_ggtt_wa(arg->vm);
2278 
2279 	return 0;
2280 }
2281 
bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space * vm,u64 start,u64 length)2282 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2283 					  u64 start,
2284 					  u64 length)
2285 {
2286 	struct clear_range arg = { vm, start, length };
2287 
2288 	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2289 }
2290 
gen6_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)2291 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2292 				  u64 start, u64 length)
2293 {
2294 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2295 	unsigned first_entry = start >> PAGE_SHIFT;
2296 	unsigned num_entries = length >> PAGE_SHIFT;
2297 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2298 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2299 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2300 	int i;
2301 
2302 	if (WARN(num_entries > max_entries,
2303 		 "First entry = %d; Num entries = %d (max=%d)\n",
2304 		 first_entry, num_entries, max_entries))
2305 		num_entries = max_entries;
2306 
2307 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2308 				     I915_CACHE_LLC, 0);
2309 
2310 	for (i = 0; i < num_entries; i++)
2311 		iowrite32(scratch_pte, &gtt_base[i]);
2312 }
2313 
i915_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level cache_level,u32 unused)2314 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2315 				  dma_addr_t addr,
2316 				  u64 offset,
2317 				  enum i915_cache_level cache_level,
2318 				  u32 unused)
2319 {
2320 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2321 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2322 
2323 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2324 }
2325 
i915_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level cache_level,u32 unused)2326 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2327 				     struct i915_vma *vma,
2328 				     enum i915_cache_level cache_level,
2329 				     u32 unused)
2330 {
2331 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2332 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2333 
2334 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2335 				    flags);
2336 }
2337 
i915_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)2338 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2339 				  u64 start, u64 length)
2340 {
2341 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2342 }
2343 
ggtt_bind_vma(struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)2344 static int ggtt_bind_vma(struct i915_vma *vma,
2345 			 enum i915_cache_level cache_level,
2346 			 u32 flags)
2347 {
2348 	struct drm_i915_private *i915 = vma->vm->i915;
2349 	struct drm_i915_gem_object *obj = vma->obj;
2350 	u32 pte_flags;
2351 
2352 	if (unlikely(!vma->pages)) {
2353 		int ret = i915_get_ggtt_vma_pages(vma);
2354 		if (ret)
2355 			return ret;
2356 	}
2357 
2358 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2359 	pte_flags = 0;
2360 	if (i915_gem_object_is_readonly(obj))
2361 		pte_flags |= PTE_READ_ONLY;
2362 
2363 	intel_runtime_pm_get(i915);
2364 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2365 	intel_runtime_pm_put(i915);
2366 
2367 	/*
2368 	 * Without aliasing PPGTT there's no difference between
2369 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2370 	 * upgrade to both bound if we bind either to avoid double-binding.
2371 	 */
2372 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2373 
2374 	return 0;
2375 }
2376 
ggtt_unbind_vma(struct i915_vma * vma)2377 static void ggtt_unbind_vma(struct i915_vma *vma)
2378 {
2379 	struct drm_i915_private *i915 = vma->vm->i915;
2380 
2381 	intel_runtime_pm_get(i915);
2382 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2383 	intel_runtime_pm_put(i915);
2384 }
2385 
aliasing_gtt_bind_vma(struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)2386 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2387 				 enum i915_cache_level cache_level,
2388 				 u32 flags)
2389 {
2390 	struct drm_i915_private *i915 = vma->vm->i915;
2391 	u32 pte_flags;
2392 	int ret;
2393 
2394 	if (unlikely(!vma->pages)) {
2395 		ret = i915_get_ggtt_vma_pages(vma);
2396 		if (ret)
2397 			return ret;
2398 	}
2399 
2400 	/* Currently applicable only to VLV */
2401 	pte_flags = 0;
2402 	if (i915_gem_object_is_readonly(vma->obj))
2403 		pte_flags |= PTE_READ_ONLY;
2404 
2405 	if (flags & I915_VMA_LOCAL_BIND) {
2406 		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2407 
2408 		if (!(vma->flags & I915_VMA_LOCAL_BIND) &&
2409 		    appgtt->base.allocate_va_range) {
2410 			ret = appgtt->base.allocate_va_range(&appgtt->base,
2411 							     vma->node.start,
2412 							     vma->size);
2413 			if (ret)
2414 				goto err_pages;
2415 		}
2416 
2417 		appgtt->base.insert_entries(&appgtt->base, vma, cache_level,
2418 					    pte_flags);
2419 	}
2420 
2421 	if (flags & I915_VMA_GLOBAL_BIND) {
2422 		intel_runtime_pm_get(i915);
2423 		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2424 		intel_runtime_pm_put(i915);
2425 	}
2426 
2427 	return 0;
2428 
2429 err_pages:
2430 	if (!(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND))) {
2431 		if (vma->pages != vma->obj->mm.pages) {
2432 			GEM_BUG_ON(!vma->pages);
2433 			sg_free_table(vma->pages);
2434 			kfree(vma->pages);
2435 		}
2436 		vma->pages = NULL;
2437 	}
2438 	return ret;
2439 }
2440 
aliasing_gtt_unbind_vma(struct i915_vma * vma)2441 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2442 {
2443 	struct drm_i915_private *i915 = vma->vm->i915;
2444 
2445 	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2446 		intel_runtime_pm_get(i915);
2447 		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2448 		intel_runtime_pm_put(i915);
2449 	}
2450 
2451 	if (vma->flags & I915_VMA_LOCAL_BIND) {
2452 		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base;
2453 
2454 		vm->clear_range(vm, vma->node.start, vma->size);
2455 	}
2456 }
2457 
i915_gem_gtt_finish_pages(struct drm_i915_gem_object * obj,struct sg_table * pages)2458 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2459 			       struct sg_table *pages)
2460 {
2461 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2462 	struct device *kdev = &dev_priv->drm.pdev->dev;
2463 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2464 
2465 	if (unlikely(ggtt->do_idle_maps)) {
2466 		if (i915_gem_wait_for_idle(dev_priv, 0)) {
2467 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2468 			/* Wait a bit, in hopes it avoids the hang */
2469 			udelay(10);
2470 		}
2471 	}
2472 
2473 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2474 }
2475 
i915_gtt_color_adjust(const struct drm_mm_node * node,unsigned long color,u64 * start,u64 * end)2476 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2477 				  unsigned long color,
2478 				  u64 *start,
2479 				  u64 *end)
2480 {
2481 	if (node->allocated && node->color != color)
2482 		*start += I915_GTT_PAGE_SIZE;
2483 
2484 	/* Also leave a space between the unallocated reserved node after the
2485 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
2486 	 * to insert a guard page to prevent prefetches crossing over the
2487 	 * GTT boundary.
2488 	 */
2489 	node = list_next_entry(node, node_list);
2490 	if (node->color != color)
2491 		*end -= I915_GTT_PAGE_SIZE;
2492 }
2493 
i915_gem_init_aliasing_ppgtt(struct drm_i915_private * i915)2494 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2495 {
2496 	struct i915_ggtt *ggtt = &i915->ggtt;
2497 	struct i915_hw_ppgtt *ppgtt;
2498 	int err;
2499 
2500 	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]");
2501 	if (IS_ERR(ppgtt))
2502 		return PTR_ERR(ppgtt);
2503 
2504 	if (WARN_ON(ppgtt->base.total < ggtt->base.total)) {
2505 		err = -ENODEV;
2506 		goto err_ppgtt;
2507 	}
2508 
2509 	if (ppgtt->base.allocate_va_range) {
2510 		/* Note we only pre-allocate as far as the end of the global
2511 		 * GTT. On 48b / 4-level page-tables, the difference is very,
2512 		 * very significant! We have to preallocate as GVT/vgpu does
2513 		 * not like the page directory disappearing.
2514 		 */
2515 		err = ppgtt->base.allocate_va_range(&ppgtt->base,
2516 						    0, ggtt->base.total);
2517 		if (err)
2518 			goto err_ppgtt;
2519 	}
2520 
2521 	i915->mm.aliasing_ppgtt = ppgtt;
2522 
2523 	WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2524 	ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2525 
2526 	WARN_ON(ggtt->base.unbind_vma != ggtt_unbind_vma);
2527 	ggtt->base.unbind_vma = aliasing_gtt_unbind_vma;
2528 
2529 	return 0;
2530 
2531 err_ppgtt:
2532 	i915_ppgtt_put(ppgtt);
2533 	return err;
2534 }
2535 
i915_gem_fini_aliasing_ppgtt(struct drm_i915_private * i915)2536 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2537 {
2538 	struct i915_ggtt *ggtt = &i915->ggtt;
2539 	struct i915_hw_ppgtt *ppgtt;
2540 
2541 	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2542 	if (!ppgtt)
2543 		return;
2544 
2545 	i915_ppgtt_put(ppgtt);
2546 
2547 	ggtt->base.bind_vma = ggtt_bind_vma;
2548 	ggtt->base.unbind_vma = ggtt_unbind_vma;
2549 }
2550 
i915_gem_init_ggtt(struct drm_i915_private * dev_priv)2551 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2552 {
2553 	/* Let GEM Manage all of the aperture.
2554 	 *
2555 	 * However, leave one page at the end still bound to the scratch page.
2556 	 * There are a number of places where the hardware apparently prefetches
2557 	 * past the end of the object, and we've seen multiple hangs with the
2558 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2559 	 * aperture.  One page should be enough to keep any prefetching inside
2560 	 * of the aperture.
2561 	 */
2562 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2563 	unsigned long hole_start, hole_end;
2564 	struct drm_mm_node *entry;
2565 	int ret;
2566 
2567 	ret = intel_vgt_balloon(dev_priv);
2568 	if (ret)
2569 		return ret;
2570 
2571 	/* Reserve a mappable slot for our lockless error capture */
2572 	ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture,
2573 					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2574 					  0, ggtt->mappable_end,
2575 					  DRM_MM_INSERT_LOW);
2576 	if (ret)
2577 		return ret;
2578 
2579 	/* Clear any non-preallocated blocks */
2580 	drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2581 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2582 			      hole_start, hole_end);
2583 		ggtt->base.clear_range(&ggtt->base, hole_start,
2584 				       hole_end - hole_start);
2585 	}
2586 
2587 	/* And finally clear the reserved guard page */
2588 	ggtt->base.clear_range(&ggtt->base,
2589 			       ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2590 
2591 	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2592 		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2593 		if (ret)
2594 			goto err;
2595 	}
2596 
2597 	return 0;
2598 
2599 err:
2600 	drm_mm_remove_node(&ggtt->error_capture);
2601 	return ret;
2602 }
2603 
2604 /**
2605  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2606  * @dev_priv: i915 device
2607  */
i915_ggtt_cleanup_hw(struct drm_i915_private * dev_priv)2608 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2609 {
2610 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2611 	struct i915_vma *vma, *vn;
2612 
2613 	ggtt->base.closed = true;
2614 
2615 	mutex_lock(&dev_priv->drm.struct_mutex);
2616 	WARN_ON(!list_empty(&ggtt->base.active_list));
2617 	list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link)
2618 		WARN_ON(i915_vma_unbind(vma));
2619 	mutex_unlock(&dev_priv->drm.struct_mutex);
2620 
2621 	i915_gem_cleanup_stolen(&dev_priv->drm);
2622 
2623 	mutex_lock(&dev_priv->drm.struct_mutex);
2624 	i915_gem_fini_aliasing_ppgtt(dev_priv);
2625 
2626 	if (drm_mm_node_allocated(&ggtt->error_capture))
2627 		drm_mm_remove_node(&ggtt->error_capture);
2628 
2629 	if (drm_mm_initialized(&ggtt->base.mm)) {
2630 		intel_vgt_deballoon(dev_priv);
2631 		i915_address_space_fini(&ggtt->base);
2632 	}
2633 
2634 	ggtt->base.cleanup(&ggtt->base);
2635 	mutex_unlock(&dev_priv->drm.struct_mutex);
2636 
2637 	arch_phys_wc_del(ggtt->mtrr);
2638 	io_mapping_fini(&ggtt->mappable);
2639 }
2640 
gen6_get_total_gtt_size(u16 snb_gmch_ctl)2641 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2642 {
2643 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2644 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2645 	return snb_gmch_ctl << 20;
2646 }
2647 
gen8_get_total_gtt_size(u16 bdw_gmch_ctl)2648 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2649 {
2650 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2651 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2652 	if (bdw_gmch_ctl)
2653 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2654 
2655 #ifdef CONFIG_X86_32
2656 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2657 	if (bdw_gmch_ctl > 4)
2658 		bdw_gmch_ctl = 4;
2659 #endif
2660 
2661 	return bdw_gmch_ctl << 20;
2662 }
2663 
chv_get_total_gtt_size(u16 gmch_ctrl)2664 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2665 {
2666 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2667 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2668 
2669 	if (gmch_ctrl)
2670 		return 1 << (20 + gmch_ctrl);
2671 
2672 	return 0;
2673 }
2674 
gen6_get_stolen_size(u16 snb_gmch_ctl)2675 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2676 {
2677 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2678 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2679 	return (size_t)snb_gmch_ctl << 25; /* 32 MB units */
2680 }
2681 
gen8_get_stolen_size(u16 bdw_gmch_ctl)2682 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2683 {
2684 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2685 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2686 	return (size_t)bdw_gmch_ctl << 25; /* 32 MB units */
2687 }
2688 
chv_get_stolen_size(u16 gmch_ctrl)2689 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2690 {
2691 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2692 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2693 
2694 	/*
2695 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2696 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2697 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2698 	 */
2699 	if (gmch_ctrl < 0x11)
2700 		return (size_t)gmch_ctrl << 25;
2701 	else if (gmch_ctrl < 0x17)
2702 		return (size_t)(gmch_ctrl - 0x11 + 2) << 22;
2703 	else
2704 		return (size_t)(gmch_ctrl - 0x17 + 9) << 22;
2705 }
2706 
gen9_get_stolen_size(u16 gen9_gmch_ctl)2707 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2708 {
2709 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2710 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2711 
2712 	if (gen9_gmch_ctl < 0xf0)
2713 		return (size_t)gen9_gmch_ctl << 25; /* 32 MB units */
2714 	else
2715 		/* 4MB increments starting at 0xf0 for 4MB */
2716 		return (size_t)(gen9_gmch_ctl - 0xf0 + 1) << 22;
2717 }
2718 
ggtt_probe_common(struct i915_ggtt * ggtt,u64 size)2719 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2720 {
2721 	struct drm_i915_private *dev_priv = ggtt->base.i915;
2722 	struct pci_dev *pdev = dev_priv->drm.pdev;
2723 	phys_addr_t phys_addr;
2724 	int ret;
2725 
2726 	/* For Modern GENs the PTEs and register space are split in the BAR */
2727 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2728 
2729 	/*
2730 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2731 	 * dropped. For WC mappings in general we have 64 byte burst writes
2732 	 * when the WC buffer is flushed, so we can't use it, but have to
2733 	 * resort to an uncached mapping. The WC issue is easily caught by the
2734 	 * readback check when writing GTT PTE entries.
2735 	 */
2736 	if (IS_GEN9_LP(dev_priv))
2737 		ggtt->gsm = ioremap_nocache(phys_addr, size);
2738 	else
2739 		ggtt->gsm = ioremap_wc(phys_addr, size);
2740 	if (!ggtt->gsm) {
2741 		DRM_ERROR("Failed to map the ggtt page table\n");
2742 		return -ENOMEM;
2743 	}
2744 
2745 	ret = setup_scratch_page(&ggtt->base, GFP_DMA32);
2746 	if (ret) {
2747 		DRM_ERROR("Scratch setup failed\n");
2748 		/* iounmap will also get called at remove, but meh */
2749 		iounmap(ggtt->gsm);
2750 		return ret;
2751 	}
2752 
2753 	return 0;
2754 }
2755 
cnl_setup_private_ppat(struct drm_i915_private * dev_priv)2756 static void cnl_setup_private_ppat(struct drm_i915_private *dev_priv)
2757 {
2758 	/* XXX: spec is unclear if this is still needed for CNL+ */
2759 	if (!USES_PPGTT(dev_priv)) {
2760 		I915_WRITE(GEN10_PAT_INDEX(0), GEN8_PPAT_UC);
2761 		return;
2762 	}
2763 
2764 	I915_WRITE(GEN10_PAT_INDEX(0), GEN8_PPAT_WB | GEN8_PPAT_LLC);
2765 	I915_WRITE(GEN10_PAT_INDEX(1), GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
2766 	I915_WRITE(GEN10_PAT_INDEX(2), GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
2767 	I915_WRITE(GEN10_PAT_INDEX(3), GEN8_PPAT_UC);
2768 	I915_WRITE(GEN10_PAT_INDEX(4), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
2769 	I915_WRITE(GEN10_PAT_INDEX(5), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
2770 	I915_WRITE(GEN10_PAT_INDEX(6), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
2771 	I915_WRITE(GEN10_PAT_INDEX(7), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2772 }
2773 
2774 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2775  * bits. When using advanced contexts each context stores its own PAT, but
2776  * writing this data shouldn't be harmful even in those cases. */
bdw_setup_private_ppat(struct drm_i915_private * dev_priv)2777 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2778 {
2779 	u64 pat;
2780 
2781 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2782 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2783 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2784 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2785 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2786 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2787 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2788 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2789 
2790 	if (!USES_PPGTT(dev_priv))
2791 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2792 		 * so RTL will always use the value corresponding to
2793 		 * pat_sel = 000".
2794 		 * So let's disable cache for GGTT to avoid screen corruptions.
2795 		 * MOCS still can be used though.
2796 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2797 		 * before this patch, i.e. the same uncached + snooping access
2798 		 * like on gen6/7 seems to be in effect.
2799 		 * - So this just fixes blitter/render access. Again it looks
2800 		 * like it's not just uncached access, but uncached + snooping.
2801 		 * So we can still hold onto all our assumptions wrt cpu
2802 		 * clflushing on LLC machines.
2803 		 */
2804 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2805 
2806 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2807 	 * write would work. */
2808 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2809 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2810 }
2811 
chv_setup_private_ppat(struct drm_i915_private * dev_priv)2812 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2813 {
2814 	u64 pat;
2815 
2816 	/*
2817 	 * Map WB on BDW to snooped on CHV.
2818 	 *
2819 	 * Only the snoop bit has meaning for CHV, the rest is
2820 	 * ignored.
2821 	 *
2822 	 * The hardware will never snoop for certain types of accesses:
2823 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2824 	 * - PPGTT page tables
2825 	 * - some other special cycles
2826 	 *
2827 	 * As with BDW, we also need to consider the following for GT accesses:
2828 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2829 	 * so RTL will always use the value corresponding to
2830 	 * pat_sel = 000".
2831 	 * Which means we must set the snoop bit in PAT entry 0
2832 	 * in order to keep the global status page working.
2833 	 */
2834 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2835 	      GEN8_PPAT(1, 0) |
2836 	      GEN8_PPAT(2, 0) |
2837 	      GEN8_PPAT(3, 0) |
2838 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2839 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2840 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2841 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
2842 
2843 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2844 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2845 }
2846 
gen6_gmch_remove(struct i915_address_space * vm)2847 static void gen6_gmch_remove(struct i915_address_space *vm)
2848 {
2849 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2850 
2851 	iounmap(ggtt->gsm);
2852 	cleanup_scratch_page(vm);
2853 }
2854 
gen8_gmch_probe(struct i915_ggtt * ggtt)2855 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
2856 {
2857 	struct drm_i915_private *dev_priv = ggtt->base.i915;
2858 	struct pci_dev *pdev = dev_priv->drm.pdev;
2859 	unsigned int size;
2860 	u16 snb_gmch_ctl;
2861 	int err;
2862 
2863 	/* TODO: We're not aware of mappable constraints on gen8 yet */
2864 	ggtt->mappable_base = pci_resource_start(pdev, 2);
2865 	ggtt->mappable_end = pci_resource_len(pdev, 2);
2866 
2867 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
2868 	if (!err)
2869 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
2870 	if (err)
2871 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
2872 
2873 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2874 
2875 	if (INTEL_GEN(dev_priv) >= 9) {
2876 		ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
2877 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
2878 	} else if (IS_CHERRYVIEW(dev_priv)) {
2879 		ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
2880 		size = chv_get_total_gtt_size(snb_gmch_ctl);
2881 	} else {
2882 		ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
2883 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
2884 	}
2885 
2886 	ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2887 
2888 	if (INTEL_GEN(dev_priv) >= 10)
2889 		cnl_setup_private_ppat(dev_priv);
2890 	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
2891 		chv_setup_private_ppat(dev_priv);
2892 	else
2893 		bdw_setup_private_ppat(dev_priv);
2894 
2895 	ggtt->base.cleanup = gen6_gmch_remove;
2896 	ggtt->base.bind_vma = ggtt_bind_vma;
2897 	ggtt->base.unbind_vma = ggtt_unbind_vma;
2898 	ggtt->base.insert_page = gen8_ggtt_insert_page;
2899 	ggtt->base.clear_range = nop_clear_range;
2900 	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
2901 		ggtt->base.clear_range = gen8_ggtt_clear_range;
2902 
2903 	ggtt->base.insert_entries = gen8_ggtt_insert_entries;
2904 
2905 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
2906 	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
2907 		ggtt->base.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
2908 		ggtt->base.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
2909 		if (ggtt->base.clear_range != nop_clear_range)
2910 			ggtt->base.clear_range = bxt_vtd_ggtt_clear_range__BKL;
2911 	}
2912 
2913 	ggtt->invalidate = gen6_ggtt_invalidate;
2914 
2915 	return ggtt_probe_common(ggtt, size);
2916 }
2917 
gen6_gmch_probe(struct i915_ggtt * ggtt)2918 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
2919 {
2920 	struct drm_i915_private *dev_priv = ggtt->base.i915;
2921 	struct pci_dev *pdev = dev_priv->drm.pdev;
2922 	unsigned int size;
2923 	u16 snb_gmch_ctl;
2924 	int err;
2925 
2926 	ggtt->mappable_base = pci_resource_start(pdev, 2);
2927 	ggtt->mappable_end = pci_resource_len(pdev, 2);
2928 
2929 	/* 64/512MB is the current min/max we actually know of, but this is just
2930 	 * a coarse sanity check.
2931 	 */
2932 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
2933 		DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
2934 		return -ENXIO;
2935 	}
2936 
2937 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
2938 	if (!err)
2939 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
2940 	if (err)
2941 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
2942 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2943 
2944 	ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
2945 
2946 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
2947 	ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2948 
2949 	ggtt->base.clear_range = gen6_ggtt_clear_range;
2950 	ggtt->base.insert_page = gen6_ggtt_insert_page;
2951 	ggtt->base.insert_entries = gen6_ggtt_insert_entries;
2952 	ggtt->base.bind_vma = ggtt_bind_vma;
2953 	ggtt->base.unbind_vma = ggtt_unbind_vma;
2954 	ggtt->base.cleanup = gen6_gmch_remove;
2955 
2956 	ggtt->invalidate = gen6_ggtt_invalidate;
2957 
2958 	if (HAS_EDRAM(dev_priv))
2959 		ggtt->base.pte_encode = iris_pte_encode;
2960 	else if (IS_HASWELL(dev_priv))
2961 		ggtt->base.pte_encode = hsw_pte_encode;
2962 	else if (IS_VALLEYVIEW(dev_priv))
2963 		ggtt->base.pte_encode = byt_pte_encode;
2964 	else if (INTEL_GEN(dev_priv) >= 7)
2965 		ggtt->base.pte_encode = ivb_pte_encode;
2966 	else
2967 		ggtt->base.pte_encode = snb_pte_encode;
2968 
2969 	return ggtt_probe_common(ggtt, size);
2970 }
2971 
i915_gmch_remove(struct i915_address_space * vm)2972 static void i915_gmch_remove(struct i915_address_space *vm)
2973 {
2974 	intel_gmch_remove();
2975 }
2976 
i915_gmch_probe(struct i915_ggtt * ggtt)2977 static int i915_gmch_probe(struct i915_ggtt *ggtt)
2978 {
2979 	struct drm_i915_private *dev_priv = ggtt->base.i915;
2980 	int ret;
2981 
2982 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
2983 	if (!ret) {
2984 		DRM_ERROR("failed to set up gmch\n");
2985 		return -EIO;
2986 	}
2987 
2988 	intel_gtt_get(&ggtt->base.total,
2989 		      &ggtt->stolen_size,
2990 		      &ggtt->mappable_base,
2991 		      &ggtt->mappable_end);
2992 
2993 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
2994 	ggtt->base.insert_page = i915_ggtt_insert_page;
2995 	ggtt->base.insert_entries = i915_ggtt_insert_entries;
2996 	ggtt->base.clear_range = i915_ggtt_clear_range;
2997 	ggtt->base.bind_vma = ggtt_bind_vma;
2998 	ggtt->base.unbind_vma = ggtt_unbind_vma;
2999 	ggtt->base.cleanup = i915_gmch_remove;
3000 
3001 	ggtt->invalidate = gmch_ggtt_invalidate;
3002 
3003 	if (unlikely(ggtt->do_idle_maps))
3004 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3005 
3006 	return 0;
3007 }
3008 
3009 /**
3010  * i915_ggtt_probe_hw - Probe GGTT hardware location
3011  * @dev_priv: i915 device
3012  */
i915_ggtt_probe_hw(struct drm_i915_private * dev_priv)3013 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3014 {
3015 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3016 	int ret;
3017 
3018 	ggtt->base.i915 = dev_priv;
3019 	ggtt->base.dma = &dev_priv->drm.pdev->dev;
3020 
3021 	if (INTEL_GEN(dev_priv) <= 5)
3022 		ret = i915_gmch_probe(ggtt);
3023 	else if (INTEL_GEN(dev_priv) < 8)
3024 		ret = gen6_gmch_probe(ggtt);
3025 	else
3026 		ret = gen8_gmch_probe(ggtt);
3027 	if (ret)
3028 		return ret;
3029 
3030 	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3031 	 * This is easier than doing range restriction on the fly, as we
3032 	 * currently don't have any bits spare to pass in this upper
3033 	 * restriction!
3034 	 */
3035 	if (HAS_GUC(dev_priv) && i915.enable_guc_loading) {
3036 		ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
3037 		ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3038 	}
3039 
3040 	if ((ggtt->base.total - 1) >> 32) {
3041 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3042 			  " of address space! Found %lldM!\n",
3043 			  ggtt->base.total >> 20);
3044 		ggtt->base.total = 1ULL << 32;
3045 		ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3046 	}
3047 
3048 	if (ggtt->mappable_end > ggtt->base.total) {
3049 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3050 			  " aperture=%llx, total=%llx\n",
3051 			  ggtt->mappable_end, ggtt->base.total);
3052 		ggtt->mappable_end = ggtt->base.total;
3053 	}
3054 
3055 	/* GMADR is the PCI mmio aperture into the global GTT. */
3056 	DRM_INFO("Memory usable by graphics device = %lluM\n",
3057 		 ggtt->base.total >> 20);
3058 	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3059 	DRM_DEBUG_DRIVER("GTT stolen size = %uM\n", ggtt->stolen_size >> 20);
3060 	if (intel_vtd_active())
3061 		DRM_INFO("VT-d active for gfx access\n");
3062 
3063 	return 0;
3064 }
3065 
3066 /**
3067  * i915_ggtt_init_hw - Initialize GGTT hardware
3068  * @dev_priv: i915 device
3069  */
i915_ggtt_init_hw(struct drm_i915_private * dev_priv)3070 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3071 {
3072 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3073 	int ret;
3074 
3075 	INIT_LIST_HEAD(&dev_priv->vm_list);
3076 
3077 	/* Note that we use page colouring to enforce a guard page at the
3078 	 * end of the address space. This is required as the CS may prefetch
3079 	 * beyond the end of the batch buffer, across the page boundary,
3080 	 * and beyond the end of the GTT if we do not provide a guard.
3081 	 */
3082 	mutex_lock(&dev_priv->drm.struct_mutex);
3083 	i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3084 
3085 	/* Only VLV supports read-only GGTT mappings */
3086 	ggtt->base.has_read_only = IS_VALLEYVIEW(dev_priv);
3087 
3088 	if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3089 		ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3090 	mutex_unlock(&dev_priv->drm.struct_mutex);
3091 
3092 	if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
3093 				dev_priv->ggtt.mappable_base,
3094 				dev_priv->ggtt.mappable_end)) {
3095 		ret = -EIO;
3096 		goto out_gtt_cleanup;
3097 	}
3098 
3099 	ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3100 
3101 	/*
3102 	 * Initialise stolen early so that we may reserve preallocated
3103 	 * objects for the BIOS to KMS transition.
3104 	 */
3105 	ret = i915_gem_init_stolen(dev_priv);
3106 	if (ret)
3107 		goto out_gtt_cleanup;
3108 
3109 	return 0;
3110 
3111 out_gtt_cleanup:
3112 	ggtt->base.cleanup(&ggtt->base);
3113 	return ret;
3114 }
3115 
i915_ggtt_enable_hw(struct drm_i915_private * dev_priv)3116 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3117 {
3118 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3119 		return -EIO;
3120 	return 0;
3121 }
3122 
i915_ggtt_enable_guc(struct drm_i915_private * i915)3123 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3124 {
3125 	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3126 
3127 	i915->ggtt.invalidate = guc_ggtt_invalidate;
3128 }
3129 
i915_ggtt_disable_guc(struct drm_i915_private * i915)3130 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3131 {
3132 	/* We should only be called after i915_ggtt_enable_guc() */
3133 	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3134 
3135 	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3136 }
3137 
i915_gem_restore_gtt_mappings(struct drm_i915_private * dev_priv)3138 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3139 {
3140 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3141 	struct drm_i915_gem_object *obj, *on;
3142 
3143 	i915_check_and_clear_faults(dev_priv);
3144 
3145 	/* First fill our portion of the GTT with scratch pages */
3146 	ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
3147 
3148 	ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3149 
3150 	/* clflush objects bound into the GGTT and rebind them. */
3151 	list_for_each_entry_safe(obj, on,
3152 				 &dev_priv->mm.bound_list, global_link) {
3153 		bool ggtt_bound = false;
3154 		struct i915_vma *vma;
3155 
3156 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3157 			if (vma->vm != &ggtt->base)
3158 				continue;
3159 
3160 			if (!i915_vma_unbind(vma))
3161 				continue;
3162 
3163 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3164 					      PIN_UPDATE));
3165 			ggtt_bound = true;
3166 		}
3167 
3168 		if (ggtt_bound)
3169 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3170 	}
3171 
3172 	ggtt->base.closed = false;
3173 
3174 	if (INTEL_GEN(dev_priv) >= 8) {
3175 		if (INTEL_GEN(dev_priv) >= 10)
3176 			cnl_setup_private_ppat(dev_priv);
3177 		else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3178 			chv_setup_private_ppat(dev_priv);
3179 		else
3180 			bdw_setup_private_ppat(dev_priv);
3181 
3182 		return;
3183 	}
3184 
3185 	if (USES_PPGTT(dev_priv)) {
3186 		struct i915_address_space *vm;
3187 
3188 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3189 			struct i915_hw_ppgtt *ppgtt;
3190 
3191 			if (i915_is_ggtt(vm))
3192 				ppgtt = dev_priv->mm.aliasing_ppgtt;
3193 			else
3194 				ppgtt = i915_vm_to_ppgtt(vm);
3195 
3196 			gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
3197 		}
3198 	}
3199 
3200 	i915_ggtt_invalidate(dev_priv);
3201 }
3202 
3203 static struct scatterlist *
rotate_pages(const dma_addr_t * in,unsigned int offset,unsigned int width,unsigned int height,unsigned int stride,struct sg_table * st,struct scatterlist * sg)3204 rotate_pages(const dma_addr_t *in, unsigned int offset,
3205 	     unsigned int width, unsigned int height,
3206 	     unsigned int stride,
3207 	     struct sg_table *st, struct scatterlist *sg)
3208 {
3209 	unsigned int column, row;
3210 	unsigned int src_idx;
3211 
3212 	for (column = 0; column < width; column++) {
3213 		src_idx = stride * (height - 1) + column;
3214 		for (row = 0; row < height; row++) {
3215 			st->nents++;
3216 			/* We don't need the pages, but need to initialize
3217 			 * the entries so the sg list can be happily traversed.
3218 			 * The only thing we need are DMA addresses.
3219 			 */
3220 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3221 			sg_dma_address(sg) = in[offset + src_idx];
3222 			sg_dma_len(sg) = PAGE_SIZE;
3223 			sg = sg_next(sg);
3224 			src_idx -= stride;
3225 		}
3226 	}
3227 
3228 	return sg;
3229 }
3230 
3231 static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info * rot_info,struct drm_i915_gem_object * obj)3232 intel_rotate_pages(struct intel_rotation_info *rot_info,
3233 		   struct drm_i915_gem_object *obj)
3234 {
3235 	const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3236 	unsigned int size = intel_rotation_info_size(rot_info);
3237 	struct sgt_iter sgt_iter;
3238 	dma_addr_t dma_addr;
3239 	unsigned long i;
3240 	dma_addr_t *page_addr_list;
3241 	struct sg_table *st;
3242 	struct scatterlist *sg;
3243 	int ret = -ENOMEM;
3244 
3245 	/* Allocate a temporary list of source pages for random access. */
3246 	page_addr_list = kvmalloc_array(n_pages,
3247 					sizeof(dma_addr_t),
3248 					GFP_KERNEL);
3249 	if (!page_addr_list)
3250 		return ERR_PTR(ret);
3251 
3252 	/* Allocate target SG list. */
3253 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3254 	if (!st)
3255 		goto err_st_alloc;
3256 
3257 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3258 	if (ret)
3259 		goto err_sg_alloc;
3260 
3261 	/* Populate source page list from the object. */
3262 	i = 0;
3263 	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3264 		page_addr_list[i++] = dma_addr;
3265 
3266 	GEM_BUG_ON(i != n_pages);
3267 	st->nents = 0;
3268 	sg = st->sgl;
3269 
3270 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3271 		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3272 				  rot_info->plane[i].width, rot_info->plane[i].height,
3273 				  rot_info->plane[i].stride, st, sg);
3274 	}
3275 
3276 	DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3277 		      obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3278 
3279 	kvfree(page_addr_list);
3280 
3281 	return st;
3282 
3283 err_sg_alloc:
3284 	kfree(st);
3285 err_st_alloc:
3286 	kvfree(page_addr_list);
3287 
3288 	DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3289 		      obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3290 
3291 	return ERR_PTR(ret);
3292 }
3293 
3294 static noinline struct sg_table *
intel_partial_pages(const struct i915_ggtt_view * view,struct drm_i915_gem_object * obj)3295 intel_partial_pages(const struct i915_ggtt_view *view,
3296 		    struct drm_i915_gem_object *obj)
3297 {
3298 	struct sg_table *st;
3299 	struct scatterlist *sg, *iter;
3300 	unsigned int count = view->partial.size;
3301 	unsigned int offset;
3302 	int ret = -ENOMEM;
3303 
3304 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3305 	if (!st)
3306 		goto err_st_alloc;
3307 
3308 	ret = sg_alloc_table(st, count, GFP_KERNEL);
3309 	if (ret)
3310 		goto err_sg_alloc;
3311 
3312 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3313 	GEM_BUG_ON(!iter);
3314 
3315 	sg = st->sgl;
3316 	st->nents = 0;
3317 	do {
3318 		unsigned int len;
3319 
3320 		len = min(iter->length - (offset << PAGE_SHIFT),
3321 			  count << PAGE_SHIFT);
3322 		sg_set_page(sg, NULL, len, 0);
3323 		sg_dma_address(sg) =
3324 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3325 		sg_dma_len(sg) = len;
3326 
3327 		st->nents++;
3328 		count -= len >> PAGE_SHIFT;
3329 		if (count == 0) {
3330 			sg_mark_end(sg);
3331 			return st;
3332 		}
3333 
3334 		sg = __sg_next(sg);
3335 		iter = __sg_next(iter);
3336 		offset = 0;
3337 	} while (1);
3338 
3339 err_sg_alloc:
3340 	kfree(st);
3341 err_st_alloc:
3342 	return ERR_PTR(ret);
3343 }
3344 
3345 static int
i915_get_ggtt_vma_pages(struct i915_vma * vma)3346 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3347 {
3348 	int ret;
3349 
3350 	/* The vma->pages are only valid within the lifespan of the borrowed
3351 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3352 	 * must be the vma->pages. A simple rule is that vma->pages must only
3353 	 * be accessed when the obj->mm.pages are pinned.
3354 	 */
3355 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3356 
3357 	switch (vma->ggtt_view.type) {
3358 	case I915_GGTT_VIEW_NORMAL:
3359 		vma->pages = vma->obj->mm.pages;
3360 		return 0;
3361 
3362 	case I915_GGTT_VIEW_ROTATED:
3363 		vma->pages =
3364 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3365 		break;
3366 
3367 	case I915_GGTT_VIEW_PARTIAL:
3368 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3369 		break;
3370 
3371 	default:
3372 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3373 			  vma->ggtt_view.type);
3374 		return -EINVAL;
3375 	}
3376 
3377 	ret = 0;
3378 	if (unlikely(IS_ERR(vma->pages))) {
3379 		ret = PTR_ERR(vma->pages);
3380 		vma->pages = NULL;
3381 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3382 			  vma->ggtt_view.type, ret);
3383 	}
3384 	return ret;
3385 }
3386 
3387 /**
3388  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3389  * @vm: the &struct i915_address_space
3390  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3391  * @size: how much space to allocate inside the GTT,
3392  *        must be #I915_GTT_PAGE_SIZE aligned
3393  * @offset: where to insert inside the GTT,
3394  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3395  *          (@offset + @size) must fit within the address space
3396  * @color: color to apply to node, if this node is not from a VMA,
3397  *         color must be #I915_COLOR_UNEVICTABLE
3398  * @flags: control search and eviction behaviour
3399  *
3400  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3401  * the address space (using @size and @color). If the @node does not fit, it
3402  * tries to evict any overlapping nodes from the GTT, including any
3403  * neighbouring nodes if the colors do not match (to ensure guard pages between
3404  * differing domains). See i915_gem_evict_for_node() for the gory details
3405  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3406  * evicting active overlapping objects, and any overlapping node that is pinned
3407  * or marked as unevictable will also result in failure.
3408  *
3409  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3410  * asked to wait for eviction and interrupted.
3411  */
i915_gem_gtt_reserve(struct i915_address_space * vm,struct drm_mm_node * node,u64 size,u64 offset,unsigned long color,unsigned int flags)3412 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3413 			 struct drm_mm_node *node,
3414 			 u64 size, u64 offset, unsigned long color,
3415 			 unsigned int flags)
3416 {
3417 	int err;
3418 
3419 	GEM_BUG_ON(!size);
3420 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3421 	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3422 	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3423 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3424 	GEM_BUG_ON(drm_mm_node_allocated(node));
3425 
3426 	node->size = size;
3427 	node->start = offset;
3428 	node->color = color;
3429 
3430 	err = drm_mm_reserve_node(&vm->mm, node);
3431 	if (err != -ENOSPC)
3432 		return err;
3433 
3434 	if (flags & PIN_NOEVICT)
3435 		return -ENOSPC;
3436 
3437 	err = i915_gem_evict_for_node(vm, node, flags);
3438 	if (err == 0)
3439 		err = drm_mm_reserve_node(&vm->mm, node);
3440 
3441 	return err;
3442 }
3443 
random_offset(u64 start,u64 end,u64 len,u64 align)3444 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3445 {
3446 	u64 range, addr;
3447 
3448 	GEM_BUG_ON(range_overflows(start, len, end));
3449 	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3450 
3451 	range = round_down(end - len, align) - round_up(start, align);
3452 	if (range) {
3453 		if (sizeof(unsigned long) == sizeof(u64)) {
3454 			addr = get_random_long();
3455 		} else {
3456 			addr = get_random_int();
3457 			if (range > U32_MAX) {
3458 				addr <<= 32;
3459 				addr |= get_random_int();
3460 			}
3461 		}
3462 		div64_u64_rem(addr, range, &addr);
3463 		start += addr;
3464 	}
3465 
3466 	return round_up(start, align);
3467 }
3468 
3469 /**
3470  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3471  * @vm: the &struct i915_address_space
3472  * @node: the &struct drm_mm_node (typically i915_vma.node)
3473  * @size: how much space to allocate inside the GTT,
3474  *        must be #I915_GTT_PAGE_SIZE aligned
3475  * @alignment: required alignment of starting offset, may be 0 but
3476  *             if specified, this must be a power-of-two and at least
3477  *             #I915_GTT_MIN_ALIGNMENT
3478  * @color: color to apply to node
3479  * @start: start of any range restriction inside GTT (0 for all),
3480  *         must be #I915_GTT_PAGE_SIZE aligned
3481  * @end: end of any range restriction inside GTT (U64_MAX for all),
3482  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3483  * @flags: control search and eviction behaviour
3484  *
3485  * i915_gem_gtt_insert() first searches for an available hole into which
3486  * is can insert the node. The hole address is aligned to @alignment and
3487  * its @size must then fit entirely within the [@start, @end] bounds. The
3488  * nodes on either side of the hole must match @color, or else a guard page
3489  * will be inserted between the two nodes (or the node evicted). If no
3490  * suitable hole is found, first a victim is randomly selected and tested
3491  * for eviction, otherwise then the LRU list of objects within the GTT
3492  * is scanned to find the first set of replacement nodes to create the hole.
3493  * Those old overlapping nodes are evicted from the GTT (and so must be
3494  * rebound before any future use). Any node that is currently pinned cannot
3495  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3496  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3497  * searching for an eviction candidate. See i915_gem_evict_something() for
3498  * the gory details on the eviction algorithm.
3499  *
3500  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3501  * asked to wait for eviction and interrupted.
3502  */
i915_gem_gtt_insert(struct i915_address_space * vm,struct drm_mm_node * node,u64 size,u64 alignment,unsigned long color,u64 start,u64 end,unsigned int flags)3503 int i915_gem_gtt_insert(struct i915_address_space *vm,
3504 			struct drm_mm_node *node,
3505 			u64 size, u64 alignment, unsigned long color,
3506 			u64 start, u64 end, unsigned int flags)
3507 {
3508 	enum drm_mm_insert_mode mode;
3509 	u64 offset;
3510 	int err;
3511 
3512 	lockdep_assert_held(&vm->i915->drm.struct_mutex);
3513 	GEM_BUG_ON(!size);
3514 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3515 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3516 	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3517 	GEM_BUG_ON(start >= end);
3518 	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3519 	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3520 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3521 	GEM_BUG_ON(drm_mm_node_allocated(node));
3522 
3523 	if (unlikely(range_overflows(start, size, end)))
3524 		return -ENOSPC;
3525 
3526 	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3527 		return -ENOSPC;
3528 
3529 	mode = DRM_MM_INSERT_BEST;
3530 	if (flags & PIN_HIGH)
3531 		mode = DRM_MM_INSERT_HIGH;
3532 	if (flags & PIN_MAPPABLE)
3533 		mode = DRM_MM_INSERT_LOW;
3534 
3535 	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3536 	 * so we know that we always have a minimum alignment of 4096.
3537 	 * The drm_mm range manager is optimised to return results
3538 	 * with zero alignment, so where possible use the optimal
3539 	 * path.
3540 	 */
3541 	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3542 	if (alignment <= I915_GTT_MIN_ALIGNMENT)
3543 		alignment = 0;
3544 
3545 	err = drm_mm_insert_node_in_range(&vm->mm, node,
3546 					  size, alignment, color,
3547 					  start, end, mode);
3548 	if (err != -ENOSPC)
3549 		return err;
3550 
3551 	if (flags & PIN_NOEVICT)
3552 		return -ENOSPC;
3553 
3554 	/* No free space, pick a slot at random.
3555 	 *
3556 	 * There is a pathological case here using a GTT shared between
3557 	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
3558 	 *
3559 	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
3560 	 *         (64k objects)             (448k objects)
3561 	 *
3562 	 * Now imagine that the eviction LRU is ordered top-down (just because
3563 	 * pathology meets real life), and that we need to evict an object to
3564 	 * make room inside the aperture. The eviction scan then has to walk
3565 	 * the 448k list before it finds one within range. And now imagine that
3566 	 * it has to search for a new hole between every byte inside the memcpy,
3567 	 * for several simultaneous clients.
3568 	 *
3569 	 * On a full-ppgtt system, if we have run out of available space, there
3570 	 * will be lots and lots of objects in the eviction list! Again,
3571 	 * searching that LRU list may be slow if we are also applying any
3572 	 * range restrictions (e.g. restriction to low 4GiB) and so, for
3573 	 * simplicity and similarilty between different GTT, try the single
3574 	 * random replacement first.
3575 	 */
3576 	offset = random_offset(start, end,
3577 			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
3578 	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
3579 	if (err != -ENOSPC)
3580 		return err;
3581 
3582 	/* Randomly selected placement is pinned, do a search */
3583 	err = i915_gem_evict_something(vm, size, alignment, color,
3584 				       start, end, flags);
3585 	if (err)
3586 		return err;
3587 
3588 	return drm_mm_insert_node_in_range(&vm->mm, node,
3589 					   size, alignment, color,
3590 					   start, end, DRM_MM_INSERT_EVICT);
3591 }
3592 
3593 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3594 #include "selftests/mock_gtt.c"
3595 #include "selftests/i915_gem_gtt.c"
3596 #endif
3597