1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/signal.h>
30
31 #include "i915_drv.h"
32
i915_fence_get_driver_name(struct dma_fence * fence)33 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
34 {
35 return "i915";
36 }
37
i915_fence_get_timeline_name(struct dma_fence * fence)38 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
39 {
40 /* The timeline struct (as part of the ppgtt underneath a context)
41 * may be freed when the request is no longer in use by the GPU.
42 * We could extend the life of a context to beyond that of all
43 * fences, possibly keeping the hw resource around indefinitely,
44 * or we just give them a false name. Since
45 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
46 * lie seems justifiable.
47 */
48 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
49 return "signaled";
50
51 return to_request(fence)->timeline->common->name;
52 }
53
i915_fence_signaled(struct dma_fence * fence)54 static bool i915_fence_signaled(struct dma_fence *fence)
55 {
56 return i915_gem_request_completed(to_request(fence));
57 }
58
i915_fence_enable_signaling(struct dma_fence * fence)59 static bool i915_fence_enable_signaling(struct dma_fence *fence)
60 {
61 if (i915_fence_signaled(fence))
62 return false;
63
64 intel_engine_enable_signaling(to_request(fence), true);
65 return !i915_fence_signaled(fence);
66 }
67
i915_fence_wait(struct dma_fence * fence,bool interruptible,signed long timeout)68 static signed long i915_fence_wait(struct dma_fence *fence,
69 bool interruptible,
70 signed long timeout)
71 {
72 return i915_wait_request(to_request(fence), interruptible, timeout);
73 }
74
i915_fence_release(struct dma_fence * fence)75 static void i915_fence_release(struct dma_fence *fence)
76 {
77 struct drm_i915_gem_request *req = to_request(fence);
78
79 /* The request is put onto a RCU freelist (i.e. the address
80 * is immediately reused), mark the fences as being freed now.
81 * Otherwise the debugobjects for the fences are only marked as
82 * freed when the slab cache itself is freed, and so we would get
83 * caught trying to reuse dead objects.
84 */
85 i915_sw_fence_fini(&req->submit);
86
87 kmem_cache_free(req->i915->requests, req);
88 }
89
90 const struct dma_fence_ops i915_fence_ops = {
91 .get_driver_name = i915_fence_get_driver_name,
92 .get_timeline_name = i915_fence_get_timeline_name,
93 .enable_signaling = i915_fence_enable_signaling,
94 .signaled = i915_fence_signaled,
95 .wait = i915_fence_wait,
96 .release = i915_fence_release,
97 };
98
99 static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request * request)100 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
101 {
102 struct drm_i915_file_private *file_priv;
103
104 file_priv = request->file_priv;
105 if (!file_priv)
106 return;
107
108 spin_lock(&file_priv->mm.lock);
109 if (request->file_priv) {
110 list_del(&request->client_link);
111 request->file_priv = NULL;
112 }
113 spin_unlock(&file_priv->mm.lock);
114 }
115
116 static struct i915_dependency *
i915_dependency_alloc(struct drm_i915_private * i915)117 i915_dependency_alloc(struct drm_i915_private *i915)
118 {
119 return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
120 }
121
122 static void
i915_dependency_free(struct drm_i915_private * i915,struct i915_dependency * dep)123 i915_dependency_free(struct drm_i915_private *i915,
124 struct i915_dependency *dep)
125 {
126 kmem_cache_free(i915->dependencies, dep);
127 }
128
129 static void
__i915_priotree_add_dependency(struct i915_priotree * pt,struct i915_priotree * signal,struct i915_dependency * dep,unsigned long flags)130 __i915_priotree_add_dependency(struct i915_priotree *pt,
131 struct i915_priotree *signal,
132 struct i915_dependency *dep,
133 unsigned long flags)
134 {
135 INIT_LIST_HEAD(&dep->dfs_link);
136 list_add(&dep->wait_link, &signal->waiters_list);
137 list_add(&dep->signal_link, &pt->signalers_list);
138 dep->signaler = signal;
139 dep->flags = flags;
140 }
141
142 static int
i915_priotree_add_dependency(struct drm_i915_private * i915,struct i915_priotree * pt,struct i915_priotree * signal)143 i915_priotree_add_dependency(struct drm_i915_private *i915,
144 struct i915_priotree *pt,
145 struct i915_priotree *signal)
146 {
147 struct i915_dependency *dep;
148
149 dep = i915_dependency_alloc(i915);
150 if (!dep)
151 return -ENOMEM;
152
153 __i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
154 return 0;
155 }
156
157 static void
i915_priotree_fini(struct drm_i915_private * i915,struct i915_priotree * pt)158 i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
159 {
160 struct i915_dependency *dep, *next;
161
162 GEM_BUG_ON(!list_empty(&pt->link));
163
164 /* Everyone we depended upon (the fences we wait to be signaled)
165 * should retire before us and remove themselves from our list.
166 * However, retirement is run independently on each timeline and
167 * so we may be called out-of-order.
168 */
169 list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
170 list_del(&dep->wait_link);
171 if (dep->flags & I915_DEPENDENCY_ALLOC)
172 i915_dependency_free(i915, dep);
173 }
174
175 /* Remove ourselves from everyone who depends upon us */
176 list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
177 list_del(&dep->signal_link);
178 if (dep->flags & I915_DEPENDENCY_ALLOC)
179 i915_dependency_free(i915, dep);
180 }
181 }
182
183 static void
i915_priotree_init(struct i915_priotree * pt)184 i915_priotree_init(struct i915_priotree *pt)
185 {
186 INIT_LIST_HEAD(&pt->signalers_list);
187 INIT_LIST_HEAD(&pt->waiters_list);
188 INIT_LIST_HEAD(&pt->link);
189 pt->priority = INT_MIN;
190 }
191
reset_all_global_seqno(struct drm_i915_private * i915,u32 seqno)192 static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
193 {
194 struct intel_engine_cs *engine;
195 enum intel_engine_id id;
196 int ret;
197
198 /* Carefully retire all requests without writing to the rings */
199 ret = i915_gem_wait_for_idle(i915,
200 I915_WAIT_INTERRUPTIBLE |
201 I915_WAIT_LOCKED);
202 if (ret)
203 return ret;
204
205 /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
206 for_each_engine(engine, i915, id) {
207 struct i915_gem_timeline *timeline;
208 struct intel_timeline *tl = engine->timeline;
209
210 if (!i915_seqno_passed(seqno, tl->seqno)) {
211 /* spin until threads are complete */
212 while (intel_breadcrumbs_busy(engine))
213 cond_resched();
214 }
215
216 /* Check we are idle before we fiddle with hw state! */
217 GEM_BUG_ON(!intel_engine_is_idle(engine));
218 GEM_BUG_ON(i915_gem_active_isset(&engine->timeline->last_request));
219
220 /* Finally reset hw state */
221 intel_engine_init_global_seqno(engine, seqno);
222 tl->seqno = seqno;
223
224 list_for_each_entry(timeline, &i915->gt.timelines, link)
225 memset(timeline->engine[id].global_sync, 0,
226 sizeof(timeline->engine[id].global_sync));
227 }
228
229 return 0;
230 }
231
i915_gem_set_global_seqno(struct drm_device * dev,u32 seqno)232 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
233 {
234 struct drm_i915_private *dev_priv = to_i915(dev);
235
236 lockdep_assert_held(&dev_priv->drm.struct_mutex);
237
238 if (seqno == 0)
239 return -EINVAL;
240
241 /* HWS page needs to be set less than what we
242 * will inject to ring
243 */
244 return reset_all_global_seqno(dev_priv, seqno - 1);
245 }
246
mark_busy(struct drm_i915_private * i915)247 static void mark_busy(struct drm_i915_private *i915)
248 {
249 if (i915->gt.awake)
250 return;
251
252 GEM_BUG_ON(!i915->gt.active_requests);
253
254 intel_runtime_pm_get_noresume(i915);
255
256 if (NEEDS_RC6_CTX_CORRUPTION_WA(i915))
257 intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
258
259 i915->gt.awake = true;
260
261 intel_enable_gt_powersave(i915);
262 i915_update_gfx_val(i915);
263 if (INTEL_GEN(i915) >= 6)
264 gen6_rps_busy(i915);
265
266 queue_delayed_work(i915->wq,
267 &i915->gt.retire_work,
268 round_jiffies_up_relative(HZ));
269 }
270
reserve_engine(struct intel_engine_cs * engine)271 static int reserve_engine(struct intel_engine_cs *engine)
272 {
273 struct drm_i915_private *i915 = engine->i915;
274 u32 active = ++engine->timeline->inflight_seqnos;
275 u32 seqno = engine->timeline->seqno;
276 int ret;
277
278 /* Reservation is fine until we need to wrap around */
279 if (unlikely(add_overflows(seqno, active))) {
280 ret = reset_all_global_seqno(i915, 0);
281 if (ret) {
282 engine->timeline->inflight_seqnos--;
283 return ret;
284 }
285 }
286
287 if (!i915->gt.active_requests++)
288 mark_busy(i915);
289
290 return 0;
291 }
292
unreserve_engine(struct intel_engine_cs * engine)293 static void unreserve_engine(struct intel_engine_cs *engine)
294 {
295 struct drm_i915_private *i915 = engine->i915;
296
297 if (!--i915->gt.active_requests) {
298 /* Cancel the mark_busy() from our reserve_engine() */
299 GEM_BUG_ON(!i915->gt.awake);
300 mod_delayed_work(i915->wq,
301 &i915->gt.idle_work,
302 msecs_to_jiffies(100));
303 }
304
305 GEM_BUG_ON(!engine->timeline->inflight_seqnos);
306 engine->timeline->inflight_seqnos--;
307 }
308
i915_gem_retire_noop(struct i915_gem_active * active,struct drm_i915_gem_request * request)309 void i915_gem_retire_noop(struct i915_gem_active *active,
310 struct drm_i915_gem_request *request)
311 {
312 /* Space left intentionally blank */
313 }
314
advance_ring(struct drm_i915_gem_request * request)315 static void advance_ring(struct drm_i915_gem_request *request)
316 {
317 unsigned int tail;
318
319 /* We know the GPU must have read the request to have
320 * sent us the seqno + interrupt, so use the position
321 * of tail of the request to update the last known position
322 * of the GPU head.
323 *
324 * Note this requires that we are always called in request
325 * completion order.
326 */
327 if (list_is_last(&request->ring_link, &request->ring->request_list)) {
328 /* We may race here with execlists resubmitting this request
329 * as we retire it. The resubmission will move the ring->tail
330 * forwards (to request->wa_tail). We either read the
331 * current value that was written to hw, or the value that
332 * is just about to be. Either works, if we miss the last two
333 * noops - they are safe to be replayed on a reset.
334 */
335 tail = READ_ONCE(request->ring->tail);
336 } else {
337 tail = request->postfix;
338 }
339 list_del(&request->ring_link);
340
341 request->ring->head = tail;
342 }
343
free_capture_list(struct drm_i915_gem_request * request)344 static void free_capture_list(struct drm_i915_gem_request *request)
345 {
346 struct i915_gem_capture_list *capture;
347
348 capture = request->capture_list;
349 while (capture) {
350 struct i915_gem_capture_list *next = capture->next;
351
352 kfree(capture);
353 capture = next;
354 }
355 }
356
i915_gem_request_retire(struct drm_i915_gem_request * request)357 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
358 {
359 struct intel_engine_cs *engine = request->engine;
360 struct i915_gem_active *active, *next;
361
362 lockdep_assert_held(&request->i915->drm.struct_mutex);
363 GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
364 GEM_BUG_ON(!i915_gem_request_completed(request));
365 GEM_BUG_ON(!request->i915->gt.active_requests);
366
367 trace_i915_gem_request_retire(request);
368
369 spin_lock_irq(&engine->timeline->lock);
370 list_del_init(&request->link);
371 spin_unlock_irq(&engine->timeline->lock);
372
373 unreserve_engine(request->engine);
374 advance_ring(request);
375
376 free_capture_list(request);
377
378 /* Walk through the active list, calling retire on each. This allows
379 * objects to track their GPU activity and mark themselves as idle
380 * when their *last* active request is completed (updating state
381 * tracking lists for eviction, active references for GEM, etc).
382 *
383 * As the ->retire() may free the node, we decouple it first and
384 * pass along the auxiliary information (to avoid dereferencing
385 * the node after the callback).
386 */
387 list_for_each_entry_safe(active, next, &request->active_list, link) {
388 /* In microbenchmarks or focusing upon time inside the kernel,
389 * we may spend an inordinate amount of time simply handling
390 * the retirement of requests and processing their callbacks.
391 * Of which, this loop itself is particularly hot due to the
392 * cache misses when jumping around the list of i915_gem_active.
393 * So we try to keep this loop as streamlined as possible and
394 * also prefetch the next i915_gem_active to try and hide
395 * the likely cache miss.
396 */
397 prefetchw(next);
398
399 INIT_LIST_HEAD(&active->link);
400 RCU_INIT_POINTER(active->request, NULL);
401
402 active->retire(active, request);
403 }
404
405 i915_gem_request_remove_from_client(request);
406
407 /* Retirement decays the ban score as it is a sign of ctx progress */
408 atomic_dec_if_positive(&request->ctx->ban_score);
409
410 /* The backing object for the context is done after switching to the
411 * *next* context. Therefore we cannot retire the previous context until
412 * the next context has already started running. However, since we
413 * cannot take the required locks at i915_gem_request_submit() we
414 * defer the unpinning of the active context to now, retirement of
415 * the subsequent request.
416 */
417 if (engine->last_retired_context)
418 engine->context_unpin(engine, engine->last_retired_context);
419 engine->last_retired_context = request->ctx;
420
421 spin_lock_irq(&request->lock);
422 if (request->waitboost)
423 atomic_dec(&request->i915->rps.num_waiters);
424 dma_fence_signal_locked(&request->fence);
425 spin_unlock_irq(&request->lock);
426
427 i915_priotree_fini(request->i915, &request->priotree);
428 i915_gem_request_put(request);
429 }
430
i915_gem_request_retire_upto(struct drm_i915_gem_request * req)431 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
432 {
433 struct intel_engine_cs *engine = req->engine;
434 struct drm_i915_gem_request *tmp;
435
436 lockdep_assert_held(&req->i915->drm.struct_mutex);
437 GEM_BUG_ON(!i915_gem_request_completed(req));
438
439 if (list_empty(&req->link))
440 return;
441
442 do {
443 tmp = list_first_entry(&engine->timeline->requests,
444 typeof(*tmp), link);
445
446 i915_gem_request_retire(tmp);
447 } while (tmp != req);
448 }
449
timeline_get_seqno(struct intel_timeline * tl)450 static u32 timeline_get_seqno(struct intel_timeline *tl)
451 {
452 return ++tl->seqno;
453 }
454
__i915_gem_request_submit(struct drm_i915_gem_request * request)455 void __i915_gem_request_submit(struct drm_i915_gem_request *request)
456 {
457 struct intel_engine_cs *engine = request->engine;
458 struct intel_timeline *timeline;
459 u32 seqno;
460
461 GEM_BUG_ON(!irqs_disabled());
462 lockdep_assert_held(&engine->timeline->lock);
463
464 trace_i915_gem_request_execute(request);
465
466 /* Transfer from per-context onto the global per-engine timeline */
467 timeline = engine->timeline;
468 GEM_BUG_ON(timeline == request->timeline);
469
470 seqno = timeline_get_seqno(timeline);
471 GEM_BUG_ON(!seqno);
472 GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
473
474 /* We may be recursing from the signal callback of another i915 fence */
475 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
476 request->global_seqno = seqno;
477 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
478 intel_engine_enable_signaling(request, false);
479 spin_unlock(&request->lock);
480
481 engine->emit_breadcrumb(request,
482 request->ring->vaddr + request->postfix);
483
484 spin_lock(&request->timeline->lock);
485 list_move_tail(&request->link, &timeline->requests);
486 spin_unlock(&request->timeline->lock);
487
488 wake_up_all(&request->execute);
489 }
490
i915_gem_request_submit(struct drm_i915_gem_request * request)491 void i915_gem_request_submit(struct drm_i915_gem_request *request)
492 {
493 struct intel_engine_cs *engine = request->engine;
494 unsigned long flags;
495
496 /* Will be called from irq-context when using foreign fences. */
497 spin_lock_irqsave(&engine->timeline->lock, flags);
498
499 __i915_gem_request_submit(request);
500
501 spin_unlock_irqrestore(&engine->timeline->lock, flags);
502 }
503
__i915_gem_request_unsubmit(struct drm_i915_gem_request * request)504 void __i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
505 {
506 struct intel_engine_cs *engine = request->engine;
507 struct intel_timeline *timeline;
508
509 GEM_BUG_ON(!irqs_disabled());
510 lockdep_assert_held(&engine->timeline->lock);
511
512 /* Only unwind in reverse order, required so that the per-context list
513 * is kept in seqno/ring order.
514 */
515 GEM_BUG_ON(request->global_seqno != engine->timeline->seqno);
516 engine->timeline->seqno--;
517
518 /* We may be recursing from the signal callback of another i915 fence */
519 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
520 request->global_seqno = 0;
521 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
522 intel_engine_cancel_signaling(request);
523 spin_unlock(&request->lock);
524
525 /* Transfer back from the global per-engine timeline to per-context */
526 timeline = request->timeline;
527 GEM_BUG_ON(timeline == engine->timeline);
528
529 spin_lock(&timeline->lock);
530 list_move(&request->link, &timeline->requests);
531 spin_unlock(&timeline->lock);
532
533 /* We don't need to wake_up any waiters on request->execute, they
534 * will get woken by any other event or us re-adding this request
535 * to the engine timeline (__i915_gem_request_submit()). The waiters
536 * should be quite adapt at finding that the request now has a new
537 * global_seqno to the one they went to sleep on.
538 */
539 }
540
i915_gem_request_unsubmit(struct drm_i915_gem_request * request)541 void i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
542 {
543 struct intel_engine_cs *engine = request->engine;
544 unsigned long flags;
545
546 /* Will be called from irq-context when using foreign fences. */
547 spin_lock_irqsave(&engine->timeline->lock, flags);
548
549 __i915_gem_request_unsubmit(request);
550
551 spin_unlock_irqrestore(&engine->timeline->lock, flags);
552 }
553
554 static int __i915_sw_fence_call
submit_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)555 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
556 {
557 struct drm_i915_gem_request *request =
558 container_of(fence, typeof(*request), submit);
559
560 switch (state) {
561 case FENCE_COMPLETE:
562 trace_i915_gem_request_submit(request);
563 request->engine->submit_request(request);
564 break;
565
566 case FENCE_FREE:
567 i915_gem_request_put(request);
568 break;
569 }
570
571 return NOTIFY_DONE;
572 }
573
574 /**
575 * i915_gem_request_alloc - allocate a request structure
576 *
577 * @engine: engine that we wish to issue the request on.
578 * @ctx: context that the request will be associated with.
579 *
580 * Returns a pointer to the allocated request if successful,
581 * or an error code if not.
582 */
583 struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs * engine,struct i915_gem_context * ctx)584 i915_gem_request_alloc(struct intel_engine_cs *engine,
585 struct i915_gem_context *ctx)
586 {
587 struct drm_i915_private *dev_priv = engine->i915;
588 struct drm_i915_gem_request *req;
589 struct intel_ring *ring;
590 int ret;
591
592 lockdep_assert_held(&dev_priv->drm.struct_mutex);
593
594 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
595 * EIO if the GPU is already wedged.
596 */
597 if (i915_terminally_wedged(&dev_priv->gpu_error))
598 return ERR_PTR(-EIO);
599
600 /* Pinning the contexts may generate requests in order to acquire
601 * GGTT space, so do this first before we reserve a seqno for
602 * ourselves.
603 */
604 ring = engine->context_pin(engine, ctx);
605 if (IS_ERR(ring))
606 return ERR_CAST(ring);
607 GEM_BUG_ON(!ring);
608
609 ret = reserve_engine(engine);
610 if (ret)
611 goto err_unpin;
612
613 /* Move the oldest request to the slab-cache (if not in use!) */
614 req = list_first_entry_or_null(&engine->timeline->requests,
615 typeof(*req), link);
616 if (req && i915_gem_request_completed(req))
617 i915_gem_request_retire(req);
618
619 /* Beware: Dragons be flying overhead.
620 *
621 * We use RCU to look up requests in flight. The lookups may
622 * race with the request being allocated from the slab freelist.
623 * That is the request we are writing to here, may be in the process
624 * of being read by __i915_gem_active_get_rcu(). As such,
625 * we have to be very careful when overwriting the contents. During
626 * the RCU lookup, we change chase the request->engine pointer,
627 * read the request->global_seqno and increment the reference count.
628 *
629 * The reference count is incremented atomically. If it is zero,
630 * the lookup knows the request is unallocated and complete. Otherwise,
631 * it is either still in use, or has been reallocated and reset
632 * with dma_fence_init(). This increment is safe for release as we
633 * check that the request we have a reference to and matches the active
634 * request.
635 *
636 * Before we increment the refcount, we chase the request->engine
637 * pointer. We must not call kmem_cache_zalloc() or else we set
638 * that pointer to NULL and cause a crash during the lookup. If
639 * we see the request is completed (based on the value of the
640 * old engine and seqno), the lookup is complete and reports NULL.
641 * If we decide the request is not completed (new engine or seqno),
642 * then we grab a reference and double check that it is still the
643 * active request - which it won't be and restart the lookup.
644 *
645 * Do not use kmem_cache_zalloc() here!
646 */
647 req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
648 if (!req) {
649 ret = -ENOMEM;
650 goto err_unreserve;
651 }
652
653 req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
654 GEM_BUG_ON(req->timeline == engine->timeline);
655
656 spin_lock_init(&req->lock);
657 dma_fence_init(&req->fence,
658 &i915_fence_ops,
659 &req->lock,
660 req->timeline->fence_context,
661 timeline_get_seqno(req->timeline));
662
663 /* We bump the ref for the fence chain */
664 i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
665 init_waitqueue_head(&req->execute);
666
667 i915_priotree_init(&req->priotree);
668
669 INIT_LIST_HEAD(&req->active_list);
670 req->i915 = dev_priv;
671 req->engine = engine;
672 req->ctx = ctx;
673 req->ring = ring;
674
675 /* No zalloc, must clear what we need by hand */
676 req->global_seqno = 0;
677 req->file_priv = NULL;
678 req->batch = NULL;
679 req->capture_list = NULL;
680 req->waitboost = false;
681
682 /*
683 * Reserve space in the ring buffer for all the commands required to
684 * eventually emit this request. This is to guarantee that the
685 * i915_add_request() call can't fail. Note that the reserve may need
686 * to be redone if the request is not actually submitted straight
687 * away, e.g. because a GPU scheduler has deferred it.
688 */
689 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
690 GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
691
692 ret = engine->request_alloc(req);
693 if (ret)
694 goto err_ctx;
695
696 /* Record the position of the start of the request so that
697 * should we detect the updated seqno part-way through the
698 * GPU processing the request, we never over-estimate the
699 * position of the head.
700 */
701 req->head = req->ring->emit;
702
703 /* Check that we didn't interrupt ourselves with a new request */
704 GEM_BUG_ON(req->timeline->seqno != req->fence.seqno);
705 return req;
706
707 err_ctx:
708 /* Make sure we didn't add ourselves to external state before freeing */
709 GEM_BUG_ON(!list_empty(&req->active_list));
710 GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
711 GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));
712
713 kmem_cache_free(dev_priv->requests, req);
714 err_unreserve:
715 unreserve_engine(engine);
716 err_unpin:
717 engine->context_unpin(engine, ctx);
718 return ERR_PTR(ret);
719 }
720
721 static int
i915_gem_request_await_request(struct drm_i915_gem_request * to,struct drm_i915_gem_request * from)722 i915_gem_request_await_request(struct drm_i915_gem_request *to,
723 struct drm_i915_gem_request *from)
724 {
725 int ret;
726
727 GEM_BUG_ON(to == from);
728 GEM_BUG_ON(to->timeline == from->timeline);
729
730 if (i915_gem_request_completed(from))
731 return 0;
732
733 if (to->engine->schedule) {
734 ret = i915_priotree_add_dependency(to->i915,
735 &to->priotree,
736 &from->priotree);
737 if (ret < 0)
738 return ret;
739 }
740
741 if (to->engine == from->engine) {
742 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
743 &from->submit,
744 GFP_KERNEL);
745 return ret < 0 ? ret : 0;
746 }
747
748 if (to->engine->semaphore.sync_to) {
749 u32 seqno;
750
751 GEM_BUG_ON(!from->engine->semaphore.signal);
752
753 seqno = i915_gem_request_global_seqno(from);
754 if (!seqno)
755 goto await_dma_fence;
756
757 if (seqno <= to->timeline->global_sync[from->engine->id])
758 return 0;
759
760 trace_i915_gem_ring_sync_to(to, from);
761 ret = to->engine->semaphore.sync_to(to, from);
762 if (ret)
763 return ret;
764
765 to->timeline->global_sync[from->engine->id] = seqno;
766 return 0;
767 }
768
769 await_dma_fence:
770 ret = i915_sw_fence_await_dma_fence(&to->submit,
771 &from->fence, 0,
772 GFP_KERNEL);
773 return ret < 0 ? ret : 0;
774 }
775
776 int
i915_gem_request_await_dma_fence(struct drm_i915_gem_request * req,struct dma_fence * fence)777 i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
778 struct dma_fence *fence)
779 {
780 struct dma_fence **child = &fence;
781 unsigned int nchild = 1;
782 int ret;
783
784 /* Note that if the fence-array was created in signal-on-any mode,
785 * we should *not* decompose it into its individual fences. However,
786 * we don't currently store which mode the fence-array is operating
787 * in. Fortunately, the only user of signal-on-any is private to
788 * amdgpu and we should not see any incoming fence-array from
789 * sync-file being in signal-on-any mode.
790 */
791 if (dma_fence_is_array(fence)) {
792 struct dma_fence_array *array = to_dma_fence_array(fence);
793
794 child = array->fences;
795 nchild = array->num_fences;
796 GEM_BUG_ON(!nchild);
797 }
798
799 do {
800 fence = *child++;
801 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
802 continue;
803
804 /*
805 * Requests on the same timeline are explicitly ordered, along
806 * with their dependencies, by i915_add_request() which ensures
807 * that requests are submitted in-order through each ring.
808 */
809 if (fence->context == req->fence.context)
810 continue;
811
812 /* Squash repeated waits to the same timelines */
813 if (fence->context != req->i915->mm.unordered_timeline &&
814 intel_timeline_sync_is_later(req->timeline, fence))
815 continue;
816
817 if (dma_fence_is_i915(fence))
818 ret = i915_gem_request_await_request(req,
819 to_request(fence));
820 else
821 ret = i915_sw_fence_await_dma_fence(&req->submit, fence,
822 I915_FENCE_TIMEOUT,
823 GFP_KERNEL);
824 if (ret < 0)
825 return ret;
826
827 /* Record the latest fence used against each timeline */
828 if (fence->context != req->i915->mm.unordered_timeline)
829 intel_timeline_sync_set(req->timeline, fence);
830 } while (--nchild);
831
832 return 0;
833 }
834
835 /**
836 * i915_gem_request_await_object - set this request to (async) wait upon a bo
837 *
838 * @to: request we are wishing to use
839 * @obj: object which may be in use on another ring.
840 *
841 * This code is meant to abstract object synchronization with the GPU.
842 * Conceptually we serialise writes between engines inside the GPU.
843 * We only allow one engine to write into a buffer at any time, but
844 * multiple readers. To ensure each has a coherent view of memory, we must:
845 *
846 * - If there is an outstanding write request to the object, the new
847 * request must wait for it to complete (either CPU or in hw, requests
848 * on the same ring will be naturally ordered).
849 *
850 * - If we are a write request (pending_write_domain is set), the new
851 * request must wait for outstanding read requests to complete.
852 *
853 * Returns 0 if successful, else propagates up the lower layer error.
854 */
855 int
i915_gem_request_await_object(struct drm_i915_gem_request * to,struct drm_i915_gem_object * obj,bool write)856 i915_gem_request_await_object(struct drm_i915_gem_request *to,
857 struct drm_i915_gem_object *obj,
858 bool write)
859 {
860 struct dma_fence *excl;
861 int ret = 0;
862
863 if (write) {
864 struct dma_fence **shared;
865 unsigned int count, i;
866
867 ret = reservation_object_get_fences_rcu(obj->resv,
868 &excl, &count, &shared);
869 if (ret)
870 return ret;
871
872 for (i = 0; i < count; i++) {
873 ret = i915_gem_request_await_dma_fence(to, shared[i]);
874 if (ret)
875 break;
876
877 dma_fence_put(shared[i]);
878 }
879
880 for (; i < count; i++)
881 dma_fence_put(shared[i]);
882 kfree(shared);
883 } else {
884 excl = reservation_object_get_excl_rcu(obj->resv);
885 }
886
887 if (excl) {
888 if (ret == 0)
889 ret = i915_gem_request_await_dma_fence(to, excl);
890
891 dma_fence_put(excl);
892 }
893
894 return ret;
895 }
896
897 /*
898 * NB: This function is not allowed to fail. Doing so would mean the the
899 * request is not being tracked for completion but the work itself is
900 * going to happen on the hardware. This would be a Bad Thing(tm).
901 */
__i915_add_request(struct drm_i915_gem_request * request,bool flush_caches)902 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
903 {
904 struct intel_engine_cs *engine = request->engine;
905 struct intel_ring *ring = request->ring;
906 struct intel_timeline *timeline = request->timeline;
907 struct drm_i915_gem_request *prev;
908 u32 *cs;
909 int err;
910
911 lockdep_assert_held(&request->i915->drm.struct_mutex);
912 trace_i915_gem_request_add(request);
913
914 /* Make sure that no request gazumped us - if it was allocated after
915 * our i915_gem_request_alloc() and called __i915_add_request() before
916 * us, the timeline will hold its seqno which is later than ours.
917 */
918 GEM_BUG_ON(timeline->seqno != request->fence.seqno);
919
920 /*
921 * To ensure that this call will not fail, space for its emissions
922 * should already have been reserved in the ring buffer. Let the ring
923 * know that it is time to use that space up.
924 */
925 request->reserved_space = 0;
926
927 /*
928 * Emit any outstanding flushes - execbuf can fail to emit the flush
929 * after having emitted the batchbuffer command. Hence we need to fix
930 * things up similar to emitting the lazy request. The difference here
931 * is that the flush _must_ happen before the next request, no matter
932 * what.
933 */
934 if (flush_caches) {
935 err = engine->emit_flush(request, EMIT_FLUSH);
936
937 /* Not allowed to fail! */
938 WARN(err, "engine->emit_flush() failed: %d!\n", err);
939 }
940
941 /* Record the position of the start of the breadcrumb so that
942 * should we detect the updated seqno part-way through the
943 * GPU processing the request, we never over-estimate the
944 * position of the ring's HEAD.
945 */
946 cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
947 GEM_BUG_ON(IS_ERR(cs));
948 request->postfix = intel_ring_offset(request, cs);
949
950 /* Seal the request and mark it as pending execution. Note that
951 * we may inspect this state, without holding any locks, during
952 * hangcheck. Hence we apply the barrier to ensure that we do not
953 * see a more recent value in the hws than we are tracking.
954 */
955
956 prev = i915_gem_active_raw(&timeline->last_request,
957 &request->i915->drm.struct_mutex);
958 if (prev) {
959 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
960 &request->submitq);
961 if (engine->schedule)
962 __i915_priotree_add_dependency(&request->priotree,
963 &prev->priotree,
964 &request->dep,
965 0);
966 }
967
968 spin_lock_irq(&timeline->lock);
969 list_add_tail(&request->link, &timeline->requests);
970 spin_unlock_irq(&timeline->lock);
971
972 GEM_BUG_ON(timeline->seqno != request->fence.seqno);
973 i915_gem_active_set(&timeline->last_request, request);
974
975 list_add_tail(&request->ring_link, &ring->request_list);
976 request->emitted_jiffies = jiffies;
977
978 /* Let the backend know a new request has arrived that may need
979 * to adjust the existing execution schedule due to a high priority
980 * request - i.e. we may want to preempt the current request in order
981 * to run a high priority dependency chain *before* we can execute this
982 * request.
983 *
984 * This is called before the request is ready to run so that we can
985 * decide whether to preempt the entire chain so that it is ready to
986 * run at the earliest possible convenience.
987 */
988 if (engine->schedule)
989 engine->schedule(request, request->ctx->priority);
990
991 local_bh_disable();
992 i915_sw_fence_commit(&request->submit);
993 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
994 }
995
local_clock_us(unsigned int * cpu)996 static unsigned long local_clock_us(unsigned int *cpu)
997 {
998 unsigned long t;
999
1000 /* Cheaply and approximately convert from nanoseconds to microseconds.
1001 * The result and subsequent calculations are also defined in the same
1002 * approximate microseconds units. The principal source of timing
1003 * error here is from the simple truncation.
1004 *
1005 * Note that local_clock() is only defined wrt to the current CPU;
1006 * the comparisons are no longer valid if we switch CPUs. Instead of
1007 * blocking preemption for the entire busywait, we can detect the CPU
1008 * switch and use that as indicator of system load and a reason to
1009 * stop busywaiting, see busywait_stop().
1010 */
1011 *cpu = get_cpu();
1012 t = local_clock() >> 10;
1013 put_cpu();
1014
1015 return t;
1016 }
1017
busywait_stop(unsigned long timeout,unsigned int cpu)1018 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1019 {
1020 unsigned int this_cpu;
1021
1022 if (time_after(local_clock_us(&this_cpu), timeout))
1023 return true;
1024
1025 return this_cpu != cpu;
1026 }
1027
__i915_spin_request(const struct drm_i915_gem_request * req,u32 seqno,int state,unsigned long timeout_us)1028 bool __i915_spin_request(const struct drm_i915_gem_request *req,
1029 u32 seqno, int state, unsigned long timeout_us)
1030 {
1031 struct intel_engine_cs *engine = req->engine;
1032 unsigned int irq, cpu;
1033
1034 /* When waiting for high frequency requests, e.g. during synchronous
1035 * rendering split between the CPU and GPU, the finite amount of time
1036 * required to set up the irq and wait upon it limits the response
1037 * rate. By busywaiting on the request completion for a short while we
1038 * can service the high frequency waits as quick as possible. However,
1039 * if it is a slow request, we want to sleep as quickly as possible.
1040 * The tradeoff between waiting and sleeping is roughly the time it
1041 * takes to sleep on a request, on the order of a microsecond.
1042 */
1043
1044 irq = atomic_read(&engine->irq_count);
1045 timeout_us += local_clock_us(&cpu);
1046 do {
1047 if (seqno != i915_gem_request_global_seqno(req))
1048 break;
1049
1050 if (i915_seqno_passed(intel_engine_get_seqno(req->engine),
1051 seqno))
1052 return true;
1053
1054 /* Seqno are meant to be ordered *before* the interrupt. If
1055 * we see an interrupt without a corresponding seqno advance,
1056 * assume we won't see one in the near future but require
1057 * the engine->seqno_barrier() to fixup coherency.
1058 */
1059 if (atomic_read(&engine->irq_count) != irq)
1060 break;
1061
1062 if (signal_pending_state(state, current))
1063 break;
1064
1065 if (busywait_stop(timeout_us, cpu))
1066 break;
1067
1068 cpu_relax();
1069 } while (!need_resched());
1070
1071 return false;
1072 }
1073
__i915_wait_request_check_and_reset(struct drm_i915_gem_request * request)1074 static bool __i915_wait_request_check_and_reset(struct drm_i915_gem_request *request)
1075 {
1076 if (likely(!i915_reset_handoff(&request->i915->gpu_error)))
1077 return false;
1078
1079 __set_current_state(TASK_RUNNING);
1080 i915_reset(request->i915, 0);
1081 return true;
1082 }
1083
1084 /**
1085 * i915_wait_request - wait until execution of request has finished
1086 * @req: the request to wait upon
1087 * @flags: how to wait
1088 * @timeout: how long to wait in jiffies
1089 *
1090 * i915_wait_request() waits for the request to be completed, for a
1091 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1092 * unbounded wait).
1093 *
1094 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1095 * in via the flags, and vice versa if the struct_mutex is not held, the caller
1096 * must not specify that the wait is locked.
1097 *
1098 * Returns the remaining time (in jiffies) if the request completed, which may
1099 * be zero or -ETIME if the request is unfinished after the timeout expires.
1100 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1101 * pending before the request completes.
1102 */
i915_wait_request(struct drm_i915_gem_request * req,unsigned int flags,long timeout)1103 long i915_wait_request(struct drm_i915_gem_request *req,
1104 unsigned int flags,
1105 long timeout)
1106 {
1107 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1108 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1109 wait_queue_head_t *errq = &req->i915->gpu_error.wait_queue;
1110 DEFINE_WAIT_FUNC(reset, default_wake_function);
1111 DEFINE_WAIT_FUNC(exec, default_wake_function);
1112 struct intel_wait wait;
1113
1114 might_sleep();
1115 #if IS_ENABLED(CONFIG_LOCKDEP)
1116 GEM_BUG_ON(debug_locks &&
1117 !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1118 !!(flags & I915_WAIT_LOCKED));
1119 #endif
1120 GEM_BUG_ON(timeout < 0);
1121
1122 if (i915_gem_request_completed(req))
1123 return timeout;
1124
1125 if (!timeout)
1126 return -ETIME;
1127
1128 trace_i915_gem_request_wait_begin(req, flags);
1129
1130 add_wait_queue(&req->execute, &exec);
1131 if (flags & I915_WAIT_LOCKED)
1132 add_wait_queue(errq, &reset);
1133
1134 intel_wait_init(&wait, req);
1135
1136 restart:
1137 do {
1138 set_current_state(state);
1139 if (intel_wait_update_request(&wait, req))
1140 break;
1141
1142 if (flags & I915_WAIT_LOCKED &&
1143 __i915_wait_request_check_and_reset(req))
1144 continue;
1145
1146 if (signal_pending_state(state, current)) {
1147 timeout = -ERESTARTSYS;
1148 goto complete;
1149 }
1150
1151 if (!timeout) {
1152 timeout = -ETIME;
1153 goto complete;
1154 }
1155
1156 timeout = io_schedule_timeout(timeout);
1157 } while (1);
1158
1159 GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1160 GEM_BUG_ON(!i915_sw_fence_signaled(&req->submit));
1161
1162 /* Optimistic short spin before touching IRQs */
1163 if (i915_spin_request(req, state, 5))
1164 goto complete;
1165
1166 set_current_state(state);
1167 if (intel_engine_add_wait(req->engine, &wait))
1168 /* In order to check that we haven't missed the interrupt
1169 * as we enabled it, we need to kick ourselves to do a
1170 * coherent check on the seqno before we sleep.
1171 */
1172 goto wakeup;
1173
1174 if (flags & I915_WAIT_LOCKED)
1175 __i915_wait_request_check_and_reset(req);
1176
1177 for (;;) {
1178 if (signal_pending_state(state, current)) {
1179 timeout = -ERESTARTSYS;
1180 break;
1181 }
1182
1183 if (!timeout) {
1184 timeout = -ETIME;
1185 break;
1186 }
1187
1188 timeout = io_schedule_timeout(timeout);
1189
1190 if (intel_wait_complete(&wait) &&
1191 intel_wait_check_request(&wait, req))
1192 break;
1193
1194 set_current_state(state);
1195
1196 wakeup:
1197 /* Carefully check if the request is complete, giving time
1198 * for the seqno to be visible following the interrupt.
1199 * We also have to check in case we are kicked by the GPU
1200 * reset in order to drop the struct_mutex.
1201 */
1202 if (__i915_request_irq_complete(req))
1203 break;
1204
1205 /* If the GPU is hung, and we hold the lock, reset the GPU
1206 * and then check for completion. On a full reset, the engine's
1207 * HW seqno will be advanced passed us and we are complete.
1208 * If we do a partial reset, we have to wait for the GPU to
1209 * resume and update the breadcrumb.
1210 *
1211 * If we don't hold the mutex, we can just wait for the worker
1212 * to come along and update the breadcrumb (either directly
1213 * itself, or indirectly by recovering the GPU).
1214 */
1215 if (flags & I915_WAIT_LOCKED &&
1216 __i915_wait_request_check_and_reset(req))
1217 continue;
1218
1219 /* Only spin if we know the GPU is processing this request */
1220 if (i915_spin_request(req, state, 2))
1221 break;
1222
1223 if (!intel_wait_check_request(&wait, req)) {
1224 intel_engine_remove_wait(req->engine, &wait);
1225 goto restart;
1226 }
1227 }
1228
1229 intel_engine_remove_wait(req->engine, &wait);
1230 complete:
1231 __set_current_state(TASK_RUNNING);
1232 if (flags & I915_WAIT_LOCKED)
1233 remove_wait_queue(errq, &reset);
1234 remove_wait_queue(&req->execute, &exec);
1235 trace_i915_gem_request_wait_end(req);
1236
1237 return timeout;
1238 }
1239
engine_retire_requests(struct intel_engine_cs * engine)1240 static void engine_retire_requests(struct intel_engine_cs *engine)
1241 {
1242 struct drm_i915_gem_request *request, *next;
1243 u32 seqno = intel_engine_get_seqno(engine);
1244 LIST_HEAD(retire);
1245
1246 spin_lock_irq(&engine->timeline->lock);
1247 list_for_each_entry_safe(request, next,
1248 &engine->timeline->requests, link) {
1249 if (!i915_seqno_passed(seqno, request->global_seqno))
1250 break;
1251
1252 list_move_tail(&request->link, &retire);
1253 }
1254 spin_unlock_irq(&engine->timeline->lock);
1255
1256 list_for_each_entry_safe(request, next, &retire, link)
1257 i915_gem_request_retire(request);
1258 }
1259
i915_gem_retire_requests(struct drm_i915_private * dev_priv)1260 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1261 {
1262 struct intel_engine_cs *engine;
1263 enum intel_engine_id id;
1264
1265 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1266
1267 if (!dev_priv->gt.active_requests)
1268 return;
1269
1270 for_each_engine(engine, dev_priv, id)
1271 engine_retire_requests(engine);
1272 }
1273
1274 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1275 #include "selftests/mock_request.c"
1276 #include "selftests/i915_gem_request.c"
1277 #endif
1278