• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/signal.h>
30 
31 #include "i915_drv.h"
32 
i915_fence_get_driver_name(struct dma_fence * fence)33 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
34 {
35 	return "i915";
36 }
37 
i915_fence_get_timeline_name(struct dma_fence * fence)38 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
39 {
40 	/* The timeline struct (as part of the ppgtt underneath a context)
41 	 * may be freed when the request is no longer in use by the GPU.
42 	 * We could extend the life of a context to beyond that of all
43 	 * fences, possibly keeping the hw resource around indefinitely,
44 	 * or we just give them a false name. Since
45 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
46 	 * lie seems justifiable.
47 	 */
48 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
49 		return "signaled";
50 
51 	return to_request(fence)->timeline->common->name;
52 }
53 
i915_fence_signaled(struct dma_fence * fence)54 static bool i915_fence_signaled(struct dma_fence *fence)
55 {
56 	return i915_gem_request_completed(to_request(fence));
57 }
58 
i915_fence_enable_signaling(struct dma_fence * fence)59 static bool i915_fence_enable_signaling(struct dma_fence *fence)
60 {
61 	if (i915_fence_signaled(fence))
62 		return false;
63 
64 	intel_engine_enable_signaling(to_request(fence), true);
65 	return !i915_fence_signaled(fence);
66 }
67 
i915_fence_wait(struct dma_fence * fence,bool interruptible,signed long timeout)68 static signed long i915_fence_wait(struct dma_fence *fence,
69 				   bool interruptible,
70 				   signed long timeout)
71 {
72 	return i915_wait_request(to_request(fence), interruptible, timeout);
73 }
74 
i915_fence_release(struct dma_fence * fence)75 static void i915_fence_release(struct dma_fence *fence)
76 {
77 	struct drm_i915_gem_request *req = to_request(fence);
78 
79 	/* The request is put onto a RCU freelist (i.e. the address
80 	 * is immediately reused), mark the fences as being freed now.
81 	 * Otherwise the debugobjects for the fences are only marked as
82 	 * freed when the slab cache itself is freed, and so we would get
83 	 * caught trying to reuse dead objects.
84 	 */
85 	i915_sw_fence_fini(&req->submit);
86 
87 	kmem_cache_free(req->i915->requests, req);
88 }
89 
90 const struct dma_fence_ops i915_fence_ops = {
91 	.get_driver_name = i915_fence_get_driver_name,
92 	.get_timeline_name = i915_fence_get_timeline_name,
93 	.enable_signaling = i915_fence_enable_signaling,
94 	.signaled = i915_fence_signaled,
95 	.wait = i915_fence_wait,
96 	.release = i915_fence_release,
97 };
98 
99 static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request * request)100 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
101 {
102 	struct drm_i915_file_private *file_priv;
103 
104 	file_priv = request->file_priv;
105 	if (!file_priv)
106 		return;
107 
108 	spin_lock(&file_priv->mm.lock);
109 	if (request->file_priv) {
110 		list_del(&request->client_link);
111 		request->file_priv = NULL;
112 	}
113 	spin_unlock(&file_priv->mm.lock);
114 }
115 
116 static struct i915_dependency *
i915_dependency_alloc(struct drm_i915_private * i915)117 i915_dependency_alloc(struct drm_i915_private *i915)
118 {
119 	return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
120 }
121 
122 static void
i915_dependency_free(struct drm_i915_private * i915,struct i915_dependency * dep)123 i915_dependency_free(struct drm_i915_private *i915,
124 		     struct i915_dependency *dep)
125 {
126 	kmem_cache_free(i915->dependencies, dep);
127 }
128 
129 static void
__i915_priotree_add_dependency(struct i915_priotree * pt,struct i915_priotree * signal,struct i915_dependency * dep,unsigned long flags)130 __i915_priotree_add_dependency(struct i915_priotree *pt,
131 			       struct i915_priotree *signal,
132 			       struct i915_dependency *dep,
133 			       unsigned long flags)
134 {
135 	INIT_LIST_HEAD(&dep->dfs_link);
136 	list_add(&dep->wait_link, &signal->waiters_list);
137 	list_add(&dep->signal_link, &pt->signalers_list);
138 	dep->signaler = signal;
139 	dep->flags = flags;
140 }
141 
142 static int
i915_priotree_add_dependency(struct drm_i915_private * i915,struct i915_priotree * pt,struct i915_priotree * signal)143 i915_priotree_add_dependency(struct drm_i915_private *i915,
144 			     struct i915_priotree *pt,
145 			     struct i915_priotree *signal)
146 {
147 	struct i915_dependency *dep;
148 
149 	dep = i915_dependency_alloc(i915);
150 	if (!dep)
151 		return -ENOMEM;
152 
153 	__i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
154 	return 0;
155 }
156 
157 static void
i915_priotree_fini(struct drm_i915_private * i915,struct i915_priotree * pt)158 i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
159 {
160 	struct i915_dependency *dep, *next;
161 
162 	GEM_BUG_ON(!list_empty(&pt->link));
163 
164 	/* Everyone we depended upon (the fences we wait to be signaled)
165 	 * should retire before us and remove themselves from our list.
166 	 * However, retirement is run independently on each timeline and
167 	 * so we may be called out-of-order.
168 	 */
169 	list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
170 		list_del(&dep->wait_link);
171 		if (dep->flags & I915_DEPENDENCY_ALLOC)
172 			i915_dependency_free(i915, dep);
173 	}
174 
175 	/* Remove ourselves from everyone who depends upon us */
176 	list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
177 		list_del(&dep->signal_link);
178 		if (dep->flags & I915_DEPENDENCY_ALLOC)
179 			i915_dependency_free(i915, dep);
180 	}
181 }
182 
183 static void
i915_priotree_init(struct i915_priotree * pt)184 i915_priotree_init(struct i915_priotree *pt)
185 {
186 	INIT_LIST_HEAD(&pt->signalers_list);
187 	INIT_LIST_HEAD(&pt->waiters_list);
188 	INIT_LIST_HEAD(&pt->link);
189 	pt->priority = INT_MIN;
190 }
191 
reset_all_global_seqno(struct drm_i915_private * i915,u32 seqno)192 static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
193 {
194 	struct intel_engine_cs *engine;
195 	enum intel_engine_id id;
196 	int ret;
197 
198 	/* Carefully retire all requests without writing to the rings */
199 	ret = i915_gem_wait_for_idle(i915,
200 				     I915_WAIT_INTERRUPTIBLE |
201 				     I915_WAIT_LOCKED);
202 	if (ret)
203 		return ret;
204 
205 	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
206 	for_each_engine(engine, i915, id) {
207 		struct i915_gem_timeline *timeline;
208 		struct intel_timeline *tl = engine->timeline;
209 
210 		if (!i915_seqno_passed(seqno, tl->seqno)) {
211 			/* spin until threads are complete */
212 			while (intel_breadcrumbs_busy(engine))
213 				cond_resched();
214 		}
215 
216 		/* Check we are idle before we fiddle with hw state! */
217 		GEM_BUG_ON(!intel_engine_is_idle(engine));
218 		GEM_BUG_ON(i915_gem_active_isset(&engine->timeline->last_request));
219 
220 		/* Finally reset hw state */
221 		intel_engine_init_global_seqno(engine, seqno);
222 		tl->seqno = seqno;
223 
224 		list_for_each_entry(timeline, &i915->gt.timelines, link)
225 			memset(timeline->engine[id].global_sync, 0,
226 			       sizeof(timeline->engine[id].global_sync));
227 	}
228 
229 	return 0;
230 }
231 
i915_gem_set_global_seqno(struct drm_device * dev,u32 seqno)232 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
233 {
234 	struct drm_i915_private *dev_priv = to_i915(dev);
235 
236 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
237 
238 	if (seqno == 0)
239 		return -EINVAL;
240 
241 	/* HWS page needs to be set less than what we
242 	 * will inject to ring
243 	 */
244 	return reset_all_global_seqno(dev_priv, seqno - 1);
245 }
246 
mark_busy(struct drm_i915_private * i915)247 static void mark_busy(struct drm_i915_private *i915)
248 {
249 	if (i915->gt.awake)
250 		return;
251 
252 	GEM_BUG_ON(!i915->gt.active_requests);
253 
254 	intel_runtime_pm_get_noresume(i915);
255 
256 	if (NEEDS_RC6_CTX_CORRUPTION_WA(i915))
257 		intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
258 
259 	i915->gt.awake = true;
260 
261 	intel_enable_gt_powersave(i915);
262 	i915_update_gfx_val(i915);
263 	if (INTEL_GEN(i915) >= 6)
264 		gen6_rps_busy(i915);
265 
266 	queue_delayed_work(i915->wq,
267 			   &i915->gt.retire_work,
268 			   round_jiffies_up_relative(HZ));
269 }
270 
reserve_engine(struct intel_engine_cs * engine)271 static int reserve_engine(struct intel_engine_cs *engine)
272 {
273 	struct drm_i915_private *i915 = engine->i915;
274 	u32 active = ++engine->timeline->inflight_seqnos;
275 	u32 seqno = engine->timeline->seqno;
276 	int ret;
277 
278 	/* Reservation is fine until we need to wrap around */
279 	if (unlikely(add_overflows(seqno, active))) {
280 		ret = reset_all_global_seqno(i915, 0);
281 		if (ret) {
282 			engine->timeline->inflight_seqnos--;
283 			return ret;
284 		}
285 	}
286 
287 	if (!i915->gt.active_requests++)
288 		mark_busy(i915);
289 
290 	return 0;
291 }
292 
unreserve_engine(struct intel_engine_cs * engine)293 static void unreserve_engine(struct intel_engine_cs *engine)
294 {
295 	struct drm_i915_private *i915 = engine->i915;
296 
297 	if (!--i915->gt.active_requests) {
298 		/* Cancel the mark_busy() from our reserve_engine() */
299 		GEM_BUG_ON(!i915->gt.awake);
300 		mod_delayed_work(i915->wq,
301 				 &i915->gt.idle_work,
302 				 msecs_to_jiffies(100));
303 	}
304 
305 	GEM_BUG_ON(!engine->timeline->inflight_seqnos);
306 	engine->timeline->inflight_seqnos--;
307 }
308 
i915_gem_retire_noop(struct i915_gem_active * active,struct drm_i915_gem_request * request)309 void i915_gem_retire_noop(struct i915_gem_active *active,
310 			  struct drm_i915_gem_request *request)
311 {
312 	/* Space left intentionally blank */
313 }
314 
advance_ring(struct drm_i915_gem_request * request)315 static void advance_ring(struct drm_i915_gem_request *request)
316 {
317 	unsigned int tail;
318 
319 	/* We know the GPU must have read the request to have
320 	 * sent us the seqno + interrupt, so use the position
321 	 * of tail of the request to update the last known position
322 	 * of the GPU head.
323 	 *
324 	 * Note this requires that we are always called in request
325 	 * completion order.
326 	 */
327 	if (list_is_last(&request->ring_link, &request->ring->request_list)) {
328 		/* We may race here with execlists resubmitting this request
329 		 * as we retire it. The resubmission will move the ring->tail
330 		 * forwards (to request->wa_tail). We either read the
331 		 * current value that was written to hw, or the value that
332 		 * is just about to be. Either works, if we miss the last two
333 		 * noops - they are safe to be replayed on a reset.
334 		 */
335 		tail = READ_ONCE(request->ring->tail);
336 	} else {
337 		tail = request->postfix;
338 	}
339 	list_del(&request->ring_link);
340 
341 	request->ring->head = tail;
342 }
343 
free_capture_list(struct drm_i915_gem_request * request)344 static void free_capture_list(struct drm_i915_gem_request *request)
345 {
346 	struct i915_gem_capture_list *capture;
347 
348 	capture = request->capture_list;
349 	while (capture) {
350 		struct i915_gem_capture_list *next = capture->next;
351 
352 		kfree(capture);
353 		capture = next;
354 	}
355 }
356 
i915_gem_request_retire(struct drm_i915_gem_request * request)357 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
358 {
359 	struct intel_engine_cs *engine = request->engine;
360 	struct i915_gem_active *active, *next;
361 
362 	lockdep_assert_held(&request->i915->drm.struct_mutex);
363 	GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
364 	GEM_BUG_ON(!i915_gem_request_completed(request));
365 	GEM_BUG_ON(!request->i915->gt.active_requests);
366 
367 	trace_i915_gem_request_retire(request);
368 
369 	spin_lock_irq(&engine->timeline->lock);
370 	list_del_init(&request->link);
371 	spin_unlock_irq(&engine->timeline->lock);
372 
373 	unreserve_engine(request->engine);
374 	advance_ring(request);
375 
376 	free_capture_list(request);
377 
378 	/* Walk through the active list, calling retire on each. This allows
379 	 * objects to track their GPU activity and mark themselves as idle
380 	 * when their *last* active request is completed (updating state
381 	 * tracking lists for eviction, active references for GEM, etc).
382 	 *
383 	 * As the ->retire() may free the node, we decouple it first and
384 	 * pass along the auxiliary information (to avoid dereferencing
385 	 * the node after the callback).
386 	 */
387 	list_for_each_entry_safe(active, next, &request->active_list, link) {
388 		/* In microbenchmarks or focusing upon time inside the kernel,
389 		 * we may spend an inordinate amount of time simply handling
390 		 * the retirement of requests and processing their callbacks.
391 		 * Of which, this loop itself is particularly hot due to the
392 		 * cache misses when jumping around the list of i915_gem_active.
393 		 * So we try to keep this loop as streamlined as possible and
394 		 * also prefetch the next i915_gem_active to try and hide
395 		 * the likely cache miss.
396 		 */
397 		prefetchw(next);
398 
399 		INIT_LIST_HEAD(&active->link);
400 		RCU_INIT_POINTER(active->request, NULL);
401 
402 		active->retire(active, request);
403 	}
404 
405 	i915_gem_request_remove_from_client(request);
406 
407 	/* Retirement decays the ban score as it is a sign of ctx progress */
408 	atomic_dec_if_positive(&request->ctx->ban_score);
409 
410 	/* The backing object for the context is done after switching to the
411 	 * *next* context. Therefore we cannot retire the previous context until
412 	 * the next context has already started running. However, since we
413 	 * cannot take the required locks at i915_gem_request_submit() we
414 	 * defer the unpinning of the active context to now, retirement of
415 	 * the subsequent request.
416 	 */
417 	if (engine->last_retired_context)
418 		engine->context_unpin(engine, engine->last_retired_context);
419 	engine->last_retired_context = request->ctx;
420 
421 	spin_lock_irq(&request->lock);
422 	if (request->waitboost)
423 		atomic_dec(&request->i915->rps.num_waiters);
424 	dma_fence_signal_locked(&request->fence);
425 	spin_unlock_irq(&request->lock);
426 
427 	i915_priotree_fini(request->i915, &request->priotree);
428 	i915_gem_request_put(request);
429 }
430 
i915_gem_request_retire_upto(struct drm_i915_gem_request * req)431 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
432 {
433 	struct intel_engine_cs *engine = req->engine;
434 	struct drm_i915_gem_request *tmp;
435 
436 	lockdep_assert_held(&req->i915->drm.struct_mutex);
437 	GEM_BUG_ON(!i915_gem_request_completed(req));
438 
439 	if (list_empty(&req->link))
440 		return;
441 
442 	do {
443 		tmp = list_first_entry(&engine->timeline->requests,
444 				       typeof(*tmp), link);
445 
446 		i915_gem_request_retire(tmp);
447 	} while (tmp != req);
448 }
449 
timeline_get_seqno(struct intel_timeline * tl)450 static u32 timeline_get_seqno(struct intel_timeline *tl)
451 {
452 	return ++tl->seqno;
453 }
454 
__i915_gem_request_submit(struct drm_i915_gem_request * request)455 void __i915_gem_request_submit(struct drm_i915_gem_request *request)
456 {
457 	struct intel_engine_cs *engine = request->engine;
458 	struct intel_timeline *timeline;
459 	u32 seqno;
460 
461 	GEM_BUG_ON(!irqs_disabled());
462 	lockdep_assert_held(&engine->timeline->lock);
463 
464 	trace_i915_gem_request_execute(request);
465 
466 	/* Transfer from per-context onto the global per-engine timeline */
467 	timeline = engine->timeline;
468 	GEM_BUG_ON(timeline == request->timeline);
469 
470 	seqno = timeline_get_seqno(timeline);
471 	GEM_BUG_ON(!seqno);
472 	GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
473 
474 	/* We may be recursing from the signal callback of another i915 fence */
475 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
476 	request->global_seqno = seqno;
477 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
478 		intel_engine_enable_signaling(request, false);
479 	spin_unlock(&request->lock);
480 
481 	engine->emit_breadcrumb(request,
482 				request->ring->vaddr + request->postfix);
483 
484 	spin_lock(&request->timeline->lock);
485 	list_move_tail(&request->link, &timeline->requests);
486 	spin_unlock(&request->timeline->lock);
487 
488 	wake_up_all(&request->execute);
489 }
490 
i915_gem_request_submit(struct drm_i915_gem_request * request)491 void i915_gem_request_submit(struct drm_i915_gem_request *request)
492 {
493 	struct intel_engine_cs *engine = request->engine;
494 	unsigned long flags;
495 
496 	/* Will be called from irq-context when using foreign fences. */
497 	spin_lock_irqsave(&engine->timeline->lock, flags);
498 
499 	__i915_gem_request_submit(request);
500 
501 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
502 }
503 
__i915_gem_request_unsubmit(struct drm_i915_gem_request * request)504 void __i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
505 {
506 	struct intel_engine_cs *engine = request->engine;
507 	struct intel_timeline *timeline;
508 
509 	GEM_BUG_ON(!irqs_disabled());
510 	lockdep_assert_held(&engine->timeline->lock);
511 
512 	/* Only unwind in reverse order, required so that the per-context list
513 	 * is kept in seqno/ring order.
514 	 */
515 	GEM_BUG_ON(request->global_seqno != engine->timeline->seqno);
516 	engine->timeline->seqno--;
517 
518 	/* We may be recursing from the signal callback of another i915 fence */
519 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
520 	request->global_seqno = 0;
521 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
522 		intel_engine_cancel_signaling(request);
523 	spin_unlock(&request->lock);
524 
525 	/* Transfer back from the global per-engine timeline to per-context */
526 	timeline = request->timeline;
527 	GEM_BUG_ON(timeline == engine->timeline);
528 
529 	spin_lock(&timeline->lock);
530 	list_move(&request->link, &timeline->requests);
531 	spin_unlock(&timeline->lock);
532 
533 	/* We don't need to wake_up any waiters on request->execute, they
534 	 * will get woken by any other event or us re-adding this request
535 	 * to the engine timeline (__i915_gem_request_submit()). The waiters
536 	 * should be quite adapt at finding that the request now has a new
537 	 * global_seqno to the one they went to sleep on.
538 	 */
539 }
540 
i915_gem_request_unsubmit(struct drm_i915_gem_request * request)541 void i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
542 {
543 	struct intel_engine_cs *engine = request->engine;
544 	unsigned long flags;
545 
546 	/* Will be called from irq-context when using foreign fences. */
547 	spin_lock_irqsave(&engine->timeline->lock, flags);
548 
549 	__i915_gem_request_unsubmit(request);
550 
551 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
552 }
553 
554 static int __i915_sw_fence_call
submit_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)555 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
556 {
557 	struct drm_i915_gem_request *request =
558 		container_of(fence, typeof(*request), submit);
559 
560 	switch (state) {
561 	case FENCE_COMPLETE:
562 		trace_i915_gem_request_submit(request);
563 		request->engine->submit_request(request);
564 		break;
565 
566 	case FENCE_FREE:
567 		i915_gem_request_put(request);
568 		break;
569 	}
570 
571 	return NOTIFY_DONE;
572 }
573 
574 /**
575  * i915_gem_request_alloc - allocate a request structure
576  *
577  * @engine: engine that we wish to issue the request on.
578  * @ctx: context that the request will be associated with.
579  *
580  * Returns a pointer to the allocated request if successful,
581  * or an error code if not.
582  */
583 struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs * engine,struct i915_gem_context * ctx)584 i915_gem_request_alloc(struct intel_engine_cs *engine,
585 		       struct i915_gem_context *ctx)
586 {
587 	struct drm_i915_private *dev_priv = engine->i915;
588 	struct drm_i915_gem_request *req;
589 	struct intel_ring *ring;
590 	int ret;
591 
592 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
593 
594 	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
595 	 * EIO if the GPU is already wedged.
596 	 */
597 	if (i915_terminally_wedged(&dev_priv->gpu_error))
598 		return ERR_PTR(-EIO);
599 
600 	/* Pinning the contexts may generate requests in order to acquire
601 	 * GGTT space, so do this first before we reserve a seqno for
602 	 * ourselves.
603 	 */
604 	ring = engine->context_pin(engine, ctx);
605 	if (IS_ERR(ring))
606 		return ERR_CAST(ring);
607 	GEM_BUG_ON(!ring);
608 
609 	ret = reserve_engine(engine);
610 	if (ret)
611 		goto err_unpin;
612 
613 	/* Move the oldest request to the slab-cache (if not in use!) */
614 	req = list_first_entry_or_null(&engine->timeline->requests,
615 				       typeof(*req), link);
616 	if (req && i915_gem_request_completed(req))
617 		i915_gem_request_retire(req);
618 
619 	/* Beware: Dragons be flying overhead.
620 	 *
621 	 * We use RCU to look up requests in flight. The lookups may
622 	 * race with the request being allocated from the slab freelist.
623 	 * That is the request we are writing to here, may be in the process
624 	 * of being read by __i915_gem_active_get_rcu(). As such,
625 	 * we have to be very careful when overwriting the contents. During
626 	 * the RCU lookup, we change chase the request->engine pointer,
627 	 * read the request->global_seqno and increment the reference count.
628 	 *
629 	 * The reference count is incremented atomically. If it is zero,
630 	 * the lookup knows the request is unallocated and complete. Otherwise,
631 	 * it is either still in use, or has been reallocated and reset
632 	 * with dma_fence_init(). This increment is safe for release as we
633 	 * check that the request we have a reference to and matches the active
634 	 * request.
635 	 *
636 	 * Before we increment the refcount, we chase the request->engine
637 	 * pointer. We must not call kmem_cache_zalloc() or else we set
638 	 * that pointer to NULL and cause a crash during the lookup. If
639 	 * we see the request is completed (based on the value of the
640 	 * old engine and seqno), the lookup is complete and reports NULL.
641 	 * If we decide the request is not completed (new engine or seqno),
642 	 * then we grab a reference and double check that it is still the
643 	 * active request - which it won't be and restart the lookup.
644 	 *
645 	 * Do not use kmem_cache_zalloc() here!
646 	 */
647 	req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
648 	if (!req) {
649 		ret = -ENOMEM;
650 		goto err_unreserve;
651 	}
652 
653 	req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
654 	GEM_BUG_ON(req->timeline == engine->timeline);
655 
656 	spin_lock_init(&req->lock);
657 	dma_fence_init(&req->fence,
658 		       &i915_fence_ops,
659 		       &req->lock,
660 		       req->timeline->fence_context,
661 		       timeline_get_seqno(req->timeline));
662 
663 	/* We bump the ref for the fence chain */
664 	i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
665 	init_waitqueue_head(&req->execute);
666 
667 	i915_priotree_init(&req->priotree);
668 
669 	INIT_LIST_HEAD(&req->active_list);
670 	req->i915 = dev_priv;
671 	req->engine = engine;
672 	req->ctx = ctx;
673 	req->ring = ring;
674 
675 	/* No zalloc, must clear what we need by hand */
676 	req->global_seqno = 0;
677 	req->file_priv = NULL;
678 	req->batch = NULL;
679 	req->capture_list = NULL;
680 	req->waitboost = false;
681 
682 	/*
683 	 * Reserve space in the ring buffer for all the commands required to
684 	 * eventually emit this request. This is to guarantee that the
685 	 * i915_add_request() call can't fail. Note that the reserve may need
686 	 * to be redone if the request is not actually submitted straight
687 	 * away, e.g. because a GPU scheduler has deferred it.
688 	 */
689 	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
690 	GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
691 
692 	ret = engine->request_alloc(req);
693 	if (ret)
694 		goto err_ctx;
695 
696 	/* Record the position of the start of the request so that
697 	 * should we detect the updated seqno part-way through the
698 	 * GPU processing the request, we never over-estimate the
699 	 * position of the head.
700 	 */
701 	req->head = req->ring->emit;
702 
703 	/* Check that we didn't interrupt ourselves with a new request */
704 	GEM_BUG_ON(req->timeline->seqno != req->fence.seqno);
705 	return req;
706 
707 err_ctx:
708 	/* Make sure we didn't add ourselves to external state before freeing */
709 	GEM_BUG_ON(!list_empty(&req->active_list));
710 	GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
711 	GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));
712 
713 	kmem_cache_free(dev_priv->requests, req);
714 err_unreserve:
715 	unreserve_engine(engine);
716 err_unpin:
717 	engine->context_unpin(engine, ctx);
718 	return ERR_PTR(ret);
719 }
720 
721 static int
i915_gem_request_await_request(struct drm_i915_gem_request * to,struct drm_i915_gem_request * from)722 i915_gem_request_await_request(struct drm_i915_gem_request *to,
723 			       struct drm_i915_gem_request *from)
724 {
725 	int ret;
726 
727 	GEM_BUG_ON(to == from);
728 	GEM_BUG_ON(to->timeline == from->timeline);
729 
730 	if (i915_gem_request_completed(from))
731 		return 0;
732 
733 	if (to->engine->schedule) {
734 		ret = i915_priotree_add_dependency(to->i915,
735 						   &to->priotree,
736 						   &from->priotree);
737 		if (ret < 0)
738 			return ret;
739 	}
740 
741 	if (to->engine == from->engine) {
742 		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
743 						       &from->submit,
744 						       GFP_KERNEL);
745 		return ret < 0 ? ret : 0;
746 	}
747 
748 	if (to->engine->semaphore.sync_to) {
749 		u32 seqno;
750 
751 		GEM_BUG_ON(!from->engine->semaphore.signal);
752 
753 		seqno = i915_gem_request_global_seqno(from);
754 		if (!seqno)
755 			goto await_dma_fence;
756 
757 		if (seqno <= to->timeline->global_sync[from->engine->id])
758 			return 0;
759 
760 		trace_i915_gem_ring_sync_to(to, from);
761 		ret = to->engine->semaphore.sync_to(to, from);
762 		if (ret)
763 			return ret;
764 
765 		to->timeline->global_sync[from->engine->id] = seqno;
766 		return 0;
767 	}
768 
769 await_dma_fence:
770 	ret = i915_sw_fence_await_dma_fence(&to->submit,
771 					    &from->fence, 0,
772 					    GFP_KERNEL);
773 	return ret < 0 ? ret : 0;
774 }
775 
776 int
i915_gem_request_await_dma_fence(struct drm_i915_gem_request * req,struct dma_fence * fence)777 i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
778 				 struct dma_fence *fence)
779 {
780 	struct dma_fence **child = &fence;
781 	unsigned int nchild = 1;
782 	int ret;
783 
784 	/* Note that if the fence-array was created in signal-on-any mode,
785 	 * we should *not* decompose it into its individual fences. However,
786 	 * we don't currently store which mode the fence-array is operating
787 	 * in. Fortunately, the only user of signal-on-any is private to
788 	 * amdgpu and we should not see any incoming fence-array from
789 	 * sync-file being in signal-on-any mode.
790 	 */
791 	if (dma_fence_is_array(fence)) {
792 		struct dma_fence_array *array = to_dma_fence_array(fence);
793 
794 		child = array->fences;
795 		nchild = array->num_fences;
796 		GEM_BUG_ON(!nchild);
797 	}
798 
799 	do {
800 		fence = *child++;
801 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
802 			continue;
803 
804 		/*
805 		 * Requests on the same timeline are explicitly ordered, along
806 		 * with their dependencies, by i915_add_request() which ensures
807 		 * that requests are submitted in-order through each ring.
808 		 */
809 		if (fence->context == req->fence.context)
810 			continue;
811 
812 		/* Squash repeated waits to the same timelines */
813 		if (fence->context != req->i915->mm.unordered_timeline &&
814 		    intel_timeline_sync_is_later(req->timeline, fence))
815 			continue;
816 
817 		if (dma_fence_is_i915(fence))
818 			ret = i915_gem_request_await_request(req,
819 							     to_request(fence));
820 		else
821 			ret = i915_sw_fence_await_dma_fence(&req->submit, fence,
822 							    I915_FENCE_TIMEOUT,
823 							    GFP_KERNEL);
824 		if (ret < 0)
825 			return ret;
826 
827 		/* Record the latest fence used against each timeline */
828 		if (fence->context != req->i915->mm.unordered_timeline)
829 			intel_timeline_sync_set(req->timeline, fence);
830 	} while (--nchild);
831 
832 	return 0;
833 }
834 
835 /**
836  * i915_gem_request_await_object - set this request to (async) wait upon a bo
837  *
838  * @to: request we are wishing to use
839  * @obj: object which may be in use on another ring.
840  *
841  * This code is meant to abstract object synchronization with the GPU.
842  * Conceptually we serialise writes between engines inside the GPU.
843  * We only allow one engine to write into a buffer at any time, but
844  * multiple readers. To ensure each has a coherent view of memory, we must:
845  *
846  * - If there is an outstanding write request to the object, the new
847  *   request must wait for it to complete (either CPU or in hw, requests
848  *   on the same ring will be naturally ordered).
849  *
850  * - If we are a write request (pending_write_domain is set), the new
851  *   request must wait for outstanding read requests to complete.
852  *
853  * Returns 0 if successful, else propagates up the lower layer error.
854  */
855 int
i915_gem_request_await_object(struct drm_i915_gem_request * to,struct drm_i915_gem_object * obj,bool write)856 i915_gem_request_await_object(struct drm_i915_gem_request *to,
857 			      struct drm_i915_gem_object *obj,
858 			      bool write)
859 {
860 	struct dma_fence *excl;
861 	int ret = 0;
862 
863 	if (write) {
864 		struct dma_fence **shared;
865 		unsigned int count, i;
866 
867 		ret = reservation_object_get_fences_rcu(obj->resv,
868 							&excl, &count, &shared);
869 		if (ret)
870 			return ret;
871 
872 		for (i = 0; i < count; i++) {
873 			ret = i915_gem_request_await_dma_fence(to, shared[i]);
874 			if (ret)
875 				break;
876 
877 			dma_fence_put(shared[i]);
878 		}
879 
880 		for (; i < count; i++)
881 			dma_fence_put(shared[i]);
882 		kfree(shared);
883 	} else {
884 		excl = reservation_object_get_excl_rcu(obj->resv);
885 	}
886 
887 	if (excl) {
888 		if (ret == 0)
889 			ret = i915_gem_request_await_dma_fence(to, excl);
890 
891 		dma_fence_put(excl);
892 	}
893 
894 	return ret;
895 }
896 
897 /*
898  * NB: This function is not allowed to fail. Doing so would mean the the
899  * request is not being tracked for completion but the work itself is
900  * going to happen on the hardware. This would be a Bad Thing(tm).
901  */
__i915_add_request(struct drm_i915_gem_request * request,bool flush_caches)902 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
903 {
904 	struct intel_engine_cs *engine = request->engine;
905 	struct intel_ring *ring = request->ring;
906 	struct intel_timeline *timeline = request->timeline;
907 	struct drm_i915_gem_request *prev;
908 	u32 *cs;
909 	int err;
910 
911 	lockdep_assert_held(&request->i915->drm.struct_mutex);
912 	trace_i915_gem_request_add(request);
913 
914 	/* Make sure that no request gazumped us - if it was allocated after
915 	 * our i915_gem_request_alloc() and called __i915_add_request() before
916 	 * us, the timeline will hold its seqno which is later than ours.
917 	 */
918 	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
919 
920 	/*
921 	 * To ensure that this call will not fail, space for its emissions
922 	 * should already have been reserved in the ring buffer. Let the ring
923 	 * know that it is time to use that space up.
924 	 */
925 	request->reserved_space = 0;
926 
927 	/*
928 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
929 	 * after having emitted the batchbuffer command. Hence we need to fix
930 	 * things up similar to emitting the lazy request. The difference here
931 	 * is that the flush _must_ happen before the next request, no matter
932 	 * what.
933 	 */
934 	if (flush_caches) {
935 		err = engine->emit_flush(request, EMIT_FLUSH);
936 
937 		/* Not allowed to fail! */
938 		WARN(err, "engine->emit_flush() failed: %d!\n", err);
939 	}
940 
941 	/* Record the position of the start of the breadcrumb so that
942 	 * should we detect the updated seqno part-way through the
943 	 * GPU processing the request, we never over-estimate the
944 	 * position of the ring's HEAD.
945 	 */
946 	cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
947 	GEM_BUG_ON(IS_ERR(cs));
948 	request->postfix = intel_ring_offset(request, cs);
949 
950 	/* Seal the request and mark it as pending execution. Note that
951 	 * we may inspect this state, without holding any locks, during
952 	 * hangcheck. Hence we apply the barrier to ensure that we do not
953 	 * see a more recent value in the hws than we are tracking.
954 	 */
955 
956 	prev = i915_gem_active_raw(&timeline->last_request,
957 				   &request->i915->drm.struct_mutex);
958 	if (prev) {
959 		i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
960 					     &request->submitq);
961 		if (engine->schedule)
962 			__i915_priotree_add_dependency(&request->priotree,
963 						       &prev->priotree,
964 						       &request->dep,
965 						       0);
966 	}
967 
968 	spin_lock_irq(&timeline->lock);
969 	list_add_tail(&request->link, &timeline->requests);
970 	spin_unlock_irq(&timeline->lock);
971 
972 	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
973 	i915_gem_active_set(&timeline->last_request, request);
974 
975 	list_add_tail(&request->ring_link, &ring->request_list);
976 	request->emitted_jiffies = jiffies;
977 
978 	/* Let the backend know a new request has arrived that may need
979 	 * to adjust the existing execution schedule due to a high priority
980 	 * request - i.e. we may want to preempt the current request in order
981 	 * to run a high priority dependency chain *before* we can execute this
982 	 * request.
983 	 *
984 	 * This is called before the request is ready to run so that we can
985 	 * decide whether to preempt the entire chain so that it is ready to
986 	 * run at the earliest possible convenience.
987 	 */
988 	if (engine->schedule)
989 		engine->schedule(request, request->ctx->priority);
990 
991 	local_bh_disable();
992 	i915_sw_fence_commit(&request->submit);
993 	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
994 }
995 
local_clock_us(unsigned int * cpu)996 static unsigned long local_clock_us(unsigned int *cpu)
997 {
998 	unsigned long t;
999 
1000 	/* Cheaply and approximately convert from nanoseconds to microseconds.
1001 	 * The result and subsequent calculations are also defined in the same
1002 	 * approximate microseconds units. The principal source of timing
1003 	 * error here is from the simple truncation.
1004 	 *
1005 	 * Note that local_clock() is only defined wrt to the current CPU;
1006 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1007 	 * blocking preemption for the entire busywait, we can detect the CPU
1008 	 * switch and use that as indicator of system load and a reason to
1009 	 * stop busywaiting, see busywait_stop().
1010 	 */
1011 	*cpu = get_cpu();
1012 	t = local_clock() >> 10;
1013 	put_cpu();
1014 
1015 	return t;
1016 }
1017 
busywait_stop(unsigned long timeout,unsigned int cpu)1018 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1019 {
1020 	unsigned int this_cpu;
1021 
1022 	if (time_after(local_clock_us(&this_cpu), timeout))
1023 		return true;
1024 
1025 	return this_cpu != cpu;
1026 }
1027 
__i915_spin_request(const struct drm_i915_gem_request * req,u32 seqno,int state,unsigned long timeout_us)1028 bool __i915_spin_request(const struct drm_i915_gem_request *req,
1029 			 u32 seqno, int state, unsigned long timeout_us)
1030 {
1031 	struct intel_engine_cs *engine = req->engine;
1032 	unsigned int irq, cpu;
1033 
1034 	/* When waiting for high frequency requests, e.g. during synchronous
1035 	 * rendering split between the CPU and GPU, the finite amount of time
1036 	 * required to set up the irq and wait upon it limits the response
1037 	 * rate. By busywaiting on the request completion for a short while we
1038 	 * can service the high frequency waits as quick as possible. However,
1039 	 * if it is a slow request, we want to sleep as quickly as possible.
1040 	 * The tradeoff between waiting and sleeping is roughly the time it
1041 	 * takes to sleep on a request, on the order of a microsecond.
1042 	 */
1043 
1044 	irq = atomic_read(&engine->irq_count);
1045 	timeout_us += local_clock_us(&cpu);
1046 	do {
1047 		if (seqno != i915_gem_request_global_seqno(req))
1048 			break;
1049 
1050 		if (i915_seqno_passed(intel_engine_get_seqno(req->engine),
1051 				      seqno))
1052 			return true;
1053 
1054 		/* Seqno are meant to be ordered *before* the interrupt. If
1055 		 * we see an interrupt without a corresponding seqno advance,
1056 		 * assume we won't see one in the near future but require
1057 		 * the engine->seqno_barrier() to fixup coherency.
1058 		 */
1059 		if (atomic_read(&engine->irq_count) != irq)
1060 			break;
1061 
1062 		if (signal_pending_state(state, current))
1063 			break;
1064 
1065 		if (busywait_stop(timeout_us, cpu))
1066 			break;
1067 
1068 		cpu_relax();
1069 	} while (!need_resched());
1070 
1071 	return false;
1072 }
1073 
__i915_wait_request_check_and_reset(struct drm_i915_gem_request * request)1074 static bool __i915_wait_request_check_and_reset(struct drm_i915_gem_request *request)
1075 {
1076 	if (likely(!i915_reset_handoff(&request->i915->gpu_error)))
1077 		return false;
1078 
1079 	__set_current_state(TASK_RUNNING);
1080 	i915_reset(request->i915, 0);
1081 	return true;
1082 }
1083 
1084 /**
1085  * i915_wait_request - wait until execution of request has finished
1086  * @req: the request to wait upon
1087  * @flags: how to wait
1088  * @timeout: how long to wait in jiffies
1089  *
1090  * i915_wait_request() waits for the request to be completed, for a
1091  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1092  * unbounded wait).
1093  *
1094  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1095  * in via the flags, and vice versa if the struct_mutex is not held, the caller
1096  * must not specify that the wait is locked.
1097  *
1098  * Returns the remaining time (in jiffies) if the request completed, which may
1099  * be zero or -ETIME if the request is unfinished after the timeout expires.
1100  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1101  * pending before the request completes.
1102  */
i915_wait_request(struct drm_i915_gem_request * req,unsigned int flags,long timeout)1103 long i915_wait_request(struct drm_i915_gem_request *req,
1104 		       unsigned int flags,
1105 		       long timeout)
1106 {
1107 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1108 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1109 	wait_queue_head_t *errq = &req->i915->gpu_error.wait_queue;
1110 	DEFINE_WAIT_FUNC(reset, default_wake_function);
1111 	DEFINE_WAIT_FUNC(exec, default_wake_function);
1112 	struct intel_wait wait;
1113 
1114 	might_sleep();
1115 #if IS_ENABLED(CONFIG_LOCKDEP)
1116 	GEM_BUG_ON(debug_locks &&
1117 		   !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1118 		   !!(flags & I915_WAIT_LOCKED));
1119 #endif
1120 	GEM_BUG_ON(timeout < 0);
1121 
1122 	if (i915_gem_request_completed(req))
1123 		return timeout;
1124 
1125 	if (!timeout)
1126 		return -ETIME;
1127 
1128 	trace_i915_gem_request_wait_begin(req, flags);
1129 
1130 	add_wait_queue(&req->execute, &exec);
1131 	if (flags & I915_WAIT_LOCKED)
1132 		add_wait_queue(errq, &reset);
1133 
1134 	intel_wait_init(&wait, req);
1135 
1136 restart:
1137 	do {
1138 		set_current_state(state);
1139 		if (intel_wait_update_request(&wait, req))
1140 			break;
1141 
1142 		if (flags & I915_WAIT_LOCKED &&
1143 		    __i915_wait_request_check_and_reset(req))
1144 			continue;
1145 
1146 		if (signal_pending_state(state, current)) {
1147 			timeout = -ERESTARTSYS;
1148 			goto complete;
1149 		}
1150 
1151 		if (!timeout) {
1152 			timeout = -ETIME;
1153 			goto complete;
1154 		}
1155 
1156 		timeout = io_schedule_timeout(timeout);
1157 	} while (1);
1158 
1159 	GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1160 	GEM_BUG_ON(!i915_sw_fence_signaled(&req->submit));
1161 
1162 	/* Optimistic short spin before touching IRQs */
1163 	if (i915_spin_request(req, state, 5))
1164 		goto complete;
1165 
1166 	set_current_state(state);
1167 	if (intel_engine_add_wait(req->engine, &wait))
1168 		/* In order to check that we haven't missed the interrupt
1169 		 * as we enabled it, we need to kick ourselves to do a
1170 		 * coherent check on the seqno before we sleep.
1171 		 */
1172 		goto wakeup;
1173 
1174 	if (flags & I915_WAIT_LOCKED)
1175 		__i915_wait_request_check_and_reset(req);
1176 
1177 	for (;;) {
1178 		if (signal_pending_state(state, current)) {
1179 			timeout = -ERESTARTSYS;
1180 			break;
1181 		}
1182 
1183 		if (!timeout) {
1184 			timeout = -ETIME;
1185 			break;
1186 		}
1187 
1188 		timeout = io_schedule_timeout(timeout);
1189 
1190 		if (intel_wait_complete(&wait) &&
1191 		    intel_wait_check_request(&wait, req))
1192 			break;
1193 
1194 		set_current_state(state);
1195 
1196 wakeup:
1197 		/* Carefully check if the request is complete, giving time
1198 		 * for the seqno to be visible following the interrupt.
1199 		 * We also have to check in case we are kicked by the GPU
1200 		 * reset in order to drop the struct_mutex.
1201 		 */
1202 		if (__i915_request_irq_complete(req))
1203 			break;
1204 
1205 		/* If the GPU is hung, and we hold the lock, reset the GPU
1206 		 * and then check for completion. On a full reset, the engine's
1207 		 * HW seqno will be advanced passed us and we are complete.
1208 		 * If we do a partial reset, we have to wait for the GPU to
1209 		 * resume and update the breadcrumb.
1210 		 *
1211 		 * If we don't hold the mutex, we can just wait for the worker
1212 		 * to come along and update the breadcrumb (either directly
1213 		 * itself, or indirectly by recovering the GPU).
1214 		 */
1215 		if (flags & I915_WAIT_LOCKED &&
1216 		    __i915_wait_request_check_and_reset(req))
1217 			continue;
1218 
1219 		/* Only spin if we know the GPU is processing this request */
1220 		if (i915_spin_request(req, state, 2))
1221 			break;
1222 
1223 		if (!intel_wait_check_request(&wait, req)) {
1224 			intel_engine_remove_wait(req->engine, &wait);
1225 			goto restart;
1226 		}
1227 	}
1228 
1229 	intel_engine_remove_wait(req->engine, &wait);
1230 complete:
1231 	__set_current_state(TASK_RUNNING);
1232 	if (flags & I915_WAIT_LOCKED)
1233 		remove_wait_queue(errq, &reset);
1234 	remove_wait_queue(&req->execute, &exec);
1235 	trace_i915_gem_request_wait_end(req);
1236 
1237 	return timeout;
1238 }
1239 
engine_retire_requests(struct intel_engine_cs * engine)1240 static void engine_retire_requests(struct intel_engine_cs *engine)
1241 {
1242 	struct drm_i915_gem_request *request, *next;
1243 	u32 seqno = intel_engine_get_seqno(engine);
1244 	LIST_HEAD(retire);
1245 
1246 	spin_lock_irq(&engine->timeline->lock);
1247 	list_for_each_entry_safe(request, next,
1248 				 &engine->timeline->requests, link) {
1249 		if (!i915_seqno_passed(seqno, request->global_seqno))
1250 			break;
1251 
1252 		list_move_tail(&request->link, &retire);
1253 	}
1254 	spin_unlock_irq(&engine->timeline->lock);
1255 
1256 	list_for_each_entry_safe(request, next, &retire, link)
1257 		i915_gem_request_retire(request);
1258 }
1259 
i915_gem_retire_requests(struct drm_i915_private * dev_priv)1260 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1261 {
1262 	struct intel_engine_cs *engine;
1263 	enum intel_engine_id id;
1264 
1265 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
1266 
1267 	if (!dev_priv->gt.active_requests)
1268 		return;
1269 
1270 	for_each_engine(engine, dev_priv, id)
1271 		engine_retire_requests(engine);
1272 }
1273 
1274 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1275 #include "selftests/mock_request.c"
1276 #include "selftests/i915_gem_request.c"
1277 #endif
1278