• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2012-2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30 #include <linux/mmu_context.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/mempolicy.h>
33 #include <linux/swap.h>
34 #include <linux/sched/mm.h>
35 
36 struct i915_mm_struct {
37 	struct mm_struct *mm;
38 	struct drm_i915_private *i915;
39 	struct i915_mmu_notifier *mn;
40 	struct hlist_node node;
41 	struct kref kref;
42 	struct work_struct work;
43 };
44 
45 #if defined(CONFIG_MMU_NOTIFIER)
46 #include <linux/interval_tree.h>
47 
48 struct i915_mmu_notifier {
49 	spinlock_t lock;
50 	struct hlist_node node;
51 	struct mmu_notifier mn;
52 	struct rb_root_cached objects;
53 	struct workqueue_struct *wq;
54 };
55 
56 struct i915_mmu_object {
57 	struct i915_mmu_notifier *mn;
58 	struct drm_i915_gem_object *obj;
59 	struct interval_tree_node it;
60 	struct list_head link;
61 	struct work_struct work;
62 	bool attached;
63 };
64 
cancel_userptr(struct work_struct * work)65 static void cancel_userptr(struct work_struct *work)
66 {
67 	struct i915_mmu_object *mo = container_of(work, typeof(*mo), work);
68 	struct drm_i915_gem_object *obj = mo->obj;
69 	struct work_struct *active;
70 
71 	/* Cancel any active worker and force us to re-evaluate gup */
72 	mutex_lock(&obj->mm.lock);
73 	active = fetch_and_zero(&obj->userptr.work);
74 	mutex_unlock(&obj->mm.lock);
75 	if (active)
76 		goto out;
77 
78 	i915_gem_object_wait(obj, I915_WAIT_ALL, MAX_SCHEDULE_TIMEOUT, NULL);
79 
80 	mutex_lock(&obj->base.dev->struct_mutex);
81 
82 	/* We are inside a kthread context and can't be interrupted */
83 	if (i915_gem_object_unbind(obj) == 0)
84 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
85 	WARN_ONCE(obj->mm.pages,
86 		  "Failed to release pages: bind_count=%d, pages_pin_count=%d, pin_display=%d\n",
87 		  obj->bind_count,
88 		  atomic_read(&obj->mm.pages_pin_count),
89 		  obj->pin_display);
90 
91 	mutex_unlock(&obj->base.dev->struct_mutex);
92 
93 out:
94 	i915_gem_object_put(obj);
95 }
96 
add_object(struct i915_mmu_object * mo)97 static void add_object(struct i915_mmu_object *mo)
98 {
99 	if (mo->attached)
100 		return;
101 
102 	interval_tree_insert(&mo->it, &mo->mn->objects);
103 	mo->attached = true;
104 }
105 
del_object(struct i915_mmu_object * mo)106 static void del_object(struct i915_mmu_object *mo)
107 {
108 	if (!mo->attached)
109 		return;
110 
111 	interval_tree_remove(&mo->it, &mo->mn->objects);
112 	mo->attached = false;
113 }
114 
i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier * _mn,struct mm_struct * mm,unsigned long start,unsigned long end)115 static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
116 						       struct mm_struct *mm,
117 						       unsigned long start,
118 						       unsigned long end)
119 {
120 	struct i915_mmu_notifier *mn =
121 		container_of(_mn, struct i915_mmu_notifier, mn);
122 	struct i915_mmu_object *mo;
123 	struct interval_tree_node *it;
124 	LIST_HEAD(cancelled);
125 
126 	if (RB_EMPTY_ROOT(&mn->objects.rb_root))
127 		return;
128 
129 	/* interval ranges are inclusive, but invalidate range is exclusive */
130 	end--;
131 
132 	spin_lock(&mn->lock);
133 	it = interval_tree_iter_first(&mn->objects, start, end);
134 	while (it) {
135 		/* The mmu_object is released late when destroying the
136 		 * GEM object so it is entirely possible to gain a
137 		 * reference on an object in the process of being freed
138 		 * since our serialisation is via the spinlock and not
139 		 * the struct_mutex - and consequently use it after it
140 		 * is freed and then double free it. To prevent that
141 		 * use-after-free we only acquire a reference on the
142 		 * object if it is not in the process of being destroyed.
143 		 */
144 		mo = container_of(it, struct i915_mmu_object, it);
145 		if (kref_get_unless_zero(&mo->obj->base.refcount))
146 			queue_work(mn->wq, &mo->work);
147 
148 		list_add(&mo->link, &cancelled);
149 		it = interval_tree_iter_next(it, start, end);
150 	}
151 	list_for_each_entry(mo, &cancelled, link)
152 		del_object(mo);
153 	spin_unlock(&mn->lock);
154 
155 	if (!list_empty(&cancelled))
156 		flush_workqueue(mn->wq);
157 }
158 
159 static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
160 	.invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
161 };
162 
163 static struct i915_mmu_notifier *
i915_mmu_notifier_create(struct mm_struct * mm)164 i915_mmu_notifier_create(struct mm_struct *mm)
165 {
166 	struct i915_mmu_notifier *mn;
167 	int ret;
168 
169 	mn = kmalloc(sizeof(*mn), GFP_KERNEL);
170 	if (mn == NULL)
171 		return ERR_PTR(-ENOMEM);
172 
173 	spin_lock_init(&mn->lock);
174 	mn->mn.ops = &i915_gem_userptr_notifier;
175 	mn->objects = RB_ROOT_CACHED;
176 	mn->wq = alloc_workqueue("i915-userptr-release", WQ_UNBOUND, 0);
177 	if (mn->wq == NULL) {
178 		kfree(mn);
179 		return ERR_PTR(-ENOMEM);
180 	}
181 
182 	 /* Protected by mmap_sem (write-lock) */
183 	ret = __mmu_notifier_register(&mn->mn, mm);
184 	if (ret) {
185 		destroy_workqueue(mn->wq);
186 		kfree(mn);
187 		return ERR_PTR(ret);
188 	}
189 
190 	return mn;
191 }
192 
193 static void
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object * obj)194 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
195 {
196 	struct i915_mmu_object *mo;
197 
198 	mo = obj->userptr.mmu_object;
199 	if (mo == NULL)
200 		return;
201 
202 	spin_lock(&mo->mn->lock);
203 	del_object(mo);
204 	spin_unlock(&mo->mn->lock);
205 	kfree(mo);
206 
207 	obj->userptr.mmu_object = NULL;
208 }
209 
210 static struct i915_mmu_notifier *
i915_mmu_notifier_find(struct i915_mm_struct * mm)211 i915_mmu_notifier_find(struct i915_mm_struct *mm)
212 {
213 	struct i915_mmu_notifier *mn = mm->mn;
214 
215 	mn = mm->mn;
216 	if (mn)
217 		return mn;
218 
219 	down_write(&mm->mm->mmap_sem);
220 	mutex_lock(&mm->i915->mm_lock);
221 	if ((mn = mm->mn) == NULL) {
222 		mn = i915_mmu_notifier_create(mm->mm);
223 		if (!IS_ERR(mn))
224 			mm->mn = mn;
225 	}
226 	mutex_unlock(&mm->i915->mm_lock);
227 	up_write(&mm->mm->mmap_sem);
228 
229 	return mn;
230 }
231 
232 static int
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object * obj,unsigned flags)233 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
234 				    unsigned flags)
235 {
236 	struct i915_mmu_notifier *mn;
237 	struct i915_mmu_object *mo;
238 
239 	if (flags & I915_USERPTR_UNSYNCHRONIZED)
240 		return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
241 
242 	if (WARN_ON(obj->userptr.mm == NULL))
243 		return -EINVAL;
244 
245 	mn = i915_mmu_notifier_find(obj->userptr.mm);
246 	if (IS_ERR(mn))
247 		return PTR_ERR(mn);
248 
249 	mo = kzalloc(sizeof(*mo), GFP_KERNEL);
250 	if (mo == NULL)
251 		return -ENOMEM;
252 
253 	mo->mn = mn;
254 	mo->obj = obj;
255 	mo->it.start = obj->userptr.ptr;
256 	mo->it.last = obj->userptr.ptr + obj->base.size - 1;
257 	INIT_WORK(&mo->work, cancel_userptr);
258 
259 	obj->userptr.mmu_object = mo;
260 	return 0;
261 }
262 
263 static void
i915_mmu_notifier_free(struct i915_mmu_notifier * mn,struct mm_struct * mm)264 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
265 		       struct mm_struct *mm)
266 {
267 	if (mn == NULL)
268 		return;
269 
270 	mmu_notifier_unregister(&mn->mn, mm);
271 	destroy_workqueue(mn->wq);
272 	kfree(mn);
273 }
274 
275 #else
276 
277 static void
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object * obj)278 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
279 {
280 }
281 
282 static int
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object * obj,unsigned flags)283 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
284 				    unsigned flags)
285 {
286 	if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
287 		return -ENODEV;
288 
289 	if (!capable(CAP_SYS_ADMIN))
290 		return -EPERM;
291 
292 	return 0;
293 }
294 
295 static void
i915_mmu_notifier_free(struct i915_mmu_notifier * mn,struct mm_struct * mm)296 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
297 		       struct mm_struct *mm)
298 {
299 }
300 
301 #endif
302 
303 static struct i915_mm_struct *
__i915_mm_struct_find(struct drm_i915_private * dev_priv,struct mm_struct * real)304 __i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
305 {
306 	struct i915_mm_struct *mm;
307 
308 	/* Protected by dev_priv->mm_lock */
309 	hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
310 		if (mm->mm == real)
311 			return mm;
312 
313 	return NULL;
314 }
315 
316 static int
i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object * obj)317 i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
318 {
319 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
320 	struct i915_mm_struct *mm;
321 	int ret = 0;
322 
323 	/* During release of the GEM object we hold the struct_mutex. This
324 	 * precludes us from calling mmput() at that time as that may be
325 	 * the last reference and so call exit_mmap(). exit_mmap() will
326 	 * attempt to reap the vma, and if we were holding a GTT mmap
327 	 * would then call drm_gem_vm_close() and attempt to reacquire
328 	 * the struct mutex. So in order to avoid that recursion, we have
329 	 * to defer releasing the mm reference until after we drop the
330 	 * struct_mutex, i.e. we need to schedule a worker to do the clean
331 	 * up.
332 	 */
333 	mutex_lock(&dev_priv->mm_lock);
334 	mm = __i915_mm_struct_find(dev_priv, current->mm);
335 	if (mm == NULL) {
336 		mm = kmalloc(sizeof(*mm), GFP_KERNEL);
337 		if (mm == NULL) {
338 			ret = -ENOMEM;
339 			goto out;
340 		}
341 
342 		kref_init(&mm->kref);
343 		mm->i915 = to_i915(obj->base.dev);
344 
345 		mm->mm = current->mm;
346 		mmgrab(current->mm);
347 
348 		mm->mn = NULL;
349 
350 		/* Protected by dev_priv->mm_lock */
351 		hash_add(dev_priv->mm_structs,
352 			 &mm->node, (unsigned long)mm->mm);
353 	} else
354 		kref_get(&mm->kref);
355 
356 	obj->userptr.mm = mm;
357 out:
358 	mutex_unlock(&dev_priv->mm_lock);
359 	return ret;
360 }
361 
362 static void
__i915_mm_struct_free__worker(struct work_struct * work)363 __i915_mm_struct_free__worker(struct work_struct *work)
364 {
365 	struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
366 	i915_mmu_notifier_free(mm->mn, mm->mm);
367 	mmdrop(mm->mm);
368 	kfree(mm);
369 }
370 
371 static void
__i915_mm_struct_free(struct kref * kref)372 __i915_mm_struct_free(struct kref *kref)
373 {
374 	struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
375 
376 	/* Protected by dev_priv->mm_lock */
377 	hash_del(&mm->node);
378 	mutex_unlock(&mm->i915->mm_lock);
379 
380 	INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
381 	queue_work(mm->i915->mm.userptr_wq, &mm->work);
382 }
383 
384 static void
i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object * obj)385 i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
386 {
387 	if (obj->userptr.mm == NULL)
388 		return;
389 
390 	kref_put_mutex(&obj->userptr.mm->kref,
391 		       __i915_mm_struct_free,
392 		       &to_i915(obj->base.dev)->mm_lock);
393 	obj->userptr.mm = NULL;
394 }
395 
396 struct get_pages_work {
397 	struct work_struct work;
398 	struct drm_i915_gem_object *obj;
399 	struct task_struct *task;
400 };
401 
402 #if IS_ENABLED(CONFIG_SWIOTLB)
403 #define swiotlb_active() swiotlb_nr_tbl()
404 #else
405 #define swiotlb_active() 0
406 #endif
407 
408 static int
st_set_pages(struct sg_table ** st,struct page ** pvec,int num_pages)409 st_set_pages(struct sg_table **st, struct page **pvec, int num_pages)
410 {
411 	struct scatterlist *sg;
412 	int ret, n;
413 
414 	*st = kmalloc(sizeof(**st), GFP_KERNEL);
415 	if (*st == NULL)
416 		return -ENOMEM;
417 
418 	if (swiotlb_active()) {
419 		ret = sg_alloc_table(*st, num_pages, GFP_KERNEL);
420 		if (ret)
421 			goto err;
422 
423 		for_each_sg((*st)->sgl, sg, num_pages, n)
424 			sg_set_page(sg, pvec[n], PAGE_SIZE, 0);
425 	} else {
426 		ret = sg_alloc_table_from_pages(*st, pvec, num_pages,
427 						0, num_pages << PAGE_SHIFT,
428 						GFP_KERNEL);
429 		if (ret)
430 			goto err;
431 	}
432 
433 	return 0;
434 
435 err:
436 	kfree(*st);
437 	*st = NULL;
438 	return ret;
439 }
440 
441 static struct sg_table *
__i915_gem_userptr_set_pages(struct drm_i915_gem_object * obj,struct page ** pvec,int num_pages)442 __i915_gem_userptr_set_pages(struct drm_i915_gem_object *obj,
443 			     struct page **pvec, int num_pages)
444 {
445 	struct sg_table *pages;
446 	int ret;
447 
448 	ret = st_set_pages(&pages, pvec, num_pages);
449 	if (ret)
450 		return ERR_PTR(ret);
451 
452 	ret = i915_gem_gtt_prepare_pages(obj, pages);
453 	if (ret) {
454 		sg_free_table(pages);
455 		kfree(pages);
456 		return ERR_PTR(ret);
457 	}
458 
459 	return pages;
460 }
461 
462 static int
__i915_gem_userptr_set_active(struct drm_i915_gem_object * obj,bool value)463 __i915_gem_userptr_set_active(struct drm_i915_gem_object *obj,
464 			      bool value)
465 {
466 	int ret = 0;
467 
468 	/* During mm_invalidate_range we need to cancel any userptr that
469 	 * overlaps the range being invalidated. Doing so requires the
470 	 * struct_mutex, and that risks recursion. In order to cause
471 	 * recursion, the user must alias the userptr address space with
472 	 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
473 	 * to invalidate that mmaping, mm_invalidate_range is called with
474 	 * the userptr address *and* the struct_mutex held.  To prevent that
475 	 * we set a flag under the i915_mmu_notifier spinlock to indicate
476 	 * whether this object is valid.
477 	 */
478 #if defined(CONFIG_MMU_NOTIFIER)
479 	if (obj->userptr.mmu_object == NULL)
480 		return 0;
481 
482 	spin_lock(&obj->userptr.mmu_object->mn->lock);
483 	/* In order to serialise get_pages with an outstanding
484 	 * cancel_userptr, we must drop the struct_mutex and try again.
485 	 */
486 	if (!value)
487 		del_object(obj->userptr.mmu_object);
488 	else if (!work_pending(&obj->userptr.mmu_object->work))
489 		add_object(obj->userptr.mmu_object);
490 	else
491 		ret = -EAGAIN;
492 	spin_unlock(&obj->userptr.mmu_object->mn->lock);
493 #endif
494 
495 	return ret;
496 }
497 
498 static void
__i915_gem_userptr_get_pages_worker(struct work_struct * _work)499 __i915_gem_userptr_get_pages_worker(struct work_struct *_work)
500 {
501 	struct get_pages_work *work = container_of(_work, typeof(*work), work);
502 	struct drm_i915_gem_object *obj = work->obj;
503 	const int npages = obj->base.size >> PAGE_SHIFT;
504 	struct page **pvec;
505 	int pinned, ret;
506 
507 	ret = -ENOMEM;
508 	pinned = 0;
509 
510 	pvec = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
511 	if (pvec != NULL) {
512 		struct mm_struct *mm = obj->userptr.mm->mm;
513 		unsigned int flags = 0;
514 
515 		if (!obj->userptr.read_only)
516 			flags |= FOLL_WRITE;
517 
518 		ret = -EFAULT;
519 		if (mmget_not_zero(mm)) {
520 			down_read(&mm->mmap_sem);
521 			while (pinned < npages) {
522 				ret = get_user_pages_remote
523 					(work->task, mm,
524 					 obj->userptr.ptr + pinned * PAGE_SIZE,
525 					 npages - pinned,
526 					 flags,
527 					 pvec + pinned, NULL, NULL);
528 				if (ret < 0)
529 					break;
530 
531 				pinned += ret;
532 			}
533 			up_read(&mm->mmap_sem);
534 			mmput(mm);
535 		}
536 	}
537 
538 	mutex_lock(&obj->mm.lock);
539 	if (obj->userptr.work == &work->work) {
540 		struct sg_table *pages = ERR_PTR(ret);
541 
542 		if (pinned == npages) {
543 			pages = __i915_gem_userptr_set_pages(obj, pvec, npages);
544 			if (!IS_ERR(pages)) {
545 				__i915_gem_object_set_pages(obj, pages);
546 				pinned = 0;
547 				pages = NULL;
548 			}
549 		}
550 
551 		obj->userptr.work = ERR_CAST(pages);
552 		if (IS_ERR(pages))
553 			__i915_gem_userptr_set_active(obj, false);
554 	}
555 	mutex_unlock(&obj->mm.lock);
556 
557 	release_pages(pvec, pinned, 0);
558 	kvfree(pvec);
559 
560 	i915_gem_object_put(obj);
561 	put_task_struct(work->task);
562 	kfree(work);
563 }
564 
565 static struct sg_table *
__i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object * obj)566 __i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj)
567 {
568 	struct get_pages_work *work;
569 
570 	/* Spawn a worker so that we can acquire the
571 	 * user pages without holding our mutex. Access
572 	 * to the user pages requires mmap_sem, and we have
573 	 * a strict lock ordering of mmap_sem, struct_mutex -
574 	 * we already hold struct_mutex here and so cannot
575 	 * call gup without encountering a lock inversion.
576 	 *
577 	 * Userspace will keep on repeating the operation
578 	 * (thanks to EAGAIN) until either we hit the fast
579 	 * path or the worker completes. If the worker is
580 	 * cancelled or superseded, the task is still run
581 	 * but the results ignored. (This leads to
582 	 * complications that we may have a stray object
583 	 * refcount that we need to be wary of when
584 	 * checking for existing objects during creation.)
585 	 * If the worker encounters an error, it reports
586 	 * that error back to this function through
587 	 * obj->userptr.work = ERR_PTR.
588 	 */
589 	work = kmalloc(sizeof(*work), GFP_KERNEL);
590 	if (work == NULL)
591 		return ERR_PTR(-ENOMEM);
592 
593 	obj->userptr.work = &work->work;
594 
595 	work->obj = i915_gem_object_get(obj);
596 
597 	work->task = current;
598 	get_task_struct(work->task);
599 
600 	INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
601 	queue_work(to_i915(obj->base.dev)->mm.userptr_wq, &work->work);
602 
603 	return ERR_PTR(-EAGAIN);
604 }
605 
606 static struct sg_table *
i915_gem_userptr_get_pages(struct drm_i915_gem_object * obj)607 i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
608 {
609 	const int num_pages = obj->base.size >> PAGE_SHIFT;
610 	struct mm_struct *mm = obj->userptr.mm->mm;
611 	struct page **pvec;
612 	struct sg_table *pages;
613 	bool active;
614 	int pinned;
615 
616 	/* If userspace should engineer that these pages are replaced in
617 	 * the vma between us binding this page into the GTT and completion
618 	 * of rendering... Their loss. If they change the mapping of their
619 	 * pages they need to create a new bo to point to the new vma.
620 	 *
621 	 * However, that still leaves open the possibility of the vma
622 	 * being copied upon fork. Which falls under the same userspace
623 	 * synchronisation issue as a regular bo, except that this time
624 	 * the process may not be expecting that a particular piece of
625 	 * memory is tied to the GPU.
626 	 *
627 	 * Fortunately, we can hook into the mmu_notifier in order to
628 	 * discard the page references prior to anything nasty happening
629 	 * to the vma (discard or cloning) which should prevent the more
630 	 * egregious cases from causing harm.
631 	 */
632 
633 	if (obj->userptr.work) {
634 		/* active flag should still be held for the pending work */
635 		if (IS_ERR(obj->userptr.work))
636 			return ERR_CAST(obj->userptr.work);
637 		else
638 			return ERR_PTR(-EAGAIN);
639 	}
640 
641 	pvec = NULL;
642 	pinned = 0;
643 
644 	if (mm == current->mm) {
645 		pvec = kvmalloc_array(num_pages, sizeof(struct page *),
646 				      GFP_KERNEL |
647 				      __GFP_NORETRY |
648 				      __GFP_NOWARN);
649 		if (pvec) /* defer to worker if malloc fails */
650 			pinned = __get_user_pages_fast(obj->userptr.ptr,
651 						       num_pages,
652 						       !obj->userptr.read_only,
653 						       pvec);
654 	}
655 
656 	active = false;
657 	if (pinned < 0) {
658 		pages = ERR_PTR(pinned);
659 		pinned = 0;
660 	} else if (pinned < num_pages) {
661 		pages = __i915_gem_userptr_get_pages_schedule(obj);
662 		active = pages == ERR_PTR(-EAGAIN);
663 	} else {
664 		pages = __i915_gem_userptr_set_pages(obj, pvec, num_pages);
665 		active = !IS_ERR(pages);
666 	}
667 	if (active)
668 		__i915_gem_userptr_set_active(obj, true);
669 
670 	if (IS_ERR(pages))
671 		release_pages(pvec, pinned, 0);
672 	kvfree(pvec);
673 
674 	return pages;
675 }
676 
677 static void
i915_gem_userptr_put_pages(struct drm_i915_gem_object * obj,struct sg_table * pages)678 i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj,
679 			   struct sg_table *pages)
680 {
681 	struct sgt_iter sgt_iter;
682 	struct page *page;
683 
684 	BUG_ON(obj->userptr.work != NULL);
685 	__i915_gem_userptr_set_active(obj, false);
686 
687 	if (obj->mm.madv != I915_MADV_WILLNEED)
688 		obj->mm.dirty = false;
689 
690 	i915_gem_gtt_finish_pages(obj, pages);
691 
692 	for_each_sgt_page(page, sgt_iter, pages) {
693 		if (obj->mm.dirty && trylock_page(page)) {
694 			/*
695 			 * As this may not be anonymous memory (e.g. shmem)
696 			 * but exist on a real mapping, we have to lock
697 			 * the page in order to dirty it -- holding
698 			 * the page reference is not sufficient to
699 			 * prevent the inode from being truncated.
700 			 * Play safe and take the lock.
701 			 *
702 			 * However...!
703 			 *
704 			 * The mmu-notifier can be invalidated for a
705 			 * migrate_page, that is alreadying holding the lock
706 			 * on the page. Such a try_to_unmap() will result
707 			 * in us calling put_pages() and so recursively try
708 			 * to lock the page. We avoid that deadlock with
709 			 * a trylock_page() and in exchange we risk missing
710 			 * some page dirtying.
711 			 */
712 			set_page_dirty(page);
713 			unlock_page(page);
714 		}
715 
716 		mark_page_accessed(page);
717 		put_page(page);
718 	}
719 	obj->mm.dirty = false;
720 
721 	sg_free_table(pages);
722 	kfree(pages);
723 }
724 
725 static void
i915_gem_userptr_release(struct drm_i915_gem_object * obj)726 i915_gem_userptr_release(struct drm_i915_gem_object *obj)
727 {
728 	i915_gem_userptr_release__mmu_notifier(obj);
729 	i915_gem_userptr_release__mm_struct(obj);
730 }
731 
732 static int
i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object * obj)733 i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
734 {
735 	if (obj->userptr.mmu_object)
736 		return 0;
737 
738 	return i915_gem_userptr_init__mmu_notifier(obj, 0);
739 }
740 
741 static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
742 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
743 		 I915_GEM_OBJECT_IS_SHRINKABLE,
744 	.get_pages = i915_gem_userptr_get_pages,
745 	.put_pages = i915_gem_userptr_put_pages,
746 	.dmabuf_export = i915_gem_userptr_dmabuf_export,
747 	.release = i915_gem_userptr_release,
748 };
749 
750 /**
751  * Creates a new mm object that wraps some normal memory from the process
752  * context - user memory.
753  *
754  * We impose several restrictions upon the memory being mapped
755  * into the GPU.
756  * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
757  * 2. It must be normal system memory, not a pointer into another map of IO
758  *    space (e.g. it must not be a GTT mmapping of another object).
759  * 3. We only allow a bo as large as we could in theory map into the GTT,
760  *    that is we limit the size to the total size of the GTT.
761  * 4. The bo is marked as being snoopable. The backing pages are left
762  *    accessible directly by the CPU, but reads and writes by the GPU may
763  *    incur the cost of a snoop (unless you have an LLC architecture).
764  *
765  * Synchronisation between multiple users and the GPU is left to userspace
766  * through the normal set-domain-ioctl. The kernel will enforce that the
767  * GPU relinquishes the VMA before it is returned back to the system
768  * i.e. upon free(), munmap() or process termination. However, the userspace
769  * malloc() library may not immediately relinquish the VMA after free() and
770  * instead reuse it whilst the GPU is still reading and writing to the VMA.
771  * Caveat emptor.
772  *
773  * Also note, that the object created here is not currently a "first class"
774  * object, in that several ioctls are banned. These are the CPU access
775  * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
776  * direct access via your pointer rather than use those ioctls. Another
777  * restriction is that we do not allow userptr surfaces to be pinned to the
778  * hardware and so we reject any attempt to create a framebuffer out of a
779  * userptr.
780  *
781  * If you think this is a good interface to use to pass GPU memory between
782  * drivers, please use dma-buf instead. In fact, wherever possible use
783  * dma-buf instead.
784  */
785 int
i915_gem_userptr_ioctl(struct drm_device * dev,void * data,struct drm_file * file)786 i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
787 {
788 	struct drm_i915_private *dev_priv = to_i915(dev);
789 	struct drm_i915_gem_userptr *args = data;
790 	struct drm_i915_gem_object *obj;
791 	int ret;
792 	u32 handle;
793 
794 	if (!HAS_LLC(dev_priv) && !HAS_SNOOP(dev_priv)) {
795 		/* We cannot support coherent userptr objects on hw without
796 		 * LLC and broken snooping.
797 		 */
798 		return -ENODEV;
799 	}
800 
801 	if (args->flags & ~(I915_USERPTR_READ_ONLY |
802 			    I915_USERPTR_UNSYNCHRONIZED))
803 		return -EINVAL;
804 
805 	if (!args->user_size)
806 		return -EINVAL;
807 
808 	if (offset_in_page(args->user_ptr | args->user_size))
809 		return -EINVAL;
810 
811 	if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
812 		       (char __user *)(unsigned long)args->user_ptr, args->user_size))
813 		return -EFAULT;
814 
815 	if (args->flags & I915_USERPTR_READ_ONLY) {
816 		/* On almost all of the current hw, we cannot tell the GPU that a
817 		 * page is readonly, so this is just a placeholder in the uAPI.
818 		 */
819 		return -ENODEV;
820 	}
821 
822 	obj = i915_gem_object_alloc(dev_priv);
823 	if (obj == NULL)
824 		return -ENOMEM;
825 
826 	drm_gem_private_object_init(dev, &obj->base, args->user_size);
827 	i915_gem_object_init(obj, &i915_gem_userptr_ops);
828 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
829 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
830 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
831 
832 	obj->userptr.ptr = args->user_ptr;
833 	obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);
834 
835 	/* And keep a pointer to the current->mm for resolving the user pages
836 	 * at binding. This means that we need to hook into the mmu_notifier
837 	 * in order to detect if the mmu is destroyed.
838 	 */
839 	ret = i915_gem_userptr_init__mm_struct(obj);
840 	if (ret == 0)
841 		ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
842 	if (ret == 0)
843 		ret = drm_gem_handle_create(file, &obj->base, &handle);
844 
845 	/* drop reference from allocate - handle holds it now */
846 	i915_gem_object_put(obj);
847 	if (ret)
848 		return ret;
849 
850 	args->handle = handle;
851 	return 0;
852 }
853 
i915_gem_init_userptr(struct drm_i915_private * dev_priv)854 int i915_gem_init_userptr(struct drm_i915_private *dev_priv)
855 {
856 	mutex_init(&dev_priv->mm_lock);
857 	hash_init(dev_priv->mm_structs);
858 
859 	dev_priv->mm.userptr_wq =
860 		alloc_workqueue("i915-userptr-acquire", WQ_HIGHPRI, 0);
861 	if (!dev_priv->mm.userptr_wq)
862 		return -ENOMEM;
863 
864 	return 0;
865 }
866 
i915_gem_cleanup_userptr(struct drm_i915_private * dev_priv)867 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv)
868 {
869 	destroy_workqueue(dev_priv->mm.userptr_wq);
870 }
871