• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30 
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135 
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140 
141 #define RING_EXECLIST_QFULL		(1 << 0x2)
142 #define RING_EXECLIST1_VALID		(1 << 0x3)
143 #define RING_EXECLIST0_VALID		(1 << 0x4)
144 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
145 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
146 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
147 
148 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
149 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
150 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
151 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
152 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
153 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
154 
155 #define GEN8_CTX_STATUS_COMPLETED_MASK \
156 	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
157 	  GEN8_CTX_STATUS_PREEMPTED | \
158 	  GEN8_CTX_STATUS_ELEMENT_SWITCH)
159 
160 #define CTX_LRI_HEADER_0		0x01
161 #define CTX_CONTEXT_CONTROL		0x02
162 #define CTX_RING_HEAD			0x04
163 #define CTX_RING_TAIL			0x06
164 #define CTX_RING_BUFFER_START		0x08
165 #define CTX_RING_BUFFER_CONTROL		0x0a
166 #define CTX_BB_HEAD_U			0x0c
167 #define CTX_BB_HEAD_L			0x0e
168 #define CTX_BB_STATE			0x10
169 #define CTX_SECOND_BB_HEAD_U		0x12
170 #define CTX_SECOND_BB_HEAD_L		0x14
171 #define CTX_SECOND_BB_STATE		0x16
172 #define CTX_BB_PER_CTX_PTR		0x18
173 #define CTX_RCS_INDIRECT_CTX		0x1a
174 #define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
175 #define CTX_LRI_HEADER_1		0x21
176 #define CTX_CTX_TIMESTAMP		0x22
177 #define CTX_PDP3_UDW			0x24
178 #define CTX_PDP3_LDW			0x26
179 #define CTX_PDP2_UDW			0x28
180 #define CTX_PDP2_LDW			0x2a
181 #define CTX_PDP1_UDW			0x2c
182 #define CTX_PDP1_LDW			0x2e
183 #define CTX_PDP0_UDW			0x30
184 #define CTX_PDP0_LDW			0x32
185 #define CTX_LRI_HEADER_2		0x41
186 #define CTX_R_PWR_CLK_STATE		0x42
187 #define CTX_GPGPU_CSR_BASE_ADDRESS	0x44
188 
189 #define CTX_REG(reg_state, pos, reg, val) do { \
190 	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
191 	(reg_state)[(pos)+1] = (val); \
192 } while (0)
193 
194 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
195 	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
196 	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197 	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 } while (0)
199 
200 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
201 	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
202 	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203 } while (0)
204 
205 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
206 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
207 #define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x19
208 
209 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
210 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
211 
212 #define WA_TAIL_DWORDS 2
213 
214 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
215 					    struct intel_engine_cs *engine);
216 static void execlists_init_reg_state(u32 *reg_state,
217 				     struct i915_gem_context *ctx,
218 				     struct intel_engine_cs *engine,
219 				     struct intel_ring *ring);
220 
221 /**
222  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
223  * @dev_priv: i915 device private
224  * @enable_execlists: value of i915.enable_execlists module parameter.
225  *
226  * Only certain platforms support Execlists (the prerequisites being
227  * support for Logical Ring Contexts and Aliasing PPGTT or better).
228  *
229  * Return: 1 if Execlists is supported and has to be enabled.
230  */
intel_sanitize_enable_execlists(struct drm_i915_private * dev_priv,int enable_execlists)231 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
232 {
233 	/* On platforms with execlist available, vGPU will only
234 	 * support execlist mode, no ring buffer mode.
235 	 */
236 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
237 		return 1;
238 
239 	if (INTEL_GEN(dev_priv) >= 9)
240 		return 1;
241 
242 	if (enable_execlists == 0)
243 		return 0;
244 
245 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
246 	    USES_PPGTT(dev_priv) &&
247 	    i915.use_mmio_flip >= 0)
248 		return 1;
249 
250 	return 0;
251 }
252 
253 /**
254  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
255  * 					  descriptor for a pinned context
256  * @ctx: Context to work on
257  * @engine: Engine the descriptor will be used with
258  *
259  * The context descriptor encodes various attributes of a context,
260  * including its GTT address and some flags. Because it's fairly
261  * expensive to calculate, we'll just do it once and cache the result,
262  * which remains valid until the context is unpinned.
263  *
264  * This is what a descriptor looks like, from LSB to MSB::
265  *
266  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
267  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
268  *      bits 32-52:    ctx ID, a globally unique tag
269  *      bits 53-54:    mbz, reserved for use by hardware
270  *      bits 55-63:    group ID, currently unused and set to 0
271  */
272 static void
intel_lr_context_descriptor_update(struct i915_gem_context * ctx,struct intel_engine_cs * engine)273 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
274 				   struct intel_engine_cs *engine)
275 {
276 	struct intel_context *ce = &ctx->engine[engine->id];
277 	u64 desc;
278 
279 	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
280 
281 	desc = ctx->desc_template;				/* bits  0-11 */
282 	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
283 								/* bits 12-31 */
284 	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
285 
286 	ce->lrc_desc = desc;
287 }
288 
intel_lr_context_descriptor(struct i915_gem_context * ctx,struct intel_engine_cs * engine)289 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
290 				     struct intel_engine_cs *engine)
291 {
292 	return ctx->engine[engine->id].lrc_desc;
293 }
294 
295 static inline void
execlists_context_status_change(struct drm_i915_gem_request * rq,unsigned long status)296 execlists_context_status_change(struct drm_i915_gem_request *rq,
297 				unsigned long status)
298 {
299 	/*
300 	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
301 	 * The compiler should eliminate this function as dead-code.
302 	 */
303 	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
304 		return;
305 
306 	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
307 				   status, rq);
308 }
309 
310 static void
execlists_update_context_pdps(struct i915_hw_ppgtt * ppgtt,u32 * reg_state)311 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
312 {
313 	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
314 	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
315 	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
316 	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
317 }
318 
execlists_update_context(struct drm_i915_gem_request * rq)319 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
320 {
321 	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
322 	struct i915_hw_ppgtt *ppgtt =
323 		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
324 	u32 *reg_state = ce->lrc_reg_state;
325 
326 	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
327 
328 	/*
329 	 * True 32b PPGTT with dynamic page allocation: update PDP
330 	 * registers and point the unallocated PDPs to scratch page.
331 	 * PML4 is allocated during ppgtt init, so this is not needed
332 	 * in 48-bit mode.
333 	 */
334 	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
335 		execlists_update_context_pdps(ppgtt, reg_state);
336 
337 	/*
338 	 * Make sure the context image is complete before we submit it to HW.
339 	 *
340 	 * Ostensibly, writes (including the WCB) should be flushed prior to
341 	 * an uncached write such as our mmio register access, the empirical
342 	 * evidence (esp. on Braswell) suggests that the WC write into memory
343 	 * may not be visible to the HW prior to the completion of the UC
344 	 * register write and that we may begin execution from the context
345 	 * before its image is complete leading to invalid PD chasing.
346 	 *
347 	 * Furthermore, Braswell, at least, wants a full mb to be sure that
348 	 * the writes are coherent in memory (visible to the GPU) prior to
349 	 * execution, and not just visible to other CPUs (as is the result of
350 	 * wmb).
351 	 */
352 	mb();
353 	return ce->lrc_desc;
354 }
355 
execlists_submit_ports(struct intel_engine_cs * engine)356 static void execlists_submit_ports(struct intel_engine_cs *engine)
357 {
358 	struct execlist_port *port = engine->execlist_port;
359 	u32 __iomem *elsp =
360 		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
361 	unsigned int n;
362 
363 	for (n = ARRAY_SIZE(engine->execlist_port); n--; ) {
364 		struct drm_i915_gem_request *rq;
365 		unsigned int count;
366 		u64 desc;
367 
368 		rq = port_unpack(&port[n], &count);
369 		if (rq) {
370 			GEM_BUG_ON(count > !n);
371 			if (!count++)
372 				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
373 			port_set(&port[n], port_pack(rq, count));
374 			desc = execlists_update_context(rq);
375 			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
376 		} else {
377 			GEM_BUG_ON(!n);
378 			desc = 0;
379 		}
380 
381 		writel(upper_32_bits(desc), elsp);
382 		writel(lower_32_bits(desc), elsp);
383 	}
384 }
385 
ctx_single_port_submission(const struct i915_gem_context * ctx)386 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
387 {
388 	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
389 		i915_gem_context_force_single_submission(ctx));
390 }
391 
can_merge_ctx(const struct i915_gem_context * prev,const struct i915_gem_context * next)392 static bool can_merge_ctx(const struct i915_gem_context *prev,
393 			  const struct i915_gem_context *next)
394 {
395 	if (prev != next)
396 		return false;
397 
398 	if (ctx_single_port_submission(prev))
399 		return false;
400 
401 	return true;
402 }
403 
port_assign(struct execlist_port * port,struct drm_i915_gem_request * rq)404 static void port_assign(struct execlist_port *port,
405 			struct drm_i915_gem_request *rq)
406 {
407 	GEM_BUG_ON(rq == port_request(port));
408 
409 	if (port_isset(port))
410 		i915_gem_request_put(port_request(port));
411 
412 	port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
413 }
414 
execlists_dequeue(struct intel_engine_cs * engine)415 static void execlists_dequeue(struct intel_engine_cs *engine)
416 {
417 	struct drm_i915_gem_request *last;
418 	struct execlist_port *port = engine->execlist_port;
419 	struct rb_node *rb;
420 	bool submit = false;
421 
422 	last = port_request(port);
423 	if (last)
424 		/* WaIdleLiteRestore:bdw,skl
425 		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
426 		 * as we resubmit the request. See gen8_emit_breadcrumb()
427 		 * for where we prepare the padding after the end of the
428 		 * request.
429 		 */
430 		last->tail = last->wa_tail;
431 
432 	GEM_BUG_ON(port_isset(&port[1]));
433 
434 	/* Hardware submission is through 2 ports. Conceptually each port
435 	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
436 	 * static for a context, and unique to each, so we only execute
437 	 * requests belonging to a single context from each ring. RING_HEAD
438 	 * is maintained by the CS in the context image, it marks the place
439 	 * where it got up to last time, and through RING_TAIL we tell the CS
440 	 * where we want to execute up to this time.
441 	 *
442 	 * In this list the requests are in order of execution. Consecutive
443 	 * requests from the same context are adjacent in the ringbuffer. We
444 	 * can combine these requests into a single RING_TAIL update:
445 	 *
446 	 *              RING_HEAD...req1...req2
447 	 *                                    ^- RING_TAIL
448 	 * since to execute req2 the CS must first execute req1.
449 	 *
450 	 * Our goal then is to point each port to the end of a consecutive
451 	 * sequence of requests as being the most optimal (fewest wake ups
452 	 * and context switches) submission.
453 	 */
454 
455 	spin_lock_irq(&engine->timeline->lock);
456 	rb = engine->execlist_first;
457 	GEM_BUG_ON(rb_first(&engine->execlist_queue) != rb);
458 	while (rb) {
459 		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
460 		struct drm_i915_gem_request *rq, *rn;
461 
462 		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
463 			/*
464 			 * Can we combine this request with the current port?
465 			 * It has to be the same context/ringbuffer and not
466 			 * have any exceptions (e.g. GVT saying never to
467 			 * combine contexts).
468 			 *
469 			 * If we can combine the requests, we can execute both
470 			 * by updating the RING_TAIL to point to the end of the
471 			 * second request, and so we never need to tell the
472 			 * hardware about the first.
473 			 */
474 			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
475 				/*
476 				 * If we are on the second port and cannot
477 				 * combine this request with the last, then we
478 				 * are done.
479 				 */
480 				if (port != engine->execlist_port) {
481 					__list_del_many(&p->requests,
482 							&rq->priotree.link);
483 					goto done;
484 				}
485 
486 				/*
487 				 * If GVT overrides us we only ever submit
488 				 * port[0], leaving port[1] empty. Note that we
489 				 * also have to be careful that we don't queue
490 				 * the same context (even though a different
491 				 * request) to the second port.
492 				 */
493 				if (ctx_single_port_submission(last->ctx) ||
494 				    ctx_single_port_submission(rq->ctx)) {
495 					__list_del_many(&p->requests,
496 							&rq->priotree.link);
497 					goto done;
498 				}
499 
500 				GEM_BUG_ON(last->ctx == rq->ctx);
501 
502 				if (submit)
503 					port_assign(port, last);
504 				port++;
505 			}
506 
507 			INIT_LIST_HEAD(&rq->priotree.link);
508 			rq->priotree.priority = INT_MAX;
509 
510 			__i915_gem_request_submit(rq);
511 			trace_i915_gem_request_in(rq, port_index(port, engine));
512 			last = rq;
513 			submit = true;
514 		}
515 
516 		rb = rb_next(rb);
517 		rb_erase(&p->node, &engine->execlist_queue);
518 		INIT_LIST_HEAD(&p->requests);
519 		if (p->priority != I915_PRIORITY_NORMAL)
520 			kmem_cache_free(engine->i915->priorities, p);
521 	}
522 done:
523 	engine->execlist_first = rb;
524 	if (submit)
525 		port_assign(port, last);
526 	spin_unlock_irq(&engine->timeline->lock);
527 
528 	if (submit)
529 		execlists_submit_ports(engine);
530 }
531 
execlists_elsp_ready(const struct intel_engine_cs * engine)532 static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
533 {
534 	const struct execlist_port *port = engine->execlist_port;
535 
536 	return port_count(&port[0]) + port_count(&port[1]) < 2;
537 }
538 
539 /*
540  * Check the unread Context Status Buffers and manage the submission of new
541  * contexts to the ELSP accordingly.
542  */
intel_lrc_irq_handler(unsigned long data)543 static void intel_lrc_irq_handler(unsigned long data)
544 {
545 	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
546 	struct execlist_port *port = engine->execlist_port;
547 	struct drm_i915_private *dev_priv = engine->i915;
548 
549 	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
550 	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
551 	 * not be relinquished until the device is idle (see
552 	 * i915_gem_idle_work_handler()). As a precaution, we make sure
553 	 * that all ELSP are drained i.e. we have processed the CSB,
554 	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
555 	 */
556 	GEM_BUG_ON(!dev_priv->gt.awake);
557 
558 	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
559 
560 	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
561 	 * imposing the cost of a locked atomic transaction when submitting a
562 	 * new request (outside of the context-switch interrupt).
563 	 */
564 	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
565 		u32 __iomem *csb_mmio =
566 			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
567 		u32 __iomem *buf =
568 			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
569 		unsigned int head, tail;
570 
571 		/* The write will be ordered by the uncached read (itself
572 		 * a memory barrier), so we do not need another in the form
573 		 * of a locked instruction. The race between the interrupt
574 		 * handler and the split test/clear is harmless as we order
575 		 * our clear before the CSB read. If the interrupt arrived
576 		 * first between the test and the clear, we read the updated
577 		 * CSB and clear the bit. If the interrupt arrives as we read
578 		 * the CSB or later (i.e. after we had cleared the bit) the bit
579 		 * is set and we do a new loop.
580 		 */
581 		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
582 		head = readl(csb_mmio);
583 		tail = GEN8_CSB_WRITE_PTR(head);
584 		head = GEN8_CSB_READ_PTR(head);
585 		while (head != tail) {
586 			struct drm_i915_gem_request *rq;
587 			unsigned int status;
588 			unsigned int count;
589 
590 			if (++head == GEN8_CSB_ENTRIES)
591 				head = 0;
592 
593 			/* We are flying near dragons again.
594 			 *
595 			 * We hold a reference to the request in execlist_port[]
596 			 * but no more than that. We are operating in softirq
597 			 * context and so cannot hold any mutex or sleep. That
598 			 * prevents us stopping the requests we are processing
599 			 * in port[] from being retired simultaneously (the
600 			 * breadcrumb will be complete before we see the
601 			 * context-switch). As we only hold the reference to the
602 			 * request, any pointer chasing underneath the request
603 			 * is subject to a potential use-after-free. Thus we
604 			 * store all of the bookkeeping within port[] as
605 			 * required, and avoid using unguarded pointers beneath
606 			 * request itself. The same applies to the atomic
607 			 * status notifier.
608 			 */
609 
610 			status = readl(buf + 2 * head);
611 			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
612 				continue;
613 
614 			/* Check the context/desc id for this event matches */
615 			GEM_DEBUG_BUG_ON(readl(buf + 2 * head + 1) !=
616 					 port->context_id);
617 
618 			rq = port_unpack(port, &count);
619 			GEM_BUG_ON(count == 0);
620 			if (--count == 0) {
621 				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
622 				GEM_BUG_ON(!i915_gem_request_completed(rq));
623 				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
624 
625 				trace_i915_gem_request_out(rq);
626 				i915_gem_request_put(rq);
627 
628 				port[0] = port[1];
629 				memset(&port[1], 0, sizeof(port[1]));
630 			} else {
631 				port_set(port, port_pack(rq, count));
632 			}
633 
634 			/* After the final element, the hw should be idle */
635 			GEM_BUG_ON(port_count(port) == 0 &&
636 				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
637 		}
638 
639 		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
640 		       csb_mmio);
641 	}
642 
643 	if (execlists_elsp_ready(engine))
644 		execlists_dequeue(engine);
645 
646 	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
647 }
648 
649 static bool
insert_request(struct intel_engine_cs * engine,struct i915_priotree * pt,int prio)650 insert_request(struct intel_engine_cs *engine,
651 	       struct i915_priotree *pt,
652 	       int prio)
653 {
654 	struct i915_priolist *p;
655 	struct rb_node **parent, *rb;
656 	bool first = true;
657 
658 	if (unlikely(engine->no_priolist))
659 		prio = I915_PRIORITY_NORMAL;
660 
661 find_priolist:
662 	/* most positive priority is scheduled first, equal priorities fifo */
663 	rb = NULL;
664 	parent = &engine->execlist_queue.rb_node;
665 	while (*parent) {
666 		rb = *parent;
667 		p = rb_entry(rb, typeof(*p), node);
668 		if (prio > p->priority) {
669 			parent = &rb->rb_left;
670 		} else if (prio < p->priority) {
671 			parent = &rb->rb_right;
672 			first = false;
673 		} else {
674 			list_add_tail(&pt->link, &p->requests);
675 			return false;
676 		}
677 	}
678 
679 	if (prio == I915_PRIORITY_NORMAL) {
680 		p = &engine->default_priolist;
681 	} else {
682 		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
683 		/* Convert an allocation failure to a priority bump */
684 		if (unlikely(!p)) {
685 			prio = I915_PRIORITY_NORMAL; /* recurses just once */
686 
687 			/* To maintain ordering with all rendering, after an
688 			 * allocation failure we have to disable all scheduling.
689 			 * Requests will then be executed in fifo, and schedule
690 			 * will ensure that dependencies are emitted in fifo.
691 			 * There will be still some reordering with existing
692 			 * requests, so if userspace lied about their
693 			 * dependencies that reordering may be visible.
694 			 */
695 			engine->no_priolist = true;
696 			goto find_priolist;
697 		}
698 	}
699 
700 	p->priority = prio;
701 	rb_link_node(&p->node, rb, parent);
702 	rb_insert_color(&p->node, &engine->execlist_queue);
703 
704 	INIT_LIST_HEAD(&p->requests);
705 	list_add_tail(&pt->link, &p->requests);
706 
707 	if (first)
708 		engine->execlist_first = &p->node;
709 
710 	return first;
711 }
712 
execlists_submit_request(struct drm_i915_gem_request * request)713 static void execlists_submit_request(struct drm_i915_gem_request *request)
714 {
715 	struct intel_engine_cs *engine = request->engine;
716 	unsigned long flags;
717 
718 	/* Will be called from irq-context when using foreign fences. */
719 	spin_lock_irqsave(&engine->timeline->lock, flags);
720 
721 	if (insert_request(engine,
722 			   &request->priotree,
723 			   request->priotree.priority)) {
724 		if (execlists_elsp_ready(engine))
725 			tasklet_hi_schedule(&engine->irq_tasklet);
726 	}
727 
728 	GEM_BUG_ON(!engine->execlist_first);
729 	GEM_BUG_ON(list_empty(&request->priotree.link));
730 
731 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
732 }
733 
734 static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree * pt,struct intel_engine_cs * locked)735 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
736 {
737 	struct intel_engine_cs *engine =
738 		container_of(pt, struct drm_i915_gem_request, priotree)->engine;
739 
740 	GEM_BUG_ON(!locked);
741 
742 	if (engine != locked) {
743 		spin_unlock(&locked->timeline->lock);
744 		spin_lock(&engine->timeline->lock);
745 	}
746 
747 	return engine;
748 }
749 
execlists_schedule(struct drm_i915_gem_request * request,int prio)750 static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
751 {
752 	struct intel_engine_cs *engine;
753 	struct i915_dependency *dep, *p;
754 	struct i915_dependency stack;
755 	LIST_HEAD(dfs);
756 
757 	if (prio <= READ_ONCE(request->priotree.priority))
758 		return;
759 
760 	/* Need BKL in order to use the temporary link inside i915_dependency */
761 	lockdep_assert_held(&request->i915->drm.struct_mutex);
762 
763 	stack.signaler = &request->priotree;
764 	list_add(&stack.dfs_link, &dfs);
765 
766 	/* Recursively bump all dependent priorities to match the new request.
767 	 *
768 	 * A naive approach would be to use recursion:
769 	 * static void update_priorities(struct i915_priotree *pt, prio) {
770 	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
771 	 *		update_priorities(dep->signal, prio)
772 	 *	insert_request(pt);
773 	 * }
774 	 * but that may have unlimited recursion depth and so runs a very
775 	 * real risk of overunning the kernel stack. Instead, we build
776 	 * a flat list of all dependencies starting with the current request.
777 	 * As we walk the list of dependencies, we add all of its dependencies
778 	 * to the end of the list (this may include an already visited
779 	 * request) and continue to walk onwards onto the new dependencies. The
780 	 * end result is a topological list of requests in reverse order, the
781 	 * last element in the list is the request we must execute first.
782 	 */
783 	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
784 		struct i915_priotree *pt = dep->signaler;
785 
786 		/* Within an engine, there can be no cycle, but we may
787 		 * refer to the same dependency chain multiple times
788 		 * (redundant dependencies are not eliminated) and across
789 		 * engines.
790 		 */
791 		list_for_each_entry(p, &pt->signalers_list, signal_link) {
792 			GEM_BUG_ON(p->signaler->priority < pt->priority);
793 			if (prio > READ_ONCE(p->signaler->priority))
794 				list_move_tail(&p->dfs_link, &dfs);
795 		}
796 
797 		list_safe_reset_next(dep, p, dfs_link);
798 	}
799 
800 	/* If we didn't need to bump any existing priorities, and we haven't
801 	 * yet submitted this request (i.e. there is no potential race with
802 	 * execlists_submit_request()), we can set our own priority and skip
803 	 * acquiring the engine locks.
804 	 */
805 	if (request->priotree.priority == INT_MIN) {
806 		GEM_BUG_ON(!list_empty(&request->priotree.link));
807 		request->priotree.priority = prio;
808 		if (stack.dfs_link.next == stack.dfs_link.prev)
809 			return;
810 		__list_del_entry(&stack.dfs_link);
811 	}
812 
813 	engine = request->engine;
814 	spin_lock_irq(&engine->timeline->lock);
815 
816 	/* Fifo and depth-first replacement ensure our deps execute before us */
817 	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
818 		struct i915_priotree *pt = dep->signaler;
819 
820 		INIT_LIST_HEAD(&dep->dfs_link);
821 
822 		engine = pt_lock_engine(pt, engine);
823 
824 		if (prio <= pt->priority)
825 			continue;
826 
827 		pt->priority = prio;
828 		if (!list_empty(&pt->link)) {
829 			__list_del_entry(&pt->link);
830 			insert_request(engine, pt, prio);
831 		}
832 	}
833 
834 	spin_unlock_irq(&engine->timeline->lock);
835 
836 	/* XXX Do we need to preempt to make room for us and our deps? */
837 }
838 
839 static struct intel_ring *
execlists_context_pin(struct intel_engine_cs * engine,struct i915_gem_context * ctx)840 execlists_context_pin(struct intel_engine_cs *engine,
841 		      struct i915_gem_context *ctx)
842 {
843 	struct intel_context *ce = &ctx->engine[engine->id];
844 	unsigned int flags;
845 	void *vaddr;
846 	int ret;
847 
848 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
849 
850 	if (likely(ce->pin_count++))
851 		goto out;
852 	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
853 
854 	if (!ce->state) {
855 		ret = execlists_context_deferred_alloc(ctx, engine);
856 		if (ret)
857 			goto err;
858 	}
859 	GEM_BUG_ON(!ce->state);
860 
861 	flags = PIN_GLOBAL | PIN_HIGH;
862 	if (ctx->ggtt_offset_bias)
863 		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
864 
865 	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
866 	if (ret)
867 		goto err;
868 
869 	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
870 	if (IS_ERR(vaddr)) {
871 		ret = PTR_ERR(vaddr);
872 		goto unpin_vma;
873 	}
874 
875 	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
876 	if (ret)
877 		goto unpin_map;
878 
879 	intel_lr_context_descriptor_update(ctx, engine);
880 
881 	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
882 	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
883 		i915_ggtt_offset(ce->ring->vma);
884 
885 	ce->state->obj->mm.dirty = true;
886 
887 	i915_gem_context_get(ctx);
888 out:
889 	return ce->ring;
890 
891 unpin_map:
892 	i915_gem_object_unpin_map(ce->state->obj);
893 unpin_vma:
894 	__i915_vma_unpin(ce->state);
895 err:
896 	ce->pin_count = 0;
897 	return ERR_PTR(ret);
898 }
899 
execlists_context_unpin(struct intel_engine_cs * engine,struct i915_gem_context * ctx)900 static void execlists_context_unpin(struct intel_engine_cs *engine,
901 				    struct i915_gem_context *ctx)
902 {
903 	struct intel_context *ce = &ctx->engine[engine->id];
904 
905 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
906 	GEM_BUG_ON(ce->pin_count == 0);
907 
908 	if (--ce->pin_count)
909 		return;
910 
911 	intel_ring_unpin(ce->ring);
912 
913 	i915_gem_object_unpin_map(ce->state->obj);
914 	i915_vma_unpin(ce->state);
915 
916 	i915_gem_context_put(ctx);
917 }
918 
execlists_request_alloc(struct drm_i915_gem_request * request)919 static int execlists_request_alloc(struct drm_i915_gem_request *request)
920 {
921 	struct intel_engine_cs *engine = request->engine;
922 	struct intel_context *ce = &request->ctx->engine[engine->id];
923 	u32 *cs;
924 	int ret;
925 
926 	GEM_BUG_ON(!ce->pin_count);
927 
928 	/* Flush enough space to reduce the likelihood of waiting after
929 	 * we start building the request - in which case we will just
930 	 * have to repeat work.
931 	 */
932 	request->reserved_space += EXECLISTS_REQUEST_SIZE;
933 
934 	if (i915.enable_guc_submission) {
935 		/*
936 		 * Check that the GuC has space for the request before
937 		 * going any further, as the i915_add_request() call
938 		 * later on mustn't fail ...
939 		 */
940 		ret = i915_guc_wq_reserve(request);
941 		if (ret)
942 			goto err;
943 	}
944 
945 	cs = intel_ring_begin(request, 0);
946 	if (IS_ERR(cs)) {
947 		ret = PTR_ERR(cs);
948 		goto err_unreserve;
949 	}
950 
951 	if (!ce->initialised) {
952 		ret = engine->init_context(request);
953 		if (ret)
954 			goto err_unreserve;
955 
956 		ce->initialised = true;
957 	}
958 
959 	/* Note that after this point, we have committed to using
960 	 * this request as it is being used to both track the
961 	 * state of engine initialisation and liveness of the
962 	 * golden renderstate above. Think twice before you try
963 	 * to cancel/unwind this request now.
964 	 */
965 
966 	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
967 	return 0;
968 
969 err_unreserve:
970 	if (i915.enable_guc_submission)
971 		i915_guc_wq_unreserve(request);
972 err:
973 	return ret;
974 }
975 
976 /*
977  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
978  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
979  * but there is a slight complication as this is applied in WA batch where the
980  * values are only initialized once so we cannot take register value at the
981  * beginning and reuse it further; hence we save its value to memory, upload a
982  * constant value with bit21 set and then we restore it back with the saved value.
983  * To simplify the WA, a constant value is formed by using the default value
984  * of this register. This shouldn't be a problem because we are only modifying
985  * it for a short period and this batch in non-premptible. We can ofcourse
986  * use additional instructions that read the actual value of the register
987  * at that time and set our bit of interest but it makes the WA complicated.
988  *
989  * This WA is also required for Gen9 so extracting as a function avoids
990  * code duplication.
991  */
992 static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs * engine,u32 * batch)993 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
994 {
995 	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
996 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
997 	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
998 	*batch++ = 0;
999 
1000 	*batch++ = MI_LOAD_REGISTER_IMM(1);
1001 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1002 	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1003 
1004 	batch = gen8_emit_pipe_control(batch,
1005 				       PIPE_CONTROL_CS_STALL |
1006 				       PIPE_CONTROL_DC_FLUSH_ENABLE,
1007 				       0);
1008 
1009 	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1010 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1011 	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
1012 	*batch++ = 0;
1013 
1014 	return batch;
1015 }
1016 
1017 /*
1018  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1019  * initialized at the beginning and shared across all contexts but this field
1020  * helps us to have multiple batches at different offsets and select them based
1021  * on a criteria. At the moment this batch always start at the beginning of the page
1022  * and at this point we don't have multiple wa_ctx batch buffers.
1023  *
1024  * The number of WA applied are not known at the beginning; we use this field
1025  * to return the no of DWORDS written.
1026  *
1027  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1028  * so it adds NOOPs as padding to make it cacheline aligned.
1029  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1030  * makes a complete batch buffer.
1031  */
gen8_init_indirectctx_bb(struct intel_engine_cs * engine,u32 * batch)1032 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1033 {
1034 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1035 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1036 
1037 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1038 	if (IS_BROADWELL(engine->i915))
1039 		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1040 
1041 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1042 	/* Actual scratch location is at 128 bytes offset */
1043 	batch = gen8_emit_pipe_control(batch,
1044 				       PIPE_CONTROL_FLUSH_L3 |
1045 				       PIPE_CONTROL_GLOBAL_GTT_IVB |
1046 				       PIPE_CONTROL_CS_STALL |
1047 				       PIPE_CONTROL_QW_WRITE,
1048 				       i915_ggtt_offset(engine->scratch) +
1049 				       2 * CACHELINE_BYTES);
1050 
1051 	/* Pad to end of cacheline */
1052 	while ((unsigned long)batch % CACHELINE_BYTES)
1053 		*batch++ = MI_NOOP;
1054 
1055 	/*
1056 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1057 	 * execution depends on the length specified in terms of cache lines
1058 	 * in the register CTX_RCS_INDIRECT_CTX
1059 	 */
1060 
1061 	return batch;
1062 }
1063 
1064 /*
1065  *  This batch is started immediately after indirect_ctx batch. Since we ensure
1066  *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1067  *
1068  *  The number of DWORDS written are returned using this field.
1069  *
1070  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1071  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1072  */
gen8_init_perctx_bb(struct intel_engine_cs * engine,u32 * batch)1073 static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1074 {
1075 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1076 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1077 	*batch++ = MI_BATCH_BUFFER_END;
1078 
1079 	return batch;
1080 }
1081 
gen9_init_indirectctx_bb(struct intel_engine_cs * engine,u32 * batch)1082 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1083 {
1084 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1085 	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1086 
1087 	*batch++ = MI_LOAD_REGISTER_IMM(3);
1088 
1089 	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1090 	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1091 	*batch++ = _MASKED_BIT_DISABLE(
1092 			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1093 
1094 	/* BSpec: 11391 */
1095 	*batch++ = i915_mmio_reg_offset(FF_SLICE_CHICKEN);
1096 	*batch++ = _MASKED_BIT_ENABLE(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX);
1097 
1098 	/* BSpec: 11299 */
1099 	*batch++ = i915_mmio_reg_offset(_3D_CHICKEN3);
1100 	*batch++ = _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX);
1101 
1102 	*batch++ = MI_NOOP;
1103 
1104 	/* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */
1105 	batch = gen8_emit_pipe_control(batch,
1106 				       PIPE_CONTROL_FLUSH_L3 |
1107 				       PIPE_CONTROL_GLOBAL_GTT_IVB |
1108 				       PIPE_CONTROL_CS_STALL |
1109 				       PIPE_CONTROL_QW_WRITE,
1110 				       i915_ggtt_offset(engine->scratch) +
1111 				       2 * CACHELINE_BYTES);
1112 
1113 	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1114 	if (HAS_POOLED_EU(engine->i915)) {
1115 		/*
1116 		 * EU pool configuration is setup along with golden context
1117 		 * during context initialization. This value depends on
1118 		 * device type (2x6 or 3x6) and needs to be updated based
1119 		 * on which subslice is disabled especially for 2x6
1120 		 * devices, however it is safe to load default
1121 		 * configuration of 3x6 device instead of masking off
1122 		 * corresponding bits because HW ignores bits of a disabled
1123 		 * subslice and drops down to appropriate config. Please
1124 		 * see render_state_setup() in i915_gem_render_state.c for
1125 		 * possible configurations, to avoid duplication they are
1126 		 * not shown here again.
1127 		 */
1128 		*batch++ = GEN9_MEDIA_POOL_STATE;
1129 		*batch++ = GEN9_MEDIA_POOL_ENABLE;
1130 		*batch++ = 0x00777000;
1131 		*batch++ = 0;
1132 		*batch++ = 0;
1133 		*batch++ = 0;
1134 	}
1135 
1136 	/* Pad to end of cacheline */
1137 	while ((unsigned long)batch % CACHELINE_BYTES)
1138 		*batch++ = MI_NOOP;
1139 
1140 	return batch;
1141 }
1142 
gen9_init_perctx_bb(struct intel_engine_cs * engine,u32 * batch)1143 static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1144 {
1145 	*batch++ = MI_BATCH_BUFFER_END;
1146 
1147 	return batch;
1148 }
1149 
1150 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1151 
lrc_setup_wa_ctx(struct intel_engine_cs * engine)1152 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1153 {
1154 	struct drm_i915_gem_object *obj;
1155 	struct i915_vma *vma;
1156 	int err;
1157 
1158 	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1159 	if (IS_ERR(obj))
1160 		return PTR_ERR(obj);
1161 
1162 	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1163 	if (IS_ERR(vma)) {
1164 		err = PTR_ERR(vma);
1165 		goto err;
1166 	}
1167 
1168 	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1169 	if (err)
1170 		goto err;
1171 
1172 	engine->wa_ctx.vma = vma;
1173 	return 0;
1174 
1175 err:
1176 	i915_gem_object_put(obj);
1177 	return err;
1178 }
1179 
lrc_destroy_wa_ctx(struct intel_engine_cs * engine)1180 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1181 {
1182 	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1183 }
1184 
1185 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1186 
intel_init_workaround_bb(struct intel_engine_cs * engine)1187 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1188 {
1189 	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1190 	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1191 					    &wa_ctx->per_ctx };
1192 	wa_bb_func_t wa_bb_fn[2];
1193 	struct page *page;
1194 	void *batch, *batch_ptr;
1195 	unsigned int i;
1196 	int ret;
1197 
1198 	if (WARN_ON(engine->id != RCS || !engine->scratch))
1199 		return -EINVAL;
1200 
1201 	switch (INTEL_GEN(engine->i915)) {
1202 	case 9:
1203 		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1204 		wa_bb_fn[1] = gen9_init_perctx_bb;
1205 		break;
1206 	case 8:
1207 		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1208 		wa_bb_fn[1] = gen8_init_perctx_bb;
1209 		break;
1210 	default:
1211 		MISSING_CASE(INTEL_GEN(engine->i915));
1212 		return 0;
1213 	}
1214 
1215 	ret = lrc_setup_wa_ctx(engine);
1216 	if (ret) {
1217 		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1218 		return ret;
1219 	}
1220 
1221 	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1222 	batch = batch_ptr = kmap_atomic(page);
1223 
1224 	/*
1225 	 * Emit the two workaround batch buffers, recording the offset from the
1226 	 * start of the workaround batch buffer object for each and their
1227 	 * respective sizes.
1228 	 */
1229 	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1230 		wa_bb[i]->offset = batch_ptr - batch;
1231 		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1232 			ret = -EINVAL;
1233 			break;
1234 		}
1235 		batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1236 		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1237 	}
1238 
1239 	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1240 
1241 	kunmap_atomic(batch);
1242 	if (ret)
1243 		lrc_destroy_wa_ctx(engine);
1244 
1245 	return ret;
1246 }
1247 
1248 static u8 gtiir[] = {
1249 	[RCS] = 0,
1250 	[BCS] = 0,
1251 	[VCS] = 1,
1252 	[VCS2] = 1,
1253 	[VECS] = 3,
1254 };
1255 
gen8_init_common_ring(struct intel_engine_cs * engine)1256 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1257 {
1258 	struct drm_i915_private *dev_priv = engine->i915;
1259 	struct execlist_port *port = engine->execlist_port;
1260 	unsigned int n;
1261 	bool submit;
1262 	int ret;
1263 
1264 	ret = intel_mocs_init_engine(engine);
1265 	if (ret)
1266 		return ret;
1267 
1268 	intel_engine_reset_breadcrumbs(engine);
1269 	intel_engine_init_hangcheck(engine);
1270 
1271 	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1272 	I915_WRITE(RING_MODE_GEN7(engine),
1273 		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1274 	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1275 		   engine->status_page.ggtt_offset);
1276 	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1277 
1278 	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1279 
1280 	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
1281 
1282 	/*
1283 	 * Clear any pending interrupt state.
1284 	 *
1285 	 * We do it twice out of paranoia that some of the IIR are double
1286 	 * buffered, and if we only reset it once there may still be
1287 	 * an interrupt pending.
1288 	 */
1289 	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1290 		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1291 	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1292 		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1293 	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1294 
1295 	/* After a GPU reset, we may have requests to replay */
1296 	submit = false;
1297 	for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++) {
1298 		if (!port_isset(&port[n]))
1299 			break;
1300 
1301 		DRM_DEBUG_DRIVER("Restarting %s:%d from 0x%x\n",
1302 				 engine->name, n,
1303 				 port_request(&port[n])->global_seqno);
1304 
1305 		/* Discard the current inflight count */
1306 		port_set(&port[n], port_request(&port[n]));
1307 		submit = true;
1308 	}
1309 
1310 	if (submit && !i915.enable_guc_submission)
1311 		execlists_submit_ports(engine);
1312 
1313 	return 0;
1314 }
1315 
gen8_init_render_ring(struct intel_engine_cs * engine)1316 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1317 {
1318 	struct drm_i915_private *dev_priv = engine->i915;
1319 	int ret;
1320 
1321 	ret = gen8_init_common_ring(engine);
1322 	if (ret)
1323 		return ret;
1324 
1325 	/* We need to disable the AsyncFlip performance optimisations in order
1326 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1327 	 * programmed to '1' on all products.
1328 	 *
1329 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1330 	 */
1331 	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1332 
1333 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1334 
1335 	return init_workarounds_ring(engine);
1336 }
1337 
gen9_init_render_ring(struct intel_engine_cs * engine)1338 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1339 {
1340 	int ret;
1341 
1342 	ret = gen8_init_common_ring(engine);
1343 	if (ret)
1344 		return ret;
1345 
1346 	return init_workarounds_ring(engine);
1347 }
1348 
reset_common_ring(struct intel_engine_cs * engine,struct drm_i915_gem_request * request)1349 static void reset_common_ring(struct intel_engine_cs *engine,
1350 			      struct drm_i915_gem_request *request)
1351 {
1352 	struct execlist_port *port = engine->execlist_port;
1353 	struct intel_context *ce;
1354 	unsigned int n;
1355 
1356 	/*
1357 	 * Catch up with any missed context-switch interrupts.
1358 	 *
1359 	 * Ideally we would just read the remaining CSB entries now that we
1360 	 * know the gpu is idle. However, the CSB registers are sometimes^W
1361 	 * often trashed across a GPU reset! Instead we have to rely on
1362 	 * guessing the missed context-switch events by looking at what
1363 	 * requests were completed.
1364 	 */
1365 	if (!request) {
1366 		for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
1367 			i915_gem_request_put(port_request(&port[n]));
1368 		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
1369 		return;
1370 	}
1371 
1372 	if (request->ctx != port_request(port)->ctx) {
1373 		i915_gem_request_put(port_request(port));
1374 		port[0] = port[1];
1375 		memset(&port[1], 0, sizeof(port[1]));
1376 	}
1377 
1378 	GEM_BUG_ON(request->ctx != port_request(port)->ctx);
1379 
1380 	/* If the request was innocent, we leave the request in the ELSP
1381 	 * and will try to replay it on restarting. The context image may
1382 	 * have been corrupted by the reset, in which case we may have
1383 	 * to service a new GPU hang, but more likely we can continue on
1384 	 * without impact.
1385 	 *
1386 	 * If the request was guilty, we presume the context is corrupt
1387 	 * and have to at least restore the RING register in the context
1388 	 * image back to the expected values to skip over the guilty request.
1389 	 */
1390 	if (request->fence.error != -EIO)
1391 		return;
1392 
1393 	/* We want a simple context + ring to execute the breadcrumb update.
1394 	 * We cannot rely on the context being intact across the GPU hang,
1395 	 * so clear it and rebuild just what we need for the breadcrumb.
1396 	 * All pending requests for this context will be zapped, and any
1397 	 * future request will be after userspace has had the opportunity
1398 	 * to recreate its own state.
1399 	 */
1400 	ce = &request->ctx->engine[engine->id];
1401 	execlists_init_reg_state(ce->lrc_reg_state,
1402 				 request->ctx, engine, ce->ring);
1403 
1404 	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1405 	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1406 		i915_ggtt_offset(ce->ring->vma);
1407 	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1408 
1409 	request->ring->head = request->postfix;
1410 	intel_ring_update_space(request->ring);
1411 
1412 	/* Reset WaIdleLiteRestore:bdw,skl as well */
1413 	request->tail =
1414 		intel_ring_wrap(request->ring,
1415 				request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
1416 	assert_ring_tail_valid(request->ring, request->tail);
1417 }
1418 
intel_logical_ring_emit_pdps(struct drm_i915_gem_request * req)1419 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1420 {
1421 	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1422 	struct intel_engine_cs *engine = req->engine;
1423 	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1424 	u32 *cs;
1425 	int i;
1426 
1427 	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1428 	if (IS_ERR(cs))
1429 		return PTR_ERR(cs);
1430 
1431 	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1432 	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1433 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1434 
1435 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1436 		*cs++ = upper_32_bits(pd_daddr);
1437 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1438 		*cs++ = lower_32_bits(pd_daddr);
1439 	}
1440 
1441 	*cs++ = MI_NOOP;
1442 	intel_ring_advance(req, cs);
1443 
1444 	return 0;
1445 }
1446 
gen8_emit_bb_start(struct drm_i915_gem_request * req,u64 offset,u32 len,const unsigned int flags)1447 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1448 			      u64 offset, u32 len,
1449 			      const unsigned int flags)
1450 {
1451 	u32 *cs;
1452 	int ret;
1453 
1454 	/* Don't rely in hw updating PDPs, specially in lite-restore.
1455 	 * Ideally, we should set Force PD Restore in ctx descriptor,
1456 	 * but we can't. Force Restore would be a second option, but
1457 	 * it is unsafe in case of lite-restore (because the ctx is
1458 	 * not idle). PML4 is allocated during ppgtt init so this is
1459 	 * not needed in 48-bit.*/
1460 	if (req->ctx->ppgtt &&
1461 	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1462 	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1463 	    !intel_vgpu_active(req->i915)) {
1464 		ret = intel_logical_ring_emit_pdps(req);
1465 		if (ret)
1466 			return ret;
1467 
1468 		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1469 	}
1470 
1471 	cs = intel_ring_begin(req, 4);
1472 	if (IS_ERR(cs))
1473 		return PTR_ERR(cs);
1474 
1475 	/* FIXME(BDW): Address space and security selectors. */
1476 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
1477 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1478 		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1479 	*cs++ = lower_32_bits(offset);
1480 	*cs++ = upper_32_bits(offset);
1481 	*cs++ = MI_NOOP;
1482 	intel_ring_advance(req, cs);
1483 
1484 	return 0;
1485 }
1486 
gen8_logical_ring_enable_irq(struct intel_engine_cs * engine)1487 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1488 {
1489 	struct drm_i915_private *dev_priv = engine->i915;
1490 	I915_WRITE_IMR(engine,
1491 		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
1492 	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1493 }
1494 
gen8_logical_ring_disable_irq(struct intel_engine_cs * engine)1495 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1496 {
1497 	struct drm_i915_private *dev_priv = engine->i915;
1498 	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1499 }
1500 
gen8_emit_flush(struct drm_i915_gem_request * request,u32 mode)1501 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1502 {
1503 	u32 cmd, *cs;
1504 
1505 	cs = intel_ring_begin(request, 4);
1506 	if (IS_ERR(cs))
1507 		return PTR_ERR(cs);
1508 
1509 	cmd = MI_FLUSH_DW + 1;
1510 
1511 	/* We always require a command barrier so that subsequent
1512 	 * commands, such as breadcrumb interrupts, are strictly ordered
1513 	 * wrt the contents of the write cache being flushed to memory
1514 	 * (and thus being coherent from the CPU).
1515 	 */
1516 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1517 
1518 	if (mode & EMIT_INVALIDATE) {
1519 		cmd |= MI_INVALIDATE_TLB;
1520 		if (request->engine->id == VCS)
1521 			cmd |= MI_INVALIDATE_BSD;
1522 	}
1523 
1524 	*cs++ = cmd;
1525 	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1526 	*cs++ = 0; /* upper addr */
1527 	*cs++ = 0; /* value */
1528 	intel_ring_advance(request, cs);
1529 
1530 	return 0;
1531 }
1532 
gen8_emit_flush_render(struct drm_i915_gem_request * request,u32 mode)1533 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1534 				  u32 mode)
1535 {
1536 	struct intel_engine_cs *engine = request->engine;
1537 	u32 scratch_addr =
1538 		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1539 	bool vf_flush_wa = false, dc_flush_wa = false;
1540 	u32 *cs, flags = 0;
1541 	int len;
1542 
1543 	flags |= PIPE_CONTROL_CS_STALL;
1544 
1545 	if (mode & EMIT_FLUSH) {
1546 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1547 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1548 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1549 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1550 	}
1551 
1552 	if (mode & EMIT_INVALIDATE) {
1553 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
1554 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1555 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1556 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1557 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1558 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1559 		flags |= PIPE_CONTROL_QW_WRITE;
1560 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1561 
1562 		/*
1563 		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1564 		 * pipe control.
1565 		 */
1566 		if (IS_GEN9(request->i915))
1567 			vf_flush_wa = true;
1568 
1569 		/* WaForGAMHang:kbl */
1570 		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1571 			dc_flush_wa = true;
1572 	}
1573 
1574 	len = 6;
1575 
1576 	if (vf_flush_wa)
1577 		len += 6;
1578 
1579 	if (dc_flush_wa)
1580 		len += 12;
1581 
1582 	cs = intel_ring_begin(request, len);
1583 	if (IS_ERR(cs))
1584 		return PTR_ERR(cs);
1585 
1586 	if (vf_flush_wa)
1587 		cs = gen8_emit_pipe_control(cs, 0, 0);
1588 
1589 	if (dc_flush_wa)
1590 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1591 					    0);
1592 
1593 	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
1594 
1595 	if (dc_flush_wa)
1596 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
1597 
1598 	intel_ring_advance(request, cs);
1599 
1600 	return 0;
1601 }
1602 
1603 /*
1604  * Reserve space for 2 NOOPs at the end of each request to be
1605  * used as a workaround for not being allowed to do lite
1606  * restore with HEAD==TAIL (WaIdleLiteRestore).
1607  */
gen8_emit_wa_tail(struct drm_i915_gem_request * request,u32 * cs)1608 static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1609 {
1610 	*cs++ = MI_NOOP;
1611 	*cs++ = MI_NOOP;
1612 	request->wa_tail = intel_ring_offset(request, cs);
1613 }
1614 
gen8_emit_breadcrumb(struct drm_i915_gem_request * request,u32 * cs)1615 static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
1616 {
1617 	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1618 	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1619 
1620 	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1621 	*cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1622 	*cs++ = 0;
1623 	*cs++ = request->global_seqno;
1624 	*cs++ = MI_USER_INTERRUPT;
1625 	*cs++ = MI_NOOP;
1626 	request->tail = intel_ring_offset(request, cs);
1627 	assert_ring_tail_valid(request->ring, request->tail);
1628 
1629 	gen8_emit_wa_tail(request, cs);
1630 }
1631 
1632 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1633 
gen8_emit_breadcrumb_render(struct drm_i915_gem_request * request,u32 * cs)1634 static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1635 					u32 *cs)
1636 {
1637 	/* We're using qword write, seqno should be aligned to 8 bytes. */
1638 	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1639 
1640 	/* w/a for post sync ops following a GPGPU operation we
1641 	 * need a prior CS_STALL, which is emitted by the flush
1642 	 * following the batch.
1643 	 */
1644 	*cs++ = GFX_OP_PIPE_CONTROL(6);
1645 	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1646 		PIPE_CONTROL_QW_WRITE;
1647 	*cs++ = intel_hws_seqno_address(request->engine);
1648 	*cs++ = 0;
1649 	*cs++ = request->global_seqno;
1650 	/* We're thrashing one dword of HWS. */
1651 	*cs++ = 0;
1652 	*cs++ = MI_USER_INTERRUPT;
1653 	*cs++ = MI_NOOP;
1654 	request->tail = intel_ring_offset(request, cs);
1655 	assert_ring_tail_valid(request->ring, request->tail);
1656 
1657 	gen8_emit_wa_tail(request, cs);
1658 }
1659 
1660 static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1661 
gen8_init_rcs_context(struct drm_i915_gem_request * req)1662 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1663 {
1664 	int ret;
1665 
1666 	ret = intel_ring_workarounds_emit(req);
1667 	if (ret)
1668 		return ret;
1669 
1670 	ret = intel_rcs_context_init_mocs(req);
1671 	/*
1672 	 * Failing to program the MOCS is non-fatal.The system will not
1673 	 * run at peak performance. So generate an error and carry on.
1674 	 */
1675 	if (ret)
1676 		DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1677 
1678 	return i915_gem_render_state_emit(req);
1679 }
1680 
1681 /**
1682  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1683  * @engine: Engine Command Streamer.
1684  */
intel_logical_ring_cleanup(struct intel_engine_cs * engine)1685 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1686 {
1687 	struct drm_i915_private *dev_priv;
1688 
1689 	/*
1690 	 * Tasklet cannot be active at this point due intel_mark_active/idle
1691 	 * so this is just for documentation.
1692 	 */
1693 	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1694 		tasklet_kill(&engine->irq_tasklet);
1695 
1696 	dev_priv = engine->i915;
1697 
1698 	if (engine->buffer) {
1699 		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1700 	}
1701 
1702 	if (engine->cleanup)
1703 		engine->cleanup(engine);
1704 
1705 	if (engine->status_page.vma) {
1706 		i915_gem_object_unpin_map(engine->status_page.vma->obj);
1707 		engine->status_page.vma = NULL;
1708 	}
1709 
1710 	intel_engine_cleanup_common(engine);
1711 
1712 	lrc_destroy_wa_ctx(engine);
1713 	engine->i915 = NULL;
1714 	dev_priv->engine[engine->id] = NULL;
1715 	kfree(engine);
1716 }
1717 
execlists_set_default_submission(struct intel_engine_cs * engine)1718 static void execlists_set_default_submission(struct intel_engine_cs *engine)
1719 {
1720 	engine->submit_request = execlists_submit_request;
1721 	engine->schedule = execlists_schedule;
1722 	engine->irq_tasklet.func = intel_lrc_irq_handler;
1723 }
1724 
1725 static void
logical_ring_default_vfuncs(struct intel_engine_cs * engine)1726 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1727 {
1728 	/* Default vfuncs which can be overriden by each engine. */
1729 	engine->init_hw = gen8_init_common_ring;
1730 	engine->reset_hw = reset_common_ring;
1731 
1732 	engine->context_pin = execlists_context_pin;
1733 	engine->context_unpin = execlists_context_unpin;
1734 
1735 	engine->request_alloc = execlists_request_alloc;
1736 
1737 	engine->emit_flush = gen8_emit_flush;
1738 	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1739 	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1740 
1741 	engine->set_default_submission = execlists_set_default_submission;
1742 
1743 	engine->irq_enable = gen8_logical_ring_enable_irq;
1744 	engine->irq_disable = gen8_logical_ring_disable_irq;
1745 	engine->emit_bb_start = gen8_emit_bb_start;
1746 }
1747 
1748 static inline void
logical_ring_default_irqs(struct intel_engine_cs * engine)1749 logical_ring_default_irqs(struct intel_engine_cs *engine)
1750 {
1751 	unsigned shift = engine->irq_shift;
1752 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1753 	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1754 }
1755 
1756 static int
lrc_setup_hws(struct intel_engine_cs * engine,struct i915_vma * vma)1757 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1758 {
1759 	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1760 	void *hws;
1761 
1762 	/* The HWSP is part of the default context object in LRC mode. */
1763 	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1764 	if (IS_ERR(hws))
1765 		return PTR_ERR(hws);
1766 
1767 	engine->status_page.page_addr = hws + hws_offset;
1768 	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1769 	engine->status_page.vma = vma;
1770 
1771 	return 0;
1772 }
1773 
1774 static void
logical_ring_setup(struct intel_engine_cs * engine)1775 logical_ring_setup(struct intel_engine_cs *engine)
1776 {
1777 	struct drm_i915_private *dev_priv = engine->i915;
1778 	enum forcewake_domains fw_domains;
1779 
1780 	intel_engine_setup_common(engine);
1781 
1782 	/* Intentionally left blank. */
1783 	engine->buffer = NULL;
1784 
1785 	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1786 						    RING_ELSP(engine),
1787 						    FW_REG_WRITE);
1788 
1789 	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1790 						     RING_CONTEXT_STATUS_PTR(engine),
1791 						     FW_REG_READ | FW_REG_WRITE);
1792 
1793 	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1794 						     RING_CONTEXT_STATUS_BUF_BASE(engine),
1795 						     FW_REG_READ);
1796 
1797 	engine->fw_domains = fw_domains;
1798 
1799 	tasklet_init(&engine->irq_tasklet,
1800 		     intel_lrc_irq_handler, (unsigned long)engine);
1801 
1802 	logical_ring_default_vfuncs(engine);
1803 	logical_ring_default_irqs(engine);
1804 }
1805 
1806 static int
logical_ring_init(struct intel_engine_cs * engine)1807 logical_ring_init(struct intel_engine_cs *engine)
1808 {
1809 	struct i915_gem_context *dctx = engine->i915->kernel_context;
1810 	int ret;
1811 
1812 	ret = intel_engine_init_common(engine);
1813 	if (ret)
1814 		goto error;
1815 
1816 	/* And setup the hardware status page. */
1817 	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1818 	if (ret) {
1819 		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1820 		goto error;
1821 	}
1822 
1823 	return 0;
1824 
1825 error:
1826 	intel_logical_ring_cleanup(engine);
1827 	return ret;
1828 }
1829 
logical_render_ring_init(struct intel_engine_cs * engine)1830 int logical_render_ring_init(struct intel_engine_cs *engine)
1831 {
1832 	struct drm_i915_private *dev_priv = engine->i915;
1833 	int ret;
1834 
1835 	logical_ring_setup(engine);
1836 
1837 	if (HAS_L3_DPF(dev_priv))
1838 		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1839 
1840 	/* Override some for render ring. */
1841 	if (INTEL_GEN(dev_priv) >= 9)
1842 		engine->init_hw = gen9_init_render_ring;
1843 	else
1844 		engine->init_hw = gen8_init_render_ring;
1845 	engine->init_context = gen8_init_rcs_context;
1846 	engine->emit_flush = gen8_emit_flush_render;
1847 	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1848 	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1849 
1850 	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1851 	if (ret)
1852 		return ret;
1853 
1854 	ret = intel_init_workaround_bb(engine);
1855 	if (ret) {
1856 		/*
1857 		 * We continue even if we fail to initialize WA batch
1858 		 * because we only expect rare glitches but nothing
1859 		 * critical to prevent us from using GPU
1860 		 */
1861 		DRM_ERROR("WA batch buffer initialization failed: %d\n",
1862 			  ret);
1863 	}
1864 
1865 	return logical_ring_init(engine);
1866 }
1867 
logical_xcs_ring_init(struct intel_engine_cs * engine)1868 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1869 {
1870 	logical_ring_setup(engine);
1871 
1872 	return logical_ring_init(engine);
1873 }
1874 
1875 static u32
make_rpcs(struct drm_i915_private * dev_priv)1876 make_rpcs(struct drm_i915_private *dev_priv)
1877 {
1878 	u32 rpcs = 0;
1879 
1880 	/*
1881 	 * No explicit RPCS request is needed to ensure full
1882 	 * slice/subslice/EU enablement prior to Gen9.
1883 	*/
1884 	if (INTEL_GEN(dev_priv) < 9)
1885 		return 0;
1886 
1887 	/*
1888 	 * Starting in Gen9, render power gating can leave
1889 	 * slice/subslice/EU in a partially enabled state. We
1890 	 * must make an explicit request through RPCS for full
1891 	 * enablement.
1892 	*/
1893 	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1894 		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1895 		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1896 			GEN8_RPCS_S_CNT_SHIFT;
1897 		rpcs |= GEN8_RPCS_ENABLE;
1898 	}
1899 
1900 	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1901 		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1902 		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1903 			GEN8_RPCS_SS_CNT_SHIFT;
1904 		rpcs |= GEN8_RPCS_ENABLE;
1905 	}
1906 
1907 	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1908 		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1909 			GEN8_RPCS_EU_MIN_SHIFT;
1910 		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1911 			GEN8_RPCS_EU_MAX_SHIFT;
1912 		rpcs |= GEN8_RPCS_ENABLE;
1913 	}
1914 
1915 	return rpcs;
1916 }
1917 
intel_lr_indirect_ctx_offset(struct intel_engine_cs * engine)1918 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1919 {
1920 	u32 indirect_ctx_offset;
1921 
1922 	switch (INTEL_GEN(engine->i915)) {
1923 	default:
1924 		MISSING_CASE(INTEL_GEN(engine->i915));
1925 		/* fall through */
1926 	case 10:
1927 		indirect_ctx_offset =
1928 			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1929 		break;
1930 	case 9:
1931 		indirect_ctx_offset =
1932 			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1933 		break;
1934 	case 8:
1935 		indirect_ctx_offset =
1936 			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1937 		break;
1938 	}
1939 
1940 	return indirect_ctx_offset;
1941 }
1942 
execlists_init_reg_state(u32 * regs,struct i915_gem_context * ctx,struct intel_engine_cs * engine,struct intel_ring * ring)1943 static void execlists_init_reg_state(u32 *regs,
1944 				     struct i915_gem_context *ctx,
1945 				     struct intel_engine_cs *engine,
1946 				     struct intel_ring *ring)
1947 {
1948 	struct drm_i915_private *dev_priv = engine->i915;
1949 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1950 	u32 base = engine->mmio_base;
1951 	bool rcs = engine->id == RCS;
1952 
1953 	/* A context is actually a big batch buffer with several
1954 	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
1955 	 * values we are setting here are only for the first context restore:
1956 	 * on a subsequent save, the GPU will recreate this batchbuffer with new
1957 	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
1958 	 * we are not initializing here).
1959 	 */
1960 	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
1961 				 MI_LRI_FORCE_POSTED;
1962 
1963 	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
1964 		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1965 				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1966 				   (HAS_RESOURCE_STREAMER(dev_priv) ?
1967 				   CTX_CTRL_RS_CTX_ENABLE : 0)));
1968 	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
1969 	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
1970 	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
1971 	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
1972 		RING_CTL_SIZE(ring->size) | RING_VALID);
1973 	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
1974 	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
1975 	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
1976 	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
1977 	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
1978 	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
1979 	if (rcs) {
1980 		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
1981 		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
1982 		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
1983 			RING_INDIRECT_CTX_OFFSET(base), 0);
1984 
1985 		if (engine->wa_ctx.vma) {
1986 			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1987 			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1988 
1989 			regs[CTX_RCS_INDIRECT_CTX + 1] =
1990 				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
1991 				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1992 
1993 			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
1994 				intel_lr_indirect_ctx_offset(engine) << 6;
1995 
1996 			regs[CTX_BB_PER_CTX_PTR + 1] =
1997 				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
1998 		}
1999 	}
2000 
2001 	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2002 
2003 	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2004 	/* PDP values well be assigned later if needed */
2005 	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2006 	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2007 	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2008 	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2009 	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2010 	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2011 	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2012 	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2013 
2014 	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2015 		/* 64b PPGTT (48bit canonical)
2016 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
2017 		 * other PDP Descriptors are ignored.
2018 		 */
2019 		ASSIGN_CTX_PML4(ppgtt, regs);
2020 	}
2021 
2022 	if (rcs) {
2023 		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2024 		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2025 			make_rpcs(dev_priv));
2026 
2027 		i915_oa_init_reg_state(engine, ctx, regs);
2028 	}
2029 }
2030 
2031 static int
populate_lr_context(struct i915_gem_context * ctx,struct drm_i915_gem_object * ctx_obj,struct intel_engine_cs * engine,struct intel_ring * ring)2032 populate_lr_context(struct i915_gem_context *ctx,
2033 		    struct drm_i915_gem_object *ctx_obj,
2034 		    struct intel_engine_cs *engine,
2035 		    struct intel_ring *ring)
2036 {
2037 	void *vaddr;
2038 	int ret;
2039 
2040 	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2041 	if (ret) {
2042 		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2043 		return ret;
2044 	}
2045 
2046 	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2047 	if (IS_ERR(vaddr)) {
2048 		ret = PTR_ERR(vaddr);
2049 		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2050 		return ret;
2051 	}
2052 	ctx_obj->mm.dirty = true;
2053 
2054 	/* The second page of the context object contains some fields which must
2055 	 * be set up prior to the first execution. */
2056 
2057 	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2058 				 ctx, engine, ring);
2059 
2060 	i915_gem_object_unpin_map(ctx_obj);
2061 
2062 	return 0;
2063 }
2064 
execlists_context_deferred_alloc(struct i915_gem_context * ctx,struct intel_engine_cs * engine)2065 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2066 					    struct intel_engine_cs *engine)
2067 {
2068 	struct drm_i915_gem_object *ctx_obj;
2069 	struct intel_context *ce = &ctx->engine[engine->id];
2070 	struct i915_vma *vma;
2071 	uint32_t context_size;
2072 	struct intel_ring *ring;
2073 	int ret;
2074 
2075 	WARN_ON(ce->state);
2076 
2077 	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2078 
2079 	/* One extra page as the sharing data between driver and GuC */
2080 	context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2081 
2082 	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2083 	if (IS_ERR(ctx_obj)) {
2084 		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2085 		return PTR_ERR(ctx_obj);
2086 	}
2087 
2088 	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2089 	if (IS_ERR(vma)) {
2090 		ret = PTR_ERR(vma);
2091 		goto error_deref_obj;
2092 	}
2093 
2094 	ring = intel_engine_create_ring(engine, ctx->ring_size);
2095 	if (IS_ERR(ring)) {
2096 		ret = PTR_ERR(ring);
2097 		goto error_deref_obj;
2098 	}
2099 
2100 	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2101 	if (ret) {
2102 		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2103 		goto error_ring_free;
2104 	}
2105 
2106 	ce->ring = ring;
2107 	ce->state = vma;
2108 	ce->initialised |= engine->init_context == NULL;
2109 
2110 	return 0;
2111 
2112 error_ring_free:
2113 	intel_ring_free(ring);
2114 error_deref_obj:
2115 	i915_gem_object_put(ctx_obj);
2116 	return ret;
2117 }
2118 
intel_lr_context_resume(struct drm_i915_private * dev_priv)2119 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2120 {
2121 	struct intel_engine_cs *engine;
2122 	struct i915_gem_context *ctx;
2123 	enum intel_engine_id id;
2124 
2125 	/* Because we emit WA_TAIL_DWORDS there may be a disparity
2126 	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2127 	 * that stored in context. As we only write new commands from
2128 	 * ce->ring->tail onwards, everything before that is junk. If the GPU
2129 	 * starts reading from its RING_HEAD from the context, it may try to
2130 	 * execute that junk and die.
2131 	 *
2132 	 * So to avoid that we reset the context images upon resume. For
2133 	 * simplicity, we just zero everything out.
2134 	 */
2135 	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2136 		for_each_engine(engine, dev_priv, id) {
2137 			struct intel_context *ce = &ctx->engine[engine->id];
2138 			u32 *reg;
2139 
2140 			if (!ce->state)
2141 				continue;
2142 
2143 			reg = i915_gem_object_pin_map(ce->state->obj,
2144 						      I915_MAP_WB);
2145 			if (WARN_ON(IS_ERR(reg)))
2146 				continue;
2147 
2148 			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2149 			reg[CTX_RING_HEAD+1] = 0;
2150 			reg[CTX_RING_TAIL+1] = 0;
2151 
2152 			ce->state->obj->mm.dirty = true;
2153 			i915_gem_object_unpin_map(ce->state->obj);
2154 
2155 			intel_ring_reset(ce->ring, 0);
2156 		}
2157 	}
2158 }
2159