• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * DOC: Panel Self Refresh (PSR/SRD)
26  *
27  * Since Haswell Display controller supports Panel Self-Refresh on display
28  * panels witch have a remote frame buffer (RFB) implemented according to PSR
29  * spec in eDP1.3. PSR feature allows the display to go to lower standby states
30  * when system is idle but display is on as it eliminates display refresh
31  * request to DDR memory completely as long as the frame buffer for that
32  * display is unchanged.
33  *
34  * Panel Self Refresh must be supported by both Hardware (source) and
35  * Panel (sink).
36  *
37  * PSR saves power by caching the framebuffer in the panel RFB, which allows us
38  * to power down the link and memory controller. For DSI panels the same idea
39  * is called "manual mode".
40  *
41  * The implementation uses the hardware-based PSR support which automatically
42  * enters/exits self-refresh mode. The hardware takes care of sending the
43  * required DP aux message and could even retrain the link (that part isn't
44  * enabled yet though). The hardware also keeps track of any frontbuffer
45  * changes to know when to exit self-refresh mode again. Unfortunately that
46  * part doesn't work too well, hence why the i915 PSR support uses the
47  * software frontbuffer tracking to make sure it doesn't miss a screen
48  * update. For this integration intel_psr_invalidate() and intel_psr_flush()
49  * get called by the frontbuffer tracking code. Note that because of locking
50  * issues the self-refresh re-enable code is done from a work queue, which
51  * must be correctly synchronized/cancelled when shutting down the pipe."
52  */
53 
54 #include <drm/drmP.h>
55 
56 #include "intel_drv.h"
57 #include "i915_drv.h"
58 
is_edp_psr(struct intel_dp * intel_dp)59 static bool is_edp_psr(struct intel_dp *intel_dp)
60 {
61 	return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
62 }
63 
vlv_is_psr_active_on_pipe(struct drm_device * dev,int pipe)64 static bool vlv_is_psr_active_on_pipe(struct drm_device *dev, int pipe)
65 {
66 	struct drm_i915_private *dev_priv = to_i915(dev);
67 	uint32_t val;
68 
69 	val = I915_READ(VLV_PSRSTAT(pipe)) &
70 	      VLV_EDP_PSR_CURR_STATE_MASK;
71 	return (val == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
72 	       (val == VLV_EDP_PSR_ACTIVE_SF_UPDATE);
73 }
74 
intel_psr_write_vsc(struct intel_dp * intel_dp,const struct edp_vsc_psr * vsc_psr)75 static void intel_psr_write_vsc(struct intel_dp *intel_dp,
76 				const struct edp_vsc_psr *vsc_psr)
77 {
78 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
79 	struct drm_device *dev = dig_port->base.base.dev;
80 	struct drm_i915_private *dev_priv = to_i915(dev);
81 	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
82 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
83 	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
84 	uint32_t *data = (uint32_t *) vsc_psr;
85 	unsigned int i;
86 
87 	/* As per BSPec (Pipe Video Data Island Packet), we need to disable
88 	   the video DIP being updated before program video DIP data buffer
89 	   registers for DIP being updated. */
90 	I915_WRITE(ctl_reg, 0);
91 	POSTING_READ(ctl_reg);
92 
93 	for (i = 0; i < sizeof(*vsc_psr); i += 4) {
94 		I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder,
95 						   i >> 2), *data);
96 		data++;
97 	}
98 	for (; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4)
99 		I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder,
100 						   i >> 2), 0);
101 
102 	I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
103 	POSTING_READ(ctl_reg);
104 }
105 
vlv_psr_setup_vsc(struct intel_dp * intel_dp)106 static void vlv_psr_setup_vsc(struct intel_dp *intel_dp)
107 {
108 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
109 	struct drm_device *dev = intel_dig_port->base.base.dev;
110 	struct drm_i915_private *dev_priv = to_i915(dev);
111 	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
112 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
113 	uint32_t val;
114 
115 	/* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */
116 	val  = I915_READ(VLV_VSCSDP(pipe));
117 	val &= ~VLV_EDP_PSR_SDP_FREQ_MASK;
118 	val |= VLV_EDP_PSR_SDP_FREQ_EVFRAME;
119 	I915_WRITE(VLV_VSCSDP(pipe), val);
120 }
121 
skl_psr_setup_su_vsc(struct intel_dp * intel_dp)122 static void skl_psr_setup_su_vsc(struct intel_dp *intel_dp)
123 {
124 	struct edp_vsc_psr psr_vsc;
125 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
126 	struct drm_device *dev = intel_dig_port->base.base.dev;
127 	struct drm_i915_private *dev_priv = to_i915(dev);
128 
129 	/* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
130 	memset(&psr_vsc, 0, sizeof(psr_vsc));
131 	psr_vsc.sdp_header.HB0 = 0;
132 	psr_vsc.sdp_header.HB1 = 0x7;
133 	if (dev_priv->psr.colorimetry_support &&
134 		dev_priv->psr.y_cord_support) {
135 		psr_vsc.sdp_header.HB2 = 0x5;
136 		psr_vsc.sdp_header.HB3 = 0x13;
137 	} else if (dev_priv->psr.y_cord_support) {
138 		psr_vsc.sdp_header.HB2 = 0x4;
139 		psr_vsc.sdp_header.HB3 = 0xe;
140 	} else {
141 		psr_vsc.sdp_header.HB2 = 0x3;
142 		psr_vsc.sdp_header.HB3 = 0xc;
143 	}
144 
145 	intel_psr_write_vsc(intel_dp, &psr_vsc);
146 }
147 
hsw_psr_setup_vsc(struct intel_dp * intel_dp)148 static void hsw_psr_setup_vsc(struct intel_dp *intel_dp)
149 {
150 	struct edp_vsc_psr psr_vsc;
151 
152 	/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
153 	memset(&psr_vsc, 0, sizeof(psr_vsc));
154 	psr_vsc.sdp_header.HB0 = 0;
155 	psr_vsc.sdp_header.HB1 = 0x7;
156 	psr_vsc.sdp_header.HB2 = 0x2;
157 	psr_vsc.sdp_header.HB3 = 0x8;
158 	intel_psr_write_vsc(intel_dp, &psr_vsc);
159 }
160 
vlv_psr_enable_sink(struct intel_dp * intel_dp)161 static void vlv_psr_enable_sink(struct intel_dp *intel_dp)
162 {
163 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
164 			   DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
165 }
166 
psr_aux_ctl_reg(struct drm_i915_private * dev_priv,enum port port)167 static i915_reg_t psr_aux_ctl_reg(struct drm_i915_private *dev_priv,
168 				       enum port port)
169 {
170 	if (INTEL_INFO(dev_priv)->gen >= 9)
171 		return DP_AUX_CH_CTL(port);
172 	else
173 		return EDP_PSR_AUX_CTL;
174 }
175 
psr_aux_data_reg(struct drm_i915_private * dev_priv,enum port port,int index)176 static i915_reg_t psr_aux_data_reg(struct drm_i915_private *dev_priv,
177 					enum port port, int index)
178 {
179 	if (INTEL_INFO(dev_priv)->gen >= 9)
180 		return DP_AUX_CH_DATA(port, index);
181 	else
182 		return EDP_PSR_AUX_DATA(index);
183 }
184 
hsw_psr_enable_sink(struct intel_dp * intel_dp)185 static void hsw_psr_enable_sink(struct intel_dp *intel_dp)
186 {
187 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
188 	struct drm_device *dev = dig_port->base.base.dev;
189 	struct drm_i915_private *dev_priv = to_i915(dev);
190 	uint32_t aux_clock_divider;
191 	i915_reg_t aux_ctl_reg;
192 	static const uint8_t aux_msg[] = {
193 		[0] = DP_AUX_NATIVE_WRITE << 4,
194 		[1] = DP_SET_POWER >> 8,
195 		[2] = DP_SET_POWER & 0xff,
196 		[3] = 1 - 1,
197 		[4] = DP_SET_POWER_D0,
198 	};
199 	enum port port = dig_port->port;
200 	u32 aux_ctl;
201 	int i;
202 
203 	BUILD_BUG_ON(sizeof(aux_msg) > 20);
204 
205 	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
206 
207 	/* Enable AUX frame sync at sink */
208 	if (dev_priv->psr.aux_frame_sync)
209 		drm_dp_dpcd_writeb(&intel_dp->aux,
210 				DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF,
211 				DP_AUX_FRAME_SYNC_ENABLE);
212 	/* Enable ALPM at sink for psr2 */
213 	if (dev_priv->psr.psr2_support && dev_priv->psr.alpm)
214 		drm_dp_dpcd_writeb(&intel_dp->aux,
215 				DP_RECEIVER_ALPM_CONFIG,
216 				DP_ALPM_ENABLE);
217 	if (dev_priv->psr.link_standby)
218 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
219 				   DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
220 	else
221 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
222 				   DP_PSR_ENABLE);
223 
224 	aux_ctl_reg = psr_aux_ctl_reg(dev_priv, port);
225 
226 	/* Setup AUX registers */
227 	for (i = 0; i < sizeof(aux_msg); i += 4)
228 		I915_WRITE(psr_aux_data_reg(dev_priv, port, i >> 2),
229 			   intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
230 
231 	aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, 0, sizeof(aux_msg),
232 					     aux_clock_divider);
233 	I915_WRITE(aux_ctl_reg, aux_ctl);
234 }
235 
vlv_psr_enable_source(struct intel_dp * intel_dp)236 static void vlv_psr_enable_source(struct intel_dp *intel_dp)
237 {
238 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
239 	struct drm_device *dev = dig_port->base.base.dev;
240 	struct drm_i915_private *dev_priv = to_i915(dev);
241 	struct drm_crtc *crtc = dig_port->base.base.crtc;
242 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
243 
244 	/* Transition from PSR_state 0 to PSR_state 1, i.e. PSR Inactive */
245 	I915_WRITE(VLV_PSRCTL(pipe),
246 		   VLV_EDP_PSR_MODE_SW_TIMER |
247 		   VLV_EDP_PSR_SRC_TRANSMITTER_STATE |
248 		   VLV_EDP_PSR_ENABLE);
249 }
250 
vlv_psr_activate(struct intel_dp * intel_dp)251 static void vlv_psr_activate(struct intel_dp *intel_dp)
252 {
253 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
254 	struct drm_device *dev = dig_port->base.base.dev;
255 	struct drm_i915_private *dev_priv = to_i915(dev);
256 	struct drm_crtc *crtc = dig_port->base.base.crtc;
257 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
258 
259 	/* Let's do the transition from PSR_state 1 to PSR_state 2
260 	 * that is PSR transition to active - static frame transmission.
261 	 * Then Hardware is responsible for the transition to PSR_state 3
262 	 * that is PSR active - no Remote Frame Buffer (RFB) update.
263 	 */
264 	I915_WRITE(VLV_PSRCTL(pipe), I915_READ(VLV_PSRCTL(pipe)) |
265 		   VLV_EDP_PSR_ACTIVE_ENTRY);
266 }
267 
intel_enable_source_psr1(struct intel_dp * intel_dp)268 static void intel_enable_source_psr1(struct intel_dp *intel_dp)
269 {
270 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
271 	struct drm_device *dev = dig_port->base.base.dev;
272 	struct drm_i915_private *dev_priv = to_i915(dev);
273 
274 	uint32_t max_sleep_time = 0x1f;
275 	/*
276 	 * Let's respect VBT in case VBT asks a higher idle_frame value.
277 	 * Let's use 6 as the minimum to cover all known cases including
278 	 * the off-by-one issue that HW has in some cases. Also there are
279 	 * cases where sink should be able to train
280 	 * with the 5 or 6 idle patterns.
281 	 */
282 	uint32_t idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
283 	uint32_t val = EDP_PSR_ENABLE;
284 
285 	val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
286 	val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
287 
288 	if (IS_HASWELL(dev_priv))
289 		val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
290 
291 	if (dev_priv->psr.link_standby)
292 		val |= EDP_PSR_LINK_STANDBY;
293 
294 	if (dev_priv->vbt.psr.tp1_wakeup_time > 5)
295 		val |= EDP_PSR_TP1_TIME_2500us;
296 	else if (dev_priv->vbt.psr.tp1_wakeup_time > 1)
297 		val |= EDP_PSR_TP1_TIME_500us;
298 	else if (dev_priv->vbt.psr.tp1_wakeup_time > 0)
299 		val |= EDP_PSR_TP1_TIME_100us;
300 	else
301 		val |= EDP_PSR_TP1_TIME_0us;
302 
303 	if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 5)
304 		val |= EDP_PSR_TP2_TP3_TIME_2500us;
305 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 1)
306 		val |= EDP_PSR_TP2_TP3_TIME_500us;
307 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 0)
308 		val |= EDP_PSR_TP2_TP3_TIME_100us;
309 	else
310 		val |= EDP_PSR_TP2_TP3_TIME_0us;
311 
312 	if (intel_dp_source_supports_hbr2(intel_dp) &&
313 	    drm_dp_tps3_supported(intel_dp->dpcd))
314 		val |= EDP_PSR_TP1_TP3_SEL;
315 	else
316 		val |= EDP_PSR_TP1_TP2_SEL;
317 
318 	val |= I915_READ(EDP_PSR_CTL) & EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK;
319 	I915_WRITE(EDP_PSR_CTL, val);
320 }
321 
intel_enable_source_psr2(struct intel_dp * intel_dp)322 static void intel_enable_source_psr2(struct intel_dp *intel_dp)
323 {
324 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
325 	struct drm_device *dev = dig_port->base.base.dev;
326 	struct drm_i915_private *dev_priv = to_i915(dev);
327 	/*
328 	 * Let's respect VBT in case VBT asks a higher idle_frame value.
329 	 * Let's use 6 as the minimum to cover all known cases including
330 	 * the off-by-one issue that HW has in some cases. Also there are
331 	 * cases where sink should be able to train
332 	 * with the 5 or 6 idle patterns.
333 	 */
334 	uint32_t idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
335 	uint32_t val;
336 
337 	val = idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
338 
339 	/* FIXME: selective update is probably totally broken because it doesn't
340 	 * mesh at all with our frontbuffer tracking. And the hw alone isn't
341 	 * good enough. */
342 	val |= EDP_PSR2_ENABLE |
343 		EDP_SU_TRACK_ENABLE |
344 		EDP_FRAMES_BEFORE_SU_ENTRY;
345 
346 	if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 5)
347 		val |= EDP_PSR2_TP2_TIME_2500;
348 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 1)
349 		val |= EDP_PSR2_TP2_TIME_500;
350 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 0)
351 		val |= EDP_PSR2_TP2_TIME_100;
352 	else
353 		val |= EDP_PSR2_TP2_TIME_50;
354 
355 	I915_WRITE(EDP_PSR2_CTL, val);
356 }
357 
hsw_psr_enable_source(struct intel_dp * intel_dp)358 static void hsw_psr_enable_source(struct intel_dp *intel_dp)
359 {
360 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
361 	struct drm_device *dev = dig_port->base.base.dev;
362 	struct drm_i915_private *dev_priv = to_i915(dev);
363 
364 	/* psr1 and psr2 are mutually exclusive.*/
365 	if (dev_priv->psr.psr2_support)
366 		intel_enable_source_psr2(intel_dp);
367 	else
368 		intel_enable_source_psr1(intel_dp);
369 }
370 
intel_psr_match_conditions(struct intel_dp * intel_dp)371 static bool intel_psr_match_conditions(struct intel_dp *intel_dp)
372 {
373 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
374 	struct drm_device *dev = dig_port->base.base.dev;
375 	struct drm_i915_private *dev_priv = to_i915(dev);
376 	struct drm_crtc *crtc = dig_port->base.base.crtc;
377 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
378 	const struct drm_display_mode *adjusted_mode =
379 		&intel_crtc->config->base.adjusted_mode;
380 	int psr_setup_time;
381 
382 	lockdep_assert_held(&dev_priv->psr.lock);
383 	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
384 	WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
385 
386 	dev_priv->psr.source_ok = false;
387 
388 	/*
389 	 * HSW spec explicitly says PSR is tied to port A.
390 	 * BDW+ platforms with DDI implementation of PSR have different
391 	 * PSR registers per transcoder and we only implement transcoder EDP
392 	 * ones. Since by Display design transcoder EDP is tied to port A
393 	 * we can safely escape based on the port A.
394 	 */
395 	if (HAS_DDI(dev_priv) && dig_port->port != PORT_A) {
396 		DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
397 		return false;
398 	}
399 
400 	if (!i915.enable_psr) {
401 		DRM_DEBUG_KMS("PSR disable by flag\n");
402 		return false;
403 	}
404 
405 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
406 	    !dev_priv->psr.link_standby) {
407 		DRM_ERROR("PSR condition failed: Link off requested but not supported on this platform\n");
408 		return false;
409 	}
410 
411 	if (IS_HASWELL(dev_priv) &&
412 	    I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config->cpu_transcoder)) &
413 		      S3D_ENABLE) {
414 		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
415 		return false;
416 	}
417 
418 	if (IS_HASWELL(dev_priv) &&
419 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
420 		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
421 		return false;
422 	}
423 
424 	psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
425 	if (psr_setup_time < 0) {
426 		DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n",
427 			      intel_dp->psr_dpcd[1]);
428 		return false;
429 	}
430 
431 	if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
432 	    adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
433 		DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n",
434 			      psr_setup_time);
435 		return false;
436 	}
437 
438 	/* PSR2 is restricted to work with panel resolutions upto 3200x2000 */
439 	if (dev_priv->psr.psr2_support &&
440 	    (intel_crtc->config->pipe_src_w > 3200 ||
441 	     intel_crtc->config->pipe_src_h > 2000)) {
442 		dev_priv->psr.psr2_support = false;
443 		return false;
444 	}
445 
446 	/*
447 	 * FIXME:enable psr2 only for y-cordinate psr2 panels
448 	 * After gtc implementation , remove this restriction.
449 	 */
450 	if (!dev_priv->psr.y_cord_support &&  dev_priv->psr.psr2_support) {
451 		DRM_DEBUG_KMS("PSR2 disabled, panel does not support Y coordinate\n");
452 		return false;
453 	}
454 
455 	dev_priv->psr.source_ok = true;
456 	return true;
457 }
458 
intel_psr_activate(struct intel_dp * intel_dp)459 static void intel_psr_activate(struct intel_dp *intel_dp)
460 {
461 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
462 	struct drm_device *dev = intel_dig_port->base.base.dev;
463 	struct drm_i915_private *dev_priv = to_i915(dev);
464 
465 	if (dev_priv->psr.psr2_support)
466 		WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
467 	else
468 		WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
469 	WARN_ON(dev_priv->psr.active);
470 	lockdep_assert_held(&dev_priv->psr.lock);
471 
472 	/* Enable/Re-enable PSR on the host */
473 	if (HAS_DDI(dev_priv))
474 		/* On HSW+ after we enable PSR on source it will activate it
475 		 * as soon as it match configure idle_frame count. So
476 		 * we just actually enable it here on activation time.
477 		 */
478 		hsw_psr_enable_source(intel_dp);
479 	else
480 		vlv_psr_activate(intel_dp);
481 
482 	dev_priv->psr.active = true;
483 }
484 
485 /**
486  * intel_psr_enable - Enable PSR
487  * @intel_dp: Intel DP
488  *
489  * This function can only be called after the pipe is fully trained and enabled.
490  */
intel_psr_enable(struct intel_dp * intel_dp)491 void intel_psr_enable(struct intel_dp *intel_dp)
492 {
493 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
494 	struct drm_device *dev = intel_dig_port->base.base.dev;
495 	struct drm_i915_private *dev_priv = to_i915(dev);
496 	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
497 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
498 	u32 chicken;
499 
500 	if (!HAS_PSR(dev_priv)) {
501 		DRM_DEBUG_KMS("PSR not supported on this platform\n");
502 		return;
503 	}
504 
505 	if (!is_edp_psr(intel_dp)) {
506 		DRM_DEBUG_KMS("PSR not supported by this panel\n");
507 		return;
508 	}
509 
510 	mutex_lock(&dev_priv->psr.lock);
511 	if (dev_priv->psr.enabled) {
512 		DRM_DEBUG_KMS("PSR already in use\n");
513 		goto unlock;
514 	}
515 
516 	if (!intel_psr_match_conditions(intel_dp))
517 		goto unlock;
518 
519 	dev_priv->psr.busy_frontbuffer_bits = 0;
520 
521 	if (HAS_DDI(dev_priv)) {
522 		if (dev_priv->psr.psr2_support) {
523 			skl_psr_setup_su_vsc(intel_dp);
524 			chicken = PSR2_VSC_ENABLE_PROG_HEADER;
525 			if (dev_priv->psr.y_cord_support)
526 				chicken |= PSR2_ADD_VERTICAL_LINE_COUNT;
527 			I915_WRITE(CHICKEN_TRANS(cpu_transcoder), chicken);
528 			I915_WRITE(EDP_PSR_DEBUG_CTL,
529 				   EDP_PSR_DEBUG_MASK_MEMUP |
530 				   EDP_PSR_DEBUG_MASK_HPD |
531 				   EDP_PSR_DEBUG_MASK_LPSP |
532 				   EDP_PSR_DEBUG_MASK_MAX_SLEEP |
533 				   EDP_PSR_DEBUG_MASK_DISP_REG_WRITE);
534 		} else {
535 			/* set up vsc header for psr1 */
536 			hsw_psr_setup_vsc(intel_dp);
537 			/*
538 			 * Per Spec: Avoid continuous PSR exit by masking MEMUP
539 			 * and HPD. also mask LPSP to avoid dependency on other
540 			 * drivers that might block runtime_pm besides
541 			 * preventing  other hw tracking issues now we can rely
542 			 * on frontbuffer tracking.
543 			 */
544 			I915_WRITE(EDP_PSR_DEBUG_CTL,
545 				   EDP_PSR_DEBUG_MASK_MEMUP |
546 				   EDP_PSR_DEBUG_MASK_HPD |
547 				   EDP_PSR_DEBUG_MASK_LPSP);
548 		}
549 
550 		/* Enable PSR on the panel */
551 		hsw_psr_enable_sink(intel_dp);
552 
553 		if (INTEL_GEN(dev_priv) >= 9)
554 			intel_psr_activate(intel_dp);
555 	} else {
556 		vlv_psr_setup_vsc(intel_dp);
557 
558 		/* Enable PSR on the panel */
559 		vlv_psr_enable_sink(intel_dp);
560 
561 		/* On HSW+ enable_source also means go to PSR entry/active
562 		 * state as soon as idle_frame achieved and here would be
563 		 * to soon. However on VLV enable_source just enable PSR
564 		 * but let it on inactive state. So we might do this prior
565 		 * to active transition, i.e. here.
566 		 */
567 		vlv_psr_enable_source(intel_dp);
568 	}
569 
570 	/*
571 	 * FIXME: Activation should happen immediately since this function
572 	 * is just called after pipe is fully trained and enabled.
573 	 * However on every platform we face issues when first activation
574 	 * follows a modeset so quickly.
575 	 *     - On VLV/CHV we get bank screen on first activation
576 	 *     - On HSW/BDW we get a recoverable frozen screen until next
577 	 *       exit-activate sequence.
578 	 */
579 	if (INTEL_GEN(dev_priv) < 9)
580 		schedule_delayed_work(&dev_priv->psr.work,
581 				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
582 
583 	dev_priv->psr.enabled = intel_dp;
584 unlock:
585 	mutex_unlock(&dev_priv->psr.lock);
586 }
587 
vlv_psr_disable(struct intel_dp * intel_dp)588 static void vlv_psr_disable(struct intel_dp *intel_dp)
589 {
590 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
591 	struct drm_device *dev = intel_dig_port->base.base.dev;
592 	struct drm_i915_private *dev_priv = to_i915(dev);
593 	struct intel_crtc *intel_crtc =
594 		to_intel_crtc(intel_dig_port->base.base.crtc);
595 	uint32_t val;
596 
597 	if (dev_priv->psr.active) {
598 		/* Put VLV PSR back to PSR_state 0 that is PSR Disabled. */
599 		if (intel_wait_for_register(dev_priv,
600 					    VLV_PSRSTAT(intel_crtc->pipe),
601 					    VLV_EDP_PSR_IN_TRANS,
602 					    0,
603 					    1))
604 			WARN(1, "PSR transition took longer than expected\n");
605 
606 		val = I915_READ(VLV_PSRCTL(intel_crtc->pipe));
607 		val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
608 		val &= ~VLV_EDP_PSR_ENABLE;
609 		val &= ~VLV_EDP_PSR_MODE_MASK;
610 		I915_WRITE(VLV_PSRCTL(intel_crtc->pipe), val);
611 
612 		dev_priv->psr.active = false;
613 	} else {
614 		WARN_ON(vlv_is_psr_active_on_pipe(dev, intel_crtc->pipe));
615 	}
616 }
617 
hsw_psr_disable(struct intel_dp * intel_dp)618 static void hsw_psr_disable(struct intel_dp *intel_dp)
619 {
620 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
621 	struct drm_device *dev = intel_dig_port->base.base.dev;
622 	struct drm_i915_private *dev_priv = to_i915(dev);
623 
624 	if (dev_priv->psr.active) {
625 		i915_reg_t psr_ctl;
626 		u32 psr_status_mask;
627 
628 		if (dev_priv->psr.aux_frame_sync)
629 			drm_dp_dpcd_writeb(&intel_dp->aux,
630 					DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF,
631 					0);
632 
633 		if (dev_priv->psr.psr2_support) {
634 			psr_ctl = EDP_PSR2_CTL;
635 			psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
636 
637 			I915_WRITE(psr_ctl,
638 				   I915_READ(psr_ctl) &
639 				   ~(EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE));
640 
641 		} else {
642 			psr_ctl = EDP_PSR_STATUS_CTL;
643 			psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
644 
645 			I915_WRITE(psr_ctl,
646 				   I915_READ(psr_ctl) & ~EDP_PSR_ENABLE);
647 		}
648 
649 		/* Wait till PSR is idle */
650 		if (intel_wait_for_register(dev_priv,
651 					    psr_ctl, psr_status_mask, 0,
652 					    2000))
653 			DRM_ERROR("Timed out waiting for PSR Idle State\n");
654 
655 		dev_priv->psr.active = false;
656 	} else {
657 		if (dev_priv->psr.psr2_support)
658 			WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
659 		else
660 			WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
661 	}
662 }
663 
664 /**
665  * intel_psr_disable - Disable PSR
666  * @intel_dp: Intel DP
667  *
668  * This function needs to be called before disabling pipe.
669  */
intel_psr_disable(struct intel_dp * intel_dp)670 void intel_psr_disable(struct intel_dp *intel_dp)
671 {
672 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
673 	struct drm_device *dev = intel_dig_port->base.base.dev;
674 	struct drm_i915_private *dev_priv = to_i915(dev);
675 
676 	mutex_lock(&dev_priv->psr.lock);
677 	if (!dev_priv->psr.enabled) {
678 		mutex_unlock(&dev_priv->psr.lock);
679 		return;
680 	}
681 
682 	/* Disable PSR on Source */
683 	if (HAS_DDI(dev_priv))
684 		hsw_psr_disable(intel_dp);
685 	else
686 		vlv_psr_disable(intel_dp);
687 
688 	/* Disable PSR on Sink */
689 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
690 
691 	dev_priv->psr.enabled = NULL;
692 	mutex_unlock(&dev_priv->psr.lock);
693 
694 	cancel_delayed_work_sync(&dev_priv->psr.work);
695 }
696 
intel_psr_work(struct work_struct * work)697 static void intel_psr_work(struct work_struct *work)
698 {
699 	struct drm_i915_private *dev_priv =
700 		container_of(work, typeof(*dev_priv), psr.work.work);
701 	struct intel_dp *intel_dp = dev_priv->psr.enabled;
702 	struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
703 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
704 
705 	/* We have to make sure PSR is ready for re-enable
706 	 * otherwise it keeps disabled until next full enable/disable cycle.
707 	 * PSR might take some time to get fully disabled
708 	 * and be ready for re-enable.
709 	 */
710 	if (HAS_DDI(dev_priv)) {
711 		if (dev_priv->psr.psr2_support) {
712 			if (intel_wait_for_register(dev_priv,
713 						EDP_PSR2_STATUS_CTL,
714 						EDP_PSR2_STATUS_STATE_MASK,
715 						0,
716 						50)) {
717 				DRM_ERROR("Timed out waiting for PSR2 Idle for re-enable\n");
718 				return;
719 			}
720 		} else {
721 			if (intel_wait_for_register(dev_priv,
722 						EDP_PSR_STATUS_CTL,
723 						EDP_PSR_STATUS_STATE_MASK,
724 						0,
725 						50)) {
726 				DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
727 				return;
728 			}
729 		}
730 	} else {
731 		if (intel_wait_for_register(dev_priv,
732 					    VLV_PSRSTAT(pipe),
733 					    VLV_EDP_PSR_IN_TRANS,
734 					    0,
735 					    1)) {
736 			DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
737 			return;
738 		}
739 	}
740 	mutex_lock(&dev_priv->psr.lock);
741 	intel_dp = dev_priv->psr.enabled;
742 
743 	if (!intel_dp)
744 		goto unlock;
745 
746 	/*
747 	 * The delayed work can race with an invalidate hence we need to
748 	 * recheck. Since psr_flush first clears this and then reschedules we
749 	 * won't ever miss a flush when bailing out here.
750 	 */
751 	if (dev_priv->psr.busy_frontbuffer_bits)
752 		goto unlock;
753 
754 	intel_psr_activate(intel_dp);
755 unlock:
756 	mutex_unlock(&dev_priv->psr.lock);
757 }
758 
intel_psr_exit(struct drm_i915_private * dev_priv)759 static void intel_psr_exit(struct drm_i915_private *dev_priv)
760 {
761 	struct intel_dp *intel_dp = dev_priv->psr.enabled;
762 	struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
763 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
764 	u32 val;
765 
766 	if (!dev_priv->psr.active)
767 		return;
768 
769 	if (HAS_DDI(dev_priv)) {
770 		if (dev_priv->psr.aux_frame_sync)
771 			drm_dp_dpcd_writeb(&intel_dp->aux,
772 					DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF,
773 					0);
774 		if (dev_priv->psr.psr2_support) {
775 			val = I915_READ(EDP_PSR2_CTL);
776 			WARN_ON(!(val & EDP_PSR2_ENABLE));
777 			I915_WRITE(EDP_PSR2_CTL, val & ~EDP_PSR2_ENABLE);
778 		} else {
779 			val = I915_READ(EDP_PSR_CTL);
780 			WARN_ON(!(val & EDP_PSR_ENABLE));
781 			I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE);
782 		}
783 	} else {
784 		val = I915_READ(VLV_PSRCTL(pipe));
785 
786 		/* Here we do the transition from PSR_state 3 to PSR_state 5
787 		 * directly once PSR State 4 that is active with single frame
788 		 * update can be skipped. PSR_state 5 that is PSR exit then
789 		 * Hardware is responsible to transition back to PSR_state 1
790 		 * that is PSR inactive. Same state after
791 		 * vlv_edp_psr_enable_source.
792 		 */
793 		val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
794 		I915_WRITE(VLV_PSRCTL(pipe), val);
795 
796 		/* Send AUX wake up - Spec says after transitioning to PSR
797 		 * active we have to send AUX wake up by writing 01h in DPCD
798 		 * 600h of sink device.
799 		 * XXX: This might slow down the transition, but without this
800 		 * HW doesn't complete the transition to PSR_state 1 and we
801 		 * never get the screen updated.
802 		 */
803 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
804 				   DP_SET_POWER_D0);
805 	}
806 
807 	dev_priv->psr.active = false;
808 }
809 
810 /**
811  * intel_psr_single_frame_update - Single Frame Update
812  * @dev_priv: i915 device
813  * @frontbuffer_bits: frontbuffer plane tracking bits
814  *
815  * Some platforms support a single frame update feature that is used to
816  * send and update only one frame on Remote Frame Buffer.
817  * So far it is only implemented for Valleyview and Cherryview because
818  * hardware requires this to be done before a page flip.
819  */
intel_psr_single_frame_update(struct drm_i915_private * dev_priv,unsigned frontbuffer_bits)820 void intel_psr_single_frame_update(struct drm_i915_private *dev_priv,
821 				   unsigned frontbuffer_bits)
822 {
823 	struct drm_crtc *crtc;
824 	enum pipe pipe;
825 	u32 val;
826 
827 	/*
828 	 * Single frame update is already supported on BDW+ but it requires
829 	 * many W/A and it isn't really needed.
830 	 */
831 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
832 		return;
833 
834 	mutex_lock(&dev_priv->psr.lock);
835 	if (!dev_priv->psr.enabled) {
836 		mutex_unlock(&dev_priv->psr.lock);
837 		return;
838 	}
839 
840 	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
841 	pipe = to_intel_crtc(crtc)->pipe;
842 
843 	if (frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)) {
844 		val = I915_READ(VLV_PSRCTL(pipe));
845 
846 		/*
847 		 * We need to set this bit before writing registers for a flip.
848 		 * This bit will be self-clear when it gets to the PSR active state.
849 		 */
850 		I915_WRITE(VLV_PSRCTL(pipe), val | VLV_EDP_PSR_SINGLE_FRAME_UPDATE);
851 	}
852 	mutex_unlock(&dev_priv->psr.lock);
853 }
854 
855 /**
856  * intel_psr_invalidate - Invalidade PSR
857  * @dev_priv: i915 device
858  * @frontbuffer_bits: frontbuffer plane tracking bits
859  *
860  * Since the hardware frontbuffer tracking has gaps we need to integrate
861  * with the software frontbuffer tracking. This function gets called every
862  * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
863  * disabled if the frontbuffer mask contains a buffer relevant to PSR.
864  *
865  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
866  */
intel_psr_invalidate(struct drm_i915_private * dev_priv,unsigned frontbuffer_bits)867 void intel_psr_invalidate(struct drm_i915_private *dev_priv,
868 			  unsigned frontbuffer_bits)
869 {
870 	struct drm_crtc *crtc;
871 	enum pipe pipe;
872 
873 	mutex_lock(&dev_priv->psr.lock);
874 	if (!dev_priv->psr.enabled) {
875 		mutex_unlock(&dev_priv->psr.lock);
876 		return;
877 	}
878 
879 	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
880 	pipe = to_intel_crtc(crtc)->pipe;
881 
882 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
883 	dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
884 
885 	if (frontbuffer_bits)
886 		intel_psr_exit(dev_priv);
887 
888 	mutex_unlock(&dev_priv->psr.lock);
889 }
890 
891 /**
892  * intel_psr_flush - Flush PSR
893  * @dev_priv: i915 device
894  * @frontbuffer_bits: frontbuffer plane tracking bits
895  * @origin: which operation caused the flush
896  *
897  * Since the hardware frontbuffer tracking has gaps we need to integrate
898  * with the software frontbuffer tracking. This function gets called every
899  * time frontbuffer rendering has completed and flushed out to memory. PSR
900  * can be enabled again if no other frontbuffer relevant to PSR is dirty.
901  *
902  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
903  */
intel_psr_flush(struct drm_i915_private * dev_priv,unsigned frontbuffer_bits,enum fb_op_origin origin)904 void intel_psr_flush(struct drm_i915_private *dev_priv,
905 		     unsigned frontbuffer_bits, enum fb_op_origin origin)
906 {
907 	struct drm_crtc *crtc;
908 	enum pipe pipe;
909 
910 	mutex_lock(&dev_priv->psr.lock);
911 	if (!dev_priv->psr.enabled) {
912 		mutex_unlock(&dev_priv->psr.lock);
913 		return;
914 	}
915 
916 	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
917 	pipe = to_intel_crtc(crtc)->pipe;
918 
919 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
920 	dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
921 
922 	/* By definition flush = invalidate + flush */
923 	if (frontbuffer_bits)
924 		intel_psr_exit(dev_priv);
925 
926 	if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
927 		if (!work_busy(&dev_priv->psr.work.work))
928 			schedule_delayed_work(&dev_priv->psr.work,
929 					      msecs_to_jiffies(100));
930 	mutex_unlock(&dev_priv->psr.lock);
931 }
932 
933 /**
934  * intel_psr_init - Init basic PSR work and mutex.
935  * @dev_priv: i915 device private
936  *
937  * This function is  called only once at driver load to initialize basic
938  * PSR stuff.
939  */
intel_psr_init(struct drm_i915_private * dev_priv)940 void intel_psr_init(struct drm_i915_private *dev_priv)
941 {
942 	dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ?
943 		HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE;
944 
945 	/* Per platform default: all disabled. */
946 	if (i915.enable_psr == -1)
947 		i915.enable_psr = 0;
948 
949 	/* Set link_standby x link_off defaults */
950 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
951 		/* HSW and BDW require workarounds that we don't implement. */
952 		dev_priv->psr.link_standby = false;
953 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
954 		/* On VLV and CHV only standby mode is supported. */
955 		dev_priv->psr.link_standby = true;
956 	else
957 		/* For new platforms let's respect VBT back again */
958 		dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
959 
960 	/* Override link_standby x link_off defaults */
961 	if (i915.enable_psr == 2 && !dev_priv->psr.link_standby) {
962 		DRM_DEBUG_KMS("PSR: Forcing link standby\n");
963 		dev_priv->psr.link_standby = true;
964 	}
965 	if (i915.enable_psr == 3 && dev_priv->psr.link_standby) {
966 		DRM_DEBUG_KMS("PSR: Forcing main link off\n");
967 		dev_priv->psr.link_standby = false;
968 	}
969 
970 	INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work);
971 	mutex_init(&dev_priv->psr.lock);
972 }
973