• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
3  *
4  * Copyright (C) 2013-2015 Renesas Electronics Corporation
5  *
6  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/mutex.h>
16 #include <linux/sys_soc.h>
17 
18 #include <drm/drmP.h>
19 #include <drm/drm_atomic.h>
20 #include <drm/drm_atomic_helper.h>
21 #include <drm/drm_crtc.h>
22 #include <drm/drm_crtc_helper.h>
23 #include <drm/drm_fb_cma_helper.h>
24 #include <drm/drm_gem_cma_helper.h>
25 #include <drm/drm_plane_helper.h>
26 
27 #include "rcar_du_crtc.h"
28 #include "rcar_du_drv.h"
29 #include "rcar_du_kms.h"
30 #include "rcar_du_plane.h"
31 #include "rcar_du_regs.h"
32 #include "rcar_du_vsp.h"
33 
rcar_du_crtc_read(struct rcar_du_crtc * rcrtc,u32 reg)34 static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
35 {
36 	struct rcar_du_device *rcdu = rcrtc->group->dev;
37 
38 	return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
39 }
40 
rcar_du_crtc_write(struct rcar_du_crtc * rcrtc,u32 reg,u32 data)41 static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
42 {
43 	struct rcar_du_device *rcdu = rcrtc->group->dev;
44 
45 	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
46 }
47 
rcar_du_crtc_clr(struct rcar_du_crtc * rcrtc,u32 reg,u32 clr)48 static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
49 {
50 	struct rcar_du_device *rcdu = rcrtc->group->dev;
51 
52 	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
53 		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
54 }
55 
rcar_du_crtc_set(struct rcar_du_crtc * rcrtc,u32 reg,u32 set)56 static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
57 {
58 	struct rcar_du_device *rcdu = rcrtc->group->dev;
59 
60 	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
61 		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
62 }
63 
rcar_du_crtc_clr_set(struct rcar_du_crtc * rcrtc,u32 reg,u32 clr,u32 set)64 static void rcar_du_crtc_clr_set(struct rcar_du_crtc *rcrtc, u32 reg,
65 				 u32 clr, u32 set)
66 {
67 	struct rcar_du_device *rcdu = rcrtc->group->dev;
68 	u32 value = rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
69 
70 	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, (value & ~clr) | set);
71 }
72 
rcar_du_crtc_get(struct rcar_du_crtc * rcrtc)73 static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
74 {
75 	int ret;
76 
77 	ret = clk_prepare_enable(rcrtc->clock);
78 	if (ret < 0)
79 		return ret;
80 
81 	ret = clk_prepare_enable(rcrtc->extclock);
82 	if (ret < 0)
83 		goto error_clock;
84 
85 	ret = rcar_du_group_get(rcrtc->group);
86 	if (ret < 0)
87 		goto error_group;
88 
89 	return 0;
90 
91 error_group:
92 	clk_disable_unprepare(rcrtc->extclock);
93 error_clock:
94 	clk_disable_unprepare(rcrtc->clock);
95 	return ret;
96 }
97 
rcar_du_crtc_put(struct rcar_du_crtc * rcrtc)98 static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
99 {
100 	rcar_du_group_put(rcrtc->group);
101 
102 	clk_disable_unprepare(rcrtc->extclock);
103 	clk_disable_unprepare(rcrtc->clock);
104 }
105 
106 /* -----------------------------------------------------------------------------
107  * Hardware Setup
108  */
109 
110 struct dpll_info {
111 	unsigned int output;
112 	unsigned int fdpll;
113 	unsigned int n;
114 	unsigned int m;
115 };
116 
rcar_du_dpll_divider(struct rcar_du_crtc * rcrtc,struct dpll_info * dpll,unsigned long input,unsigned long target)117 static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
118 				 struct dpll_info *dpll,
119 				 unsigned long input,
120 				 unsigned long target)
121 {
122 	unsigned long best_diff = (unsigned long)-1;
123 	unsigned long diff;
124 	unsigned int fdpll;
125 	unsigned int m;
126 	unsigned int n;
127 
128 	for (n = 39; n < 120; n++) {
129 		for (m = 0; m < 4; m++) {
130 			for (fdpll = 1; fdpll < 32; fdpll++) {
131 				unsigned long output;
132 
133 				output = input * (n + 1) / (m + 1)
134 				       / (fdpll + 1);
135 				if (output >= 400000000)
136 					continue;
137 
138 				diff = abs((long)output - (long)target);
139 				if (best_diff > diff) {
140 					best_diff = diff;
141 					dpll->n = n;
142 					dpll->m = m;
143 					dpll->fdpll = fdpll;
144 					dpll->output = output;
145 				}
146 
147 				if (diff == 0)
148 					goto done;
149 			}
150 		}
151 	}
152 
153 done:
154 	dev_dbg(rcrtc->group->dev->dev,
155 		"output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
156 		 dpll->output, dpll->fdpll, dpll->n, dpll->m,
157 		 best_diff);
158 }
159 
160 static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
161 	{ .soc_id = "r8a7795", .revision = "ES1.*" },
162 	{ /* sentinel */ }
163 };
164 
rcar_du_crtc_set_display_timing(struct rcar_du_crtc * rcrtc)165 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
166 {
167 	const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
168 	struct rcar_du_device *rcdu = rcrtc->group->dev;
169 	unsigned long mode_clock = mode->clock * 1000;
170 	unsigned long clk;
171 	u32 value;
172 	u32 escr;
173 	u32 div;
174 
175 	/*
176 	 * Compute the clock divisor and select the internal or external dot
177 	 * clock based on the requested frequency.
178 	 */
179 	clk = clk_get_rate(rcrtc->clock);
180 	div = DIV_ROUND_CLOSEST(clk, mode_clock);
181 	div = clamp(div, 1U, 64U) - 1;
182 	escr = div | ESCR_DCLKSEL_CLKS;
183 
184 	if (rcrtc->extclock) {
185 		struct dpll_info dpll = { 0 };
186 		unsigned long extclk;
187 		unsigned long extrate;
188 		unsigned long rate;
189 		u32 extdiv;
190 
191 		extclk = clk_get_rate(rcrtc->extclock);
192 		if (rcdu->info->dpll_ch & (1 << rcrtc->index)) {
193 			unsigned long target = mode_clock;
194 
195 			/*
196 			 * The H3 ES1.x exhibits dot clock duty cycle stability
197 			 * issues. We can work around them by configuring the
198 			 * DPLL to twice the desired frequency, coupled with a
199 			 * /2 post-divider. This isn't needed on other SoCs and
200 			 * breaks HDMI output on M3-W for a currently unknown
201 			 * reason, so restrict the workaround to H3 ES1.x.
202 			 */
203 			if (soc_device_match(rcar_du_r8a7795_es1))
204 				target *= 2;
205 
206 			rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
207 			extclk = dpll.output;
208 		}
209 
210 		extdiv = DIV_ROUND_CLOSEST(extclk, mode_clock);
211 		extdiv = clamp(extdiv, 1U, 64U) - 1;
212 
213 		rate = clk / (div + 1);
214 		extrate = extclk / (extdiv + 1);
215 
216 		if (abs((long)extrate - (long)mode_clock) <
217 		    abs((long)rate - (long)mode_clock)) {
218 
219 			if (rcdu->info->dpll_ch & (1 << rcrtc->index)) {
220 				u32 dpllcr = DPLLCR_CODE | DPLLCR_CLKE
221 					   | DPLLCR_FDPLL(dpll.fdpll)
222 					   | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
223 					   | DPLLCR_STBY;
224 
225 				if (rcrtc->index == 1)
226 					dpllcr |= DPLLCR_PLCS1
227 					       |  DPLLCR_INCS_DOTCLKIN1;
228 				else
229 					dpllcr |= DPLLCR_PLCS0
230 					       |  DPLLCR_INCS_DOTCLKIN0;
231 
232 				rcar_du_group_write(rcrtc->group, DPLLCR,
233 						    dpllcr);
234 			}
235 
236 			escr = ESCR_DCLKSEL_DCLKIN | extdiv;
237 		}
238 
239 		dev_dbg(rcrtc->group->dev->dev,
240 			"mode clock %lu extrate %lu rate %lu ESCR 0x%08x\n",
241 			mode_clock, extrate, rate, escr);
242 	}
243 
244 	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? ESCR2 : ESCR,
245 			    escr);
246 	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? OTAR2 : OTAR, 0);
247 
248 	/* Signal polarities */
249 	value = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
250 	      | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
251 	      | DSMR_DIPM_DISP | DSMR_CSPM;
252 	rcar_du_crtc_write(rcrtc, DSMR, value);
253 
254 	/* Display timings */
255 	rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
256 	rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
257 					mode->hdisplay - 19);
258 	rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
259 					mode->hsync_start - 1);
260 	rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
261 
262 	rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
263 					mode->crtc_vsync_end - 2);
264 	rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
265 					mode->crtc_vsync_end +
266 					mode->crtc_vdisplay - 2);
267 	rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
268 					mode->crtc_vsync_end +
269 					mode->crtc_vsync_start - 1);
270 	rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
271 
272 	rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
273 	rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
274 }
275 
rcar_du_crtc_route_output(struct drm_crtc * crtc,enum rcar_du_output output)276 void rcar_du_crtc_route_output(struct drm_crtc *crtc,
277 			       enum rcar_du_output output)
278 {
279 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
280 	struct rcar_du_device *rcdu = rcrtc->group->dev;
281 
282 	/*
283 	 * Store the route from the CRTC output to the DU output. The DU will be
284 	 * configured when starting the CRTC.
285 	 */
286 	rcrtc->outputs |= BIT(output);
287 
288 	/*
289 	 * Store RGB routing to DPAD0, the hardware will be configured when
290 	 * starting the CRTC.
291 	 */
292 	if (output == RCAR_DU_OUTPUT_DPAD0)
293 		rcdu->dpad0_source = rcrtc->index;
294 }
295 
plane_zpos(struct rcar_du_plane * plane)296 static unsigned int plane_zpos(struct rcar_du_plane *plane)
297 {
298 	return plane->plane.state->normalized_zpos;
299 }
300 
301 static const struct rcar_du_format_info *
plane_format(struct rcar_du_plane * plane)302 plane_format(struct rcar_du_plane *plane)
303 {
304 	return to_rcar_plane_state(plane->plane.state)->format;
305 }
306 
rcar_du_crtc_update_planes(struct rcar_du_crtc * rcrtc)307 static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
308 {
309 	struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
310 	struct rcar_du_device *rcdu = rcrtc->group->dev;
311 	unsigned int num_planes = 0;
312 	unsigned int dptsr_planes;
313 	unsigned int hwplanes = 0;
314 	unsigned int prio = 0;
315 	unsigned int i;
316 	u32 dspr = 0;
317 
318 	for (i = 0; i < rcrtc->group->num_planes; ++i) {
319 		struct rcar_du_plane *plane = &rcrtc->group->planes[i];
320 		unsigned int j;
321 
322 		if (plane->plane.state->crtc != &rcrtc->crtc)
323 			continue;
324 
325 		/* Insert the plane in the sorted planes array. */
326 		for (j = num_planes++; j > 0; --j) {
327 			if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
328 				break;
329 			planes[j] = planes[j-1];
330 		}
331 
332 		planes[j] = plane;
333 		prio += plane_format(plane)->planes * 4;
334 	}
335 
336 	for (i = 0; i < num_planes; ++i) {
337 		struct rcar_du_plane *plane = planes[i];
338 		struct drm_plane_state *state = plane->plane.state;
339 		unsigned int index = to_rcar_plane_state(state)->hwindex;
340 
341 		prio -= 4;
342 		dspr |= (index + 1) << prio;
343 		hwplanes |= 1 << index;
344 
345 		if (plane_format(plane)->planes == 2) {
346 			index = (index + 1) % 8;
347 
348 			prio -= 4;
349 			dspr |= (index + 1) << prio;
350 			hwplanes |= 1 << index;
351 		}
352 	}
353 
354 	/* If VSP+DU integration is enabled the plane assignment is fixed. */
355 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
356 		if (rcdu->info->gen < 3) {
357 			dspr = (rcrtc->index % 2) + 1;
358 			hwplanes = 1 << (rcrtc->index % 2);
359 		} else {
360 			dspr = (rcrtc->index % 2) ? 3 : 1;
361 			hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
362 		}
363 	}
364 
365 	/*
366 	 * Update the planes to display timing and dot clock generator
367 	 * associations.
368 	 *
369 	 * Updating the DPTSR register requires restarting the CRTC group,
370 	 * resulting in visible flicker. To mitigate the issue only update the
371 	 * association if needed by enabled planes. Planes being disabled will
372 	 * keep their current association.
373 	 */
374 	mutex_lock(&rcrtc->group->lock);
375 
376 	dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
377 		     : rcrtc->group->dptsr_planes & ~hwplanes;
378 
379 	if (dptsr_planes != rcrtc->group->dptsr_planes) {
380 		rcar_du_group_write(rcrtc->group, DPTSR,
381 				    (dptsr_planes << 16) | dptsr_planes);
382 		rcrtc->group->dptsr_planes = dptsr_planes;
383 
384 		if (rcrtc->group->used_crtcs)
385 			rcar_du_group_restart(rcrtc->group);
386 	}
387 
388 	/* Restart the group if plane sources have changed. */
389 	if (rcrtc->group->need_restart)
390 		rcar_du_group_restart(rcrtc->group);
391 
392 	mutex_unlock(&rcrtc->group->lock);
393 
394 	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
395 			    dspr);
396 }
397 
398 /* -----------------------------------------------------------------------------
399  * Page Flip
400  */
401 
rcar_du_crtc_finish_page_flip(struct rcar_du_crtc * rcrtc)402 void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
403 {
404 	struct drm_pending_vblank_event *event;
405 	struct drm_device *dev = rcrtc->crtc.dev;
406 	unsigned long flags;
407 
408 	spin_lock_irqsave(&dev->event_lock, flags);
409 	event = rcrtc->event;
410 	rcrtc->event = NULL;
411 	spin_unlock_irqrestore(&dev->event_lock, flags);
412 
413 	if (event == NULL)
414 		return;
415 
416 	spin_lock_irqsave(&dev->event_lock, flags);
417 	drm_crtc_send_vblank_event(&rcrtc->crtc, event);
418 	wake_up(&rcrtc->flip_wait);
419 	spin_unlock_irqrestore(&dev->event_lock, flags);
420 
421 	drm_crtc_vblank_put(&rcrtc->crtc);
422 }
423 
rcar_du_crtc_page_flip_pending(struct rcar_du_crtc * rcrtc)424 static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
425 {
426 	struct drm_device *dev = rcrtc->crtc.dev;
427 	unsigned long flags;
428 	bool pending;
429 
430 	spin_lock_irqsave(&dev->event_lock, flags);
431 	pending = rcrtc->event != NULL;
432 	spin_unlock_irqrestore(&dev->event_lock, flags);
433 
434 	return pending;
435 }
436 
rcar_du_crtc_wait_page_flip(struct rcar_du_crtc * rcrtc)437 static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
438 {
439 	struct rcar_du_device *rcdu = rcrtc->group->dev;
440 
441 	if (wait_event_timeout(rcrtc->flip_wait,
442 			       !rcar_du_crtc_page_flip_pending(rcrtc),
443 			       msecs_to_jiffies(50)))
444 		return;
445 
446 	dev_warn(rcdu->dev, "page flip timeout\n");
447 
448 	rcar_du_crtc_finish_page_flip(rcrtc);
449 }
450 
451 /* -----------------------------------------------------------------------------
452  * Start/Stop and Suspend/Resume
453  */
454 
rcar_du_crtc_setup(struct rcar_du_crtc * rcrtc)455 static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
456 {
457 	/* Set display off and background to black */
458 	rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
459 	rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
460 
461 	/* Configure display timings and output routing */
462 	rcar_du_crtc_set_display_timing(rcrtc);
463 	rcar_du_group_set_routing(rcrtc->group);
464 
465 	/* Start with all planes disabled. */
466 	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
467 
468 	/* Enable the VSP compositor. */
469 	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
470 		rcar_du_vsp_enable(rcrtc);
471 
472 	/* Turn vertical blanking interrupt reporting on. */
473 	drm_crtc_vblank_on(&rcrtc->crtc);
474 }
475 
rcar_du_crtc_start(struct rcar_du_crtc * rcrtc)476 static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
477 {
478 	bool interlaced;
479 
480 	/*
481 	 * Select master sync mode. This enables display operation in master
482 	 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
483 	 * actively driven).
484 	 */
485 	interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
486 	rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
487 			     (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
488 			     DSYSR_TVM_MASTER);
489 
490 	rcar_du_group_start_stop(rcrtc->group, true);
491 }
492 
rcar_du_crtc_disable_planes(struct rcar_du_crtc * rcrtc)493 static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
494 {
495 	struct rcar_du_device *rcdu = rcrtc->group->dev;
496 	struct drm_crtc *crtc = &rcrtc->crtc;
497 	u32 status;
498 
499 	/* Make sure vblank interrupts are enabled. */
500 	drm_crtc_vblank_get(crtc);
501 
502 	/*
503 	 * Disable planes and calculate how many vertical blanking interrupts we
504 	 * have to wait for. If a vertical blanking interrupt has been triggered
505 	 * but not processed yet, we don't know whether it occurred before or
506 	 * after the planes got disabled. We thus have to wait for two vblank
507 	 * interrupts in that case.
508 	 */
509 	spin_lock_irq(&rcrtc->vblank_lock);
510 	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
511 	status = rcar_du_crtc_read(rcrtc, DSSR);
512 	rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
513 	spin_unlock_irq(&rcrtc->vblank_lock);
514 
515 	if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
516 				msecs_to_jiffies(100)))
517 		dev_warn(rcdu->dev, "vertical blanking timeout\n");
518 
519 	drm_crtc_vblank_put(crtc);
520 }
521 
rcar_du_crtc_stop(struct rcar_du_crtc * rcrtc)522 static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
523 {
524 	struct drm_crtc *crtc = &rcrtc->crtc;
525 
526 	/*
527 	 * Disable all planes and wait for the change to take effect. This is
528 	 * required as the plane enable registers are updated on vblank, and no
529 	 * vblank will occur once the CRTC is stopped. Disabling planes when
530 	 * starting the CRTC thus wouldn't be enough as it would start scanning
531 	 * out immediately from old frame buffers until the next vblank.
532 	 *
533 	 * This increases the CRTC stop delay, especially when multiple CRTCs
534 	 * are stopped in one operation as we now wait for one vblank per CRTC.
535 	 * Whether this can be improved needs to be researched.
536 	 */
537 	rcar_du_crtc_disable_planes(rcrtc);
538 
539 	/*
540 	 * Disable vertical blanking interrupt reporting. We first need to wait
541 	 * for page flip completion before stopping the CRTC as userspace
542 	 * expects page flips to eventually complete.
543 	 */
544 	rcar_du_crtc_wait_page_flip(rcrtc);
545 	drm_crtc_vblank_off(crtc);
546 
547 	/* Disable the VSP compositor. */
548 	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
549 		rcar_du_vsp_disable(rcrtc);
550 
551 	/*
552 	 * Select switch sync mode. This stops display operation and configures
553 	 * the HSYNC and VSYNC signals as inputs.
554 	 */
555 	rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH);
556 
557 	rcar_du_group_start_stop(rcrtc->group, false);
558 }
559 
rcar_du_crtc_suspend(struct rcar_du_crtc * rcrtc)560 void rcar_du_crtc_suspend(struct rcar_du_crtc *rcrtc)
561 {
562 	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
563 		rcar_du_vsp_disable(rcrtc);
564 
565 	rcar_du_crtc_stop(rcrtc);
566 	rcar_du_crtc_put(rcrtc);
567 }
568 
rcar_du_crtc_resume(struct rcar_du_crtc * rcrtc)569 void rcar_du_crtc_resume(struct rcar_du_crtc *rcrtc)
570 {
571 	unsigned int i;
572 
573 	if (!rcrtc->crtc.state->active)
574 		return;
575 
576 	rcar_du_crtc_get(rcrtc);
577 	rcar_du_crtc_setup(rcrtc);
578 
579 	/* Commit the planes state. */
580 	if (!rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) {
581 		for (i = 0; i < rcrtc->group->num_planes; ++i) {
582 			struct rcar_du_plane *plane = &rcrtc->group->planes[i];
583 
584 			if (plane->plane.state->crtc != &rcrtc->crtc)
585 				continue;
586 
587 			rcar_du_plane_setup(plane);
588 		}
589 	}
590 
591 	rcar_du_crtc_update_planes(rcrtc);
592 	rcar_du_crtc_start(rcrtc);
593 }
594 
595 /* -----------------------------------------------------------------------------
596  * CRTC Functions
597  */
598 
rcar_du_crtc_atomic_enable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)599 static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
600 				       struct drm_crtc_state *old_state)
601 {
602 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
603 
604 	/*
605 	 * If the CRTC has already been setup by the .atomic_begin() handler we
606 	 * can skip the setup stage.
607 	 */
608 	if (!rcrtc->initialized) {
609 		rcar_du_crtc_get(rcrtc);
610 		rcar_du_crtc_setup(rcrtc);
611 		rcrtc->initialized = true;
612 	}
613 
614 	rcar_du_crtc_start(rcrtc);
615 }
616 
rcar_du_crtc_atomic_disable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)617 static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
618 					struct drm_crtc_state *old_state)
619 {
620 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
621 
622 	rcar_du_crtc_stop(rcrtc);
623 	rcar_du_crtc_put(rcrtc);
624 
625 	spin_lock_irq(&crtc->dev->event_lock);
626 	if (crtc->state->event) {
627 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
628 		crtc->state->event = NULL;
629 	}
630 	spin_unlock_irq(&crtc->dev->event_lock);
631 
632 	rcrtc->initialized = false;
633 	rcrtc->outputs = 0;
634 }
635 
rcar_du_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)636 static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
637 				      struct drm_crtc_state *old_crtc_state)
638 {
639 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
640 
641 	WARN_ON(!crtc->state->enable);
642 
643 	/*
644 	 * If a mode set is in progress we can be called with the CRTC disabled.
645 	 * We then need to first setup the CRTC in order to configure planes.
646 	 * The .atomic_enable() handler will notice and skip the CRTC setup.
647 	 */
648 	if (!rcrtc->initialized) {
649 		rcar_du_crtc_get(rcrtc);
650 		rcar_du_crtc_setup(rcrtc);
651 		rcrtc->initialized = true;
652 	}
653 
654 	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
655 		rcar_du_vsp_atomic_begin(rcrtc);
656 }
657 
rcar_du_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)658 static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
659 				      struct drm_crtc_state *old_crtc_state)
660 {
661 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
662 	struct drm_device *dev = rcrtc->crtc.dev;
663 	unsigned long flags;
664 
665 	rcar_du_crtc_update_planes(rcrtc);
666 
667 	if (crtc->state->event) {
668 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
669 
670 		spin_lock_irqsave(&dev->event_lock, flags);
671 		rcrtc->event = crtc->state->event;
672 		crtc->state->event = NULL;
673 		spin_unlock_irqrestore(&dev->event_lock, flags);
674 	}
675 
676 	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
677 		rcar_du_vsp_atomic_flush(rcrtc);
678 }
679 
680 static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
681 	.atomic_begin = rcar_du_crtc_atomic_begin,
682 	.atomic_flush = rcar_du_crtc_atomic_flush,
683 	.atomic_enable = rcar_du_crtc_atomic_enable,
684 	.atomic_disable = rcar_du_crtc_atomic_disable,
685 };
686 
rcar_du_crtc_enable_vblank(struct drm_crtc * crtc)687 static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
688 {
689 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
690 
691 	rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
692 	rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
693 	rcrtc->vblank_enable = true;
694 
695 	return 0;
696 }
697 
rcar_du_crtc_disable_vblank(struct drm_crtc * crtc)698 static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
699 {
700 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
701 
702 	rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
703 	rcrtc->vblank_enable = false;
704 }
705 
706 static const struct drm_crtc_funcs crtc_funcs = {
707 	.reset = drm_atomic_helper_crtc_reset,
708 	.destroy = drm_crtc_cleanup,
709 	.set_config = drm_atomic_helper_set_config,
710 	.page_flip = drm_atomic_helper_page_flip,
711 	.atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
712 	.atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
713 	.enable_vblank = rcar_du_crtc_enable_vblank,
714 	.disable_vblank = rcar_du_crtc_disable_vblank,
715 };
716 
717 /* -----------------------------------------------------------------------------
718  * Interrupt Handling
719  */
720 
rcar_du_crtc_irq(int irq,void * arg)721 static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
722 {
723 	struct rcar_du_crtc *rcrtc = arg;
724 	struct rcar_du_device *rcdu = rcrtc->group->dev;
725 	irqreturn_t ret = IRQ_NONE;
726 	u32 status;
727 
728 	spin_lock(&rcrtc->vblank_lock);
729 
730 	status = rcar_du_crtc_read(rcrtc, DSSR);
731 	rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
732 
733 	if (status & DSSR_VBK) {
734 		/*
735 		 * Wake up the vblank wait if the counter reaches 0. This must
736 		 * be protected by the vblank_lock to avoid races in
737 		 * rcar_du_crtc_disable_planes().
738 		 */
739 		if (rcrtc->vblank_count) {
740 			if (--rcrtc->vblank_count == 0)
741 				wake_up(&rcrtc->vblank_wait);
742 		}
743 	}
744 
745 	spin_unlock(&rcrtc->vblank_lock);
746 
747 	if (status & DSSR_VBK) {
748 		if (rcdu->info->gen < 3) {
749 			drm_crtc_handle_vblank(&rcrtc->crtc);
750 			rcar_du_crtc_finish_page_flip(rcrtc);
751 		}
752 
753 		ret = IRQ_HANDLED;
754 	}
755 
756 	return ret;
757 }
758 
759 /* -----------------------------------------------------------------------------
760  * Initialization
761  */
762 
rcar_du_crtc_create(struct rcar_du_group * rgrp,unsigned int index)763 int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int index)
764 {
765 	static const unsigned int mmio_offsets[] = {
766 		DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
767 	};
768 
769 	struct rcar_du_device *rcdu = rgrp->dev;
770 	struct platform_device *pdev = to_platform_device(rcdu->dev);
771 	struct rcar_du_crtc *rcrtc = &rcdu->crtcs[index];
772 	struct drm_crtc *crtc = &rcrtc->crtc;
773 	struct drm_plane *primary;
774 	unsigned int irqflags;
775 	struct clk *clk;
776 	char clk_name[9];
777 	char *name;
778 	int irq;
779 	int ret;
780 
781 	/* Get the CRTC clock and the optional external clock. */
782 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
783 		sprintf(clk_name, "du.%u", index);
784 		name = clk_name;
785 	} else {
786 		name = NULL;
787 	}
788 
789 	rcrtc->clock = devm_clk_get(rcdu->dev, name);
790 	if (IS_ERR(rcrtc->clock)) {
791 		dev_err(rcdu->dev, "no clock for CRTC %u\n", index);
792 		return PTR_ERR(rcrtc->clock);
793 	}
794 
795 	sprintf(clk_name, "dclkin.%u", index);
796 	clk = devm_clk_get(rcdu->dev, clk_name);
797 	if (!IS_ERR(clk)) {
798 		rcrtc->extclock = clk;
799 	} else if (PTR_ERR(rcrtc->clock) == -EPROBE_DEFER) {
800 		dev_info(rcdu->dev, "can't get external clock %u\n", index);
801 		return -EPROBE_DEFER;
802 	}
803 
804 	init_waitqueue_head(&rcrtc->flip_wait);
805 	init_waitqueue_head(&rcrtc->vblank_wait);
806 	spin_lock_init(&rcrtc->vblank_lock);
807 
808 	rcrtc->group = rgrp;
809 	rcrtc->mmio_offset = mmio_offsets[index];
810 	rcrtc->index = index;
811 
812 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
813 		primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
814 	else
815 		primary = &rgrp->planes[index % 2].plane;
816 
817 	ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary,
818 					NULL, &crtc_funcs, NULL);
819 	if (ret < 0)
820 		return ret;
821 
822 	drm_crtc_helper_add(crtc, &crtc_helper_funcs);
823 
824 	/* Start with vertical blanking interrupt reporting disabled. */
825 	drm_crtc_vblank_off(crtc);
826 
827 	/* Register the interrupt handler. */
828 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
829 		irq = platform_get_irq(pdev, index);
830 		irqflags = 0;
831 	} else {
832 		irq = platform_get_irq(pdev, 0);
833 		irqflags = IRQF_SHARED;
834 	}
835 
836 	if (irq < 0) {
837 		dev_err(rcdu->dev, "no IRQ for CRTC %u\n", index);
838 		return irq;
839 	}
840 
841 	ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
842 			       dev_name(rcdu->dev), rcrtc);
843 	if (ret < 0) {
844 		dev_err(rcdu->dev,
845 			"failed to register IRQ for CRTC %u\n", index);
846 		return ret;
847 	}
848 
849 	return 0;
850 }
851