1 /*
2 * Copyright (C) 2012 Avionic Design GmbH
3 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
9
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/reset.h>
15
16 #include <soc/tegra/pmc.h>
17
18 #include "dc.h"
19 #include "drm.h"
20 #include "gem.h"
21
22 #include <drm/drm_atomic.h>
23 #include <drm/drm_atomic_helper.h>
24 #include <drm/drm_plane_helper.h>
25
26 struct tegra_dc_soc_info {
27 bool supports_border_color;
28 bool supports_interlacing;
29 bool supports_cursor;
30 bool supports_block_linear;
31 unsigned int pitch_align;
32 bool has_powergate;
33 bool broken_reset;
34 };
35
36 struct tegra_plane {
37 struct drm_plane base;
38 unsigned int index;
39 };
40
to_tegra_plane(struct drm_plane * plane)41 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
42 {
43 return container_of(plane, struct tegra_plane, base);
44 }
45
46 struct tegra_dc_state {
47 struct drm_crtc_state base;
48
49 struct clk *clk;
50 unsigned long pclk;
51 unsigned int div;
52
53 u32 planes;
54 };
55
to_dc_state(struct drm_crtc_state * state)56 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
57 {
58 if (state)
59 return container_of(state, struct tegra_dc_state, base);
60
61 return NULL;
62 }
63
64 struct tegra_plane_state {
65 struct drm_plane_state base;
66
67 struct tegra_bo_tiling tiling;
68 u32 format;
69 u32 swap;
70 };
71
72 static inline struct tegra_plane_state *
to_tegra_plane_state(struct drm_plane_state * state)73 to_tegra_plane_state(struct drm_plane_state *state)
74 {
75 if (state)
76 return container_of(state, struct tegra_plane_state, base);
77
78 return NULL;
79 }
80
tegra_dc_stats_reset(struct tegra_dc_stats * stats)81 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
82 {
83 stats->frames = 0;
84 stats->vblank = 0;
85 stats->underflow = 0;
86 stats->overflow = 0;
87 }
88
89 /*
90 * Reads the active copy of a register. This takes the dc->lock spinlock to
91 * prevent races with the VBLANK processing which also needs access to the
92 * active copy of some registers.
93 */
tegra_dc_readl_active(struct tegra_dc * dc,unsigned long offset)94 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
95 {
96 unsigned long flags;
97 u32 value;
98
99 spin_lock_irqsave(&dc->lock, flags);
100
101 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
102 value = tegra_dc_readl(dc, offset);
103 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
104
105 spin_unlock_irqrestore(&dc->lock, flags);
106 return value;
107 }
108
109 /*
110 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
111 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
112 * Latching happens mmediately if the display controller is in STOP mode or
113 * on the next frame boundary otherwise.
114 *
115 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
116 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
117 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
118 * into the ACTIVE copy, either immediately if the display controller is in
119 * STOP mode, or at the next frame boundary otherwise.
120 */
tegra_dc_commit(struct tegra_dc * dc)121 void tegra_dc_commit(struct tegra_dc *dc)
122 {
123 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
124 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
125 }
126
tegra_dc_format(u32 fourcc,u32 * format,u32 * swap)127 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
128 {
129 /* assume no swapping of fetched data */
130 if (swap)
131 *swap = BYTE_SWAP_NOSWAP;
132
133 switch (fourcc) {
134 case DRM_FORMAT_XBGR8888:
135 *format = WIN_COLOR_DEPTH_R8G8B8A8;
136 break;
137
138 case DRM_FORMAT_XRGB8888:
139 *format = WIN_COLOR_DEPTH_B8G8R8A8;
140 break;
141
142 case DRM_FORMAT_RGB565:
143 *format = WIN_COLOR_DEPTH_B5G6R5;
144 break;
145
146 case DRM_FORMAT_UYVY:
147 *format = WIN_COLOR_DEPTH_YCbCr422;
148 break;
149
150 case DRM_FORMAT_YUYV:
151 if (swap)
152 *swap = BYTE_SWAP_SWAP2;
153
154 *format = WIN_COLOR_DEPTH_YCbCr422;
155 break;
156
157 case DRM_FORMAT_YUV420:
158 *format = WIN_COLOR_DEPTH_YCbCr420P;
159 break;
160
161 case DRM_FORMAT_YUV422:
162 *format = WIN_COLOR_DEPTH_YCbCr422P;
163 break;
164
165 default:
166 return -EINVAL;
167 }
168
169 return 0;
170 }
171
tegra_dc_format_is_yuv(unsigned int format,bool * planar)172 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
173 {
174 switch (format) {
175 case WIN_COLOR_DEPTH_YCbCr422:
176 case WIN_COLOR_DEPTH_YUV422:
177 if (planar)
178 *planar = false;
179
180 return true;
181
182 case WIN_COLOR_DEPTH_YCbCr420P:
183 case WIN_COLOR_DEPTH_YUV420P:
184 case WIN_COLOR_DEPTH_YCbCr422P:
185 case WIN_COLOR_DEPTH_YUV422P:
186 case WIN_COLOR_DEPTH_YCbCr422R:
187 case WIN_COLOR_DEPTH_YUV422R:
188 case WIN_COLOR_DEPTH_YCbCr422RA:
189 case WIN_COLOR_DEPTH_YUV422RA:
190 if (planar)
191 *planar = true;
192
193 return true;
194 }
195
196 if (planar)
197 *planar = false;
198
199 return false;
200 }
201
compute_dda_inc(unsigned int in,unsigned int out,bool v,unsigned int bpp)202 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
203 unsigned int bpp)
204 {
205 fixed20_12 outf = dfixed_init(out);
206 fixed20_12 inf = dfixed_init(in);
207 u32 dda_inc;
208 int max;
209
210 if (v)
211 max = 15;
212 else {
213 switch (bpp) {
214 case 2:
215 max = 8;
216 break;
217
218 default:
219 WARN_ON_ONCE(1);
220 /* fallthrough */
221 case 4:
222 max = 4;
223 break;
224 }
225 }
226
227 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
228 inf.full -= dfixed_const(1);
229
230 dda_inc = dfixed_div(inf, outf);
231 dda_inc = min_t(u32, dda_inc, dfixed_const(max));
232
233 return dda_inc;
234 }
235
compute_initial_dda(unsigned int in)236 static inline u32 compute_initial_dda(unsigned int in)
237 {
238 fixed20_12 inf = dfixed_init(in);
239 return dfixed_frac(inf);
240 }
241
tegra_dc_setup_window(struct tegra_dc * dc,unsigned int index,const struct tegra_dc_window * window)242 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
243 const struct tegra_dc_window *window)
244 {
245 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
246 unsigned long value, flags;
247 bool yuv, planar;
248
249 /*
250 * For YUV planar modes, the number of bytes per pixel takes into
251 * account only the luma component and therefore is 1.
252 */
253 yuv = tegra_dc_format_is_yuv(window->format, &planar);
254 if (!yuv)
255 bpp = window->bits_per_pixel / 8;
256 else
257 bpp = planar ? 1 : 2;
258
259 spin_lock_irqsave(&dc->lock, flags);
260
261 value = WINDOW_A_SELECT << index;
262 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
263
264 tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
265 tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
266
267 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
268 tegra_dc_writel(dc, value, DC_WIN_POSITION);
269
270 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
271 tegra_dc_writel(dc, value, DC_WIN_SIZE);
272
273 h_offset = window->src.x * bpp;
274 v_offset = window->src.y;
275 h_size = window->src.w * bpp;
276 v_size = window->src.h;
277
278 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
279 tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
280
281 /*
282 * For DDA computations the number of bytes per pixel for YUV planar
283 * modes needs to take into account all Y, U and V components.
284 */
285 if (yuv && planar)
286 bpp = 2;
287
288 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
289 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
290
291 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
292 tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
293
294 h_dda = compute_initial_dda(window->src.x);
295 v_dda = compute_initial_dda(window->src.y);
296
297 tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
298 tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
299
300 tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
301 tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
302
303 tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
304
305 if (yuv && planar) {
306 tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
307 tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
308 value = window->stride[1] << 16 | window->stride[0];
309 tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
310 } else {
311 tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
312 }
313
314 if (window->bottom_up)
315 v_offset += window->src.h - 1;
316
317 tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
318 tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
319
320 if (dc->soc->supports_block_linear) {
321 unsigned long height = window->tiling.value;
322
323 switch (window->tiling.mode) {
324 case TEGRA_BO_TILING_MODE_PITCH:
325 value = DC_WINBUF_SURFACE_KIND_PITCH;
326 break;
327
328 case TEGRA_BO_TILING_MODE_TILED:
329 value = DC_WINBUF_SURFACE_KIND_TILED;
330 break;
331
332 case TEGRA_BO_TILING_MODE_BLOCK:
333 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
334 DC_WINBUF_SURFACE_KIND_BLOCK;
335 break;
336 }
337
338 tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
339 } else {
340 switch (window->tiling.mode) {
341 case TEGRA_BO_TILING_MODE_PITCH:
342 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
343 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
344 break;
345
346 case TEGRA_BO_TILING_MODE_TILED:
347 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
348 DC_WIN_BUFFER_ADDR_MODE_TILE;
349 break;
350
351 case TEGRA_BO_TILING_MODE_BLOCK:
352 /*
353 * No need to handle this here because ->atomic_check
354 * will already have filtered it out.
355 */
356 break;
357 }
358
359 tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
360 }
361
362 value = WIN_ENABLE;
363
364 if (yuv) {
365 /* setup default colorspace conversion coefficients */
366 tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
367 tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
368 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
369 tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
370 tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
371 tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
372 tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
373 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
374
375 value |= CSC_ENABLE;
376 } else if (window->bits_per_pixel < 24) {
377 value |= COLOR_EXPAND;
378 }
379
380 if (window->bottom_up)
381 value |= V_DIRECTION;
382
383 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
384
385 /*
386 * Disable blending and assume Window A is the bottom-most window,
387 * Window C is the top-most window and Window B is in the middle.
388 */
389 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
390 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
391
392 switch (index) {
393 case 0:
394 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
395 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
396 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
397 break;
398
399 case 1:
400 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
401 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
402 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
403 break;
404
405 case 2:
406 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
407 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
408 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
409 break;
410 }
411
412 spin_unlock_irqrestore(&dc->lock, flags);
413 }
414
tegra_plane_destroy(struct drm_plane * plane)415 static void tegra_plane_destroy(struct drm_plane *plane)
416 {
417 struct tegra_plane *p = to_tegra_plane(plane);
418
419 drm_plane_cleanup(plane);
420 kfree(p);
421 }
422
423 static const u32 tegra_primary_plane_formats[] = {
424 DRM_FORMAT_XBGR8888,
425 DRM_FORMAT_XRGB8888,
426 DRM_FORMAT_RGB565,
427 };
428
tegra_primary_plane_destroy(struct drm_plane * plane)429 static void tegra_primary_plane_destroy(struct drm_plane *plane)
430 {
431 tegra_plane_destroy(plane);
432 }
433
tegra_plane_reset(struct drm_plane * plane)434 static void tegra_plane_reset(struct drm_plane *plane)
435 {
436 struct tegra_plane_state *state;
437
438 if (plane->state)
439 __drm_atomic_helper_plane_destroy_state(plane->state);
440
441 kfree(plane->state);
442 plane->state = NULL;
443
444 state = kzalloc(sizeof(*state), GFP_KERNEL);
445 if (state) {
446 plane->state = &state->base;
447 plane->state->plane = plane;
448 }
449 }
450
tegra_plane_atomic_duplicate_state(struct drm_plane * plane)451 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
452 {
453 struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
454 struct tegra_plane_state *copy;
455
456 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
457 if (!copy)
458 return NULL;
459
460 __drm_atomic_helper_plane_duplicate_state(plane, ©->base);
461 copy->tiling = state->tiling;
462 copy->format = state->format;
463 copy->swap = state->swap;
464
465 return ©->base;
466 }
467
tegra_plane_atomic_destroy_state(struct drm_plane * plane,struct drm_plane_state * state)468 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
469 struct drm_plane_state *state)
470 {
471 __drm_atomic_helper_plane_destroy_state(state);
472 kfree(state);
473 }
474
475 static const struct drm_plane_funcs tegra_primary_plane_funcs = {
476 .update_plane = drm_atomic_helper_update_plane,
477 .disable_plane = drm_atomic_helper_disable_plane,
478 .destroy = tegra_primary_plane_destroy,
479 .reset = tegra_plane_reset,
480 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
481 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
482 };
483
tegra_plane_state_add(struct tegra_plane * plane,struct drm_plane_state * state)484 static int tegra_plane_state_add(struct tegra_plane *plane,
485 struct drm_plane_state *state)
486 {
487 struct drm_crtc_state *crtc_state;
488 struct tegra_dc_state *tegra;
489 struct drm_rect clip;
490 int err;
491
492 /* Propagate errors from allocation or locking failures. */
493 crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
494 if (IS_ERR(crtc_state))
495 return PTR_ERR(crtc_state);
496
497 clip.x1 = 0;
498 clip.y1 = 0;
499 clip.x2 = crtc_state->mode.hdisplay;
500 clip.y2 = crtc_state->mode.vdisplay;
501
502 /* Check plane state for visibility and calculate clipping bounds */
503 err = drm_plane_helper_check_state(state, &clip, 0, INT_MAX,
504 true, true);
505 if (err < 0)
506 return err;
507
508 tegra = to_dc_state(crtc_state);
509
510 tegra->planes |= WIN_A_ACT_REQ << plane->index;
511
512 return 0;
513 }
514
tegra_plane_atomic_check(struct drm_plane * plane,struct drm_plane_state * state)515 static int tegra_plane_atomic_check(struct drm_plane *plane,
516 struct drm_plane_state *state)
517 {
518 struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
519 struct tegra_bo_tiling *tiling = &plane_state->tiling;
520 struct tegra_plane *tegra = to_tegra_plane(plane);
521 struct tegra_dc *dc = to_tegra_dc(state->crtc);
522 int err;
523
524 /* no need for further checks if the plane is being disabled */
525 if (!state->crtc)
526 return 0;
527
528 err = tegra_dc_format(state->fb->format->format, &plane_state->format,
529 &plane_state->swap);
530 if (err < 0)
531 return err;
532
533 err = tegra_fb_get_tiling(state->fb, tiling);
534 if (err < 0)
535 return err;
536
537 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
538 !dc->soc->supports_block_linear) {
539 DRM_ERROR("hardware doesn't support block linear mode\n");
540 return -EINVAL;
541 }
542
543 /*
544 * Tegra doesn't support different strides for U and V planes so we
545 * error out if the user tries to display a framebuffer with such a
546 * configuration.
547 */
548 if (state->fb->format->num_planes > 2) {
549 if (state->fb->pitches[2] != state->fb->pitches[1]) {
550 DRM_ERROR("unsupported UV-plane configuration\n");
551 return -EINVAL;
552 }
553 }
554
555 err = tegra_plane_state_add(tegra, state);
556 if (err < 0)
557 return err;
558
559 return 0;
560 }
561
tegra_dc_disable_window(struct tegra_dc * dc,int index)562 static void tegra_dc_disable_window(struct tegra_dc *dc, int index)
563 {
564 unsigned long flags;
565 u32 value;
566
567 spin_lock_irqsave(&dc->lock, flags);
568
569 value = WINDOW_A_SELECT << index;
570 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
571
572 value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
573 value &= ~WIN_ENABLE;
574 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
575
576 spin_unlock_irqrestore(&dc->lock, flags);
577 }
578
tegra_plane_atomic_update(struct drm_plane * plane,struct drm_plane_state * old_state)579 static void tegra_plane_atomic_update(struct drm_plane *plane,
580 struct drm_plane_state *old_state)
581 {
582 struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
583 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
584 struct drm_framebuffer *fb = plane->state->fb;
585 struct tegra_plane *p = to_tegra_plane(plane);
586 struct tegra_dc_window window;
587 unsigned int i;
588
589 /* rien ne va plus */
590 if (!plane->state->crtc || !plane->state->fb)
591 return;
592
593 if (!plane->state->visible)
594 return tegra_dc_disable_window(dc, p->index);
595
596 memset(&window, 0, sizeof(window));
597 window.src.x = plane->state->src.x1 >> 16;
598 window.src.y = plane->state->src.y1 >> 16;
599 window.src.w = drm_rect_width(&plane->state->src) >> 16;
600 window.src.h = drm_rect_height(&plane->state->src) >> 16;
601 window.dst.x = plane->state->dst.x1;
602 window.dst.y = plane->state->dst.y1;
603 window.dst.w = drm_rect_width(&plane->state->dst);
604 window.dst.h = drm_rect_height(&plane->state->dst);
605 window.bits_per_pixel = fb->format->cpp[0] * 8;
606 window.bottom_up = tegra_fb_is_bottom_up(fb);
607
608 /* copy from state */
609 window.tiling = state->tiling;
610 window.format = state->format;
611 window.swap = state->swap;
612
613 for (i = 0; i < fb->format->num_planes; i++) {
614 struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
615
616 window.base[i] = bo->paddr + fb->offsets[i];
617
618 /*
619 * Tegra uses a shared stride for UV planes. Framebuffers are
620 * already checked for this in the tegra_plane_atomic_check()
621 * function, so it's safe to ignore the V-plane pitch here.
622 */
623 if (i < 2)
624 window.stride[i] = fb->pitches[i];
625 }
626
627 tegra_dc_setup_window(dc, p->index, &window);
628 }
629
tegra_plane_atomic_disable(struct drm_plane * plane,struct drm_plane_state * old_state)630 static void tegra_plane_atomic_disable(struct drm_plane *plane,
631 struct drm_plane_state *old_state)
632 {
633 struct tegra_plane *p = to_tegra_plane(plane);
634 struct tegra_dc *dc;
635
636 /* rien ne va plus */
637 if (!old_state || !old_state->crtc)
638 return;
639
640 dc = to_tegra_dc(old_state->crtc);
641
642 tegra_dc_disable_window(dc, p->index);
643 }
644
645 static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
646 .atomic_check = tegra_plane_atomic_check,
647 .atomic_update = tegra_plane_atomic_update,
648 .atomic_disable = tegra_plane_atomic_disable,
649 };
650
tegra_dc_primary_plane_create(struct drm_device * drm,struct tegra_dc * dc)651 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
652 struct tegra_dc *dc)
653 {
654 /*
655 * Ideally this would use drm_crtc_mask(), but that would require the
656 * CRTC to already be in the mode_config's list of CRTCs. However, it
657 * will only be added to that list in the drm_crtc_init_with_planes()
658 * (in tegra_dc_init()), which in turn requires registration of these
659 * planes. So we have ourselves a nice little chicken and egg problem
660 * here.
661 *
662 * We work around this by manually creating the mask from the number
663 * of CRTCs that have been registered, and should therefore always be
664 * the same as drm_crtc_index() after registration.
665 */
666 unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
667 struct tegra_plane *plane;
668 unsigned int num_formats;
669 const u32 *formats;
670 int err;
671
672 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
673 if (!plane)
674 return ERR_PTR(-ENOMEM);
675
676 num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
677 formats = tegra_primary_plane_formats;
678
679 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
680 &tegra_primary_plane_funcs, formats,
681 num_formats, NULL,
682 DRM_PLANE_TYPE_PRIMARY, NULL);
683 if (err < 0) {
684 kfree(plane);
685 return ERR_PTR(err);
686 }
687
688 drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
689
690 return &plane->base;
691 }
692
693 static const u32 tegra_cursor_plane_formats[] = {
694 DRM_FORMAT_RGBA8888,
695 };
696
tegra_cursor_atomic_check(struct drm_plane * plane,struct drm_plane_state * state)697 static int tegra_cursor_atomic_check(struct drm_plane *plane,
698 struct drm_plane_state *state)
699 {
700 struct tegra_plane *tegra = to_tegra_plane(plane);
701 int err;
702
703 /* no need for further checks if the plane is being disabled */
704 if (!state->crtc)
705 return 0;
706
707 /* scaling not supported for cursor */
708 if ((state->src_w >> 16 != state->crtc_w) ||
709 (state->src_h >> 16 != state->crtc_h))
710 return -EINVAL;
711
712 /* only square cursors supported */
713 if (state->src_w != state->src_h)
714 return -EINVAL;
715
716 if (state->crtc_w != 32 && state->crtc_w != 64 &&
717 state->crtc_w != 128 && state->crtc_w != 256)
718 return -EINVAL;
719
720 err = tegra_plane_state_add(tegra, state);
721 if (err < 0)
722 return err;
723
724 return 0;
725 }
726
tegra_cursor_atomic_update(struct drm_plane * plane,struct drm_plane_state * old_state)727 static void tegra_cursor_atomic_update(struct drm_plane *plane,
728 struct drm_plane_state *old_state)
729 {
730 struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
731 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
732 struct drm_plane_state *state = plane->state;
733 u32 value = CURSOR_CLIP_DISPLAY;
734
735 /* rien ne va plus */
736 if (!plane->state->crtc || !plane->state->fb)
737 return;
738
739 switch (state->crtc_w) {
740 case 32:
741 value |= CURSOR_SIZE_32x32;
742 break;
743
744 case 64:
745 value |= CURSOR_SIZE_64x64;
746 break;
747
748 case 128:
749 value |= CURSOR_SIZE_128x128;
750 break;
751
752 case 256:
753 value |= CURSOR_SIZE_256x256;
754 break;
755
756 default:
757 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
758 state->crtc_h);
759 return;
760 }
761
762 value |= (bo->paddr >> 10) & 0x3fffff;
763 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
764
765 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
766 value = (bo->paddr >> 32) & 0x3;
767 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
768 #endif
769
770 /* enable cursor and set blend mode */
771 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
772 value |= CURSOR_ENABLE;
773 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
774
775 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
776 value &= ~CURSOR_DST_BLEND_MASK;
777 value &= ~CURSOR_SRC_BLEND_MASK;
778 value |= CURSOR_MODE_NORMAL;
779 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
780 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
781 value |= CURSOR_ALPHA;
782 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
783
784 /* position the cursor */
785 value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
786 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
787 }
788
tegra_cursor_atomic_disable(struct drm_plane * plane,struct drm_plane_state * old_state)789 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
790 struct drm_plane_state *old_state)
791 {
792 struct tegra_dc *dc;
793 u32 value;
794
795 /* rien ne va plus */
796 if (!old_state || !old_state->crtc)
797 return;
798
799 dc = to_tegra_dc(old_state->crtc);
800
801 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
802 value &= ~CURSOR_ENABLE;
803 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
804 }
805
806 static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
807 .update_plane = drm_atomic_helper_update_plane,
808 .disable_plane = drm_atomic_helper_disable_plane,
809 .destroy = tegra_plane_destroy,
810 .reset = tegra_plane_reset,
811 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
812 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
813 };
814
815 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
816 .atomic_check = tegra_cursor_atomic_check,
817 .atomic_update = tegra_cursor_atomic_update,
818 .atomic_disable = tegra_cursor_atomic_disable,
819 };
820
tegra_dc_cursor_plane_create(struct drm_device * drm,struct tegra_dc * dc)821 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
822 struct tegra_dc *dc)
823 {
824 struct tegra_plane *plane;
825 unsigned int num_formats;
826 const u32 *formats;
827 int err;
828
829 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
830 if (!plane)
831 return ERR_PTR(-ENOMEM);
832
833 /*
834 * This index is kind of fake. The cursor isn't a regular plane, but
835 * its update and activation request bits in DC_CMD_STATE_CONTROL do
836 * use the same programming. Setting this fake index here allows the
837 * code in tegra_add_plane_state() to do the right thing without the
838 * need to special-casing the cursor plane.
839 */
840 plane->index = 6;
841
842 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
843 formats = tegra_cursor_plane_formats;
844
845 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
846 &tegra_cursor_plane_funcs, formats,
847 num_formats, NULL,
848 DRM_PLANE_TYPE_CURSOR, NULL);
849 if (err < 0) {
850 kfree(plane);
851 return ERR_PTR(err);
852 }
853
854 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
855
856 return &plane->base;
857 }
858
tegra_overlay_plane_destroy(struct drm_plane * plane)859 static void tegra_overlay_plane_destroy(struct drm_plane *plane)
860 {
861 tegra_plane_destroy(plane);
862 }
863
864 static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
865 .update_plane = drm_atomic_helper_update_plane,
866 .disable_plane = drm_atomic_helper_disable_plane,
867 .destroy = tegra_overlay_plane_destroy,
868 .reset = tegra_plane_reset,
869 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
870 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
871 };
872
873 static const uint32_t tegra_overlay_plane_formats[] = {
874 DRM_FORMAT_XBGR8888,
875 DRM_FORMAT_XRGB8888,
876 DRM_FORMAT_RGB565,
877 DRM_FORMAT_UYVY,
878 DRM_FORMAT_YUYV,
879 DRM_FORMAT_YUV420,
880 DRM_FORMAT_YUV422,
881 };
882
883 static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
884 .atomic_check = tegra_plane_atomic_check,
885 .atomic_update = tegra_plane_atomic_update,
886 .atomic_disable = tegra_plane_atomic_disable,
887 };
888
tegra_dc_overlay_plane_create(struct drm_device * drm,struct tegra_dc * dc,unsigned int index)889 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
890 struct tegra_dc *dc,
891 unsigned int index)
892 {
893 struct tegra_plane *plane;
894 unsigned int num_formats;
895 const u32 *formats;
896 int err;
897
898 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
899 if (!plane)
900 return ERR_PTR(-ENOMEM);
901
902 plane->index = index;
903
904 num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
905 formats = tegra_overlay_plane_formats;
906
907 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
908 &tegra_overlay_plane_funcs, formats,
909 num_formats, NULL,
910 DRM_PLANE_TYPE_OVERLAY, NULL);
911 if (err < 0) {
912 kfree(plane);
913 return ERR_PTR(err);
914 }
915
916 drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
917
918 return &plane->base;
919 }
920
tegra_dc_add_planes(struct drm_device * drm,struct tegra_dc * dc)921 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
922 {
923 struct drm_plane *plane;
924 unsigned int i;
925
926 for (i = 0; i < 2; i++) {
927 plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
928 if (IS_ERR(plane))
929 return PTR_ERR(plane);
930 }
931
932 return 0;
933 }
934
tegra_dc_get_vblank_counter(struct drm_crtc * crtc)935 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
936 {
937 struct tegra_dc *dc = to_tegra_dc(crtc);
938
939 if (dc->syncpt)
940 return host1x_syncpt_read(dc->syncpt);
941
942 /* fallback to software emulated VBLANK counter */
943 return drm_crtc_vblank_count(&dc->base);
944 }
945
tegra_dc_enable_vblank(struct drm_crtc * crtc)946 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
947 {
948 struct tegra_dc *dc = to_tegra_dc(crtc);
949 unsigned long value, flags;
950
951 spin_lock_irqsave(&dc->lock, flags);
952
953 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
954 value |= VBLANK_INT;
955 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
956
957 spin_unlock_irqrestore(&dc->lock, flags);
958
959 return 0;
960 }
961
tegra_dc_disable_vblank(struct drm_crtc * crtc)962 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
963 {
964 struct tegra_dc *dc = to_tegra_dc(crtc);
965 unsigned long value, flags;
966
967 spin_lock_irqsave(&dc->lock, flags);
968
969 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
970 value &= ~VBLANK_INT;
971 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
972
973 spin_unlock_irqrestore(&dc->lock, flags);
974 }
975
tegra_dc_finish_page_flip(struct tegra_dc * dc)976 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
977 {
978 struct drm_device *drm = dc->base.dev;
979 struct drm_crtc *crtc = &dc->base;
980 unsigned long flags, base;
981 struct tegra_bo *bo;
982
983 spin_lock_irqsave(&drm->event_lock, flags);
984
985 if (!dc->event) {
986 spin_unlock_irqrestore(&drm->event_lock, flags);
987 return;
988 }
989
990 bo = tegra_fb_get_plane(crtc->primary->fb, 0);
991
992 spin_lock(&dc->lock);
993
994 /* check if new start address has been latched */
995 tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
996 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
997 base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
998 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
999
1000 spin_unlock(&dc->lock);
1001
1002 if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
1003 drm_crtc_send_vblank_event(crtc, dc->event);
1004 drm_crtc_vblank_put(crtc);
1005 dc->event = NULL;
1006 }
1007
1008 spin_unlock_irqrestore(&drm->event_lock, flags);
1009 }
1010
tegra_dc_destroy(struct drm_crtc * crtc)1011 static void tegra_dc_destroy(struct drm_crtc *crtc)
1012 {
1013 drm_crtc_cleanup(crtc);
1014 }
1015
tegra_crtc_reset(struct drm_crtc * crtc)1016 static void tegra_crtc_reset(struct drm_crtc *crtc)
1017 {
1018 struct tegra_dc_state *state;
1019
1020 if (crtc->state)
1021 __drm_atomic_helper_crtc_destroy_state(crtc->state);
1022
1023 kfree(crtc->state);
1024 crtc->state = NULL;
1025
1026 state = kzalloc(sizeof(*state), GFP_KERNEL);
1027 if (state) {
1028 crtc->state = &state->base;
1029 crtc->state->crtc = crtc;
1030 }
1031
1032 drm_crtc_vblank_reset(crtc);
1033 }
1034
1035 static struct drm_crtc_state *
tegra_crtc_atomic_duplicate_state(struct drm_crtc * crtc)1036 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1037 {
1038 struct tegra_dc_state *state = to_dc_state(crtc->state);
1039 struct tegra_dc_state *copy;
1040
1041 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1042 if (!copy)
1043 return NULL;
1044
1045 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->base);
1046 copy->clk = state->clk;
1047 copy->pclk = state->pclk;
1048 copy->div = state->div;
1049 copy->planes = state->planes;
1050
1051 return ©->base;
1052 }
1053
tegra_crtc_atomic_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)1054 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1055 struct drm_crtc_state *state)
1056 {
1057 __drm_atomic_helper_crtc_destroy_state(state);
1058 kfree(state);
1059 }
1060
1061 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1062 .page_flip = drm_atomic_helper_page_flip,
1063 .set_config = drm_atomic_helper_set_config,
1064 .destroy = tegra_dc_destroy,
1065 .reset = tegra_crtc_reset,
1066 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1067 .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1068 .get_vblank_counter = tegra_dc_get_vblank_counter,
1069 .enable_vblank = tegra_dc_enable_vblank,
1070 .disable_vblank = tegra_dc_disable_vblank,
1071 };
1072
tegra_dc_set_timings(struct tegra_dc * dc,struct drm_display_mode * mode)1073 static int tegra_dc_set_timings(struct tegra_dc *dc,
1074 struct drm_display_mode *mode)
1075 {
1076 unsigned int h_ref_to_sync = 1;
1077 unsigned int v_ref_to_sync = 1;
1078 unsigned long value;
1079
1080 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1081
1082 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1083 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1084
1085 value = ((mode->vsync_end - mode->vsync_start) << 16) |
1086 ((mode->hsync_end - mode->hsync_start) << 0);
1087 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1088
1089 value = ((mode->vtotal - mode->vsync_end) << 16) |
1090 ((mode->htotal - mode->hsync_end) << 0);
1091 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1092
1093 value = ((mode->vsync_start - mode->vdisplay) << 16) |
1094 ((mode->hsync_start - mode->hdisplay) << 0);
1095 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1096
1097 value = (mode->vdisplay << 16) | mode->hdisplay;
1098 tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1099
1100 return 0;
1101 }
1102
1103 /**
1104 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1105 * state
1106 * @dc: display controller
1107 * @crtc_state: CRTC atomic state
1108 * @clk: parent clock for display controller
1109 * @pclk: pixel clock
1110 * @div: shift clock divider
1111 *
1112 * Returns:
1113 * 0 on success or a negative error-code on failure.
1114 */
tegra_dc_state_setup_clock(struct tegra_dc * dc,struct drm_crtc_state * crtc_state,struct clk * clk,unsigned long pclk,unsigned int div)1115 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1116 struct drm_crtc_state *crtc_state,
1117 struct clk *clk, unsigned long pclk,
1118 unsigned int div)
1119 {
1120 struct tegra_dc_state *state = to_dc_state(crtc_state);
1121
1122 if (!clk_has_parent(dc->clk, clk))
1123 return -EINVAL;
1124
1125 state->clk = clk;
1126 state->pclk = pclk;
1127 state->div = div;
1128
1129 return 0;
1130 }
1131
tegra_dc_commit_state(struct tegra_dc * dc,struct tegra_dc_state * state)1132 static void tegra_dc_commit_state(struct tegra_dc *dc,
1133 struct tegra_dc_state *state)
1134 {
1135 u32 value;
1136 int err;
1137
1138 err = clk_set_parent(dc->clk, state->clk);
1139 if (err < 0)
1140 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1141
1142 /*
1143 * Outputs may not want to change the parent clock rate. This is only
1144 * relevant to Tegra20 where only a single display PLL is available.
1145 * Since that PLL would typically be used for HDMI, an internal LVDS
1146 * panel would need to be driven by some other clock such as PLL_P
1147 * which is shared with other peripherals. Changing the clock rate
1148 * should therefore be avoided.
1149 */
1150 if (state->pclk > 0) {
1151 err = clk_set_rate(state->clk, state->pclk);
1152 if (err < 0)
1153 dev_err(dc->dev,
1154 "failed to set clock rate to %lu Hz\n",
1155 state->pclk);
1156 }
1157
1158 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1159 state->div);
1160 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1161
1162 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1163 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1164 }
1165
tegra_dc_stop(struct tegra_dc * dc)1166 static void tegra_dc_stop(struct tegra_dc *dc)
1167 {
1168 u32 value;
1169
1170 /* stop the display controller */
1171 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1172 value &= ~DISP_CTRL_MODE_MASK;
1173 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1174
1175 tegra_dc_commit(dc);
1176 }
1177
tegra_dc_idle(struct tegra_dc * dc)1178 static bool tegra_dc_idle(struct tegra_dc *dc)
1179 {
1180 u32 value;
1181
1182 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1183
1184 return (value & DISP_CTRL_MODE_MASK) == 0;
1185 }
1186
tegra_dc_wait_idle(struct tegra_dc * dc,unsigned long timeout)1187 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1188 {
1189 timeout = jiffies + msecs_to_jiffies(timeout);
1190
1191 while (time_before(jiffies, timeout)) {
1192 if (tegra_dc_idle(dc))
1193 return 0;
1194
1195 usleep_range(1000, 2000);
1196 }
1197
1198 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1199 return -ETIMEDOUT;
1200 }
1201
tegra_crtc_atomic_disable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)1202 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1203 struct drm_crtc_state *old_state)
1204 {
1205 struct tegra_dc *dc = to_tegra_dc(crtc);
1206 u32 value;
1207
1208 if (!tegra_dc_idle(dc)) {
1209 tegra_dc_stop(dc);
1210
1211 /*
1212 * Ignore the return value, there isn't anything useful to do
1213 * in case this fails.
1214 */
1215 tegra_dc_wait_idle(dc, 100);
1216 }
1217
1218 /*
1219 * This should really be part of the RGB encoder driver, but clearing
1220 * these bits has the side-effect of stopping the display controller.
1221 * When that happens no VBLANK interrupts will be raised. At the same
1222 * time the encoder is disabled before the display controller, so the
1223 * above code is always going to timeout waiting for the controller
1224 * to go idle.
1225 *
1226 * Given the close coupling between the RGB encoder and the display
1227 * controller doing it here is still kind of okay. None of the other
1228 * encoder drivers require these bits to be cleared.
1229 *
1230 * XXX: Perhaps given that the display controller is switched off at
1231 * this point anyway maybe clearing these bits isn't even useful for
1232 * the RGB encoder?
1233 */
1234 if (dc->rgb) {
1235 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1236 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1237 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1238 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1239 }
1240
1241 tegra_dc_stats_reset(&dc->stats);
1242 drm_crtc_vblank_off(crtc);
1243
1244 pm_runtime_put_sync(dc->dev);
1245 }
1246
tegra_crtc_atomic_enable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)1247 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1248 struct drm_crtc_state *old_state)
1249 {
1250 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1251 struct tegra_dc_state *state = to_dc_state(crtc->state);
1252 struct tegra_dc *dc = to_tegra_dc(crtc);
1253 u32 value;
1254
1255 pm_runtime_get_sync(dc->dev);
1256
1257 /* initialize display controller */
1258 if (dc->syncpt) {
1259 u32 syncpt = host1x_syncpt_id(dc->syncpt);
1260
1261 value = SYNCPT_CNTRL_NO_STALL;
1262 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1263
1264 value = SYNCPT_VSYNC_ENABLE | syncpt;
1265 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1266 }
1267
1268 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1269 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1270 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1271
1272 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1273 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1274 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1275
1276 /* initialize timer */
1277 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1278 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1279 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1280
1281 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1282 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1283 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1284
1285 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1286 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1287 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1288
1289 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1290 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1291 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1292
1293 if (dc->soc->supports_border_color)
1294 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1295
1296 /* apply PLL and pixel clock changes */
1297 tegra_dc_commit_state(dc, state);
1298
1299 /* program display mode */
1300 tegra_dc_set_timings(dc, mode);
1301
1302 /* interlacing isn't supported yet, so disable it */
1303 if (dc->soc->supports_interlacing) {
1304 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1305 value &= ~INTERLACE_ENABLE;
1306 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1307 }
1308
1309 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1310 value &= ~DISP_CTRL_MODE_MASK;
1311 value |= DISP_CTRL_MODE_C_DISPLAY;
1312 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1313
1314 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1315 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1316 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1317 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1318
1319 tegra_dc_commit(dc);
1320
1321 drm_crtc_vblank_on(crtc);
1322 }
1323
tegra_crtc_atomic_check(struct drm_crtc * crtc,struct drm_crtc_state * state)1324 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1325 struct drm_crtc_state *state)
1326 {
1327 return 0;
1328 }
1329
tegra_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)1330 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1331 struct drm_crtc_state *old_crtc_state)
1332 {
1333 struct tegra_dc *dc = to_tegra_dc(crtc);
1334
1335 if (crtc->state->event) {
1336 crtc->state->event->pipe = drm_crtc_index(crtc);
1337
1338 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1339
1340 dc->event = crtc->state->event;
1341 crtc->state->event = NULL;
1342 }
1343 }
1344
tegra_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)1345 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1346 struct drm_crtc_state *old_crtc_state)
1347 {
1348 struct tegra_dc_state *state = to_dc_state(crtc->state);
1349 struct tegra_dc *dc = to_tegra_dc(crtc);
1350
1351 tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1352 tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1353 }
1354
1355 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1356 .atomic_check = tegra_crtc_atomic_check,
1357 .atomic_begin = tegra_crtc_atomic_begin,
1358 .atomic_flush = tegra_crtc_atomic_flush,
1359 .atomic_enable = tegra_crtc_atomic_enable,
1360 .atomic_disable = tegra_crtc_atomic_disable,
1361 };
1362
tegra_dc_irq(int irq,void * data)1363 static irqreturn_t tegra_dc_irq(int irq, void *data)
1364 {
1365 struct tegra_dc *dc = data;
1366 unsigned long status;
1367
1368 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1369 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1370
1371 if (status & FRAME_END_INT) {
1372 /*
1373 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1374 */
1375 dc->stats.frames++;
1376 }
1377
1378 if (status & VBLANK_INT) {
1379 /*
1380 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1381 */
1382 drm_crtc_handle_vblank(&dc->base);
1383 tegra_dc_finish_page_flip(dc);
1384 dc->stats.vblank++;
1385 }
1386
1387 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1388 /*
1389 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1390 */
1391 dc->stats.underflow++;
1392 }
1393
1394 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1395 /*
1396 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1397 */
1398 dc->stats.overflow++;
1399 }
1400
1401 return IRQ_HANDLED;
1402 }
1403
tegra_dc_show_regs(struct seq_file * s,void * data)1404 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1405 {
1406 struct drm_info_node *node = s->private;
1407 struct tegra_dc *dc = node->info_ent->data;
1408 int err = 0;
1409
1410 drm_modeset_lock(&dc->base.mutex, NULL);
1411
1412 if (!dc->base.state->active) {
1413 err = -EBUSY;
1414 goto unlock;
1415 }
1416
1417 #define DUMP_REG(name) \
1418 seq_printf(s, "%-40s %#05x %08x\n", #name, name, \
1419 tegra_dc_readl(dc, name))
1420
1421 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1422 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1423 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1424 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1425 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1426 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1427 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1428 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1429 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1430 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1431 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1432 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1433 DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1434 DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1435 DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1436 DUMP_REG(DC_CMD_SIGNAL_RAISE);
1437 DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1438 DUMP_REG(DC_CMD_INT_STATUS);
1439 DUMP_REG(DC_CMD_INT_MASK);
1440 DUMP_REG(DC_CMD_INT_ENABLE);
1441 DUMP_REG(DC_CMD_INT_TYPE);
1442 DUMP_REG(DC_CMD_INT_POLARITY);
1443 DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1444 DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1445 DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1446 DUMP_REG(DC_CMD_STATE_ACCESS);
1447 DUMP_REG(DC_CMD_STATE_CONTROL);
1448 DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1449 DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1450 DUMP_REG(DC_COM_CRC_CONTROL);
1451 DUMP_REG(DC_COM_CRC_CHECKSUM);
1452 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1453 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1454 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1455 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1456 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1457 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1458 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1459 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1460 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1461 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1462 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1463 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1464 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1465 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1466 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1467 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1468 DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1469 DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1470 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1471 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1472 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1473 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1474 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1475 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1476 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1477 DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1478 DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1479 DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1480 DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1481 DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1482 DUMP_REG(DC_COM_SPI_CONTROL);
1483 DUMP_REG(DC_COM_SPI_START_BYTE);
1484 DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1485 DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1486 DUMP_REG(DC_COM_HSPI_CS_DC);
1487 DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1488 DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1489 DUMP_REG(DC_COM_GPIO_CTRL);
1490 DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1491 DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1492 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1493 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1494 DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1495 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1496 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1497 DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1498 DUMP_REG(DC_DISP_REF_TO_SYNC);
1499 DUMP_REG(DC_DISP_SYNC_WIDTH);
1500 DUMP_REG(DC_DISP_BACK_PORCH);
1501 DUMP_REG(DC_DISP_ACTIVE);
1502 DUMP_REG(DC_DISP_FRONT_PORCH);
1503 DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1504 DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1505 DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1506 DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1507 DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1508 DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1509 DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1510 DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1511 DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1512 DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1513 DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1514 DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1515 DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1516 DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1517 DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1518 DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1519 DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1520 DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1521 DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1522 DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1523 DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1524 DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1525 DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1526 DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1527 DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1528 DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1529 DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1530 DUMP_REG(DC_DISP_M0_CONTROL);
1531 DUMP_REG(DC_DISP_M1_CONTROL);
1532 DUMP_REG(DC_DISP_DI_CONTROL);
1533 DUMP_REG(DC_DISP_PP_CONTROL);
1534 DUMP_REG(DC_DISP_PP_SELECT_A);
1535 DUMP_REG(DC_DISP_PP_SELECT_B);
1536 DUMP_REG(DC_DISP_PP_SELECT_C);
1537 DUMP_REG(DC_DISP_PP_SELECT_D);
1538 DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1539 DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1540 DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1541 DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1542 DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1543 DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1544 DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1545 DUMP_REG(DC_DISP_BORDER_COLOR);
1546 DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1547 DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1548 DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1549 DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1550 DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1551 DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1552 DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1553 DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1554 DUMP_REG(DC_DISP_CURSOR_POSITION);
1555 DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1556 DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1557 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1558 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1559 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1560 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1561 DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1562 DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1563 DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1564 DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1565 DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1566 DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1567 DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1568 DUMP_REG(DC_DISP_SD_CONTROL);
1569 DUMP_REG(DC_DISP_SD_CSC_COEFF);
1570 DUMP_REG(DC_DISP_SD_LUT(0));
1571 DUMP_REG(DC_DISP_SD_LUT(1));
1572 DUMP_REG(DC_DISP_SD_LUT(2));
1573 DUMP_REG(DC_DISP_SD_LUT(3));
1574 DUMP_REG(DC_DISP_SD_LUT(4));
1575 DUMP_REG(DC_DISP_SD_LUT(5));
1576 DUMP_REG(DC_DISP_SD_LUT(6));
1577 DUMP_REG(DC_DISP_SD_LUT(7));
1578 DUMP_REG(DC_DISP_SD_LUT(8));
1579 DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1580 DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1581 DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1582 DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1583 DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1584 DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1585 DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1586 DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1587 DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1588 DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1589 DUMP_REG(DC_DISP_SD_BL_TF(0));
1590 DUMP_REG(DC_DISP_SD_BL_TF(1));
1591 DUMP_REG(DC_DISP_SD_BL_TF(2));
1592 DUMP_REG(DC_DISP_SD_BL_TF(3));
1593 DUMP_REG(DC_DISP_SD_BL_CONTROL);
1594 DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1595 DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1596 DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1597 DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1598 DUMP_REG(DC_WIN_WIN_OPTIONS);
1599 DUMP_REG(DC_WIN_BYTE_SWAP);
1600 DUMP_REG(DC_WIN_BUFFER_CONTROL);
1601 DUMP_REG(DC_WIN_COLOR_DEPTH);
1602 DUMP_REG(DC_WIN_POSITION);
1603 DUMP_REG(DC_WIN_SIZE);
1604 DUMP_REG(DC_WIN_PRESCALED_SIZE);
1605 DUMP_REG(DC_WIN_H_INITIAL_DDA);
1606 DUMP_REG(DC_WIN_V_INITIAL_DDA);
1607 DUMP_REG(DC_WIN_DDA_INC);
1608 DUMP_REG(DC_WIN_LINE_STRIDE);
1609 DUMP_REG(DC_WIN_BUF_STRIDE);
1610 DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1611 DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1612 DUMP_REG(DC_WIN_DV_CONTROL);
1613 DUMP_REG(DC_WIN_BLEND_NOKEY);
1614 DUMP_REG(DC_WIN_BLEND_1WIN);
1615 DUMP_REG(DC_WIN_BLEND_2WIN_X);
1616 DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1617 DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1618 DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1619 DUMP_REG(DC_WINBUF_START_ADDR);
1620 DUMP_REG(DC_WINBUF_START_ADDR_NS);
1621 DUMP_REG(DC_WINBUF_START_ADDR_U);
1622 DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1623 DUMP_REG(DC_WINBUF_START_ADDR_V);
1624 DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1625 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1626 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1627 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1628 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1629 DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1630 DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1631 DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1632 DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1633
1634 #undef DUMP_REG
1635
1636 unlock:
1637 drm_modeset_unlock(&dc->base.mutex);
1638 return err;
1639 }
1640
tegra_dc_show_crc(struct seq_file * s,void * data)1641 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1642 {
1643 struct drm_info_node *node = s->private;
1644 struct tegra_dc *dc = node->info_ent->data;
1645 int err = 0;
1646 u32 value;
1647
1648 drm_modeset_lock(&dc->base.mutex, NULL);
1649
1650 if (!dc->base.state->active) {
1651 err = -EBUSY;
1652 goto unlock;
1653 }
1654
1655 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1656 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1657 tegra_dc_commit(dc);
1658
1659 drm_crtc_wait_one_vblank(&dc->base);
1660 drm_crtc_wait_one_vblank(&dc->base);
1661
1662 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1663 seq_printf(s, "%08x\n", value);
1664
1665 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1666
1667 unlock:
1668 drm_modeset_unlock(&dc->base.mutex);
1669 return err;
1670 }
1671
tegra_dc_show_stats(struct seq_file * s,void * data)1672 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1673 {
1674 struct drm_info_node *node = s->private;
1675 struct tegra_dc *dc = node->info_ent->data;
1676
1677 seq_printf(s, "frames: %lu\n", dc->stats.frames);
1678 seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1679 seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1680 seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1681
1682 return 0;
1683 }
1684
1685 static struct drm_info_list debugfs_files[] = {
1686 { "regs", tegra_dc_show_regs, 0, NULL },
1687 { "crc", tegra_dc_show_crc, 0, NULL },
1688 { "stats", tegra_dc_show_stats, 0, NULL },
1689 };
1690
tegra_dc_debugfs_init(struct tegra_dc * dc,struct drm_minor * minor)1691 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1692 {
1693 unsigned int i;
1694 char *name;
1695 int err;
1696
1697 name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1698 dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1699 kfree(name);
1700
1701 if (!dc->debugfs)
1702 return -ENOMEM;
1703
1704 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1705 GFP_KERNEL);
1706 if (!dc->debugfs_files) {
1707 err = -ENOMEM;
1708 goto remove;
1709 }
1710
1711 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1712 dc->debugfs_files[i].data = dc;
1713
1714 err = drm_debugfs_create_files(dc->debugfs_files,
1715 ARRAY_SIZE(debugfs_files),
1716 dc->debugfs, minor);
1717 if (err < 0)
1718 goto free;
1719
1720 dc->minor = minor;
1721
1722 return 0;
1723
1724 free:
1725 kfree(dc->debugfs_files);
1726 dc->debugfs_files = NULL;
1727 remove:
1728 debugfs_remove(dc->debugfs);
1729 dc->debugfs = NULL;
1730
1731 return err;
1732 }
1733
tegra_dc_debugfs_exit(struct tegra_dc * dc)1734 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1735 {
1736 drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1737 dc->minor);
1738 dc->minor = NULL;
1739
1740 kfree(dc->debugfs_files);
1741 dc->debugfs_files = NULL;
1742
1743 debugfs_remove(dc->debugfs);
1744 dc->debugfs = NULL;
1745
1746 return 0;
1747 }
1748
tegra_dc_init(struct host1x_client * client)1749 static int tegra_dc_init(struct host1x_client *client)
1750 {
1751 struct drm_device *drm = dev_get_drvdata(client->parent);
1752 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1753 struct tegra_dc *dc = host1x_client_to_dc(client);
1754 struct tegra_drm *tegra = drm->dev_private;
1755 struct drm_plane *primary = NULL;
1756 struct drm_plane *cursor = NULL;
1757 int err;
1758
1759 dc->syncpt = host1x_syncpt_request(dc->dev, flags);
1760 if (!dc->syncpt)
1761 dev_warn(dc->dev, "failed to allocate syncpoint\n");
1762
1763 if (tegra->domain) {
1764 err = iommu_attach_device(tegra->domain, dc->dev);
1765 if (err < 0) {
1766 dev_err(dc->dev, "failed to attach to domain: %d\n",
1767 err);
1768 return err;
1769 }
1770
1771 dc->domain = tegra->domain;
1772 }
1773
1774 primary = tegra_dc_primary_plane_create(drm, dc);
1775 if (IS_ERR(primary)) {
1776 err = PTR_ERR(primary);
1777 goto cleanup;
1778 }
1779
1780 if (dc->soc->supports_cursor) {
1781 cursor = tegra_dc_cursor_plane_create(drm, dc);
1782 if (IS_ERR(cursor)) {
1783 err = PTR_ERR(cursor);
1784 goto cleanup;
1785 }
1786 }
1787
1788 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1789 &tegra_crtc_funcs, NULL);
1790 if (err < 0)
1791 goto cleanup;
1792
1793 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1794
1795 /*
1796 * Keep track of the minimum pitch alignment across all display
1797 * controllers.
1798 */
1799 if (dc->soc->pitch_align > tegra->pitch_align)
1800 tegra->pitch_align = dc->soc->pitch_align;
1801
1802 err = tegra_dc_rgb_init(drm, dc);
1803 if (err < 0 && err != -ENODEV) {
1804 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1805 goto cleanup;
1806 }
1807
1808 err = tegra_dc_add_planes(drm, dc);
1809 if (err < 0)
1810 goto cleanup;
1811
1812 if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1813 err = tegra_dc_debugfs_init(dc, drm->primary);
1814 if (err < 0)
1815 dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1816 }
1817
1818 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1819 dev_name(dc->dev), dc);
1820 if (err < 0) {
1821 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1822 err);
1823 goto cleanup;
1824 }
1825
1826 return 0;
1827
1828 cleanup:
1829 if (cursor)
1830 drm_plane_cleanup(cursor);
1831
1832 if (primary)
1833 drm_plane_cleanup(primary);
1834
1835 if (tegra->domain) {
1836 iommu_detach_device(tegra->domain, dc->dev);
1837 dc->domain = NULL;
1838 }
1839
1840 return err;
1841 }
1842
tegra_dc_exit(struct host1x_client * client)1843 static int tegra_dc_exit(struct host1x_client *client)
1844 {
1845 struct tegra_dc *dc = host1x_client_to_dc(client);
1846 int err;
1847
1848 devm_free_irq(dc->dev, dc->irq, dc);
1849
1850 if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1851 err = tegra_dc_debugfs_exit(dc);
1852 if (err < 0)
1853 dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1854 }
1855
1856 err = tegra_dc_rgb_exit(dc);
1857 if (err) {
1858 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1859 return err;
1860 }
1861
1862 if (dc->domain) {
1863 iommu_detach_device(dc->domain, dc->dev);
1864 dc->domain = NULL;
1865 }
1866
1867 host1x_syncpt_free(dc->syncpt);
1868
1869 return 0;
1870 }
1871
1872 static const struct host1x_client_ops dc_client_ops = {
1873 .init = tegra_dc_init,
1874 .exit = tegra_dc_exit,
1875 };
1876
1877 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1878 .supports_border_color = true,
1879 .supports_interlacing = false,
1880 .supports_cursor = false,
1881 .supports_block_linear = false,
1882 .pitch_align = 8,
1883 .has_powergate = false,
1884 .broken_reset = true,
1885 };
1886
1887 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1888 .supports_border_color = true,
1889 .supports_interlacing = false,
1890 .supports_cursor = false,
1891 .supports_block_linear = false,
1892 .pitch_align = 8,
1893 .has_powergate = false,
1894 .broken_reset = false,
1895 };
1896
1897 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1898 .supports_border_color = true,
1899 .supports_interlacing = false,
1900 .supports_cursor = false,
1901 .supports_block_linear = false,
1902 .pitch_align = 64,
1903 .has_powergate = true,
1904 .broken_reset = false,
1905 };
1906
1907 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1908 .supports_border_color = false,
1909 .supports_interlacing = true,
1910 .supports_cursor = true,
1911 .supports_block_linear = true,
1912 .pitch_align = 64,
1913 .has_powergate = true,
1914 .broken_reset = false,
1915 };
1916
1917 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1918 .supports_border_color = false,
1919 .supports_interlacing = true,
1920 .supports_cursor = true,
1921 .supports_block_linear = true,
1922 .pitch_align = 64,
1923 .has_powergate = true,
1924 .broken_reset = false,
1925 };
1926
1927 static const struct of_device_id tegra_dc_of_match[] = {
1928 {
1929 .compatible = "nvidia,tegra210-dc",
1930 .data = &tegra210_dc_soc_info,
1931 }, {
1932 .compatible = "nvidia,tegra124-dc",
1933 .data = &tegra124_dc_soc_info,
1934 }, {
1935 .compatible = "nvidia,tegra114-dc",
1936 .data = &tegra114_dc_soc_info,
1937 }, {
1938 .compatible = "nvidia,tegra30-dc",
1939 .data = &tegra30_dc_soc_info,
1940 }, {
1941 .compatible = "nvidia,tegra20-dc",
1942 .data = &tegra20_dc_soc_info,
1943 }, {
1944 /* sentinel */
1945 }
1946 };
1947 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1948
tegra_dc_parse_dt(struct tegra_dc * dc)1949 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1950 {
1951 struct device_node *np;
1952 u32 value = 0;
1953 int err;
1954
1955 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1956 if (err < 0) {
1957 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1958
1959 /*
1960 * If the nvidia,head property isn't present, try to find the
1961 * correct head number by looking up the position of this
1962 * display controller's node within the device tree. Assuming
1963 * that the nodes are ordered properly in the DTS file and
1964 * that the translation into a flattened device tree blob
1965 * preserves that ordering this will actually yield the right
1966 * head number.
1967 *
1968 * If those assumptions don't hold, this will still work for
1969 * cases where only a single display controller is used.
1970 */
1971 for_each_matching_node(np, tegra_dc_of_match) {
1972 if (np == dc->dev->of_node) {
1973 of_node_put(np);
1974 break;
1975 }
1976
1977 value++;
1978 }
1979 }
1980
1981 dc->pipe = value;
1982
1983 return 0;
1984 }
1985
tegra_dc_probe(struct platform_device * pdev)1986 static int tegra_dc_probe(struct platform_device *pdev)
1987 {
1988 const struct of_device_id *id;
1989 struct resource *regs;
1990 struct tegra_dc *dc;
1991 int err;
1992
1993 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1994 if (!dc)
1995 return -ENOMEM;
1996
1997 id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1998 if (!id)
1999 return -ENODEV;
2000
2001 spin_lock_init(&dc->lock);
2002 INIT_LIST_HEAD(&dc->list);
2003 dc->dev = &pdev->dev;
2004 dc->soc = id->data;
2005
2006 err = tegra_dc_parse_dt(dc);
2007 if (err < 0)
2008 return err;
2009
2010 dc->clk = devm_clk_get(&pdev->dev, NULL);
2011 if (IS_ERR(dc->clk)) {
2012 dev_err(&pdev->dev, "failed to get clock\n");
2013 return PTR_ERR(dc->clk);
2014 }
2015
2016 dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2017 if (IS_ERR(dc->rst)) {
2018 dev_err(&pdev->dev, "failed to get reset\n");
2019 return PTR_ERR(dc->rst);
2020 }
2021
2022 if (!dc->soc->broken_reset)
2023 reset_control_assert(dc->rst);
2024
2025 if (dc->soc->has_powergate) {
2026 if (dc->pipe == 0)
2027 dc->powergate = TEGRA_POWERGATE_DIS;
2028 else
2029 dc->powergate = TEGRA_POWERGATE_DISB;
2030
2031 tegra_powergate_power_off(dc->powergate);
2032 }
2033
2034 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2035 dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2036 if (IS_ERR(dc->regs))
2037 return PTR_ERR(dc->regs);
2038
2039 dc->irq = platform_get_irq(pdev, 0);
2040 if (dc->irq < 0) {
2041 dev_err(&pdev->dev, "failed to get IRQ\n");
2042 return -ENXIO;
2043 }
2044
2045 err = tegra_dc_rgb_probe(dc);
2046 if (err < 0 && err != -ENODEV) {
2047 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2048 return err;
2049 }
2050
2051 platform_set_drvdata(pdev, dc);
2052 pm_runtime_enable(&pdev->dev);
2053
2054 INIT_LIST_HEAD(&dc->client.list);
2055 dc->client.ops = &dc_client_ops;
2056 dc->client.dev = &pdev->dev;
2057
2058 err = host1x_client_register(&dc->client);
2059 if (err < 0) {
2060 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2061 err);
2062 return err;
2063 }
2064
2065 return 0;
2066 }
2067
tegra_dc_remove(struct platform_device * pdev)2068 static int tegra_dc_remove(struct platform_device *pdev)
2069 {
2070 struct tegra_dc *dc = platform_get_drvdata(pdev);
2071 int err;
2072
2073 err = host1x_client_unregister(&dc->client);
2074 if (err < 0) {
2075 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2076 err);
2077 return err;
2078 }
2079
2080 err = tegra_dc_rgb_remove(dc);
2081 if (err < 0) {
2082 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2083 return err;
2084 }
2085
2086 pm_runtime_disable(&pdev->dev);
2087
2088 return 0;
2089 }
2090
2091 #ifdef CONFIG_PM
tegra_dc_suspend(struct device * dev)2092 static int tegra_dc_suspend(struct device *dev)
2093 {
2094 struct tegra_dc *dc = dev_get_drvdata(dev);
2095 int err;
2096
2097 if (!dc->soc->broken_reset) {
2098 err = reset_control_assert(dc->rst);
2099 if (err < 0) {
2100 dev_err(dev, "failed to assert reset: %d\n", err);
2101 return err;
2102 }
2103 }
2104
2105 if (dc->soc->has_powergate)
2106 tegra_powergate_power_off(dc->powergate);
2107
2108 clk_disable_unprepare(dc->clk);
2109
2110 return 0;
2111 }
2112
tegra_dc_resume(struct device * dev)2113 static int tegra_dc_resume(struct device *dev)
2114 {
2115 struct tegra_dc *dc = dev_get_drvdata(dev);
2116 int err;
2117
2118 if (dc->soc->has_powergate) {
2119 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2120 dc->rst);
2121 if (err < 0) {
2122 dev_err(dev, "failed to power partition: %d\n", err);
2123 return err;
2124 }
2125 } else {
2126 err = clk_prepare_enable(dc->clk);
2127 if (err < 0) {
2128 dev_err(dev, "failed to enable clock: %d\n", err);
2129 return err;
2130 }
2131
2132 if (!dc->soc->broken_reset) {
2133 err = reset_control_deassert(dc->rst);
2134 if (err < 0) {
2135 dev_err(dev,
2136 "failed to deassert reset: %d\n", err);
2137 return err;
2138 }
2139 }
2140 }
2141
2142 return 0;
2143 }
2144 #endif
2145
2146 static const struct dev_pm_ops tegra_dc_pm_ops = {
2147 SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2148 };
2149
2150 struct platform_driver tegra_dc_driver = {
2151 .driver = {
2152 .name = "tegra-dc",
2153 .of_match_table = tegra_dc_of_match,
2154 .pm = &tegra_dc_pm_ops,
2155 },
2156 .probe = tegra_dc_probe,
2157 .remove = tegra_dc_remove,
2158 };
2159