1 /*
2 * Copyright (C) 2016 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 as published by
6 * the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program. If not, see <http://www.gnu.org/licenses/>.
15 */
16
17 /**
18 * DOC: VC4 DSI0/DSI1 module
19 *
20 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
21 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
22 * controller.
23 *
24 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
25 * while the compute module brings both DSI0 and DSI1 out.
26 *
27 * This driver has been tested for DSI1 video-mode display only
28 * currently, with most of the information necessary for DSI0
29 * hopefully present.
30 */
31
32 #include <drm/drm_atomic_helper.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drm_mipi_dsi.h>
36 #include <drm/drm_panel.h>
37 #include <linux/clk.h>
38 #include <linux/clk-provider.h>
39 #include <linux/completion.h>
40 #include <linux/component.h>
41 #include <linux/dmaengine.h>
42 #include <linux/i2c.h>
43 #include <linux/of_address.h>
44 #include <linux/of_platform.h>
45 #include <linux/pm_runtime.h>
46 #include "vc4_drv.h"
47 #include "vc4_regs.h"
48
49 #define DSI_CMD_FIFO_DEPTH 16
50 #define DSI_PIX_FIFO_DEPTH 256
51 #define DSI_PIX_FIFO_WIDTH 4
52
53 #define DSI0_CTRL 0x00
54
55 /* Command packet control. */
56 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */
57 #define DSI1_TXPKT1C 0x04
58 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
59 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
60 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
61 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
62
63 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
64 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
65 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
66 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
67 /* Primary display where cmdfifo provides part of the payload and
68 * pixelvalve the rest.
69 */
70 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
71 /* Secondary display where cmdfifo provides part of the payload and
72 * pixfifo the rest.
73 */
74 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
75
76 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
77 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
78
79 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
80 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
81 /* Command only. Uses TXPKT1H and DISPLAY_NO */
82 # define DSI_TXPKT1C_CMD_CTRL_TX 0
83 /* Command with BTA for either ack or read data. */
84 # define DSI_TXPKT1C_CMD_CTRL_RX 1
85 /* Trigger according to TRIG_CMD */
86 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2
87 /* BTA alone for getting error status after a command, or a TE trigger
88 * without a previous command.
89 */
90 # define DSI_TXPKT1C_CMD_CTRL_BTA 3
91
92 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
93 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
94 # define DSI_TXPKT1C_CMD_TE_EN BIT(1)
95 # define DSI_TXPKT1C_CMD_EN BIT(0)
96
97 /* Command packet header. */
98 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */
99 #define DSI1_TXPKT1H 0x08
100 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
101 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
102 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
103 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8
104 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
105 # define DSI_TXPKT1H_BC_DT_SHIFT 0
106
107 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
108 #define DSI1_RXPKT1H 0x14
109 # define DSI_RXPKT1H_CRC_ERR BIT(31)
110 # define DSI_RXPKT1H_DET_ERR BIT(30)
111 # define DSI_RXPKT1H_ECC_ERR BIT(29)
112 # define DSI_RXPKT1H_COR_ERR BIT(28)
113 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
114 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
115 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
116 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
117 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
118 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
119 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
120 # define DSI_RXPKT1H_SHORT_1_SHIFT 16
121 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
122 # define DSI_RXPKT1H_SHORT_0_SHIFT 8
123 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
124 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
125
126 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
127 #define DSI1_RXPKT2H 0x18
128 # define DSI_RXPKT1H_DET_ERR BIT(30)
129 # define DSI_RXPKT1H_ECC_ERR BIT(29)
130 # define DSI_RXPKT1H_COR_ERR BIT(28)
131 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
132 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
133 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
134 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
135 # define DSI_RXPKT1H_DT_SHIFT 0
136
137 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
138 #define DSI1_TXPKT_CMD_FIFO 0x1c
139
140 #define DSI0_DISP0_CTRL 0x18
141 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
142 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
143 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
144 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
145 # define DSI_DISP0_LP_STOP_DISABLE 0
146 # define DSI_DISP0_LP_STOP_PERLINE 1
147 # define DSI_DISP0_LP_STOP_PERFRAME 2
148
149 /* Transmit RGB pixels and null packets only during HACTIVE, instead
150 * of going to LP-STOP.
151 */
152 # define DSI_DISP_HACTIVE_NULL BIT(10)
153 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
154 # define DSI_DISP_VBLP_CTRL BIT(9)
155 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
156 # define DSI_DISP_HFP_CTRL BIT(8)
157 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
158 # define DSI_DISP_HBP_CTRL BIT(7)
159 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
160 # define DSI_DISP0_CHANNEL_SHIFT 5
161 /* Enables end events for HSYNC/VSYNC, not just start events. */
162 # define DSI_DISP0_ST_END BIT(4)
163 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
164 # define DSI_DISP0_PFORMAT_SHIFT 2
165 # define DSI_PFORMAT_RGB565 0
166 # define DSI_PFORMAT_RGB666_PACKED 1
167 # define DSI_PFORMAT_RGB666 2
168 # define DSI_PFORMAT_RGB888 3
169 /* Default is VIDEO mode. */
170 # define DSI_DISP0_COMMAND_MODE BIT(1)
171 # define DSI_DISP0_ENABLE BIT(0)
172
173 #define DSI0_DISP1_CTRL 0x1c
174 #define DSI1_DISP1_CTRL 0x2c
175 /* Format of the data written to TXPKT_PIX_FIFO. */
176 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
177 # define DSI_DISP1_PFORMAT_SHIFT 1
178 # define DSI_DISP1_PFORMAT_16BIT 0
179 # define DSI_DISP1_PFORMAT_24BIT 1
180 # define DSI_DISP1_PFORMAT_32BIT_LE 2
181 # define DSI_DISP1_PFORMAT_32BIT_BE 3
182
183 /* DISP1 is always command mode. */
184 # define DSI_DISP1_ENABLE BIT(0)
185
186 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
187
188 #define DSI0_INT_STAT 0x24
189 #define DSI0_INT_EN 0x28
190 # define DSI1_INT_PHY_D3_ULPS BIT(30)
191 # define DSI1_INT_PHY_D3_STOP BIT(29)
192 # define DSI1_INT_PHY_D2_ULPS BIT(28)
193 # define DSI1_INT_PHY_D2_STOP BIT(27)
194 # define DSI1_INT_PHY_D1_ULPS BIT(26)
195 # define DSI1_INT_PHY_D1_STOP BIT(25)
196 # define DSI1_INT_PHY_D0_ULPS BIT(24)
197 # define DSI1_INT_PHY_D0_STOP BIT(23)
198 # define DSI1_INT_FIFO_ERR BIT(22)
199 # define DSI1_INT_PHY_DIR_RTF BIT(21)
200 # define DSI1_INT_PHY_RXLPDT BIT(20)
201 # define DSI1_INT_PHY_RXTRIG BIT(19)
202 # define DSI1_INT_PHY_D0_LPDT BIT(18)
203 # define DSI1_INT_PHY_DIR_FTR BIT(17)
204
205 /* Signaled when the clock lane enters the given state. */
206 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
207 # define DSI1_INT_PHY_CLOCK_HS BIT(15)
208 # define DSI1_INT_PHY_CLOCK_STOP BIT(14)
209
210 /* Signaled on timeouts */
211 # define DSI1_INT_PR_TO BIT(13)
212 # define DSI1_INT_TA_TO BIT(12)
213 # define DSI1_INT_LPRX_TO BIT(11)
214 # define DSI1_INT_HSTX_TO BIT(10)
215
216 /* Contention on a line when trying to drive the line low */
217 # define DSI1_INT_ERR_CONT_LP1 BIT(9)
218 # define DSI1_INT_ERR_CONT_LP0 BIT(8)
219
220 /* Control error: incorrect line state sequence on data lane 0. */
221 # define DSI1_INT_ERR_CONTROL BIT(7)
222 /* LPDT synchronization error (bits received not a multiple of 8. */
223
224 # define DSI1_INT_ERR_SYNC_ESC BIT(6)
225 /* Signaled after receiving an error packet from the display in
226 * response to a read.
227 */
228 # define DSI1_INT_RXPKT2 BIT(5)
229 /* Signaled after receiving a packet. The header and optional short
230 * response will be in RXPKT1H, and a long response will be in the
231 * RXPKT_FIFO.
232 */
233 # define DSI1_INT_RXPKT1 BIT(4)
234 # define DSI1_INT_TXPKT2_DONE BIT(3)
235 # define DSI1_INT_TXPKT2_END BIT(2)
236 /* Signaled after all repeats of TXPKT1 are transferred. */
237 # define DSI1_INT_TXPKT1_DONE BIT(1)
238 /* Signaled after each TXPKT1 repeat is scheduled. */
239 # define DSI1_INT_TXPKT1_END BIT(0)
240
241 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
242 DSI1_INT_ERR_CONTROL | \
243 DSI1_INT_ERR_CONT_LP0 | \
244 DSI1_INT_ERR_CONT_LP1 | \
245 DSI1_INT_HSTX_TO | \
246 DSI1_INT_LPRX_TO | \
247 DSI1_INT_TA_TO | \
248 DSI1_INT_PR_TO)
249
250 #define DSI0_STAT 0x2c
251 #define DSI0_HSTX_TO_CNT 0x30
252 #define DSI0_LPRX_TO_CNT 0x34
253 #define DSI0_TA_TO_CNT 0x38
254 #define DSI0_PR_TO_CNT 0x3c
255 #define DSI0_PHYC 0x40
256 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
257 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
258 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
259 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
260 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
261 # define DSI1_PHYC_CLANE_ULPS BIT(17)
262 # define DSI1_PHYC_CLANE_ENABLE BIT(16)
263 # define DSI_PHYC_DLANE3_ULPS BIT(13)
264 # define DSI_PHYC_DLANE3_ENABLE BIT(12)
265 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
266 # define DSI0_PHYC_CLANE_ULPS BIT(9)
267 # define DSI_PHYC_DLANE2_ULPS BIT(9)
268 # define DSI0_PHYC_CLANE_ENABLE BIT(8)
269 # define DSI_PHYC_DLANE2_ENABLE BIT(8)
270 # define DSI_PHYC_DLANE1_ULPS BIT(5)
271 # define DSI_PHYC_DLANE1_ENABLE BIT(4)
272 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
273 # define DSI_PHYC_DLANE0_ULPS BIT(1)
274 # define DSI_PHYC_DLANE0_ENABLE BIT(0)
275
276 #define DSI0_HS_CLT0 0x44
277 #define DSI0_HS_CLT1 0x48
278 #define DSI0_HS_CLT2 0x4c
279 #define DSI0_HS_DLT3 0x50
280 #define DSI0_HS_DLT4 0x54
281 #define DSI0_HS_DLT5 0x58
282 #define DSI0_HS_DLT6 0x5c
283 #define DSI0_HS_DLT7 0x60
284
285 #define DSI0_PHY_AFEC0 0x64
286 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
287 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
288 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
289 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
290 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
291 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
292 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
293 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
294 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
295 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
296 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
297 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
298 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
299 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
300 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
301 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
302 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
303 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
304 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
305 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
306 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
307 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
308 # define DSI1_PHY_AFEC0_RESET BIT(13)
309 # define DSI1_PHY_AFEC0_PD BIT(12)
310 # define DSI0_PHY_AFEC0_RESET BIT(11)
311 # define DSI1_PHY_AFEC0_PD_BG BIT(11)
312 # define DSI0_PHY_AFEC0_PD BIT(10)
313 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10)
314 # define DSI0_PHY_AFEC0_PD_BG BIT(9)
315 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
316 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
317 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8)
318 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
319 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
320 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
321 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
322
323 #define DSI0_PHY_AFEC1 0x68
324 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
325 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
326 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
327 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
328 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
329 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
330
331 #define DSI0_TST_SEL 0x6c
332 #define DSI0_TST_MON 0x70
333 #define DSI0_ID 0x74
334 # define DSI_ID_VALUE 0x00647369
335
336 #define DSI1_CTRL 0x00
337 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
338 # define DSI_CTRL_HS_CLKC_SHIFT 14
339 # define DSI_CTRL_HS_CLKC_BYTE 0
340 # define DSI_CTRL_HS_CLKC_DDR2 1
341 # define DSI_CTRL_HS_CLKC_DDR 2
342
343 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
344 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
345 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
346 # define DSI_CTRL_SOFT_RESET_CFG BIT(10)
347 # define DSI_CTRL_CAL_BYTE BIT(9)
348 # define DSI_CTRL_INV_BYTE BIT(8)
349 # define DSI_CTRL_CLR_LDF BIT(7)
350 # define DSI0_CTRL_CLR_PBCF BIT(6)
351 # define DSI1_CTRL_CLR_RXF BIT(6)
352 # define DSI0_CTRL_CLR_CPBCF BIT(5)
353 # define DSI1_CTRL_CLR_PDF BIT(5)
354 # define DSI0_CTRL_CLR_PDF BIT(4)
355 # define DSI1_CTRL_CLR_CDF BIT(4)
356 # define DSI0_CTRL_CLR_CDF BIT(3)
357 # define DSI0_CTRL_CTRL2 BIT(2)
358 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
359 # define DSI0_CTRL_CTRL1 BIT(1)
360 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
361 # define DSI0_CTRL_CTRL0 BIT(0)
362 # define DSI1_CTRL_EN BIT(0)
363 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
364 DSI0_CTRL_CLR_PBCF | \
365 DSI0_CTRL_CLR_CPBCF | \
366 DSI0_CTRL_CLR_PDF | \
367 DSI0_CTRL_CLR_CDF)
368 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
369 DSI1_CTRL_CLR_RXF | \
370 DSI1_CTRL_CLR_PDF | \
371 DSI1_CTRL_CLR_CDF)
372
373 #define DSI1_TXPKT2C 0x0c
374 #define DSI1_TXPKT2H 0x10
375 #define DSI1_TXPKT_PIX_FIFO 0x20
376 #define DSI1_RXPKT_FIFO 0x24
377 #define DSI1_DISP0_CTRL 0x28
378 #define DSI1_INT_STAT 0x30
379 #define DSI1_INT_EN 0x34
380 /* State reporting bits. These mostly behave like INT_STAT, where
381 * writing a 1 clears the bit.
382 */
383 #define DSI1_STAT 0x38
384 # define DSI1_STAT_PHY_D3_ULPS BIT(31)
385 # define DSI1_STAT_PHY_D3_STOP BIT(30)
386 # define DSI1_STAT_PHY_D2_ULPS BIT(29)
387 # define DSI1_STAT_PHY_D2_STOP BIT(28)
388 # define DSI1_STAT_PHY_D1_ULPS BIT(27)
389 # define DSI1_STAT_PHY_D1_STOP BIT(26)
390 # define DSI1_STAT_PHY_D0_ULPS BIT(25)
391 # define DSI1_STAT_PHY_D0_STOP BIT(24)
392 # define DSI1_STAT_FIFO_ERR BIT(23)
393 # define DSI1_STAT_PHY_RXLPDT BIT(22)
394 # define DSI1_STAT_PHY_RXTRIG BIT(21)
395 # define DSI1_STAT_PHY_D0_LPDT BIT(20)
396 /* Set when in forward direction */
397 # define DSI1_STAT_PHY_DIR BIT(19)
398 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
399 # define DSI1_STAT_PHY_CLOCK_HS BIT(17)
400 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
401 # define DSI1_STAT_PR_TO BIT(15)
402 # define DSI1_STAT_TA_TO BIT(14)
403 # define DSI1_STAT_LPRX_TO BIT(13)
404 # define DSI1_STAT_HSTX_TO BIT(12)
405 # define DSI1_STAT_ERR_CONT_LP1 BIT(11)
406 # define DSI1_STAT_ERR_CONT_LP0 BIT(10)
407 # define DSI1_STAT_ERR_CONTROL BIT(9)
408 # define DSI1_STAT_ERR_SYNC_ESC BIT(8)
409 # define DSI1_STAT_RXPKT2 BIT(7)
410 # define DSI1_STAT_RXPKT1 BIT(6)
411 # define DSI1_STAT_TXPKT2_BUSY BIT(5)
412 # define DSI1_STAT_TXPKT2_DONE BIT(4)
413 # define DSI1_STAT_TXPKT2_END BIT(3)
414 # define DSI1_STAT_TXPKT1_BUSY BIT(2)
415 # define DSI1_STAT_TXPKT1_DONE BIT(1)
416 # define DSI1_STAT_TXPKT1_END BIT(0)
417
418 #define DSI1_HSTX_TO_CNT 0x3c
419 #define DSI1_LPRX_TO_CNT 0x40
420 #define DSI1_TA_TO_CNT 0x44
421 #define DSI1_PR_TO_CNT 0x48
422 #define DSI1_PHYC 0x4c
423
424 #define DSI1_HS_CLT0 0x50
425 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
426 # define DSI_HS_CLT0_CZERO_SHIFT 18
427 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
428 # define DSI_HS_CLT0_CPRE_SHIFT 9
429 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
430 # define DSI_HS_CLT0_CPREP_SHIFT 0
431
432 #define DSI1_HS_CLT1 0x54
433 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
434 # define DSI_HS_CLT1_CTRAIL_SHIFT 9
435 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
436 # define DSI_HS_CLT1_CPOST_SHIFT 0
437
438 #define DSI1_HS_CLT2 0x58
439 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
440 # define DSI_HS_CLT2_WUP_SHIFT 0
441
442 #define DSI1_HS_DLT3 0x5c
443 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
444 # define DSI_HS_DLT3_EXIT_SHIFT 18
445 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
446 # define DSI_HS_DLT3_ZERO_SHIFT 9
447 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
448 # define DSI_HS_DLT3_PRE_SHIFT 0
449
450 #define DSI1_HS_DLT4 0x60
451 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
452 # define DSI_HS_DLT4_ANLAT_SHIFT 18
453 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
454 # define DSI_HS_DLT4_TRAIL_SHIFT 9
455 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
456 # define DSI_HS_DLT4_LPX_SHIFT 0
457
458 #define DSI1_HS_DLT5 0x64
459 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
460 # define DSI_HS_DLT5_INIT_SHIFT 0
461
462 #define DSI1_HS_DLT6 0x68
463 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
464 # define DSI_HS_DLT6_TA_GET_SHIFT 24
465 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
466 # define DSI_HS_DLT6_TA_SURE_SHIFT 16
467 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
468 # define DSI_HS_DLT6_TA_GO_SHIFT 8
469 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
470 # define DSI_HS_DLT6_LP_LPX_SHIFT 0
471
472 #define DSI1_HS_DLT7 0x6c
473 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
474 # define DSI_HS_DLT7_LP_WUP_SHIFT 0
475
476 #define DSI1_PHY_AFEC0 0x70
477
478 #define DSI1_PHY_AFEC1 0x74
479 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
480 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
481 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
482 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
483 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
484 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
485 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
486 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
487 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
488 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
489
490 #define DSI1_TST_SEL 0x78
491 #define DSI1_TST_MON 0x7c
492 #define DSI1_PHY_TST1 0x80
493 #define DSI1_PHY_TST2 0x84
494 #define DSI1_PHY_FIFO_STAT 0x88
495 /* Actually, all registers in the range that aren't otherwise claimed
496 * will return the ID.
497 */
498 #define DSI1_ID 0x8c
499
500 /* General DSI hardware state. */
501 struct vc4_dsi {
502 struct platform_device *pdev;
503
504 struct mipi_dsi_host dsi_host;
505 struct drm_encoder *encoder;
506 struct drm_bridge *bridge;
507 bool is_panel_bridge;
508
509 void __iomem *regs;
510
511 struct dma_chan *reg_dma_chan;
512 dma_addr_t reg_dma_paddr;
513 u32 *reg_dma_mem;
514 dma_addr_t reg_paddr;
515
516 /* Whether we're on bcm2835's DSI0 or DSI1. */
517 int port;
518
519 /* DSI channel for the panel we're connected to. */
520 u32 channel;
521 u32 lanes;
522 u32 format;
523 u32 divider;
524 u32 mode_flags;
525
526 /* Input clock from CPRMAN to the digital PHY, for the DSI
527 * escape clock.
528 */
529 struct clk *escape_clock;
530
531 /* Input clock to the analog PHY, used to generate the DSI bit
532 * clock.
533 */
534 struct clk *pll_phy_clock;
535
536 /* HS Clocks generated within the DSI analog PHY. */
537 struct clk_fixed_factor phy_clocks[3];
538
539 struct clk_hw_onecell_data *clk_onecell;
540
541 /* Pixel clock output to the pixelvalve, generated from the HS
542 * clock.
543 */
544 struct clk *pixel_clock;
545
546 struct completion xfer_completion;
547 int xfer_result;
548 };
549
550 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
551
552 static inline void
dsi_dma_workaround_write(struct vc4_dsi * dsi,u32 offset,u32 val)553 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
554 {
555 struct dma_chan *chan = dsi->reg_dma_chan;
556 struct dma_async_tx_descriptor *tx;
557 dma_cookie_t cookie;
558 int ret;
559
560 /* DSI0 should be able to write normally. */
561 if (!chan) {
562 writel(val, dsi->regs + offset);
563 return;
564 }
565
566 *dsi->reg_dma_mem = val;
567
568 tx = chan->device->device_prep_dma_memcpy(chan,
569 dsi->reg_paddr + offset,
570 dsi->reg_dma_paddr,
571 4, 0);
572 if (!tx) {
573 DRM_ERROR("Failed to set up DMA register write\n");
574 return;
575 }
576
577 cookie = tx->tx_submit(tx);
578 ret = dma_submit_error(cookie);
579 if (ret) {
580 DRM_ERROR("Failed to submit DMA: %d\n", ret);
581 return;
582 }
583 ret = dma_sync_wait(chan, cookie);
584 if (ret)
585 DRM_ERROR("Failed to wait for DMA: %d\n", ret);
586 }
587
588 #define DSI_READ(offset) readl(dsi->regs + (offset))
589 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
590 #define DSI_PORT_READ(offset) \
591 DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
592 #define DSI_PORT_WRITE(offset, val) \
593 DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
594 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
595
596 /* VC4 DSI encoder KMS struct */
597 struct vc4_dsi_encoder {
598 struct vc4_encoder base;
599 struct vc4_dsi *dsi;
600 };
601
602 static inline struct vc4_dsi_encoder *
to_vc4_dsi_encoder(struct drm_encoder * encoder)603 to_vc4_dsi_encoder(struct drm_encoder *encoder)
604 {
605 return container_of(encoder, struct vc4_dsi_encoder, base.base);
606 }
607
608 #define DSI_REG(reg) { reg, #reg }
609 static const struct {
610 u32 reg;
611 const char *name;
612 } dsi0_regs[] = {
613 DSI_REG(DSI0_CTRL),
614 DSI_REG(DSI0_STAT),
615 DSI_REG(DSI0_HSTX_TO_CNT),
616 DSI_REG(DSI0_LPRX_TO_CNT),
617 DSI_REG(DSI0_TA_TO_CNT),
618 DSI_REG(DSI0_PR_TO_CNT),
619 DSI_REG(DSI0_DISP0_CTRL),
620 DSI_REG(DSI0_DISP1_CTRL),
621 DSI_REG(DSI0_INT_STAT),
622 DSI_REG(DSI0_INT_EN),
623 DSI_REG(DSI0_PHYC),
624 DSI_REG(DSI0_HS_CLT0),
625 DSI_REG(DSI0_HS_CLT1),
626 DSI_REG(DSI0_HS_CLT2),
627 DSI_REG(DSI0_HS_DLT3),
628 DSI_REG(DSI0_HS_DLT4),
629 DSI_REG(DSI0_HS_DLT5),
630 DSI_REG(DSI0_HS_DLT6),
631 DSI_REG(DSI0_HS_DLT7),
632 DSI_REG(DSI0_PHY_AFEC0),
633 DSI_REG(DSI0_PHY_AFEC1),
634 DSI_REG(DSI0_ID),
635 };
636
637 static const struct {
638 u32 reg;
639 const char *name;
640 } dsi1_regs[] = {
641 DSI_REG(DSI1_CTRL),
642 DSI_REG(DSI1_STAT),
643 DSI_REG(DSI1_HSTX_TO_CNT),
644 DSI_REG(DSI1_LPRX_TO_CNT),
645 DSI_REG(DSI1_TA_TO_CNT),
646 DSI_REG(DSI1_PR_TO_CNT),
647 DSI_REG(DSI1_DISP0_CTRL),
648 DSI_REG(DSI1_DISP1_CTRL),
649 DSI_REG(DSI1_INT_STAT),
650 DSI_REG(DSI1_INT_EN),
651 DSI_REG(DSI1_PHYC),
652 DSI_REG(DSI1_HS_CLT0),
653 DSI_REG(DSI1_HS_CLT1),
654 DSI_REG(DSI1_HS_CLT2),
655 DSI_REG(DSI1_HS_DLT3),
656 DSI_REG(DSI1_HS_DLT4),
657 DSI_REG(DSI1_HS_DLT5),
658 DSI_REG(DSI1_HS_DLT6),
659 DSI_REG(DSI1_HS_DLT7),
660 DSI_REG(DSI1_PHY_AFEC0),
661 DSI_REG(DSI1_PHY_AFEC1),
662 DSI_REG(DSI1_ID),
663 };
664
vc4_dsi_dump_regs(struct vc4_dsi * dsi)665 static void vc4_dsi_dump_regs(struct vc4_dsi *dsi)
666 {
667 int i;
668
669 if (dsi->port == 0) {
670 for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
671 DRM_INFO("0x%04x (%s): 0x%08x\n",
672 dsi0_regs[i].reg, dsi0_regs[i].name,
673 DSI_READ(dsi0_regs[i].reg));
674 }
675 } else {
676 for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
677 DRM_INFO("0x%04x (%s): 0x%08x\n",
678 dsi1_regs[i].reg, dsi1_regs[i].name,
679 DSI_READ(dsi1_regs[i].reg));
680 }
681 }
682 }
683
684 #ifdef CONFIG_DEBUG_FS
vc4_dsi_debugfs_regs(struct seq_file * m,void * unused)685 int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused)
686 {
687 struct drm_info_node *node = (struct drm_info_node *)m->private;
688 struct drm_device *drm = node->minor->dev;
689 struct vc4_dev *vc4 = to_vc4_dev(drm);
690 int dsi_index = (uintptr_t)node->info_ent->data;
691 struct vc4_dsi *dsi = (dsi_index == 1 ? vc4->dsi1 : NULL);
692 int i;
693
694 if (!dsi)
695 return 0;
696
697 if (dsi->port == 0) {
698 for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
699 seq_printf(m, "0x%04x (%s): 0x%08x\n",
700 dsi0_regs[i].reg, dsi0_regs[i].name,
701 DSI_READ(dsi0_regs[i].reg));
702 }
703 } else {
704 for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
705 seq_printf(m, "0x%04x (%s): 0x%08x\n",
706 dsi1_regs[i].reg, dsi1_regs[i].name,
707 DSI_READ(dsi1_regs[i].reg));
708 }
709 }
710
711 return 0;
712 }
713 #endif
714
vc4_dsi_encoder_destroy(struct drm_encoder * encoder)715 static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
716 {
717 drm_encoder_cleanup(encoder);
718 }
719
720 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
721 .destroy = vc4_dsi_encoder_destroy,
722 };
723
vc4_dsi_latch_ulps(struct vc4_dsi * dsi,bool latch)724 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
725 {
726 u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
727
728 if (latch)
729 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
730 else
731 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
732
733 DSI_PORT_WRITE(PHY_AFEC0, afec0);
734 }
735
736 /* Enters or exits Ultra Low Power State. */
vc4_dsi_ulps(struct vc4_dsi * dsi,bool ulps)737 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
738 {
739 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
740 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
741 DSI_PHYC_DLANE0_ULPS |
742 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
743 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
744 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
745 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
746 DSI1_STAT_PHY_D0_ULPS |
747 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
748 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
749 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
750 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
751 DSI1_STAT_PHY_D0_STOP |
752 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
753 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
754 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
755 int ret;
756
757 DSI_PORT_WRITE(STAT, stat_ulps);
758 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
759 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
760 if (ret) {
761 dev_warn(&dsi->pdev->dev,
762 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
763 DSI_PORT_READ(STAT));
764 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
765 vc4_dsi_latch_ulps(dsi, false);
766 return;
767 }
768
769 /* The DSI module can't be disabled while the module is
770 * generating ULPS state. So, to be able to disable the
771 * module, we have the AFE latch the ULPS state and continue
772 * on to having the module enter STOP.
773 */
774 vc4_dsi_latch_ulps(dsi, ulps);
775
776 DSI_PORT_WRITE(STAT, stat_stop);
777 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
778 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
779 if (ret) {
780 dev_warn(&dsi->pdev->dev,
781 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
782 DSI_PORT_READ(STAT));
783 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
784 return;
785 }
786 }
787
788 static u32
dsi_hs_timing(u32 ui_ns,u32 ns,u32 ui)789 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
790 {
791 /* The HS timings have to be rounded up to a multiple of 8
792 * because we're using the byte clock.
793 */
794 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
795 }
796
797 /* ESC always runs at 100Mhz. */
798 #define ESC_TIME_NS 10
799
800 static u32
dsi_esc_timing(u32 ns)801 dsi_esc_timing(u32 ns)
802 {
803 return DIV_ROUND_UP(ns, ESC_TIME_NS);
804 }
805
vc4_dsi_encoder_disable(struct drm_encoder * encoder)806 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
807 {
808 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
809 struct vc4_dsi *dsi = vc4_encoder->dsi;
810 struct device *dev = &dsi->pdev->dev;
811
812 vc4_dsi_ulps(dsi, true);
813
814 clk_disable_unprepare(dsi->pll_phy_clock);
815 clk_disable_unprepare(dsi->escape_clock);
816 clk_disable_unprepare(dsi->pixel_clock);
817
818 pm_runtime_put(dev);
819 }
820
821 /* Extends the mode's blank intervals to handle BCM2835's integer-only
822 * DSI PLL divider.
823 *
824 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
825 * driver since most peripherals are hanging off of the PLLD_PER
826 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore
827 * the pixel clock), only has an integer divider off of DSI.
828 *
829 * To get our panel mode to refresh at the expected 60Hz, we need to
830 * extend the horizontal blank time. This means we drive a
831 * higher-than-expected clock rate to the panel, but that's what the
832 * firmware does too.
833 */
vc4_dsi_encoder_mode_fixup(struct drm_encoder * encoder,const struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)834 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
835 const struct drm_display_mode *mode,
836 struct drm_display_mode *adjusted_mode)
837 {
838 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
839 struct vc4_dsi *dsi = vc4_encoder->dsi;
840 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
841 unsigned long parent_rate = clk_get_rate(phy_parent);
842 unsigned long pixel_clock_hz = mode->clock * 1000;
843 unsigned long pll_clock = pixel_clock_hz * dsi->divider;
844 int divider;
845
846 /* Find what divider gets us a faster clock than the requested
847 * pixel clock.
848 */
849 for (divider = 1; divider < 8; divider++) {
850 if (parent_rate / divider < pll_clock) {
851 divider--;
852 break;
853 }
854 }
855
856 /* Now that we've picked a PLL divider, calculate back to its
857 * pixel clock.
858 */
859 pll_clock = parent_rate / divider;
860 pixel_clock_hz = pll_clock / dsi->divider;
861
862 /* Round up the clk_set_rate() request slightly, since
863 * PLLD_DSI1 is an integer divider and its rate selection will
864 * never round up.
865 */
866 adjusted_mode->clock = pixel_clock_hz / 1000 + 1;
867
868 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
869 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
870 mode->clock;
871 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
872 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
873
874 return true;
875 }
876
vc4_dsi_encoder_enable(struct drm_encoder * encoder)877 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
878 {
879 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
880 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
881 struct vc4_dsi *dsi = vc4_encoder->dsi;
882 struct device *dev = &dsi->pdev->dev;
883 bool debug_dump_regs = false;
884 unsigned long hs_clock;
885 u32 ui_ns;
886 /* Minimum LP state duration in escape clock cycles. */
887 u32 lpx = dsi_esc_timing(60);
888 unsigned long pixel_clock_hz = mode->clock * 1000;
889 unsigned long dsip_clock;
890 unsigned long phy_clock;
891 int ret;
892
893 ret = pm_runtime_get_sync(dev);
894 if (ret) {
895 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
896 return;
897 }
898
899 if (debug_dump_regs) {
900 DRM_INFO("DSI regs before:\n");
901 vc4_dsi_dump_regs(dsi);
902 }
903
904 phy_clock = pixel_clock_hz * dsi->divider;
905 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
906 if (ret) {
907 dev_err(&dsi->pdev->dev,
908 "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
909 }
910
911 /* Reset the DSI and all its fifos. */
912 DSI_PORT_WRITE(CTRL,
913 DSI_CTRL_SOFT_RESET_CFG |
914 DSI_PORT_BIT(CTRL_RESET_FIFOS));
915
916 DSI_PORT_WRITE(CTRL,
917 DSI_CTRL_HSDT_EOT_DISABLE |
918 DSI_CTRL_RX_LPDT_EOT_DISABLE);
919
920 /* Clear all stat bits so we see what has happened during enable. */
921 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
922
923 /* Set AFE CTR00/CTR1 to release powerdown of analog. */
924 if (dsi->port == 0) {
925 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
926 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
927
928 if (dsi->lanes < 2)
929 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
930
931 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
932 afec0 |= DSI0_PHY_AFEC0_RESET;
933
934 DSI_PORT_WRITE(PHY_AFEC0, afec0);
935
936 DSI_PORT_WRITE(PHY_AFEC1,
937 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
938 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
939 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
940 } else {
941 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
942 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
943 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
944 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
945 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
946 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
947 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
948
949 if (dsi->lanes < 4)
950 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
951 if (dsi->lanes < 3)
952 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
953 if (dsi->lanes < 2)
954 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
955
956 afec0 |= DSI1_PHY_AFEC0_RESET;
957
958 DSI_PORT_WRITE(PHY_AFEC0, afec0);
959
960 DSI_PORT_WRITE(PHY_AFEC1, 0);
961
962 /* AFEC reset hold time */
963 mdelay(1);
964 }
965
966 ret = clk_prepare_enable(dsi->escape_clock);
967 if (ret) {
968 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
969 return;
970 }
971
972 ret = clk_prepare_enable(dsi->pll_phy_clock);
973 if (ret) {
974 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
975 return;
976 }
977
978 hs_clock = clk_get_rate(dsi->pll_phy_clock);
979
980 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
981 * not the pixel clock rate. DSIxP take from the APHY's byte,
982 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
983 * that rate. Separately, a value derived from PIX_CLK_DIV
984 * and HS_CLKC is fed into the PV to divide down to the actual
985 * pixel clock for pushing pixels into DSI.
986 */
987 dsip_clock = phy_clock / 8;
988 ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
989 if (ret) {
990 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
991 dsip_clock, ret);
992 }
993
994 ret = clk_prepare_enable(dsi->pixel_clock);
995 if (ret) {
996 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
997 return;
998 }
999
1000 /* How many ns one DSI unit interval is. Note that the clock
1001 * is DDR, so there's an extra divide by 2.
1002 */
1003 ui_ns = DIV_ROUND_UP(500000000, hs_clock);
1004
1005 DSI_PORT_WRITE(HS_CLT0,
1006 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
1007 DSI_HS_CLT0_CZERO) |
1008 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
1009 DSI_HS_CLT0_CPRE) |
1010 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
1011 DSI_HS_CLT0_CPREP));
1012
1013 DSI_PORT_WRITE(HS_CLT1,
1014 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
1015 DSI_HS_CLT1_CTRAIL) |
1016 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
1017 DSI_HS_CLT1_CPOST));
1018
1019 DSI_PORT_WRITE(HS_CLT2,
1020 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
1021 DSI_HS_CLT2_WUP));
1022
1023 DSI_PORT_WRITE(HS_DLT3,
1024 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
1025 DSI_HS_DLT3_EXIT) |
1026 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
1027 DSI_HS_DLT3_ZERO) |
1028 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
1029 DSI_HS_DLT3_PRE));
1030
1031 DSI_PORT_WRITE(HS_DLT4,
1032 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
1033 DSI_HS_DLT4_LPX) |
1034 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
1035 dsi_hs_timing(ui_ns, 60, 4)),
1036 DSI_HS_DLT4_TRAIL) |
1037 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
1038
1039 /* T_INIT is how long STOP is driven after power-up to
1040 * indicate to the slave (also coming out of power-up) that
1041 * master init is complete, and should be greater than the
1042 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The
1043 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
1044 * T_INIT,SLAVE, while allowing protocols on top of it to give
1045 * greater minimums. The vc4 firmware uses an extremely
1046 * conservative 5ms, and we maintain that here.
1047 */
1048 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
1049 5 * 1000 * 1000, 0),
1050 DSI_HS_DLT5_INIT));
1051
1052 DSI_PORT_WRITE(HS_DLT6,
1053 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1054 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1055 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1056 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1057
1058 DSI_PORT_WRITE(HS_DLT7,
1059 VC4_SET_FIELD(dsi_esc_timing(1000000),
1060 DSI_HS_DLT7_LP_WUP));
1061
1062 DSI_PORT_WRITE(PHYC,
1063 DSI_PHYC_DLANE0_ENABLE |
1064 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1065 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1066 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1067 DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1068 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1069 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1070 (dsi->port == 0 ?
1071 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1072 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1073
1074 DSI_PORT_WRITE(CTRL,
1075 DSI_PORT_READ(CTRL) |
1076 DSI_CTRL_CAL_BYTE);
1077
1078 /* HS timeout in HS clock cycles: disabled. */
1079 DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1080 /* LP receive timeout in HS clocks. */
1081 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1082 /* Bus turnaround timeout */
1083 DSI_PORT_WRITE(TA_TO_CNT, 100000);
1084 /* Display reset sequence timeout */
1085 DSI_PORT_WRITE(PR_TO_CNT, 100000);
1086
1087 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1088 DSI_PORT_WRITE(DISP0_CTRL,
1089 VC4_SET_FIELD(dsi->divider,
1090 DSI_DISP0_PIX_CLK_DIV) |
1091 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1092 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1093 DSI_DISP0_LP_STOP_CTRL) |
1094 DSI_DISP0_ST_END |
1095 DSI_DISP0_ENABLE);
1096 } else {
1097 DSI_PORT_WRITE(DISP0_CTRL,
1098 DSI_DISP0_COMMAND_MODE |
1099 DSI_DISP0_ENABLE);
1100 }
1101
1102 /* Set up DISP1 for transferring long command payloads through
1103 * the pixfifo.
1104 */
1105 DSI_PORT_WRITE(DISP1_CTRL,
1106 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1107 DSI_DISP1_PFORMAT) |
1108 DSI_DISP1_ENABLE);
1109
1110 /* Ungate the block. */
1111 if (dsi->port == 0)
1112 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1113 else
1114 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1115
1116 /* Bring AFE out of reset. */
1117 if (dsi->port == 0) {
1118 } else {
1119 DSI_PORT_WRITE(PHY_AFEC0,
1120 DSI_PORT_READ(PHY_AFEC0) &
1121 ~DSI1_PHY_AFEC0_RESET);
1122 }
1123
1124 vc4_dsi_ulps(dsi, false);
1125
1126 if (debug_dump_regs) {
1127 DRM_INFO("DSI regs after:\n");
1128 vc4_dsi_dump_regs(dsi);
1129 }
1130 }
1131
vc4_dsi_host_transfer(struct mipi_dsi_host * host,const struct mipi_dsi_msg * msg)1132 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1133 const struct mipi_dsi_msg *msg)
1134 {
1135 struct vc4_dsi *dsi = host_to_dsi(host);
1136 struct mipi_dsi_packet packet;
1137 u32 pkth = 0, pktc = 0;
1138 int i, ret;
1139 bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1140 u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1141
1142 mipi_dsi_create_packet(&packet, msg);
1143
1144 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1145 pkth |= VC4_SET_FIELD(packet.header[1] |
1146 (packet.header[2] << 8),
1147 DSI_TXPKT1H_BC_PARAM);
1148 if (is_long) {
1149 /* Divide data across the various FIFOs we have available.
1150 * The command FIFO takes byte-oriented data, but is of
1151 * limited size. The pixel FIFO (never actually used for
1152 * pixel data in reality) is word oriented, and substantially
1153 * larger. So, we use the pixel FIFO for most of the data,
1154 * sending the residual bytes in the command FIFO at the start.
1155 *
1156 * With this arrangement, the command FIFO will never get full.
1157 */
1158 if (packet.payload_length <= 16) {
1159 cmd_fifo_len = packet.payload_length;
1160 pix_fifo_len = 0;
1161 } else {
1162 cmd_fifo_len = (packet.payload_length %
1163 DSI_PIX_FIFO_WIDTH);
1164 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1165 DSI_PIX_FIFO_WIDTH);
1166 }
1167
1168 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1169
1170 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1171 }
1172
1173 if (msg->rx_len) {
1174 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1175 DSI_TXPKT1C_CMD_CTRL);
1176 } else {
1177 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1178 DSI_TXPKT1C_CMD_CTRL);
1179 }
1180
1181 for (i = 0; i < cmd_fifo_len; i++)
1182 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1183 for (i = 0; i < pix_fifo_len; i++) {
1184 const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1185
1186 DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1187 pix[0] |
1188 pix[1] << 8 |
1189 pix[2] << 16 |
1190 pix[3] << 24);
1191 }
1192
1193 if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1194 pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1195 if (is_long)
1196 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1197
1198 /* Send one copy of the packet. Larger repeats are used for pixel
1199 * data in command mode.
1200 */
1201 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1202
1203 pktc |= DSI_TXPKT1C_CMD_EN;
1204 if (pix_fifo_len) {
1205 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1206 DSI_TXPKT1C_DISPLAY_NO);
1207 } else {
1208 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1209 DSI_TXPKT1C_DISPLAY_NO);
1210 }
1211
1212 /* Enable the appropriate interrupt for the transfer completion. */
1213 dsi->xfer_result = 0;
1214 reinit_completion(&dsi->xfer_completion);
1215 DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1216 if (msg->rx_len) {
1217 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1218 DSI1_INT_PHY_DIR_RTF));
1219 } else {
1220 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1221 DSI1_INT_TXPKT1_DONE));
1222 }
1223
1224 /* Send the packet. */
1225 DSI_PORT_WRITE(TXPKT1H, pkth);
1226 DSI_PORT_WRITE(TXPKT1C, pktc);
1227
1228 if (!wait_for_completion_timeout(&dsi->xfer_completion,
1229 msecs_to_jiffies(1000))) {
1230 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1231 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1232 DSI_PORT_READ(INT_STAT));
1233 ret = -ETIMEDOUT;
1234 } else {
1235 ret = dsi->xfer_result;
1236 }
1237
1238 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1239
1240 if (ret)
1241 goto reset_fifo_and_return;
1242
1243 if (ret == 0 && msg->rx_len) {
1244 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1245 u8 *msg_rx = msg->rx_buf;
1246
1247 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1248 u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1249 DSI_RXPKT1H_BC_PARAM);
1250
1251 if (rxlen != msg->rx_len) {
1252 DRM_ERROR("DSI returned %db, expecting %db\n",
1253 rxlen, (int)msg->rx_len);
1254 ret = -ENXIO;
1255 goto reset_fifo_and_return;
1256 }
1257
1258 for (i = 0; i < msg->rx_len; i++)
1259 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1260 } else {
1261 /* FINISHME: Handle AWER */
1262
1263 msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1264 DSI_RXPKT1H_SHORT_0);
1265 if (msg->rx_len > 1) {
1266 msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1267 DSI_RXPKT1H_SHORT_1);
1268 }
1269 }
1270 }
1271
1272 return ret;
1273
1274 reset_fifo_and_return:
1275 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1276
1277 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1278 udelay(1);
1279 DSI_PORT_WRITE(CTRL,
1280 DSI_PORT_READ(CTRL) |
1281 DSI_PORT_BIT(CTRL_RESET_FIFOS));
1282
1283 DSI_PORT_WRITE(TXPKT1C, 0);
1284 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1285 return ret;
1286 }
1287
vc4_dsi_host_attach(struct mipi_dsi_host * host,struct mipi_dsi_device * device)1288 static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1289 struct mipi_dsi_device *device)
1290 {
1291 struct vc4_dsi *dsi = host_to_dsi(host);
1292 int ret = 0;
1293
1294 dsi->lanes = device->lanes;
1295 dsi->channel = device->channel;
1296 dsi->mode_flags = device->mode_flags;
1297
1298 switch (device->format) {
1299 case MIPI_DSI_FMT_RGB888:
1300 dsi->format = DSI_PFORMAT_RGB888;
1301 dsi->divider = 24 / dsi->lanes;
1302 break;
1303 case MIPI_DSI_FMT_RGB666:
1304 dsi->format = DSI_PFORMAT_RGB666;
1305 dsi->divider = 24 / dsi->lanes;
1306 break;
1307 case MIPI_DSI_FMT_RGB666_PACKED:
1308 dsi->format = DSI_PFORMAT_RGB666_PACKED;
1309 dsi->divider = 18 / dsi->lanes;
1310 break;
1311 case MIPI_DSI_FMT_RGB565:
1312 dsi->format = DSI_PFORMAT_RGB565;
1313 dsi->divider = 16 / dsi->lanes;
1314 break;
1315 default:
1316 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1317 dsi->format);
1318 return 0;
1319 }
1320
1321 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1322 dev_err(&dsi->pdev->dev,
1323 "Only VIDEO mode panels supported currently.\n");
1324 return 0;
1325 }
1326
1327 dsi->bridge = of_drm_find_bridge(device->dev.of_node);
1328 if (!dsi->bridge) {
1329 struct drm_panel *panel =
1330 of_drm_find_panel(device->dev.of_node);
1331
1332 dsi->bridge = drm_panel_bridge_add(panel,
1333 DRM_MODE_CONNECTOR_DSI);
1334 if (IS_ERR(dsi->bridge)) {
1335 ret = PTR_ERR(dsi->bridge);
1336 dsi->bridge = NULL;
1337 return ret;
1338 }
1339 dsi->is_panel_bridge = true;
1340 }
1341
1342 return drm_bridge_attach(dsi->encoder, dsi->bridge, NULL);
1343 }
1344
vc4_dsi_host_detach(struct mipi_dsi_host * host,struct mipi_dsi_device * device)1345 static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1346 struct mipi_dsi_device *device)
1347 {
1348 struct vc4_dsi *dsi = host_to_dsi(host);
1349
1350 if (dsi->is_panel_bridge) {
1351 drm_panel_bridge_remove(dsi->bridge);
1352 dsi->bridge = NULL;
1353 }
1354
1355 return 0;
1356 }
1357
1358 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1359 .attach = vc4_dsi_host_attach,
1360 .detach = vc4_dsi_host_detach,
1361 .transfer = vc4_dsi_host_transfer,
1362 };
1363
1364 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1365 .disable = vc4_dsi_encoder_disable,
1366 .enable = vc4_dsi_encoder_enable,
1367 .mode_fixup = vc4_dsi_encoder_mode_fixup,
1368 };
1369
1370 static const struct of_device_id vc4_dsi_dt_match[] = {
1371 { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1372 {}
1373 };
1374
dsi_handle_error(struct vc4_dsi * dsi,irqreturn_t * ret,u32 stat,u32 bit,const char * type)1375 static void dsi_handle_error(struct vc4_dsi *dsi,
1376 irqreturn_t *ret, u32 stat, u32 bit,
1377 const char *type)
1378 {
1379 if (!(stat & bit))
1380 return;
1381
1382 DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
1383 *ret = IRQ_HANDLED;
1384 }
1385
vc4_dsi_irq_handler(int irq,void * data)1386 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1387 {
1388 struct vc4_dsi *dsi = data;
1389 u32 stat = DSI_PORT_READ(INT_STAT);
1390 irqreturn_t ret = IRQ_NONE;
1391
1392 DSI_PORT_WRITE(INT_STAT, stat);
1393
1394 dsi_handle_error(dsi, &ret, stat,
1395 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1396 dsi_handle_error(dsi, &ret, stat,
1397 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1398 dsi_handle_error(dsi, &ret, stat,
1399 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1400 dsi_handle_error(dsi, &ret, stat,
1401 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1402 dsi_handle_error(dsi, &ret, stat,
1403 DSI1_INT_HSTX_TO, "HSTX timeout");
1404 dsi_handle_error(dsi, &ret, stat,
1405 DSI1_INT_LPRX_TO, "LPRX timeout");
1406 dsi_handle_error(dsi, &ret, stat,
1407 DSI1_INT_TA_TO, "turnaround timeout");
1408 dsi_handle_error(dsi, &ret, stat,
1409 DSI1_INT_PR_TO, "peripheral reset timeout");
1410
1411 if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1412 complete(&dsi->xfer_completion);
1413 ret = IRQ_HANDLED;
1414 } else if (stat & DSI1_INT_HSTX_TO) {
1415 complete(&dsi->xfer_completion);
1416 dsi->xfer_result = -ETIMEDOUT;
1417 ret = IRQ_HANDLED;
1418 }
1419
1420 return ret;
1421 }
1422
1423 /**
1424 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1425 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1426 * @dsi: DSI encoder
1427 */
1428 static int
vc4_dsi_init_phy_clocks(struct vc4_dsi * dsi)1429 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1430 {
1431 struct device *dev = &dsi->pdev->dev;
1432 const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1433 static const struct {
1434 const char *dsi0_name, *dsi1_name;
1435 int div;
1436 } phy_clocks[] = {
1437 { "dsi0_byte", "dsi1_byte", 8 },
1438 { "dsi0_ddr2", "dsi1_ddr2", 4 },
1439 { "dsi0_ddr", "dsi1_ddr", 2 },
1440 };
1441 int i;
1442
1443 dsi->clk_onecell = devm_kzalloc(dev,
1444 sizeof(*dsi->clk_onecell) +
1445 ARRAY_SIZE(phy_clocks) *
1446 sizeof(struct clk_hw *),
1447 GFP_KERNEL);
1448 if (!dsi->clk_onecell)
1449 return -ENOMEM;
1450 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1451
1452 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1453 struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1454 struct clk_init_data init;
1455 int ret;
1456
1457 /* We just use core fixed factor clock ops for the PHY
1458 * clocks. The clocks are actually gated by the
1459 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1460 * setting if we use the DDR/DDR2 clocks. However,
1461 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1462 * setting both our parent DSI PLL's rate and this
1463 * clock's rate, so it knows if DDR/DDR2 are going to
1464 * be used and could enable the gates itself.
1465 */
1466 fix->mult = 1;
1467 fix->div = phy_clocks[i].div;
1468 fix->hw.init = &init;
1469
1470 memset(&init, 0, sizeof(init));
1471 init.parent_names = &parent_name;
1472 init.num_parents = 1;
1473 if (dsi->port == 1)
1474 init.name = phy_clocks[i].dsi1_name;
1475 else
1476 init.name = phy_clocks[i].dsi0_name;
1477 init.ops = &clk_fixed_factor_ops;
1478
1479 ret = devm_clk_hw_register(dev, &fix->hw);
1480 if (ret)
1481 return ret;
1482
1483 dsi->clk_onecell->hws[i] = &fix->hw;
1484 }
1485
1486 return of_clk_add_hw_provider(dev->of_node,
1487 of_clk_hw_onecell_get,
1488 dsi->clk_onecell);
1489 }
1490
vc4_dsi_bind(struct device * dev,struct device * master,void * data)1491 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1492 {
1493 struct platform_device *pdev = to_platform_device(dev);
1494 struct drm_device *drm = dev_get_drvdata(master);
1495 struct vc4_dev *vc4 = to_vc4_dev(drm);
1496 struct vc4_dsi *dsi;
1497 struct vc4_dsi_encoder *vc4_dsi_encoder;
1498 const struct of_device_id *match;
1499 dma_cap_mask_t dma_mask;
1500 int ret;
1501
1502 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1503 if (!dsi)
1504 return -ENOMEM;
1505
1506 match = of_match_device(vc4_dsi_dt_match, dev);
1507 if (!match)
1508 return -ENODEV;
1509
1510 dsi->port = (uintptr_t)match->data;
1511
1512 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1513 GFP_KERNEL);
1514 if (!vc4_dsi_encoder)
1515 return -ENOMEM;
1516 vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1517 vc4_dsi_encoder->dsi = dsi;
1518 dsi->encoder = &vc4_dsi_encoder->base.base;
1519
1520 dsi->pdev = pdev;
1521 dsi->regs = vc4_ioremap_regs(pdev, 0);
1522 if (IS_ERR(dsi->regs))
1523 return PTR_ERR(dsi->regs);
1524
1525 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1526 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1527 DSI_PORT_READ(ID), DSI_ID_VALUE);
1528 return -ENODEV;
1529 }
1530
1531 /* DSI1 has a broken AXI slave that doesn't respond to writes
1532 * from the ARM. It does handle writes from the DMA engine,
1533 * so set up a channel for talking to it.
1534 */
1535 if (dsi->port == 1) {
1536 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1537 &dsi->reg_dma_paddr,
1538 GFP_KERNEL);
1539 if (!dsi->reg_dma_mem) {
1540 DRM_ERROR("Failed to get DMA memory\n");
1541 return -ENOMEM;
1542 }
1543
1544 dma_cap_zero(dma_mask);
1545 dma_cap_set(DMA_MEMCPY, dma_mask);
1546 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1547 if (IS_ERR(dsi->reg_dma_chan)) {
1548 ret = PTR_ERR(dsi->reg_dma_chan);
1549 if (ret != -EPROBE_DEFER)
1550 DRM_ERROR("Failed to get DMA channel: %d\n",
1551 ret);
1552 return ret;
1553 }
1554
1555 /* Get the physical address of the device's registers. The
1556 * struct resource for the regs gives us the bus address
1557 * instead.
1558 */
1559 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1560 0, NULL, NULL));
1561 }
1562
1563 init_completion(&dsi->xfer_completion);
1564 /* At startup enable error-reporting interrupts and nothing else. */
1565 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1566 /* Clear any existing interrupt state. */
1567 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1568
1569 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1570 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1571 if (ret) {
1572 if (ret != -EPROBE_DEFER)
1573 dev_err(dev, "Failed to get interrupt: %d\n", ret);
1574 return ret;
1575 }
1576
1577 dsi->escape_clock = devm_clk_get(dev, "escape");
1578 if (IS_ERR(dsi->escape_clock)) {
1579 ret = PTR_ERR(dsi->escape_clock);
1580 if (ret != -EPROBE_DEFER)
1581 dev_err(dev, "Failed to get escape clock: %d\n", ret);
1582 return ret;
1583 }
1584
1585 dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1586 if (IS_ERR(dsi->pll_phy_clock)) {
1587 ret = PTR_ERR(dsi->pll_phy_clock);
1588 if (ret != -EPROBE_DEFER)
1589 dev_err(dev, "Failed to get phy clock: %d\n", ret);
1590 return ret;
1591 }
1592
1593 dsi->pixel_clock = devm_clk_get(dev, "pixel");
1594 if (IS_ERR(dsi->pixel_clock)) {
1595 ret = PTR_ERR(dsi->pixel_clock);
1596 if (ret != -EPROBE_DEFER)
1597 dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1598 return ret;
1599 }
1600
1601 /* The esc clock rate is supposed to always be 100Mhz. */
1602 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1603 if (ret) {
1604 dev_err(dev, "Failed to set esc clock: %d\n", ret);
1605 return ret;
1606 }
1607
1608 ret = vc4_dsi_init_phy_clocks(dsi);
1609 if (ret)
1610 return ret;
1611
1612 if (dsi->port == 1)
1613 vc4->dsi1 = dsi;
1614
1615 drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
1616 DRM_MODE_ENCODER_DSI, NULL);
1617 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1618
1619 dsi->dsi_host.ops = &vc4_dsi_host_ops;
1620 dsi->dsi_host.dev = dev;
1621
1622 mipi_dsi_host_register(&dsi->dsi_host);
1623
1624 dev_set_drvdata(dev, dsi);
1625
1626 pm_runtime_enable(dev);
1627
1628 return 0;
1629 }
1630
vc4_dsi_unbind(struct device * dev,struct device * master,void * data)1631 static void vc4_dsi_unbind(struct device *dev, struct device *master,
1632 void *data)
1633 {
1634 struct drm_device *drm = dev_get_drvdata(master);
1635 struct vc4_dev *vc4 = to_vc4_dev(drm);
1636 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1637
1638 pm_runtime_disable(dev);
1639
1640 vc4_dsi_encoder_destroy(dsi->encoder);
1641
1642 mipi_dsi_host_unregister(&dsi->dsi_host);
1643
1644 if (dsi->port == 1)
1645 vc4->dsi1 = NULL;
1646 }
1647
1648 static const struct component_ops vc4_dsi_ops = {
1649 .bind = vc4_dsi_bind,
1650 .unbind = vc4_dsi_unbind,
1651 };
1652
vc4_dsi_dev_probe(struct platform_device * pdev)1653 static int vc4_dsi_dev_probe(struct platform_device *pdev)
1654 {
1655 return component_add(&pdev->dev, &vc4_dsi_ops);
1656 }
1657
vc4_dsi_dev_remove(struct platform_device * pdev)1658 static int vc4_dsi_dev_remove(struct platform_device *pdev)
1659 {
1660 component_del(&pdev->dev, &vc4_dsi_ops);
1661 return 0;
1662 }
1663
1664 struct platform_driver vc4_dsi_driver = {
1665 .probe = vc4_dsi_dev_probe,
1666 .remove = vc4_dsi_dev_remove,
1667 .driver = {
1668 .name = "vc4_dsi",
1669 .of_match_table = vc4_dsi_dt_match,
1670 },
1671 };
1672