1 /*
2 * Hardware monitoring driver for PMBus devices
3 *
4 * Copyright (c) 2010, 2011 Ericsson AB.
5 * Copyright (c) 2012 Guenter Roeck
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 #include <linux/debugfs.h>
23 #include <linux/kernel.h>
24 #include <linux/math64.h>
25 #include <linux/module.h>
26 #include <linux/init.h>
27 #include <linux/err.h>
28 #include <linux/slab.h>
29 #include <linux/i2c.h>
30 #include <linux/hwmon.h>
31 #include <linux/hwmon-sysfs.h>
32 #include <linux/jiffies.h>
33 #include <linux/pmbus.h>
34 #include <linux/regulator/driver.h>
35 #include <linux/regulator/machine.h>
36 #include "pmbus.h"
37
38 /*
39 * Number of additional attribute pointers to allocate
40 * with each call to krealloc
41 */
42 #define PMBUS_ATTR_ALLOC_SIZE 32
43
44 /*
45 * Index into status register array, per status register group
46 */
47 #define PB_STATUS_BASE 0
48 #define PB_STATUS_VOUT_BASE (PB_STATUS_BASE + PMBUS_PAGES)
49 #define PB_STATUS_IOUT_BASE (PB_STATUS_VOUT_BASE + PMBUS_PAGES)
50 #define PB_STATUS_FAN_BASE (PB_STATUS_IOUT_BASE + PMBUS_PAGES)
51 #define PB_STATUS_FAN34_BASE (PB_STATUS_FAN_BASE + PMBUS_PAGES)
52 #define PB_STATUS_TEMP_BASE (PB_STATUS_FAN34_BASE + PMBUS_PAGES)
53 #define PB_STATUS_INPUT_BASE (PB_STATUS_TEMP_BASE + PMBUS_PAGES)
54 #define PB_STATUS_VMON_BASE (PB_STATUS_INPUT_BASE + 1)
55
56 #define PB_NUM_STATUS_REG (PB_STATUS_VMON_BASE + 1)
57
58 #define PMBUS_NAME_SIZE 24
59
60 struct pmbus_sensor {
61 struct pmbus_sensor *next;
62 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */
63 struct device_attribute attribute;
64 u8 page; /* page number */
65 u16 reg; /* register */
66 enum pmbus_sensor_classes class; /* sensor class */
67 bool update; /* runtime sensor update needed */
68 int data; /* Sensor data.
69 Negative if there was a read error */
70 };
71 #define to_pmbus_sensor(_attr) \
72 container_of(_attr, struct pmbus_sensor, attribute)
73
74 struct pmbus_boolean {
75 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */
76 struct sensor_device_attribute attribute;
77 struct pmbus_sensor *s1;
78 struct pmbus_sensor *s2;
79 };
80 #define to_pmbus_boolean(_attr) \
81 container_of(_attr, struct pmbus_boolean, attribute)
82
83 struct pmbus_label {
84 char name[PMBUS_NAME_SIZE]; /* sysfs label name */
85 struct device_attribute attribute;
86 char label[PMBUS_NAME_SIZE]; /* label */
87 };
88 #define to_pmbus_label(_attr) \
89 container_of(_attr, struct pmbus_label, attribute)
90
91 struct pmbus_data {
92 struct device *dev;
93 struct device *hwmon_dev;
94
95 u32 flags; /* from platform data */
96
97 int exponent[PMBUS_PAGES];
98 /* linear mode: exponent for output voltages */
99
100 const struct pmbus_driver_info *info;
101
102 int max_attributes;
103 int num_attributes;
104 struct attribute_group group;
105 const struct attribute_group *groups[2];
106 struct dentry *debugfs; /* debugfs device directory */
107
108 struct pmbus_sensor *sensors;
109
110 struct mutex update_lock;
111 bool valid;
112 unsigned long last_updated; /* in jiffies */
113
114 /*
115 * A single status register covers multiple attributes,
116 * so we keep them all together.
117 */
118 u16 status[PB_NUM_STATUS_REG];
119
120 bool has_status_word; /* device uses STATUS_WORD register */
121 int (*read_status)(struct i2c_client *client, int page);
122
123 u8 currpage;
124 };
125
126 struct pmbus_debugfs_entry {
127 struct i2c_client *client;
128 u8 page;
129 u8 reg;
130 };
131
pmbus_clear_cache(struct i2c_client * client)132 void pmbus_clear_cache(struct i2c_client *client)
133 {
134 struct pmbus_data *data = i2c_get_clientdata(client);
135
136 data->valid = false;
137 }
138 EXPORT_SYMBOL_GPL(pmbus_clear_cache);
139
pmbus_set_page(struct i2c_client * client,int page)140 int pmbus_set_page(struct i2c_client *client, int page)
141 {
142 struct pmbus_data *data = i2c_get_clientdata(client);
143 int rv = 0;
144 int newpage;
145
146 if (page >= 0 && page != data->currpage) {
147 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
148 newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
149 if (newpage != page)
150 rv = -EIO;
151 else
152 data->currpage = page;
153 }
154 return rv;
155 }
156 EXPORT_SYMBOL_GPL(pmbus_set_page);
157
pmbus_write_byte(struct i2c_client * client,int page,u8 value)158 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
159 {
160 int rv;
161
162 rv = pmbus_set_page(client, page);
163 if (rv < 0)
164 return rv;
165
166 return i2c_smbus_write_byte(client, value);
167 }
168 EXPORT_SYMBOL_GPL(pmbus_write_byte);
169
170 /*
171 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
172 * a device specific mapping function exists and calls it if necessary.
173 */
_pmbus_write_byte(struct i2c_client * client,int page,u8 value)174 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
175 {
176 struct pmbus_data *data = i2c_get_clientdata(client);
177 const struct pmbus_driver_info *info = data->info;
178 int status;
179
180 if (info->write_byte) {
181 status = info->write_byte(client, page, value);
182 if (status != -ENODATA)
183 return status;
184 }
185 return pmbus_write_byte(client, page, value);
186 }
187
pmbus_write_word_data(struct i2c_client * client,int page,u8 reg,u16 word)188 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
189 u16 word)
190 {
191 int rv;
192
193 rv = pmbus_set_page(client, page);
194 if (rv < 0)
195 return rv;
196
197 return i2c_smbus_write_word_data(client, reg, word);
198 }
199 EXPORT_SYMBOL_GPL(pmbus_write_word_data);
200
201 /*
202 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
203 * a device specific mapping function exists and calls it if necessary.
204 */
_pmbus_write_word_data(struct i2c_client * client,int page,int reg,u16 word)205 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
206 u16 word)
207 {
208 struct pmbus_data *data = i2c_get_clientdata(client);
209 const struct pmbus_driver_info *info = data->info;
210 int status;
211
212 if (info->write_word_data) {
213 status = info->write_word_data(client, page, reg, word);
214 if (status != -ENODATA)
215 return status;
216 }
217 if (reg >= PMBUS_VIRT_BASE)
218 return -ENXIO;
219 return pmbus_write_word_data(client, page, reg, word);
220 }
221
pmbus_read_word_data(struct i2c_client * client,int page,u8 reg)222 int pmbus_read_word_data(struct i2c_client *client, int page, u8 reg)
223 {
224 int rv;
225
226 rv = pmbus_set_page(client, page);
227 if (rv < 0)
228 return rv;
229
230 return i2c_smbus_read_word_data(client, reg);
231 }
232 EXPORT_SYMBOL_GPL(pmbus_read_word_data);
233
234 /*
235 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
236 * a device specific mapping function exists and calls it if necessary.
237 */
_pmbus_read_word_data(struct i2c_client * client,int page,int reg)238 static int _pmbus_read_word_data(struct i2c_client *client, int page, int reg)
239 {
240 struct pmbus_data *data = i2c_get_clientdata(client);
241 const struct pmbus_driver_info *info = data->info;
242 int status;
243
244 if (info->read_word_data) {
245 status = info->read_word_data(client, page, reg);
246 if (status != -ENODATA)
247 return status;
248 }
249 if (reg >= PMBUS_VIRT_BASE)
250 return -ENXIO;
251 return pmbus_read_word_data(client, page, reg);
252 }
253
pmbus_read_byte_data(struct i2c_client * client,int page,u8 reg)254 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
255 {
256 int rv;
257
258 rv = pmbus_set_page(client, page);
259 if (rv < 0)
260 return rv;
261
262 return i2c_smbus_read_byte_data(client, reg);
263 }
264 EXPORT_SYMBOL_GPL(pmbus_read_byte_data);
265
pmbus_write_byte_data(struct i2c_client * client,int page,u8 reg,u8 value)266 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
267 {
268 int rv;
269
270 rv = pmbus_set_page(client, page);
271 if (rv < 0)
272 return rv;
273
274 return i2c_smbus_write_byte_data(client, reg, value);
275 }
276 EXPORT_SYMBOL_GPL(pmbus_write_byte_data);
277
pmbus_update_byte_data(struct i2c_client * client,int page,u8 reg,u8 mask,u8 value)278 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
279 u8 mask, u8 value)
280 {
281 unsigned int tmp;
282 int rv;
283
284 rv = pmbus_read_byte_data(client, page, reg);
285 if (rv < 0)
286 return rv;
287
288 tmp = (rv & ~mask) | (value & mask);
289
290 if (tmp != rv)
291 rv = pmbus_write_byte_data(client, page, reg, tmp);
292
293 return rv;
294 }
295 EXPORT_SYMBOL_GPL(pmbus_update_byte_data);
296
297 /*
298 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
299 * a device specific mapping function exists and calls it if necessary.
300 */
_pmbus_read_byte_data(struct i2c_client * client,int page,int reg)301 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
302 {
303 struct pmbus_data *data = i2c_get_clientdata(client);
304 const struct pmbus_driver_info *info = data->info;
305 int status;
306
307 if (info->read_byte_data) {
308 status = info->read_byte_data(client, page, reg);
309 if (status != -ENODATA)
310 return status;
311 }
312 return pmbus_read_byte_data(client, page, reg);
313 }
314
pmbus_clear_fault_page(struct i2c_client * client,int page)315 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
316 {
317 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
318 }
319
pmbus_clear_faults(struct i2c_client * client)320 void pmbus_clear_faults(struct i2c_client *client)
321 {
322 struct pmbus_data *data = i2c_get_clientdata(client);
323 int i;
324
325 for (i = 0; i < data->info->pages; i++)
326 pmbus_clear_fault_page(client, i);
327 }
328 EXPORT_SYMBOL_GPL(pmbus_clear_faults);
329
pmbus_check_status_cml(struct i2c_client * client)330 static int pmbus_check_status_cml(struct i2c_client *client)
331 {
332 struct pmbus_data *data = i2c_get_clientdata(client);
333 int status, status2;
334
335 status = data->read_status(client, -1);
336 if (status < 0 || (status & PB_STATUS_CML)) {
337 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
338 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
339 return -EIO;
340 }
341 return 0;
342 }
343
pmbus_check_register(struct i2c_client * client,int (* func)(struct i2c_client * client,int page,int reg),int page,int reg)344 static bool pmbus_check_register(struct i2c_client *client,
345 int (*func)(struct i2c_client *client,
346 int page, int reg),
347 int page, int reg)
348 {
349 int rv;
350 struct pmbus_data *data = i2c_get_clientdata(client);
351
352 rv = func(client, page, reg);
353 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
354 rv = pmbus_check_status_cml(client);
355 pmbus_clear_fault_page(client, -1);
356 return rv >= 0;
357 }
358
pmbus_check_status_register(struct i2c_client * client,int page)359 static bool pmbus_check_status_register(struct i2c_client *client, int page)
360 {
361 int status;
362 struct pmbus_data *data = i2c_get_clientdata(client);
363
364 status = data->read_status(client, page);
365 if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
366 (status & PB_STATUS_CML)) {
367 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
368 if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
369 status = -EIO;
370 }
371
372 pmbus_clear_fault_page(client, -1);
373 return status >= 0;
374 }
375
pmbus_check_byte_register(struct i2c_client * client,int page,int reg)376 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
377 {
378 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
379 }
380 EXPORT_SYMBOL_GPL(pmbus_check_byte_register);
381
pmbus_check_word_register(struct i2c_client * client,int page,int reg)382 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
383 {
384 return pmbus_check_register(client, _pmbus_read_word_data, page, reg);
385 }
386 EXPORT_SYMBOL_GPL(pmbus_check_word_register);
387
pmbus_get_driver_info(struct i2c_client * client)388 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
389 {
390 struct pmbus_data *data = i2c_get_clientdata(client);
391
392 return data->info;
393 }
394 EXPORT_SYMBOL_GPL(pmbus_get_driver_info);
395
396 static struct _pmbus_status {
397 u32 func;
398 u16 base;
399 u16 reg;
400 } pmbus_status[] = {
401 { PMBUS_HAVE_STATUS_VOUT, PB_STATUS_VOUT_BASE, PMBUS_STATUS_VOUT },
402 { PMBUS_HAVE_STATUS_IOUT, PB_STATUS_IOUT_BASE, PMBUS_STATUS_IOUT },
403 { PMBUS_HAVE_STATUS_TEMP, PB_STATUS_TEMP_BASE,
404 PMBUS_STATUS_TEMPERATURE },
405 { PMBUS_HAVE_STATUS_FAN12, PB_STATUS_FAN_BASE, PMBUS_STATUS_FAN_12 },
406 { PMBUS_HAVE_STATUS_FAN34, PB_STATUS_FAN34_BASE, PMBUS_STATUS_FAN_34 },
407 };
408
pmbus_update_device(struct device * dev)409 static struct pmbus_data *pmbus_update_device(struct device *dev)
410 {
411 struct i2c_client *client = to_i2c_client(dev->parent);
412 struct pmbus_data *data = i2c_get_clientdata(client);
413 const struct pmbus_driver_info *info = data->info;
414 struct pmbus_sensor *sensor;
415
416 mutex_lock(&data->update_lock);
417 if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
418 int i, j;
419
420 for (i = 0; i < info->pages; i++) {
421 data->status[PB_STATUS_BASE + i]
422 = data->read_status(client, i);
423 for (j = 0; j < ARRAY_SIZE(pmbus_status); j++) {
424 struct _pmbus_status *s = &pmbus_status[j];
425
426 if (!(info->func[i] & s->func))
427 continue;
428 data->status[s->base + i]
429 = _pmbus_read_byte_data(client, i,
430 s->reg);
431 }
432 }
433
434 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT)
435 data->status[PB_STATUS_INPUT_BASE]
436 = _pmbus_read_byte_data(client, 0,
437 PMBUS_STATUS_INPUT);
438
439 if (info->func[0] & PMBUS_HAVE_STATUS_VMON)
440 data->status[PB_STATUS_VMON_BASE]
441 = _pmbus_read_byte_data(client, 0,
442 PMBUS_VIRT_STATUS_VMON);
443
444 for (sensor = data->sensors; sensor; sensor = sensor->next) {
445 if (!data->valid || sensor->update)
446 sensor->data
447 = _pmbus_read_word_data(client,
448 sensor->page,
449 sensor->reg);
450 }
451 pmbus_clear_faults(client);
452 data->last_updated = jiffies;
453 data->valid = 1;
454 }
455 mutex_unlock(&data->update_lock);
456 return data;
457 }
458
459 /*
460 * Convert linear sensor values to milli- or micro-units
461 * depending on sensor type.
462 */
pmbus_reg2data_linear(struct pmbus_data * data,struct pmbus_sensor * sensor)463 static long pmbus_reg2data_linear(struct pmbus_data *data,
464 struct pmbus_sensor *sensor)
465 {
466 s16 exponent;
467 s32 mantissa;
468 long val;
469
470 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
471 exponent = data->exponent[sensor->page];
472 mantissa = (u16) sensor->data;
473 } else { /* LINEAR11 */
474 exponent = ((s16)sensor->data) >> 11;
475 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
476 }
477
478 val = mantissa;
479
480 /* scale result to milli-units for all sensors except fans */
481 if (sensor->class != PSC_FAN)
482 val = val * 1000L;
483
484 /* scale result to micro-units for power sensors */
485 if (sensor->class == PSC_POWER)
486 val = val * 1000L;
487
488 if (exponent >= 0)
489 val <<= exponent;
490 else
491 val >>= -exponent;
492
493 return val;
494 }
495
496 /*
497 * Convert direct sensor values to milli- or micro-units
498 * depending on sensor type.
499 */
pmbus_reg2data_direct(struct pmbus_data * data,struct pmbus_sensor * sensor)500 static long pmbus_reg2data_direct(struct pmbus_data *data,
501 struct pmbus_sensor *sensor)
502 {
503 s64 b, val = (s16)sensor->data;
504 s32 m, R;
505
506 m = data->info->m[sensor->class];
507 b = data->info->b[sensor->class];
508 R = data->info->R[sensor->class];
509
510 if (m == 0)
511 return 0;
512
513 /* X = 1/m * (Y * 10^-R - b) */
514 R = -R;
515 /* scale result to milli-units for everything but fans */
516 if (sensor->class != PSC_FAN) {
517 R += 3;
518 b *= 1000;
519 }
520
521 /* scale result to micro-units for power sensors */
522 if (sensor->class == PSC_POWER) {
523 R += 3;
524 b *= 1000;
525 }
526
527 while (R > 0) {
528 val *= 10;
529 R--;
530 }
531 while (R < 0) {
532 val = div_s64(val + 5LL, 10L); /* round closest */
533 R++;
534 }
535
536 val = div_s64(val - b, m);
537 return clamp_val(val, LONG_MIN, LONG_MAX);
538 }
539
540 /*
541 * Convert VID sensor values to milli- or micro-units
542 * depending on sensor type.
543 */
pmbus_reg2data_vid(struct pmbus_data * data,struct pmbus_sensor * sensor)544 static long pmbus_reg2data_vid(struct pmbus_data *data,
545 struct pmbus_sensor *sensor)
546 {
547 long val = sensor->data;
548 long rv = 0;
549
550 switch (data->info->vrm_version) {
551 case vr11:
552 if (val >= 0x02 && val <= 0xb2)
553 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
554 break;
555 case vr12:
556 if (val >= 0x01)
557 rv = 250 + (val - 1) * 5;
558 break;
559 case vr13:
560 if (val >= 0x01)
561 rv = 500 + (val - 1) * 10;
562 break;
563 }
564 return rv;
565 }
566
pmbus_reg2data(struct pmbus_data * data,struct pmbus_sensor * sensor)567 static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
568 {
569 long val;
570
571 switch (data->info->format[sensor->class]) {
572 case direct:
573 val = pmbus_reg2data_direct(data, sensor);
574 break;
575 case vid:
576 val = pmbus_reg2data_vid(data, sensor);
577 break;
578 case linear:
579 default:
580 val = pmbus_reg2data_linear(data, sensor);
581 break;
582 }
583 return val;
584 }
585
586 #define MAX_MANTISSA (1023 * 1000)
587 #define MIN_MANTISSA (511 * 1000)
588
pmbus_data2reg_linear(struct pmbus_data * data,struct pmbus_sensor * sensor,long val)589 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
590 struct pmbus_sensor *sensor, long val)
591 {
592 s16 exponent = 0, mantissa;
593 bool negative = false;
594
595 /* simple case */
596 if (val == 0)
597 return 0;
598
599 if (sensor->class == PSC_VOLTAGE_OUT) {
600 /* LINEAR16 does not support negative voltages */
601 if (val < 0)
602 return 0;
603
604 /*
605 * For a static exponents, we don't have a choice
606 * but to adjust the value to it.
607 */
608 if (data->exponent[sensor->page] < 0)
609 val <<= -data->exponent[sensor->page];
610 else
611 val >>= data->exponent[sensor->page];
612 val = DIV_ROUND_CLOSEST(val, 1000);
613 return val & 0xffff;
614 }
615
616 if (val < 0) {
617 negative = true;
618 val = -val;
619 }
620
621 /* Power is in uW. Convert to mW before converting. */
622 if (sensor->class == PSC_POWER)
623 val = DIV_ROUND_CLOSEST(val, 1000L);
624
625 /*
626 * For simplicity, convert fan data to milli-units
627 * before calculating the exponent.
628 */
629 if (sensor->class == PSC_FAN)
630 val = val * 1000;
631
632 /* Reduce large mantissa until it fits into 10 bit */
633 while (val >= MAX_MANTISSA && exponent < 15) {
634 exponent++;
635 val >>= 1;
636 }
637 /* Increase small mantissa to improve precision */
638 while (val < MIN_MANTISSA && exponent > -15) {
639 exponent--;
640 val <<= 1;
641 }
642
643 /* Convert mantissa from milli-units to units */
644 mantissa = DIV_ROUND_CLOSEST(val, 1000);
645
646 /* Ensure that resulting number is within range */
647 if (mantissa > 0x3ff)
648 mantissa = 0x3ff;
649
650 /* restore sign */
651 if (negative)
652 mantissa = -mantissa;
653
654 /* Convert to 5 bit exponent, 11 bit mantissa */
655 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
656 }
657
pmbus_data2reg_direct(struct pmbus_data * data,struct pmbus_sensor * sensor,long val)658 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
659 struct pmbus_sensor *sensor, long val)
660 {
661 s64 b, val64 = val;
662 s32 m, R;
663
664 m = data->info->m[sensor->class];
665 b = data->info->b[sensor->class];
666 R = data->info->R[sensor->class];
667
668 /* Power is in uW. Adjust R and b. */
669 if (sensor->class == PSC_POWER) {
670 R -= 3;
671 b *= 1000;
672 }
673
674 /* Calculate Y = (m * X + b) * 10^R */
675 if (sensor->class != PSC_FAN) {
676 R -= 3; /* Adjust R and b for data in milli-units */
677 b *= 1000;
678 }
679 val64 = val64 * m + b;
680
681 while (R > 0) {
682 val64 *= 10;
683 R--;
684 }
685 while (R < 0) {
686 val64 = div_s64(val64 + 5LL, 10L); /* round closest */
687 R++;
688 }
689
690 return (u16)clamp_val(val64, S16_MIN, S16_MAX);
691 }
692
pmbus_data2reg_vid(struct pmbus_data * data,struct pmbus_sensor * sensor,long val)693 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
694 struct pmbus_sensor *sensor, long val)
695 {
696 val = clamp_val(val, 500, 1600);
697
698 return 2 + DIV_ROUND_CLOSEST((1600 - val) * 100, 625);
699 }
700
pmbus_data2reg(struct pmbus_data * data,struct pmbus_sensor * sensor,long val)701 static u16 pmbus_data2reg(struct pmbus_data *data,
702 struct pmbus_sensor *sensor, long val)
703 {
704 u16 regval;
705
706 switch (data->info->format[sensor->class]) {
707 case direct:
708 regval = pmbus_data2reg_direct(data, sensor, val);
709 break;
710 case vid:
711 regval = pmbus_data2reg_vid(data, sensor, val);
712 break;
713 case linear:
714 default:
715 regval = pmbus_data2reg_linear(data, sensor, val);
716 break;
717 }
718 return regval;
719 }
720
721 /*
722 * Return boolean calculated from converted data.
723 * <index> defines a status register index and mask.
724 * The mask is in the lower 8 bits, the register index is in bits 8..23.
725 *
726 * The associated pmbus_boolean structure contains optional pointers to two
727 * sensor attributes. If specified, those attributes are compared against each
728 * other to determine if a limit has been exceeded.
729 *
730 * If the sensor attribute pointers are NULL, the function returns true if
731 * (status[reg] & mask) is true.
732 *
733 * If sensor attribute pointers are provided, a comparison against a specified
734 * limit has to be performed to determine the boolean result.
735 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
736 * sensor values referenced by sensor attribute pointers s1 and s2).
737 *
738 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
739 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
740 *
741 * If a negative value is stored in any of the referenced registers, this value
742 * reflects an error code which will be returned.
743 */
pmbus_get_boolean(struct pmbus_data * data,struct pmbus_boolean * b,int index)744 static int pmbus_get_boolean(struct pmbus_data *data, struct pmbus_boolean *b,
745 int index)
746 {
747 struct pmbus_sensor *s1 = b->s1;
748 struct pmbus_sensor *s2 = b->s2;
749 u16 reg = (index >> 16) & 0xffff;
750 u16 mask = index & 0xffff;
751 int ret, status;
752 u16 regval;
753
754 status = data->status[reg];
755 if (status < 0)
756 return status;
757
758 regval = status & mask;
759 if (!s1 && !s2) {
760 ret = !!regval;
761 } else if (!s1 || !s2) {
762 WARN(1, "Bad boolean descriptor %p: s1=%p, s2=%p\n", b, s1, s2);
763 return 0;
764 } else {
765 long v1, v2;
766
767 if (s1->data < 0)
768 return s1->data;
769 if (s2->data < 0)
770 return s2->data;
771
772 v1 = pmbus_reg2data(data, s1);
773 v2 = pmbus_reg2data(data, s2);
774 ret = !!(regval && v1 >= v2);
775 }
776 return ret;
777 }
778
pmbus_show_boolean(struct device * dev,struct device_attribute * da,char * buf)779 static ssize_t pmbus_show_boolean(struct device *dev,
780 struct device_attribute *da, char *buf)
781 {
782 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
783 struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
784 struct pmbus_data *data = pmbus_update_device(dev);
785 int val;
786
787 val = pmbus_get_boolean(data, boolean, attr->index);
788 if (val < 0)
789 return val;
790 return snprintf(buf, PAGE_SIZE, "%d\n", val);
791 }
792
pmbus_show_sensor(struct device * dev,struct device_attribute * devattr,char * buf)793 static ssize_t pmbus_show_sensor(struct device *dev,
794 struct device_attribute *devattr, char *buf)
795 {
796 struct pmbus_data *data = pmbus_update_device(dev);
797 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
798
799 if (sensor->data < 0)
800 return sensor->data;
801
802 return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor));
803 }
804
pmbus_set_sensor(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)805 static ssize_t pmbus_set_sensor(struct device *dev,
806 struct device_attribute *devattr,
807 const char *buf, size_t count)
808 {
809 struct i2c_client *client = to_i2c_client(dev->parent);
810 struct pmbus_data *data = i2c_get_clientdata(client);
811 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
812 ssize_t rv = count;
813 long val = 0;
814 int ret;
815 u16 regval;
816
817 if (kstrtol(buf, 10, &val) < 0)
818 return -EINVAL;
819
820 mutex_lock(&data->update_lock);
821 regval = pmbus_data2reg(data, sensor, val);
822 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
823 if (ret < 0)
824 rv = ret;
825 else
826 sensor->data = regval;
827 mutex_unlock(&data->update_lock);
828 return rv;
829 }
830
pmbus_show_label(struct device * dev,struct device_attribute * da,char * buf)831 static ssize_t pmbus_show_label(struct device *dev,
832 struct device_attribute *da, char *buf)
833 {
834 struct pmbus_label *label = to_pmbus_label(da);
835
836 return snprintf(buf, PAGE_SIZE, "%s\n", label->label);
837 }
838
pmbus_add_attribute(struct pmbus_data * data,struct attribute * attr)839 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
840 {
841 if (data->num_attributes >= data->max_attributes - 1) {
842 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
843 void *new_attrs = krealloc(data->group.attrs,
844 new_max_attrs * sizeof(void *),
845 GFP_KERNEL);
846 if (!new_attrs)
847 return -ENOMEM;
848 data->group.attrs = new_attrs;
849 data->max_attributes = new_max_attrs;
850 }
851
852 data->group.attrs[data->num_attributes++] = attr;
853 data->group.attrs[data->num_attributes] = NULL;
854 return 0;
855 }
856
pmbus_dev_attr_init(struct device_attribute * dev_attr,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count))857 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
858 const char *name,
859 umode_t mode,
860 ssize_t (*show)(struct device *dev,
861 struct device_attribute *attr,
862 char *buf),
863 ssize_t (*store)(struct device *dev,
864 struct device_attribute *attr,
865 const char *buf, size_t count))
866 {
867 sysfs_attr_init(&dev_attr->attr);
868 dev_attr->attr.name = name;
869 dev_attr->attr.mode = mode;
870 dev_attr->show = show;
871 dev_attr->store = store;
872 }
873
pmbus_attr_init(struct sensor_device_attribute * a,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count),int idx)874 static void pmbus_attr_init(struct sensor_device_attribute *a,
875 const char *name,
876 umode_t mode,
877 ssize_t (*show)(struct device *dev,
878 struct device_attribute *attr,
879 char *buf),
880 ssize_t (*store)(struct device *dev,
881 struct device_attribute *attr,
882 const char *buf, size_t count),
883 int idx)
884 {
885 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
886 a->index = idx;
887 }
888
pmbus_add_boolean(struct pmbus_data * data,const char * name,const char * type,int seq,struct pmbus_sensor * s1,struct pmbus_sensor * s2,u16 reg,u16 mask)889 static int pmbus_add_boolean(struct pmbus_data *data,
890 const char *name, const char *type, int seq,
891 struct pmbus_sensor *s1,
892 struct pmbus_sensor *s2,
893 u16 reg, u16 mask)
894 {
895 struct pmbus_boolean *boolean;
896 struct sensor_device_attribute *a;
897
898 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
899 if (!boolean)
900 return -ENOMEM;
901
902 a = &boolean->attribute;
903
904 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
905 name, seq, type);
906 boolean->s1 = s1;
907 boolean->s2 = s2;
908 pmbus_attr_init(a, boolean->name, S_IRUGO, pmbus_show_boolean, NULL,
909 (reg << 16) | mask);
910
911 return pmbus_add_attribute(data, &a->dev_attr.attr);
912 }
913
pmbus_add_sensor(struct pmbus_data * data,const char * name,const char * type,int seq,int page,int reg,enum pmbus_sensor_classes class,bool update,bool readonly)914 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
915 const char *name, const char *type,
916 int seq, int page, int reg,
917 enum pmbus_sensor_classes class,
918 bool update, bool readonly)
919 {
920 struct pmbus_sensor *sensor;
921 struct device_attribute *a;
922
923 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
924 if (!sensor)
925 return NULL;
926 a = &sensor->attribute;
927
928 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
929 name, seq, type);
930 sensor->page = page;
931 sensor->reg = reg;
932 sensor->class = class;
933 sensor->update = update;
934 pmbus_dev_attr_init(a, sensor->name,
935 readonly ? S_IRUGO : S_IRUGO | S_IWUSR,
936 pmbus_show_sensor, pmbus_set_sensor);
937
938 if (pmbus_add_attribute(data, &a->attr))
939 return NULL;
940
941 sensor->next = data->sensors;
942 data->sensors = sensor;
943
944 return sensor;
945 }
946
pmbus_add_label(struct pmbus_data * data,const char * name,int seq,const char * lstring,int index)947 static int pmbus_add_label(struct pmbus_data *data,
948 const char *name, int seq,
949 const char *lstring, int index)
950 {
951 struct pmbus_label *label;
952 struct device_attribute *a;
953
954 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
955 if (!label)
956 return -ENOMEM;
957
958 a = &label->attribute;
959
960 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
961 if (!index)
962 strncpy(label->label, lstring, sizeof(label->label) - 1);
963 else
964 snprintf(label->label, sizeof(label->label), "%s%d", lstring,
965 index);
966
967 pmbus_dev_attr_init(a, label->name, S_IRUGO, pmbus_show_label, NULL);
968 return pmbus_add_attribute(data, &a->attr);
969 }
970
971 /*
972 * Search for attributes. Allocate sensors, booleans, and labels as needed.
973 */
974
975 /*
976 * The pmbus_limit_attr structure describes a single limit attribute
977 * and its associated alarm attribute.
978 */
979 struct pmbus_limit_attr {
980 u16 reg; /* Limit register */
981 u16 sbit; /* Alarm attribute status bit */
982 bool update; /* True if register needs updates */
983 bool low; /* True if low limit; for limits with compare
984 functions only */
985 const char *attr; /* Attribute name */
986 const char *alarm; /* Alarm attribute name */
987 };
988
989 /*
990 * The pmbus_sensor_attr structure describes one sensor attribute. This
991 * description includes a reference to the associated limit attributes.
992 */
993 struct pmbus_sensor_attr {
994 u16 reg; /* sensor register */
995 u16 gbit; /* generic status bit */
996 u8 nlimit; /* # of limit registers */
997 enum pmbus_sensor_classes class;/* sensor class */
998 const char *label; /* sensor label */
999 bool paged; /* true if paged sensor */
1000 bool update; /* true if update needed */
1001 bool compare; /* true if compare function needed */
1002 u32 func; /* sensor mask */
1003 u32 sfunc; /* sensor status mask */
1004 int sbase; /* status base register */
1005 const struct pmbus_limit_attr *limit;/* limit registers */
1006 };
1007
1008 /*
1009 * Add a set of limit attributes and, if supported, the associated
1010 * alarm attributes.
1011 * returns 0 if no alarm register found, 1 if an alarm register was found,
1012 * < 0 on errors.
1013 */
pmbus_add_limit_attrs(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,struct pmbus_sensor * base,const struct pmbus_sensor_attr * attr)1014 static int pmbus_add_limit_attrs(struct i2c_client *client,
1015 struct pmbus_data *data,
1016 const struct pmbus_driver_info *info,
1017 const char *name, int index, int page,
1018 struct pmbus_sensor *base,
1019 const struct pmbus_sensor_attr *attr)
1020 {
1021 const struct pmbus_limit_attr *l = attr->limit;
1022 int nlimit = attr->nlimit;
1023 int have_alarm = 0;
1024 int i, ret;
1025 struct pmbus_sensor *curr;
1026
1027 for (i = 0; i < nlimit; i++) {
1028 if (pmbus_check_word_register(client, page, l->reg)) {
1029 curr = pmbus_add_sensor(data, name, l->attr, index,
1030 page, l->reg, attr->class,
1031 attr->update || l->update,
1032 false);
1033 if (!curr)
1034 return -ENOMEM;
1035 if (l->sbit && (info->func[page] & attr->sfunc)) {
1036 ret = pmbus_add_boolean(data, name,
1037 l->alarm, index,
1038 attr->compare ? l->low ? curr : base
1039 : NULL,
1040 attr->compare ? l->low ? base : curr
1041 : NULL,
1042 attr->sbase + page, l->sbit);
1043 if (ret)
1044 return ret;
1045 have_alarm = 1;
1046 }
1047 }
1048 l++;
1049 }
1050 return have_alarm;
1051 }
1052
pmbus_add_sensor_attrs_one(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,const struct pmbus_sensor_attr * attr,bool paged)1053 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1054 struct pmbus_data *data,
1055 const struct pmbus_driver_info *info,
1056 const char *name,
1057 int index, int page,
1058 const struct pmbus_sensor_attr *attr,
1059 bool paged)
1060 {
1061 struct pmbus_sensor *base;
1062 bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */
1063 int ret;
1064
1065 if (attr->label) {
1066 ret = pmbus_add_label(data, name, index, attr->label,
1067 paged ? page + 1 : 0);
1068 if (ret)
1069 return ret;
1070 }
1071 base = pmbus_add_sensor(data, name, "input", index, page, attr->reg,
1072 attr->class, true, true);
1073 if (!base)
1074 return -ENOMEM;
1075 if (attr->sfunc) {
1076 ret = pmbus_add_limit_attrs(client, data, info, name,
1077 index, page, base, attr);
1078 if (ret < 0)
1079 return ret;
1080 /*
1081 * Add generic alarm attribute only if there are no individual
1082 * alarm attributes, if there is a global alarm bit, and if
1083 * the generic status register (word or byte, depending on
1084 * which global bit is set) for this page is accessible.
1085 */
1086 if (!ret && attr->gbit &&
1087 (!upper || (upper && data->has_status_word)) &&
1088 pmbus_check_status_register(client, page)) {
1089 ret = pmbus_add_boolean(data, name, "alarm", index,
1090 NULL, NULL,
1091 PB_STATUS_BASE + page,
1092 attr->gbit);
1093 if (ret)
1094 return ret;
1095 }
1096 }
1097 return 0;
1098 }
1099
pmbus_sensor_is_paged(const struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)1100 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1101 const struct pmbus_sensor_attr *attr)
1102 {
1103 int p;
1104
1105 if (attr->paged)
1106 return true;
1107
1108 /*
1109 * Some attributes may be present on more than one page despite
1110 * not being marked with the paged attribute. If that is the case,
1111 * then treat the sensor as being paged and add the page suffix to the
1112 * attribute name.
1113 * We don't just add the paged attribute to all such attributes, in
1114 * order to maintain the un-suffixed labels in the case where the
1115 * attribute is only on page 0.
1116 */
1117 for (p = 1; p < info->pages; p++) {
1118 if (info->func[p] & attr->func)
1119 return true;
1120 }
1121 return false;
1122 }
1123
pmbus_add_sensor_attrs(struct i2c_client * client,struct pmbus_data * data,const char * name,const struct pmbus_sensor_attr * attrs,int nattrs)1124 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1125 struct pmbus_data *data,
1126 const char *name,
1127 const struct pmbus_sensor_attr *attrs,
1128 int nattrs)
1129 {
1130 const struct pmbus_driver_info *info = data->info;
1131 int index, i;
1132 int ret;
1133
1134 index = 1;
1135 for (i = 0; i < nattrs; i++) {
1136 int page, pages;
1137 bool paged = pmbus_sensor_is_paged(info, attrs);
1138
1139 pages = paged ? info->pages : 1;
1140 for (page = 0; page < pages; page++) {
1141 if (!(info->func[page] & attrs->func))
1142 continue;
1143 ret = pmbus_add_sensor_attrs_one(client, data, info,
1144 name, index, page,
1145 attrs, paged);
1146 if (ret)
1147 return ret;
1148 index++;
1149 }
1150 attrs++;
1151 }
1152 return 0;
1153 }
1154
1155 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1156 {
1157 .reg = PMBUS_VIN_UV_WARN_LIMIT,
1158 .attr = "min",
1159 .alarm = "min_alarm",
1160 .sbit = PB_VOLTAGE_UV_WARNING,
1161 }, {
1162 .reg = PMBUS_VIN_UV_FAULT_LIMIT,
1163 .attr = "lcrit",
1164 .alarm = "lcrit_alarm",
1165 .sbit = PB_VOLTAGE_UV_FAULT,
1166 }, {
1167 .reg = PMBUS_VIN_OV_WARN_LIMIT,
1168 .attr = "max",
1169 .alarm = "max_alarm",
1170 .sbit = PB_VOLTAGE_OV_WARNING,
1171 }, {
1172 .reg = PMBUS_VIN_OV_FAULT_LIMIT,
1173 .attr = "crit",
1174 .alarm = "crit_alarm",
1175 .sbit = PB_VOLTAGE_OV_FAULT,
1176 }, {
1177 .reg = PMBUS_VIRT_READ_VIN_AVG,
1178 .update = true,
1179 .attr = "average",
1180 }, {
1181 .reg = PMBUS_VIRT_READ_VIN_MIN,
1182 .update = true,
1183 .attr = "lowest",
1184 }, {
1185 .reg = PMBUS_VIRT_READ_VIN_MAX,
1186 .update = true,
1187 .attr = "highest",
1188 }, {
1189 .reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1190 .attr = "reset_history",
1191 },
1192 };
1193
1194 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1195 {
1196 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1197 .attr = "min",
1198 .alarm = "min_alarm",
1199 .sbit = PB_VOLTAGE_UV_WARNING,
1200 }, {
1201 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1202 .attr = "lcrit",
1203 .alarm = "lcrit_alarm",
1204 .sbit = PB_VOLTAGE_UV_FAULT,
1205 }, {
1206 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1207 .attr = "max",
1208 .alarm = "max_alarm",
1209 .sbit = PB_VOLTAGE_OV_WARNING,
1210 }, {
1211 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1212 .attr = "crit",
1213 .alarm = "crit_alarm",
1214 .sbit = PB_VOLTAGE_OV_FAULT,
1215 }
1216 };
1217
1218 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1219 {
1220 .reg = PMBUS_VOUT_UV_WARN_LIMIT,
1221 .attr = "min",
1222 .alarm = "min_alarm",
1223 .sbit = PB_VOLTAGE_UV_WARNING,
1224 }, {
1225 .reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1226 .attr = "lcrit",
1227 .alarm = "lcrit_alarm",
1228 .sbit = PB_VOLTAGE_UV_FAULT,
1229 }, {
1230 .reg = PMBUS_VOUT_OV_WARN_LIMIT,
1231 .attr = "max",
1232 .alarm = "max_alarm",
1233 .sbit = PB_VOLTAGE_OV_WARNING,
1234 }, {
1235 .reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1236 .attr = "crit",
1237 .alarm = "crit_alarm",
1238 .sbit = PB_VOLTAGE_OV_FAULT,
1239 }, {
1240 .reg = PMBUS_VIRT_READ_VOUT_AVG,
1241 .update = true,
1242 .attr = "average",
1243 }, {
1244 .reg = PMBUS_VIRT_READ_VOUT_MIN,
1245 .update = true,
1246 .attr = "lowest",
1247 }, {
1248 .reg = PMBUS_VIRT_READ_VOUT_MAX,
1249 .update = true,
1250 .attr = "highest",
1251 }, {
1252 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1253 .attr = "reset_history",
1254 }
1255 };
1256
1257 static const struct pmbus_sensor_attr voltage_attributes[] = {
1258 {
1259 .reg = PMBUS_READ_VIN,
1260 .class = PSC_VOLTAGE_IN,
1261 .label = "vin",
1262 .func = PMBUS_HAVE_VIN,
1263 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1264 .sbase = PB_STATUS_INPUT_BASE,
1265 .gbit = PB_STATUS_VIN_UV,
1266 .limit = vin_limit_attrs,
1267 .nlimit = ARRAY_SIZE(vin_limit_attrs),
1268 }, {
1269 .reg = PMBUS_VIRT_READ_VMON,
1270 .class = PSC_VOLTAGE_IN,
1271 .label = "vmon",
1272 .func = PMBUS_HAVE_VMON,
1273 .sfunc = PMBUS_HAVE_STATUS_VMON,
1274 .sbase = PB_STATUS_VMON_BASE,
1275 .limit = vmon_limit_attrs,
1276 .nlimit = ARRAY_SIZE(vmon_limit_attrs),
1277 }, {
1278 .reg = PMBUS_READ_VCAP,
1279 .class = PSC_VOLTAGE_IN,
1280 .label = "vcap",
1281 .func = PMBUS_HAVE_VCAP,
1282 }, {
1283 .reg = PMBUS_READ_VOUT,
1284 .class = PSC_VOLTAGE_OUT,
1285 .label = "vout",
1286 .paged = true,
1287 .func = PMBUS_HAVE_VOUT,
1288 .sfunc = PMBUS_HAVE_STATUS_VOUT,
1289 .sbase = PB_STATUS_VOUT_BASE,
1290 .gbit = PB_STATUS_VOUT_OV,
1291 .limit = vout_limit_attrs,
1292 .nlimit = ARRAY_SIZE(vout_limit_attrs),
1293 }
1294 };
1295
1296 /* Current attributes */
1297
1298 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1299 {
1300 .reg = PMBUS_IIN_OC_WARN_LIMIT,
1301 .attr = "max",
1302 .alarm = "max_alarm",
1303 .sbit = PB_IIN_OC_WARNING,
1304 }, {
1305 .reg = PMBUS_IIN_OC_FAULT_LIMIT,
1306 .attr = "crit",
1307 .alarm = "crit_alarm",
1308 .sbit = PB_IIN_OC_FAULT,
1309 }, {
1310 .reg = PMBUS_VIRT_READ_IIN_AVG,
1311 .update = true,
1312 .attr = "average",
1313 }, {
1314 .reg = PMBUS_VIRT_READ_IIN_MIN,
1315 .update = true,
1316 .attr = "lowest",
1317 }, {
1318 .reg = PMBUS_VIRT_READ_IIN_MAX,
1319 .update = true,
1320 .attr = "highest",
1321 }, {
1322 .reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1323 .attr = "reset_history",
1324 }
1325 };
1326
1327 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1328 {
1329 .reg = PMBUS_IOUT_OC_WARN_LIMIT,
1330 .attr = "max",
1331 .alarm = "max_alarm",
1332 .sbit = PB_IOUT_OC_WARNING,
1333 }, {
1334 .reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1335 .attr = "lcrit",
1336 .alarm = "lcrit_alarm",
1337 .sbit = PB_IOUT_UC_FAULT,
1338 }, {
1339 .reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1340 .attr = "crit",
1341 .alarm = "crit_alarm",
1342 .sbit = PB_IOUT_OC_FAULT,
1343 }, {
1344 .reg = PMBUS_VIRT_READ_IOUT_AVG,
1345 .update = true,
1346 .attr = "average",
1347 }, {
1348 .reg = PMBUS_VIRT_READ_IOUT_MIN,
1349 .update = true,
1350 .attr = "lowest",
1351 }, {
1352 .reg = PMBUS_VIRT_READ_IOUT_MAX,
1353 .update = true,
1354 .attr = "highest",
1355 }, {
1356 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1357 .attr = "reset_history",
1358 }
1359 };
1360
1361 static const struct pmbus_sensor_attr current_attributes[] = {
1362 {
1363 .reg = PMBUS_READ_IIN,
1364 .class = PSC_CURRENT_IN,
1365 .label = "iin",
1366 .func = PMBUS_HAVE_IIN,
1367 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1368 .sbase = PB_STATUS_INPUT_BASE,
1369 .gbit = PB_STATUS_INPUT,
1370 .limit = iin_limit_attrs,
1371 .nlimit = ARRAY_SIZE(iin_limit_attrs),
1372 }, {
1373 .reg = PMBUS_READ_IOUT,
1374 .class = PSC_CURRENT_OUT,
1375 .label = "iout",
1376 .paged = true,
1377 .func = PMBUS_HAVE_IOUT,
1378 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1379 .sbase = PB_STATUS_IOUT_BASE,
1380 .gbit = PB_STATUS_IOUT_OC,
1381 .limit = iout_limit_attrs,
1382 .nlimit = ARRAY_SIZE(iout_limit_attrs),
1383 }
1384 };
1385
1386 /* Power attributes */
1387
1388 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1389 {
1390 .reg = PMBUS_PIN_OP_WARN_LIMIT,
1391 .attr = "max",
1392 .alarm = "alarm",
1393 .sbit = PB_PIN_OP_WARNING,
1394 }, {
1395 .reg = PMBUS_VIRT_READ_PIN_AVG,
1396 .update = true,
1397 .attr = "average",
1398 }, {
1399 .reg = PMBUS_VIRT_READ_PIN_MIN,
1400 .update = true,
1401 .attr = "input_lowest",
1402 }, {
1403 .reg = PMBUS_VIRT_READ_PIN_MAX,
1404 .update = true,
1405 .attr = "input_highest",
1406 }, {
1407 .reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1408 .attr = "reset_history",
1409 }
1410 };
1411
1412 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1413 {
1414 .reg = PMBUS_POUT_MAX,
1415 .attr = "cap",
1416 .alarm = "cap_alarm",
1417 .sbit = PB_POWER_LIMITING,
1418 }, {
1419 .reg = PMBUS_POUT_OP_WARN_LIMIT,
1420 .attr = "max",
1421 .alarm = "max_alarm",
1422 .sbit = PB_POUT_OP_WARNING,
1423 }, {
1424 .reg = PMBUS_POUT_OP_FAULT_LIMIT,
1425 .attr = "crit",
1426 .alarm = "crit_alarm",
1427 .sbit = PB_POUT_OP_FAULT,
1428 }, {
1429 .reg = PMBUS_VIRT_READ_POUT_AVG,
1430 .update = true,
1431 .attr = "average",
1432 }, {
1433 .reg = PMBUS_VIRT_READ_POUT_MIN,
1434 .update = true,
1435 .attr = "input_lowest",
1436 }, {
1437 .reg = PMBUS_VIRT_READ_POUT_MAX,
1438 .update = true,
1439 .attr = "input_highest",
1440 }, {
1441 .reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1442 .attr = "reset_history",
1443 }
1444 };
1445
1446 static const struct pmbus_sensor_attr power_attributes[] = {
1447 {
1448 .reg = PMBUS_READ_PIN,
1449 .class = PSC_POWER,
1450 .label = "pin",
1451 .func = PMBUS_HAVE_PIN,
1452 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1453 .sbase = PB_STATUS_INPUT_BASE,
1454 .gbit = PB_STATUS_INPUT,
1455 .limit = pin_limit_attrs,
1456 .nlimit = ARRAY_SIZE(pin_limit_attrs),
1457 }, {
1458 .reg = PMBUS_READ_POUT,
1459 .class = PSC_POWER,
1460 .label = "pout",
1461 .paged = true,
1462 .func = PMBUS_HAVE_POUT,
1463 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1464 .sbase = PB_STATUS_IOUT_BASE,
1465 .limit = pout_limit_attrs,
1466 .nlimit = ARRAY_SIZE(pout_limit_attrs),
1467 }
1468 };
1469
1470 /* Temperature atributes */
1471
1472 static const struct pmbus_limit_attr temp_limit_attrs[] = {
1473 {
1474 .reg = PMBUS_UT_WARN_LIMIT,
1475 .low = true,
1476 .attr = "min",
1477 .alarm = "min_alarm",
1478 .sbit = PB_TEMP_UT_WARNING,
1479 }, {
1480 .reg = PMBUS_UT_FAULT_LIMIT,
1481 .low = true,
1482 .attr = "lcrit",
1483 .alarm = "lcrit_alarm",
1484 .sbit = PB_TEMP_UT_FAULT,
1485 }, {
1486 .reg = PMBUS_OT_WARN_LIMIT,
1487 .attr = "max",
1488 .alarm = "max_alarm",
1489 .sbit = PB_TEMP_OT_WARNING,
1490 }, {
1491 .reg = PMBUS_OT_FAULT_LIMIT,
1492 .attr = "crit",
1493 .alarm = "crit_alarm",
1494 .sbit = PB_TEMP_OT_FAULT,
1495 }, {
1496 .reg = PMBUS_VIRT_READ_TEMP_MIN,
1497 .attr = "lowest",
1498 }, {
1499 .reg = PMBUS_VIRT_READ_TEMP_AVG,
1500 .attr = "average",
1501 }, {
1502 .reg = PMBUS_VIRT_READ_TEMP_MAX,
1503 .attr = "highest",
1504 }, {
1505 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1506 .attr = "reset_history",
1507 }
1508 };
1509
1510 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
1511 {
1512 .reg = PMBUS_UT_WARN_LIMIT,
1513 .low = true,
1514 .attr = "min",
1515 .alarm = "min_alarm",
1516 .sbit = PB_TEMP_UT_WARNING,
1517 }, {
1518 .reg = PMBUS_UT_FAULT_LIMIT,
1519 .low = true,
1520 .attr = "lcrit",
1521 .alarm = "lcrit_alarm",
1522 .sbit = PB_TEMP_UT_FAULT,
1523 }, {
1524 .reg = PMBUS_OT_WARN_LIMIT,
1525 .attr = "max",
1526 .alarm = "max_alarm",
1527 .sbit = PB_TEMP_OT_WARNING,
1528 }, {
1529 .reg = PMBUS_OT_FAULT_LIMIT,
1530 .attr = "crit",
1531 .alarm = "crit_alarm",
1532 .sbit = PB_TEMP_OT_FAULT,
1533 }, {
1534 .reg = PMBUS_VIRT_READ_TEMP2_MIN,
1535 .attr = "lowest",
1536 }, {
1537 .reg = PMBUS_VIRT_READ_TEMP2_AVG,
1538 .attr = "average",
1539 }, {
1540 .reg = PMBUS_VIRT_READ_TEMP2_MAX,
1541 .attr = "highest",
1542 }, {
1543 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
1544 .attr = "reset_history",
1545 }
1546 };
1547
1548 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
1549 {
1550 .reg = PMBUS_UT_WARN_LIMIT,
1551 .low = true,
1552 .attr = "min",
1553 .alarm = "min_alarm",
1554 .sbit = PB_TEMP_UT_WARNING,
1555 }, {
1556 .reg = PMBUS_UT_FAULT_LIMIT,
1557 .low = true,
1558 .attr = "lcrit",
1559 .alarm = "lcrit_alarm",
1560 .sbit = PB_TEMP_UT_FAULT,
1561 }, {
1562 .reg = PMBUS_OT_WARN_LIMIT,
1563 .attr = "max",
1564 .alarm = "max_alarm",
1565 .sbit = PB_TEMP_OT_WARNING,
1566 }, {
1567 .reg = PMBUS_OT_FAULT_LIMIT,
1568 .attr = "crit",
1569 .alarm = "crit_alarm",
1570 .sbit = PB_TEMP_OT_FAULT,
1571 }
1572 };
1573
1574 static const struct pmbus_sensor_attr temp_attributes[] = {
1575 {
1576 .reg = PMBUS_READ_TEMPERATURE_1,
1577 .class = PSC_TEMPERATURE,
1578 .paged = true,
1579 .update = true,
1580 .compare = true,
1581 .func = PMBUS_HAVE_TEMP,
1582 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1583 .sbase = PB_STATUS_TEMP_BASE,
1584 .gbit = PB_STATUS_TEMPERATURE,
1585 .limit = temp_limit_attrs,
1586 .nlimit = ARRAY_SIZE(temp_limit_attrs),
1587 }, {
1588 .reg = PMBUS_READ_TEMPERATURE_2,
1589 .class = PSC_TEMPERATURE,
1590 .paged = true,
1591 .update = true,
1592 .compare = true,
1593 .func = PMBUS_HAVE_TEMP2,
1594 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1595 .sbase = PB_STATUS_TEMP_BASE,
1596 .gbit = PB_STATUS_TEMPERATURE,
1597 .limit = temp_limit_attrs2,
1598 .nlimit = ARRAY_SIZE(temp_limit_attrs2),
1599 }, {
1600 .reg = PMBUS_READ_TEMPERATURE_3,
1601 .class = PSC_TEMPERATURE,
1602 .paged = true,
1603 .update = true,
1604 .compare = true,
1605 .func = PMBUS_HAVE_TEMP3,
1606 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1607 .sbase = PB_STATUS_TEMP_BASE,
1608 .gbit = PB_STATUS_TEMPERATURE,
1609 .limit = temp_limit_attrs3,
1610 .nlimit = ARRAY_SIZE(temp_limit_attrs3),
1611 }
1612 };
1613
1614 static const int pmbus_fan_registers[] = {
1615 PMBUS_READ_FAN_SPEED_1,
1616 PMBUS_READ_FAN_SPEED_2,
1617 PMBUS_READ_FAN_SPEED_3,
1618 PMBUS_READ_FAN_SPEED_4
1619 };
1620
1621 static const int pmbus_fan_config_registers[] = {
1622 PMBUS_FAN_CONFIG_12,
1623 PMBUS_FAN_CONFIG_12,
1624 PMBUS_FAN_CONFIG_34,
1625 PMBUS_FAN_CONFIG_34
1626 };
1627
1628 static const int pmbus_fan_status_registers[] = {
1629 PMBUS_STATUS_FAN_12,
1630 PMBUS_STATUS_FAN_12,
1631 PMBUS_STATUS_FAN_34,
1632 PMBUS_STATUS_FAN_34
1633 };
1634
1635 static const u32 pmbus_fan_flags[] = {
1636 PMBUS_HAVE_FAN12,
1637 PMBUS_HAVE_FAN12,
1638 PMBUS_HAVE_FAN34,
1639 PMBUS_HAVE_FAN34
1640 };
1641
1642 static const u32 pmbus_fan_status_flags[] = {
1643 PMBUS_HAVE_STATUS_FAN12,
1644 PMBUS_HAVE_STATUS_FAN12,
1645 PMBUS_HAVE_STATUS_FAN34,
1646 PMBUS_HAVE_STATUS_FAN34
1647 };
1648
1649 /* Fans */
pmbus_add_fan_attributes(struct i2c_client * client,struct pmbus_data * data)1650 static int pmbus_add_fan_attributes(struct i2c_client *client,
1651 struct pmbus_data *data)
1652 {
1653 const struct pmbus_driver_info *info = data->info;
1654 int index = 1;
1655 int page;
1656 int ret;
1657
1658 for (page = 0; page < info->pages; page++) {
1659 int f;
1660
1661 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1662 int regval;
1663
1664 if (!(info->func[page] & pmbus_fan_flags[f]))
1665 break;
1666
1667 if (!pmbus_check_word_register(client, page,
1668 pmbus_fan_registers[f]))
1669 break;
1670
1671 /*
1672 * Skip fan if not installed.
1673 * Each fan configuration register covers multiple fans,
1674 * so we have to do some magic.
1675 */
1676 regval = _pmbus_read_byte_data(client, page,
1677 pmbus_fan_config_registers[f]);
1678 if (regval < 0 ||
1679 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1680 continue;
1681
1682 if (pmbus_add_sensor(data, "fan", "input", index,
1683 page, pmbus_fan_registers[f],
1684 PSC_FAN, true, true) == NULL)
1685 return -ENOMEM;
1686
1687 /*
1688 * Each fan status register covers multiple fans,
1689 * so we have to do some magic.
1690 */
1691 if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1692 pmbus_check_byte_register(client,
1693 page, pmbus_fan_status_registers[f])) {
1694 int base;
1695
1696 if (f > 1) /* fan 3, 4 */
1697 base = PB_STATUS_FAN34_BASE + page;
1698 else
1699 base = PB_STATUS_FAN_BASE + page;
1700 ret = pmbus_add_boolean(data, "fan",
1701 "alarm", index, NULL, NULL, base,
1702 PB_FAN_FAN1_WARNING >> (f & 1));
1703 if (ret)
1704 return ret;
1705 ret = pmbus_add_boolean(data, "fan",
1706 "fault", index, NULL, NULL, base,
1707 PB_FAN_FAN1_FAULT >> (f & 1));
1708 if (ret)
1709 return ret;
1710 }
1711 index++;
1712 }
1713 }
1714 return 0;
1715 }
1716
pmbus_find_attributes(struct i2c_client * client,struct pmbus_data * data)1717 static int pmbus_find_attributes(struct i2c_client *client,
1718 struct pmbus_data *data)
1719 {
1720 int ret;
1721
1722 /* Voltage sensors */
1723 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
1724 ARRAY_SIZE(voltage_attributes));
1725 if (ret)
1726 return ret;
1727
1728 /* Current sensors */
1729 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
1730 ARRAY_SIZE(current_attributes));
1731 if (ret)
1732 return ret;
1733
1734 /* Power sensors */
1735 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
1736 ARRAY_SIZE(power_attributes));
1737 if (ret)
1738 return ret;
1739
1740 /* Temperature sensors */
1741 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
1742 ARRAY_SIZE(temp_attributes));
1743 if (ret)
1744 return ret;
1745
1746 /* Fans */
1747 ret = pmbus_add_fan_attributes(client, data);
1748 return ret;
1749 }
1750
1751 /*
1752 * Identify chip parameters.
1753 * This function is called for all chips.
1754 */
pmbus_identify_common(struct i2c_client * client,struct pmbus_data * data,int page)1755 static int pmbus_identify_common(struct i2c_client *client,
1756 struct pmbus_data *data, int page)
1757 {
1758 int vout_mode = -1;
1759
1760 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
1761 vout_mode = _pmbus_read_byte_data(client, page,
1762 PMBUS_VOUT_MODE);
1763 if (vout_mode >= 0 && vout_mode != 0xff) {
1764 /*
1765 * Not all chips support the VOUT_MODE command,
1766 * so a failure to read it is not an error.
1767 */
1768 switch (vout_mode >> 5) {
1769 case 0: /* linear mode */
1770 if (data->info->format[PSC_VOLTAGE_OUT] != linear)
1771 return -ENODEV;
1772
1773 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
1774 break;
1775 case 1: /* VID mode */
1776 if (data->info->format[PSC_VOLTAGE_OUT] != vid)
1777 return -ENODEV;
1778 break;
1779 case 2: /* direct mode */
1780 if (data->info->format[PSC_VOLTAGE_OUT] != direct)
1781 return -ENODEV;
1782 break;
1783 default:
1784 return -ENODEV;
1785 }
1786 }
1787
1788 pmbus_clear_fault_page(client, page);
1789 return 0;
1790 }
1791
pmbus_read_status_byte(struct i2c_client * client,int page)1792 static int pmbus_read_status_byte(struct i2c_client *client, int page)
1793 {
1794 return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
1795 }
1796
pmbus_read_status_word(struct i2c_client * client,int page)1797 static int pmbus_read_status_word(struct i2c_client *client, int page)
1798 {
1799 return _pmbus_read_word_data(client, page, PMBUS_STATUS_WORD);
1800 }
1801
pmbus_init_common(struct i2c_client * client,struct pmbus_data * data,struct pmbus_driver_info * info)1802 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
1803 struct pmbus_driver_info *info)
1804 {
1805 struct device *dev = &client->dev;
1806 int page, ret;
1807
1808 /*
1809 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
1810 * to use PMBUS_STATUS_BYTE instead if that is the case.
1811 * Bail out if both registers are not supported.
1812 */
1813 data->read_status = pmbus_read_status_word;
1814 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
1815 if (ret < 0 || ret == 0xffff) {
1816 data->read_status = pmbus_read_status_byte;
1817 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
1818 if (ret < 0 || ret == 0xff) {
1819 dev_err(dev, "PMBus status register not found\n");
1820 return -ENODEV;
1821 }
1822 } else {
1823 data->has_status_word = true;
1824 }
1825
1826 /* Enable PEC if the controller supports it */
1827 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
1828 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK))
1829 client->flags |= I2C_CLIENT_PEC;
1830
1831 if (data->info->pages)
1832 pmbus_clear_faults(client);
1833 else
1834 pmbus_clear_fault_page(client, -1);
1835
1836 if (info->identify) {
1837 ret = (*info->identify)(client, info);
1838 if (ret < 0) {
1839 dev_err(dev, "Chip identification failed\n");
1840 return ret;
1841 }
1842 }
1843
1844 if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
1845 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
1846 return -ENODEV;
1847 }
1848
1849 for (page = 0; page < info->pages; page++) {
1850 ret = pmbus_identify_common(client, data, page);
1851 if (ret < 0) {
1852 dev_err(dev, "Failed to identify chip capabilities\n");
1853 return ret;
1854 }
1855 }
1856 return 0;
1857 }
1858
1859 #if IS_ENABLED(CONFIG_REGULATOR)
pmbus_regulator_is_enabled(struct regulator_dev * rdev)1860 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
1861 {
1862 struct device *dev = rdev_get_dev(rdev);
1863 struct i2c_client *client = to_i2c_client(dev->parent);
1864 u8 page = rdev_get_id(rdev);
1865 int ret;
1866
1867 ret = pmbus_read_byte_data(client, page, PMBUS_OPERATION);
1868 if (ret < 0)
1869 return ret;
1870
1871 return !!(ret & PB_OPERATION_CONTROL_ON);
1872 }
1873
_pmbus_regulator_on_off(struct regulator_dev * rdev,bool enable)1874 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
1875 {
1876 struct device *dev = rdev_get_dev(rdev);
1877 struct i2c_client *client = to_i2c_client(dev->parent);
1878 u8 page = rdev_get_id(rdev);
1879
1880 return pmbus_update_byte_data(client, page, PMBUS_OPERATION,
1881 PB_OPERATION_CONTROL_ON,
1882 enable ? PB_OPERATION_CONTROL_ON : 0);
1883 }
1884
pmbus_regulator_enable(struct regulator_dev * rdev)1885 static int pmbus_regulator_enable(struct regulator_dev *rdev)
1886 {
1887 return _pmbus_regulator_on_off(rdev, 1);
1888 }
1889
pmbus_regulator_disable(struct regulator_dev * rdev)1890 static int pmbus_regulator_disable(struct regulator_dev *rdev)
1891 {
1892 return _pmbus_regulator_on_off(rdev, 0);
1893 }
1894
1895 const struct regulator_ops pmbus_regulator_ops = {
1896 .enable = pmbus_regulator_enable,
1897 .disable = pmbus_regulator_disable,
1898 .is_enabled = pmbus_regulator_is_enabled,
1899 };
1900 EXPORT_SYMBOL_GPL(pmbus_regulator_ops);
1901
pmbus_regulator_register(struct pmbus_data * data)1902 static int pmbus_regulator_register(struct pmbus_data *data)
1903 {
1904 struct device *dev = data->dev;
1905 const struct pmbus_driver_info *info = data->info;
1906 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
1907 struct regulator_dev *rdev;
1908 int i;
1909
1910 for (i = 0; i < info->num_regulators; i++) {
1911 struct regulator_config config = { };
1912
1913 config.dev = dev;
1914 config.driver_data = data;
1915
1916 if (pdata && pdata->reg_init_data)
1917 config.init_data = &pdata->reg_init_data[i];
1918
1919 rdev = devm_regulator_register(dev, &info->reg_desc[i],
1920 &config);
1921 if (IS_ERR(rdev)) {
1922 dev_err(dev, "Failed to register %s regulator\n",
1923 info->reg_desc[i].name);
1924 return PTR_ERR(rdev);
1925 }
1926 }
1927
1928 return 0;
1929 }
1930 #else
pmbus_regulator_register(struct pmbus_data * data)1931 static int pmbus_regulator_register(struct pmbus_data *data)
1932 {
1933 return 0;
1934 }
1935 #endif
1936
1937 static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */
1938
1939 #if IS_ENABLED(CONFIG_DEBUG_FS)
pmbus_debugfs_get(void * data,u64 * val)1940 static int pmbus_debugfs_get(void *data, u64 *val)
1941 {
1942 int rc;
1943 struct pmbus_debugfs_entry *entry = data;
1944
1945 rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
1946 if (rc < 0)
1947 return rc;
1948
1949 *val = rc;
1950
1951 return 0;
1952 }
1953 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
1954 "0x%02llx\n");
1955
pmbus_debugfs_get_status(void * data,u64 * val)1956 static int pmbus_debugfs_get_status(void *data, u64 *val)
1957 {
1958 int rc;
1959 struct pmbus_debugfs_entry *entry = data;
1960 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
1961
1962 rc = pdata->read_status(entry->client, entry->page);
1963 if (rc < 0)
1964 return rc;
1965
1966 *val = rc;
1967
1968 return 0;
1969 }
1970 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
1971 NULL, "0x%04llx\n");
1972
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)1973 static int pmbus_init_debugfs(struct i2c_client *client,
1974 struct pmbus_data *data)
1975 {
1976 int i, idx = 0;
1977 char name[PMBUS_NAME_SIZE];
1978 struct pmbus_debugfs_entry *entries;
1979
1980 if (!pmbus_debugfs_dir)
1981 return -ENODEV;
1982
1983 /*
1984 * Create the debugfs directory for this device. Use the hwmon device
1985 * name to avoid conflicts (hwmon numbers are globally unique).
1986 */
1987 data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
1988 pmbus_debugfs_dir);
1989 if (IS_ERR_OR_NULL(data->debugfs)) {
1990 data->debugfs = NULL;
1991 return -ENODEV;
1992 }
1993
1994 /* Allocate the max possible entries we need. */
1995 entries = devm_kzalloc(data->dev,
1996 sizeof(*entries) * (data->info->pages * 10),
1997 GFP_KERNEL);
1998 if (!entries)
1999 return -ENOMEM;
2000
2001 for (i = 0; i < data->info->pages; ++i) {
2002 /* Check accessibility of status register if it's not page 0 */
2003 if (!i || pmbus_check_status_register(client, i)) {
2004 /* No need to set reg as we have special read op. */
2005 entries[idx].client = client;
2006 entries[idx].page = i;
2007 scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
2008 debugfs_create_file(name, 0444, data->debugfs,
2009 &entries[idx++],
2010 &pmbus_debugfs_ops_status);
2011 }
2012
2013 if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
2014 entries[idx].client = client;
2015 entries[idx].page = i;
2016 entries[idx].reg = PMBUS_STATUS_VOUT;
2017 scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
2018 debugfs_create_file(name, 0444, data->debugfs,
2019 &entries[idx++],
2020 &pmbus_debugfs_ops);
2021 }
2022
2023 if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
2024 entries[idx].client = client;
2025 entries[idx].page = i;
2026 entries[idx].reg = PMBUS_STATUS_IOUT;
2027 scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
2028 debugfs_create_file(name, 0444, data->debugfs,
2029 &entries[idx++],
2030 &pmbus_debugfs_ops);
2031 }
2032
2033 if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
2034 entries[idx].client = client;
2035 entries[idx].page = i;
2036 entries[idx].reg = PMBUS_STATUS_INPUT;
2037 scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
2038 debugfs_create_file(name, 0444, data->debugfs,
2039 &entries[idx++],
2040 &pmbus_debugfs_ops);
2041 }
2042
2043 if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
2044 entries[idx].client = client;
2045 entries[idx].page = i;
2046 entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
2047 scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
2048 debugfs_create_file(name, 0444, data->debugfs,
2049 &entries[idx++],
2050 &pmbus_debugfs_ops);
2051 }
2052
2053 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
2054 entries[idx].client = client;
2055 entries[idx].page = i;
2056 entries[idx].reg = PMBUS_STATUS_CML;
2057 scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
2058 debugfs_create_file(name, 0444, data->debugfs,
2059 &entries[idx++],
2060 &pmbus_debugfs_ops);
2061 }
2062
2063 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
2064 entries[idx].client = client;
2065 entries[idx].page = i;
2066 entries[idx].reg = PMBUS_STATUS_OTHER;
2067 scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
2068 debugfs_create_file(name, 0444, data->debugfs,
2069 &entries[idx++],
2070 &pmbus_debugfs_ops);
2071 }
2072
2073 if (pmbus_check_byte_register(client, i,
2074 PMBUS_STATUS_MFR_SPECIFIC)) {
2075 entries[idx].client = client;
2076 entries[idx].page = i;
2077 entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
2078 scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
2079 debugfs_create_file(name, 0444, data->debugfs,
2080 &entries[idx++],
2081 &pmbus_debugfs_ops);
2082 }
2083
2084 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
2085 entries[idx].client = client;
2086 entries[idx].page = i;
2087 entries[idx].reg = PMBUS_STATUS_FAN_12;
2088 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
2089 debugfs_create_file(name, 0444, data->debugfs,
2090 &entries[idx++],
2091 &pmbus_debugfs_ops);
2092 }
2093
2094 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
2095 entries[idx].client = client;
2096 entries[idx].page = i;
2097 entries[idx].reg = PMBUS_STATUS_FAN_34;
2098 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
2099 debugfs_create_file(name, 0444, data->debugfs,
2100 &entries[idx++],
2101 &pmbus_debugfs_ops);
2102 }
2103 }
2104
2105 return 0;
2106 }
2107 #else
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)2108 static int pmbus_init_debugfs(struct i2c_client *client,
2109 struct pmbus_data *data)
2110 {
2111 return 0;
2112 }
2113 #endif /* IS_ENABLED(CONFIG_DEBUG_FS) */
2114
pmbus_do_probe(struct i2c_client * client,const struct i2c_device_id * id,struct pmbus_driver_info * info)2115 int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id,
2116 struct pmbus_driver_info *info)
2117 {
2118 struct device *dev = &client->dev;
2119 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
2120 struct pmbus_data *data;
2121 int ret;
2122
2123 if (!info)
2124 return -ENODEV;
2125
2126 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
2127 | I2C_FUNC_SMBUS_BYTE_DATA
2128 | I2C_FUNC_SMBUS_WORD_DATA))
2129 return -ENODEV;
2130
2131 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
2132 if (!data)
2133 return -ENOMEM;
2134
2135 i2c_set_clientdata(client, data);
2136 mutex_init(&data->update_lock);
2137 data->dev = dev;
2138
2139 if (pdata)
2140 data->flags = pdata->flags;
2141 data->info = info;
2142
2143 ret = pmbus_init_common(client, data, info);
2144 if (ret < 0)
2145 return ret;
2146
2147 ret = pmbus_find_attributes(client, data);
2148 if (ret)
2149 goto out_kfree;
2150
2151 /*
2152 * If there are no attributes, something is wrong.
2153 * Bail out instead of trying to register nothing.
2154 */
2155 if (!data->num_attributes) {
2156 dev_err(dev, "No attributes found\n");
2157 ret = -ENODEV;
2158 goto out_kfree;
2159 }
2160
2161 data->groups[0] = &data->group;
2162 data->hwmon_dev = hwmon_device_register_with_groups(dev, client->name,
2163 data, data->groups);
2164 if (IS_ERR(data->hwmon_dev)) {
2165 ret = PTR_ERR(data->hwmon_dev);
2166 dev_err(dev, "Failed to register hwmon device\n");
2167 goto out_kfree;
2168 }
2169
2170 ret = pmbus_regulator_register(data);
2171 if (ret)
2172 goto out_unregister;
2173
2174 ret = pmbus_init_debugfs(client, data);
2175 if (ret)
2176 dev_warn(dev, "Failed to register debugfs\n");
2177
2178 return 0;
2179
2180 out_unregister:
2181 hwmon_device_unregister(data->hwmon_dev);
2182 out_kfree:
2183 kfree(data->group.attrs);
2184 return ret;
2185 }
2186 EXPORT_SYMBOL_GPL(pmbus_do_probe);
2187
pmbus_do_remove(struct i2c_client * client)2188 int pmbus_do_remove(struct i2c_client *client)
2189 {
2190 struct pmbus_data *data = i2c_get_clientdata(client);
2191
2192 debugfs_remove_recursive(data->debugfs);
2193
2194 hwmon_device_unregister(data->hwmon_dev);
2195 kfree(data->group.attrs);
2196 return 0;
2197 }
2198 EXPORT_SYMBOL_GPL(pmbus_do_remove);
2199
pmbus_core_init(void)2200 static int __init pmbus_core_init(void)
2201 {
2202 pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
2203 if (IS_ERR(pmbus_debugfs_dir))
2204 pmbus_debugfs_dir = NULL;
2205
2206 return 0;
2207 }
2208
pmbus_core_exit(void)2209 static void __exit pmbus_core_exit(void)
2210 {
2211 debugfs_remove_recursive(pmbus_debugfs_dir);
2212 }
2213
2214 module_init(pmbus_core_init);
2215 module_exit(pmbus_core_exit);
2216
2217 MODULE_AUTHOR("Guenter Roeck");
2218 MODULE_DESCRIPTION("PMBus core driver");
2219 MODULE_LICENSE("GPL");
2220