• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is part of STM32 ADC driver
3  *
4  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
5  * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
6  *
7  * License type: GPLv2
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License version 2 as published by
11  * the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.
16  * See the GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program. If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include <linux/clk.h>
23 #include <linux/delay.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dmaengine.h>
26 #include <linux/iio/iio.h>
27 #include <linux/iio/buffer.h>
28 #include <linux/iio/timer/stm32-lptim-trigger.h>
29 #include <linux/iio/timer/stm32-timer-trigger.h>
30 #include <linux/iio/trigger.h>
31 #include <linux/iio/trigger_consumer.h>
32 #include <linux/iio/triggered_buffer.h>
33 #include <linux/interrupt.h>
34 #include <linux/io.h>
35 #include <linux/iopoll.h>
36 #include <linux/module.h>
37 #include <linux/platform_device.h>
38 #include <linux/of.h>
39 #include <linux/of_device.h>
40 
41 #include "stm32-adc-core.h"
42 
43 /* Number of linear calibration shadow registers / LINCALRDYW control bits */
44 #define STM32H7_LINCALFACT_NUM		6
45 
46 /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
47 #define STM32H7_BOOST_CLKRATE		20000000UL
48 
49 #define STM32_ADC_MAX_SQ		16	/* SQ1..SQ16 */
50 #define STM32_ADC_MAX_SMP		7	/* SMPx range is [0..7] */
51 #define STM32_ADC_TIMEOUT_US		100000
52 #define STM32_ADC_TIMEOUT	(msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
53 
54 #define STM32_DMA_BUFFER_SIZE		PAGE_SIZE
55 
56 /* External trigger enable */
57 enum stm32_adc_exten {
58 	STM32_EXTEN_SWTRIG,
59 	STM32_EXTEN_HWTRIG_RISING_EDGE,
60 	STM32_EXTEN_HWTRIG_FALLING_EDGE,
61 	STM32_EXTEN_HWTRIG_BOTH_EDGES,
62 };
63 
64 /* extsel - trigger mux selection value */
65 enum stm32_adc_extsel {
66 	STM32_EXT0,
67 	STM32_EXT1,
68 	STM32_EXT2,
69 	STM32_EXT3,
70 	STM32_EXT4,
71 	STM32_EXT5,
72 	STM32_EXT6,
73 	STM32_EXT7,
74 	STM32_EXT8,
75 	STM32_EXT9,
76 	STM32_EXT10,
77 	STM32_EXT11,
78 	STM32_EXT12,
79 	STM32_EXT13,
80 	STM32_EXT14,
81 	STM32_EXT15,
82 	STM32_EXT16,
83 	STM32_EXT17,
84 	STM32_EXT18,
85 	STM32_EXT19,
86 	STM32_EXT20,
87 };
88 
89 /**
90  * struct stm32_adc_trig_info - ADC trigger info
91  * @name:		name of the trigger, corresponding to its source
92  * @extsel:		trigger selection
93  */
94 struct stm32_adc_trig_info {
95 	const char *name;
96 	enum stm32_adc_extsel extsel;
97 };
98 
99 /**
100  * struct stm32_adc_calib - optional adc calibration data
101  * @calfact_s: Calibration offset for single ended channels
102  * @calfact_d: Calibration offset in differential
103  * @lincalfact: Linearity calibration factor
104  */
105 struct stm32_adc_calib {
106 	u32			calfact_s;
107 	u32			calfact_d;
108 	u32			lincalfact[STM32H7_LINCALFACT_NUM];
109 };
110 
111 /**
112  * stm32_adc_regs - stm32 ADC misc registers & bitfield desc
113  * @reg:		register offset
114  * @mask:		bitfield mask
115  * @shift:		left shift
116  */
117 struct stm32_adc_regs {
118 	int reg;
119 	int mask;
120 	int shift;
121 };
122 
123 /**
124  * stm32_adc_regspec - stm32 registers definition, compatible dependent data
125  * @dr:			data register offset
126  * @ier_eoc:		interrupt enable register & eocie bitfield
127  * @isr_eoc:		interrupt status register & eoc bitfield
128  * @sqr:		reference to sequence registers array
129  * @exten:		trigger control register & bitfield
130  * @extsel:		trigger selection register & bitfield
131  * @res:		resolution selection register & bitfield
132  * @smpr:		smpr1 & smpr2 registers offset array
133  * @smp_bits:		smpr1 & smpr2 index and bitfields
134  */
135 struct stm32_adc_regspec {
136 	const u32 dr;
137 	const struct stm32_adc_regs ier_eoc;
138 	const struct stm32_adc_regs isr_eoc;
139 	const struct stm32_adc_regs *sqr;
140 	const struct stm32_adc_regs exten;
141 	const struct stm32_adc_regs extsel;
142 	const struct stm32_adc_regs res;
143 	const u32 smpr[2];
144 	const struct stm32_adc_regs *smp_bits;
145 };
146 
147 struct stm32_adc;
148 
149 /**
150  * stm32_adc_cfg - stm32 compatible configuration data
151  * @regs:		registers descriptions
152  * @adc_info:		per instance input channels definitions
153  * @trigs:		external trigger sources
154  * @clk_required:	clock is required
155  * @selfcalib:		optional routine for self-calibration
156  * @prepare:		optional prepare routine (power-up, enable)
157  * @start_conv:		routine to start conversions
158  * @stop_conv:		routine to stop conversions
159  * @unprepare:		optional unprepare routine (disable, power-down)
160  * @smp_cycles:		programmable sampling time (ADC clock cycles)
161  */
162 struct stm32_adc_cfg {
163 	const struct stm32_adc_regspec	*regs;
164 	const struct stm32_adc_info	*adc_info;
165 	struct stm32_adc_trig_info	*trigs;
166 	bool clk_required;
167 	int (*selfcalib)(struct stm32_adc *);
168 	int (*prepare)(struct stm32_adc *);
169 	void (*start_conv)(struct stm32_adc *, bool dma);
170 	void (*stop_conv)(struct stm32_adc *);
171 	void (*unprepare)(struct stm32_adc *);
172 	const unsigned int *smp_cycles;
173 };
174 
175 /**
176  * struct stm32_adc - private data of each ADC IIO instance
177  * @common:		reference to ADC block common data
178  * @offset:		ADC instance register offset in ADC block
179  * @cfg:		compatible configuration data
180  * @completion:		end of single conversion completion
181  * @buffer:		data buffer
182  * @clk:		clock for this adc instance
183  * @irq:		interrupt for this adc instance
184  * @lock:		spinlock
185  * @bufi:		data buffer index
186  * @num_conv:		expected number of scan conversions
187  * @res:		data resolution (e.g. RES bitfield value)
188  * @trigger_polarity:	external trigger polarity (e.g. exten)
189  * @dma_chan:		dma channel
190  * @rx_buf:		dma rx buffer cpu address
191  * @rx_dma_buf:		dma rx buffer bus address
192  * @rx_buf_sz:		dma rx buffer size
193  * @pcsel		bitmask to preselect channels on some devices
194  * @smpr_val:		sampling time settings (e.g. smpr1 / smpr2)
195  * @cal:		optional calibration data on some devices
196  */
197 struct stm32_adc {
198 	struct stm32_adc_common	*common;
199 	u32			offset;
200 	const struct stm32_adc_cfg	*cfg;
201 	struct completion	completion;
202 	u16			buffer[STM32_ADC_MAX_SQ];
203 	struct clk		*clk;
204 	int			irq;
205 	spinlock_t		lock;		/* interrupt lock */
206 	unsigned int		bufi;
207 	unsigned int		num_conv;
208 	u32			res;
209 	u32			trigger_polarity;
210 	struct dma_chan		*dma_chan;
211 	u8			*rx_buf;
212 	dma_addr_t		rx_dma_buf;
213 	unsigned int		rx_buf_sz;
214 	u32			pcsel;
215 	u32			smpr_val[2];
216 	struct stm32_adc_calib	cal;
217 };
218 
219 /**
220  * struct stm32_adc_chan_spec - specification of stm32 adc channel
221  * @type:	IIO channel type
222  * @channel:	channel number (single ended)
223  * @name:	channel name (single ended)
224  */
225 struct stm32_adc_chan_spec {
226 	enum iio_chan_type	type;
227 	int			channel;
228 	const char		*name;
229 };
230 
231 /**
232  * struct stm32_adc_info - stm32 ADC, per instance config data
233  * @channels:		Reference to stm32 channels spec
234  * @max_channels:	Number of channels
235  * @resolutions:	available resolutions
236  * @num_res:		number of available resolutions
237  */
238 struct stm32_adc_info {
239 	const struct stm32_adc_chan_spec *channels;
240 	int max_channels;
241 	const unsigned int *resolutions;
242 	const unsigned int num_res;
243 };
244 
245 /*
246  * Input definitions common for all instances:
247  * stm32f4 can have up to 16 channels
248  * stm32h7 can have up to 20 channels
249  */
250 static const struct stm32_adc_chan_spec stm32_adc_channels[] = {
251 	{ IIO_VOLTAGE, 0, "in0" },
252 	{ IIO_VOLTAGE, 1, "in1" },
253 	{ IIO_VOLTAGE, 2, "in2" },
254 	{ IIO_VOLTAGE, 3, "in3" },
255 	{ IIO_VOLTAGE, 4, "in4" },
256 	{ IIO_VOLTAGE, 5, "in5" },
257 	{ IIO_VOLTAGE, 6, "in6" },
258 	{ IIO_VOLTAGE, 7, "in7" },
259 	{ IIO_VOLTAGE, 8, "in8" },
260 	{ IIO_VOLTAGE, 9, "in9" },
261 	{ IIO_VOLTAGE, 10, "in10" },
262 	{ IIO_VOLTAGE, 11, "in11" },
263 	{ IIO_VOLTAGE, 12, "in12" },
264 	{ IIO_VOLTAGE, 13, "in13" },
265 	{ IIO_VOLTAGE, 14, "in14" },
266 	{ IIO_VOLTAGE, 15, "in15" },
267 	{ IIO_VOLTAGE, 16, "in16" },
268 	{ IIO_VOLTAGE, 17, "in17" },
269 	{ IIO_VOLTAGE, 18, "in18" },
270 	{ IIO_VOLTAGE, 19, "in19" },
271 };
272 
273 static const unsigned int stm32f4_adc_resolutions[] = {
274 	/* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
275 	12, 10, 8, 6,
276 };
277 
278 static const struct stm32_adc_info stm32f4_adc_info = {
279 	.channels = stm32_adc_channels,
280 	.max_channels = 16,
281 	.resolutions = stm32f4_adc_resolutions,
282 	.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
283 };
284 
285 static const unsigned int stm32h7_adc_resolutions[] = {
286 	/* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
287 	16, 14, 12, 10, 8,
288 };
289 
290 static const struct stm32_adc_info stm32h7_adc_info = {
291 	.channels = stm32_adc_channels,
292 	.max_channels = 20,
293 	.resolutions = stm32h7_adc_resolutions,
294 	.num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
295 };
296 
297 /**
298  * stm32f4_sq - describe regular sequence registers
299  * - L: sequence len (register & bit field)
300  * - SQ1..SQ16: sequence entries (register & bit field)
301  */
302 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
303 	/* L: len bit field description to be kept as first element */
304 	{ STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
305 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
306 	{ STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
307 	{ STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
308 	{ STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
309 	{ STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
310 	{ STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
311 	{ STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
312 	{ STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
313 	{ STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
314 	{ STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
315 	{ STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
316 	{ STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
317 	{ STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
318 	{ STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
319 	{ STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
320 	{ STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
321 	{ STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
322 };
323 
324 /* STM32F4 external trigger sources for all instances */
325 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
326 	{ TIM1_CH1, STM32_EXT0 },
327 	{ TIM1_CH2, STM32_EXT1 },
328 	{ TIM1_CH3, STM32_EXT2 },
329 	{ TIM2_CH2, STM32_EXT3 },
330 	{ TIM2_CH3, STM32_EXT4 },
331 	{ TIM2_CH4, STM32_EXT5 },
332 	{ TIM2_TRGO, STM32_EXT6 },
333 	{ TIM3_CH1, STM32_EXT7 },
334 	{ TIM3_TRGO, STM32_EXT8 },
335 	{ TIM4_CH4, STM32_EXT9 },
336 	{ TIM5_CH1, STM32_EXT10 },
337 	{ TIM5_CH2, STM32_EXT11 },
338 	{ TIM5_CH3, STM32_EXT12 },
339 	{ TIM8_CH1, STM32_EXT13 },
340 	{ TIM8_TRGO, STM32_EXT14 },
341 	{}, /* sentinel */
342 };
343 
344 /**
345  * stm32f4_smp_bits[] - describe sampling time register index & bit fields
346  * Sorted so it can be indexed by channel number.
347  */
348 static const struct stm32_adc_regs stm32f4_smp_bits[] = {
349 	/* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
350 	{ 1, GENMASK(2, 0), 0 },
351 	{ 1, GENMASK(5, 3), 3 },
352 	{ 1, GENMASK(8, 6), 6 },
353 	{ 1, GENMASK(11, 9), 9 },
354 	{ 1, GENMASK(14, 12), 12 },
355 	{ 1, GENMASK(17, 15), 15 },
356 	{ 1, GENMASK(20, 18), 18 },
357 	{ 1, GENMASK(23, 21), 21 },
358 	{ 1, GENMASK(26, 24), 24 },
359 	{ 1, GENMASK(29, 27), 27 },
360 	/* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
361 	{ 0, GENMASK(2, 0), 0 },
362 	{ 0, GENMASK(5, 3), 3 },
363 	{ 0, GENMASK(8, 6), 6 },
364 	{ 0, GENMASK(11, 9), 9 },
365 	{ 0, GENMASK(14, 12), 12 },
366 	{ 0, GENMASK(17, 15), 15 },
367 	{ 0, GENMASK(20, 18), 18 },
368 	{ 0, GENMASK(23, 21), 21 },
369 	{ 0, GENMASK(26, 24), 24 },
370 };
371 
372 /* STM32F4 programmable sampling time (ADC clock cycles) */
373 static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
374 	3, 15, 28, 56, 84, 112, 144, 480,
375 };
376 
377 static const struct stm32_adc_regspec stm32f4_adc_regspec = {
378 	.dr = STM32F4_ADC_DR,
379 	.ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
380 	.isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
381 	.sqr = stm32f4_sq,
382 	.exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
383 	.extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
384 		    STM32F4_EXTSEL_SHIFT },
385 	.res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
386 	.smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
387 	.smp_bits = stm32f4_smp_bits,
388 };
389 
390 static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
391 	/* L: len bit field description to be kept as first element */
392 	{ STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
393 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
394 	{ STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
395 	{ STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
396 	{ STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
397 	{ STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
398 	{ STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
399 	{ STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
400 	{ STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
401 	{ STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
402 	{ STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
403 	{ STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
404 	{ STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
405 	{ STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
406 	{ STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
407 	{ STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
408 	{ STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
409 	{ STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
410 };
411 
412 /* STM32H7 external trigger sources for all instances */
413 static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
414 	{ TIM1_CH1, STM32_EXT0 },
415 	{ TIM1_CH2, STM32_EXT1 },
416 	{ TIM1_CH3, STM32_EXT2 },
417 	{ TIM2_CH2, STM32_EXT3 },
418 	{ TIM3_TRGO, STM32_EXT4 },
419 	{ TIM4_CH4, STM32_EXT5 },
420 	{ TIM8_TRGO, STM32_EXT7 },
421 	{ TIM8_TRGO2, STM32_EXT8 },
422 	{ TIM1_TRGO, STM32_EXT9 },
423 	{ TIM1_TRGO2, STM32_EXT10 },
424 	{ TIM2_TRGO, STM32_EXT11 },
425 	{ TIM4_TRGO, STM32_EXT12 },
426 	{ TIM6_TRGO, STM32_EXT13 },
427 	{ TIM3_CH4, STM32_EXT15 },
428 	{ LPTIM1_OUT, STM32_EXT18 },
429 	{ LPTIM2_OUT, STM32_EXT19 },
430 	{ LPTIM3_OUT, STM32_EXT20 },
431 	{},
432 };
433 
434 /**
435  * stm32h7_smp_bits - describe sampling time register index & bit fields
436  * Sorted so it can be indexed by channel number.
437  */
438 static const struct stm32_adc_regs stm32h7_smp_bits[] = {
439 	/* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
440 	{ 0, GENMASK(2, 0), 0 },
441 	{ 0, GENMASK(5, 3), 3 },
442 	{ 0, GENMASK(8, 6), 6 },
443 	{ 0, GENMASK(11, 9), 9 },
444 	{ 0, GENMASK(14, 12), 12 },
445 	{ 0, GENMASK(17, 15), 15 },
446 	{ 0, GENMASK(20, 18), 18 },
447 	{ 0, GENMASK(23, 21), 21 },
448 	{ 0, GENMASK(26, 24), 24 },
449 	{ 0, GENMASK(29, 27), 27 },
450 	/* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
451 	{ 1, GENMASK(2, 0), 0 },
452 	{ 1, GENMASK(5, 3), 3 },
453 	{ 1, GENMASK(8, 6), 6 },
454 	{ 1, GENMASK(11, 9), 9 },
455 	{ 1, GENMASK(14, 12), 12 },
456 	{ 1, GENMASK(17, 15), 15 },
457 	{ 1, GENMASK(20, 18), 18 },
458 	{ 1, GENMASK(23, 21), 21 },
459 	{ 1, GENMASK(26, 24), 24 },
460 	{ 1, GENMASK(29, 27), 27 },
461 };
462 
463 /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
464 static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
465 	1, 2, 8, 16, 32, 64, 387, 810,
466 };
467 
468 static const struct stm32_adc_regspec stm32h7_adc_regspec = {
469 	.dr = STM32H7_ADC_DR,
470 	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
471 	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
472 	.sqr = stm32h7_sq,
473 	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
474 	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
475 		    STM32H7_EXTSEL_SHIFT },
476 	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
477 	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
478 	.smp_bits = stm32h7_smp_bits,
479 };
480 
481 /**
482  * STM32 ADC registers access routines
483  * @adc: stm32 adc instance
484  * @reg: reg offset in adc instance
485  *
486  * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
487  * for adc1, adc2 and adc3.
488  */
stm32_adc_readl(struct stm32_adc * adc,u32 reg)489 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
490 {
491 	return readl_relaxed(adc->common->base + adc->offset + reg);
492 }
493 
494 #define stm32_adc_readl_addr(addr)	stm32_adc_readl(adc, addr)
495 
496 #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
497 	readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
498 			   cond, sleep_us, timeout_us)
499 
stm32_adc_readw(struct stm32_adc * adc,u32 reg)500 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
501 {
502 	return readw_relaxed(adc->common->base + adc->offset + reg);
503 }
504 
stm32_adc_writel(struct stm32_adc * adc,u32 reg,u32 val)505 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
506 {
507 	writel_relaxed(val, adc->common->base + adc->offset + reg);
508 }
509 
stm32_adc_set_bits(struct stm32_adc * adc,u32 reg,u32 bits)510 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
511 {
512 	unsigned long flags;
513 
514 	spin_lock_irqsave(&adc->lock, flags);
515 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
516 	spin_unlock_irqrestore(&adc->lock, flags);
517 }
518 
stm32_adc_clr_bits(struct stm32_adc * adc,u32 reg,u32 bits)519 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
520 {
521 	unsigned long flags;
522 
523 	spin_lock_irqsave(&adc->lock, flags);
524 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
525 	spin_unlock_irqrestore(&adc->lock, flags);
526 }
527 
528 /**
529  * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
530  * @adc: stm32 adc instance
531  */
stm32_adc_conv_irq_enable(struct stm32_adc * adc)532 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
533 {
534 	stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
535 			   adc->cfg->regs->ier_eoc.mask);
536 };
537 
538 /**
539  * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
540  * @adc: stm32 adc instance
541  */
stm32_adc_conv_irq_disable(struct stm32_adc * adc)542 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
543 {
544 	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
545 			   adc->cfg->regs->ier_eoc.mask);
546 }
547 
stm32_adc_set_res(struct stm32_adc * adc)548 static void stm32_adc_set_res(struct stm32_adc *adc)
549 {
550 	const struct stm32_adc_regs *res = &adc->cfg->regs->res;
551 	u32 val;
552 
553 	val = stm32_adc_readl(adc, res->reg);
554 	val = (val & ~res->mask) | (adc->res << res->shift);
555 	stm32_adc_writel(adc, res->reg, val);
556 }
557 
558 /**
559  * stm32f4_adc_start_conv() - Start conversions for regular channels.
560  * @adc: stm32 adc instance
561  * @dma: use dma to transfer conversion result
562  *
563  * Start conversions for regular channels.
564  * Also take care of normal or DMA mode. Circular DMA may be used for regular
565  * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
566  * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
567  */
stm32f4_adc_start_conv(struct stm32_adc * adc,bool dma)568 static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
569 {
570 	stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
571 
572 	if (dma)
573 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
574 				   STM32F4_DMA | STM32F4_DDS);
575 
576 	stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
577 
578 	/* Wait for Power-up time (tSTAB from datasheet) */
579 	usleep_range(2, 3);
580 
581 	/* Software start ? (e.g. trigger detection disabled ?) */
582 	if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
583 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
584 }
585 
stm32f4_adc_stop_conv(struct stm32_adc * adc)586 static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
587 {
588 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
589 	stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
590 
591 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
592 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
593 			   STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
594 }
595 
stm32h7_adc_start_conv(struct stm32_adc * adc,bool dma)596 static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma)
597 {
598 	enum stm32h7_adc_dmngt dmngt;
599 	unsigned long flags;
600 	u32 val;
601 
602 	if (dma)
603 		dmngt = STM32H7_DMNGT_DMA_CIRC;
604 	else
605 		dmngt = STM32H7_DMNGT_DR_ONLY;
606 
607 	spin_lock_irqsave(&adc->lock, flags);
608 	val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
609 	val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
610 	stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
611 	spin_unlock_irqrestore(&adc->lock, flags);
612 
613 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
614 }
615 
stm32h7_adc_stop_conv(struct stm32_adc * adc)616 static void stm32h7_adc_stop_conv(struct stm32_adc *adc)
617 {
618 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
619 	int ret;
620 	u32 val;
621 
622 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
623 
624 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
625 					   !(val & (STM32H7_ADSTART)),
626 					   100, STM32_ADC_TIMEOUT_US);
627 	if (ret)
628 		dev_warn(&indio_dev->dev, "stop failed\n");
629 
630 	stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
631 }
632 
stm32h7_adc_exit_pwr_down(struct stm32_adc * adc)633 static void stm32h7_adc_exit_pwr_down(struct stm32_adc *adc)
634 {
635 	/* Exit deep power down, then enable ADC voltage regulator */
636 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
637 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
638 
639 	if (adc->common->rate > STM32H7_BOOST_CLKRATE)
640 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
641 
642 	/* Wait for startup time */
643 	usleep_range(10, 20);
644 }
645 
stm32h7_adc_enter_pwr_down(struct stm32_adc * adc)646 static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
647 {
648 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
649 
650 	/* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
651 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
652 }
653 
stm32h7_adc_enable(struct stm32_adc * adc)654 static int stm32h7_adc_enable(struct stm32_adc *adc)
655 {
656 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
657 	int ret;
658 	u32 val;
659 
660 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
661 
662 	/* Poll for ADRDY to be set (after adc startup time) */
663 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
664 					   val & STM32H7_ADRDY,
665 					   100, STM32_ADC_TIMEOUT_US);
666 	if (ret) {
667 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
668 		dev_err(&indio_dev->dev, "Failed to enable ADC\n");
669 	} else {
670 		/* Clear ADRDY by writing one */
671 		stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
672 	}
673 
674 	return ret;
675 }
676 
stm32h7_adc_disable(struct stm32_adc * adc)677 static void stm32h7_adc_disable(struct stm32_adc *adc)
678 {
679 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
680 	int ret;
681 	u32 val;
682 
683 	/* Disable ADC and wait until it's effectively disabled */
684 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
685 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
686 					   !(val & STM32H7_ADEN), 100,
687 					   STM32_ADC_TIMEOUT_US);
688 	if (ret)
689 		dev_warn(&indio_dev->dev, "Failed to disable\n");
690 }
691 
692 /**
693  * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
694  * @adc: stm32 adc instance
695  */
stm32h7_adc_read_selfcalib(struct stm32_adc * adc)696 static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc)
697 {
698 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
699 	int i, ret;
700 	u32 lincalrdyw_mask, val;
701 
702 	/* Enable adc so LINCALRDYW1..6 bits are writable */
703 	ret = stm32h7_adc_enable(adc);
704 	if (ret)
705 		return ret;
706 
707 	/* Read linearity calibration */
708 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
709 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
710 		/* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
711 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
712 
713 		/* Poll: wait calib data to be ready in CALFACT2 register */
714 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
715 						   !(val & lincalrdyw_mask),
716 						   100, STM32_ADC_TIMEOUT_US);
717 		if (ret) {
718 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
719 			goto disable;
720 		}
721 
722 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
723 		adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
724 		adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
725 
726 		lincalrdyw_mask >>= 1;
727 	}
728 
729 	/* Read offset calibration */
730 	val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
731 	adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
732 	adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
733 	adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
734 	adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
735 
736 disable:
737 	stm32h7_adc_disable(adc);
738 
739 	return ret;
740 }
741 
742 /**
743  * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
744  * @adc: stm32 adc instance
745  * Note: ADC must be enabled, with no on-going conversions.
746  */
stm32h7_adc_restore_selfcalib(struct stm32_adc * adc)747 static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc)
748 {
749 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
750 	int i, ret;
751 	u32 lincalrdyw_mask, val;
752 
753 	val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
754 		(adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
755 	stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
756 
757 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
758 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
759 		/*
760 		 * Write saved calibration data to shadow registers:
761 		 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
762 		 * data write. Then poll to wait for complete transfer.
763 		 */
764 		val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
765 		stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
766 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
767 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
768 						   val & lincalrdyw_mask,
769 						   100, STM32_ADC_TIMEOUT_US);
770 		if (ret) {
771 			dev_err(&indio_dev->dev, "Failed to write calfact\n");
772 			return ret;
773 		}
774 
775 		/*
776 		 * Read back calibration data, has two effects:
777 		 * - It ensures bits LINCALRDYW[6..1] are kept cleared
778 		 *   for next time calibration needs to be restored.
779 		 * - BTW, bit clear triggers a read, then check data has been
780 		 *   correctly written.
781 		 */
782 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
783 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
784 						   !(val & lincalrdyw_mask),
785 						   100, STM32_ADC_TIMEOUT_US);
786 		if (ret) {
787 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
788 			return ret;
789 		}
790 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
791 		if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
792 			dev_err(&indio_dev->dev, "calfact not consistent\n");
793 			return -EIO;
794 		}
795 
796 		lincalrdyw_mask >>= 1;
797 	}
798 
799 	return 0;
800 }
801 
802 /**
803  * Fixed timeout value for ADC calibration.
804  * worst cases:
805  * - low clock frequency
806  * - maximum prescalers
807  * Calibration requires:
808  * - 131,072 ADC clock cycle for the linear calibration
809  * - 20 ADC clock cycle for the offset calibration
810  *
811  * Set to 100ms for now
812  */
813 #define STM32H7_ADC_CALIB_TIMEOUT_US		100000
814 
815 /**
816  * stm32h7_adc_selfcalib() - Procedure to calibrate ADC (from power down)
817  * @adc: stm32 adc instance
818  * Exit from power down, calibrate ADC, then return to power down.
819  */
stm32h7_adc_selfcalib(struct stm32_adc * adc)820 static int stm32h7_adc_selfcalib(struct stm32_adc *adc)
821 {
822 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
823 	int ret;
824 	u32 val;
825 
826 	stm32h7_adc_exit_pwr_down(adc);
827 
828 	/*
829 	 * Select calibration mode:
830 	 * - Offset calibration for single ended inputs
831 	 * - No linearity calibration (do it later, before reading it)
832 	 */
833 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
834 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
835 
836 	/* Start calibration, then wait for completion */
837 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
838 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
839 					   !(val & STM32H7_ADCAL), 100,
840 					   STM32H7_ADC_CALIB_TIMEOUT_US);
841 	if (ret) {
842 		dev_err(&indio_dev->dev, "calibration failed\n");
843 		goto pwr_dwn;
844 	}
845 
846 	/*
847 	 * Select calibration mode, then start calibration:
848 	 * - Offset calibration for differential input
849 	 * - Linearity calibration (needs to be done only once for single/diff)
850 	 *   will run simultaneously with offset calibration.
851 	 */
852 	stm32_adc_set_bits(adc, STM32H7_ADC_CR,
853 			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
854 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
855 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
856 					   !(val & STM32H7_ADCAL), 100,
857 					   STM32H7_ADC_CALIB_TIMEOUT_US);
858 	if (ret) {
859 		dev_err(&indio_dev->dev, "calibration failed\n");
860 		goto pwr_dwn;
861 	}
862 
863 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
864 			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
865 
866 	/* Read calibration result for future reference */
867 	ret = stm32h7_adc_read_selfcalib(adc);
868 
869 pwr_dwn:
870 	stm32h7_adc_enter_pwr_down(adc);
871 
872 	return ret;
873 }
874 
875 /**
876  * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
877  * @adc: stm32 adc instance
878  * Leave power down mode.
879  * Enable ADC.
880  * Restore calibration data.
881  * Pre-select channels that may be used in PCSEL (required by input MUX / IO).
882  */
stm32h7_adc_prepare(struct stm32_adc * adc)883 static int stm32h7_adc_prepare(struct stm32_adc *adc)
884 {
885 	int ret;
886 
887 	stm32h7_adc_exit_pwr_down(adc);
888 
889 	ret = stm32h7_adc_enable(adc);
890 	if (ret)
891 		goto pwr_dwn;
892 
893 	ret = stm32h7_adc_restore_selfcalib(adc);
894 	if (ret)
895 		goto disable;
896 
897 	stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
898 
899 	return 0;
900 
901 disable:
902 	stm32h7_adc_disable(adc);
903 pwr_dwn:
904 	stm32h7_adc_enter_pwr_down(adc);
905 
906 	return ret;
907 }
908 
stm32h7_adc_unprepare(struct stm32_adc * adc)909 static void stm32h7_adc_unprepare(struct stm32_adc *adc)
910 {
911 	stm32h7_adc_disable(adc);
912 	stm32h7_adc_enter_pwr_down(adc);
913 }
914 
915 /**
916  * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
917  * @indio_dev: IIO device
918  * @scan_mask: channels to be converted
919  *
920  * Conversion sequence :
921  * Apply sampling time settings for all channels.
922  * Configure ADC scan sequence based on selected channels in scan_mask.
923  * Add channels to SQR registers, from scan_mask LSB to MSB, then
924  * program sequence len.
925  */
stm32_adc_conf_scan_seq(struct iio_dev * indio_dev,const unsigned long * scan_mask)926 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
927 				   const unsigned long *scan_mask)
928 {
929 	struct stm32_adc *adc = iio_priv(indio_dev);
930 	const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
931 	const struct iio_chan_spec *chan;
932 	u32 val, bit;
933 	int i = 0;
934 
935 	/* Apply sampling time settings */
936 	stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
937 	stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
938 
939 	for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
940 		chan = indio_dev->channels + bit;
941 		/*
942 		 * Assign one channel per SQ entry in regular
943 		 * sequence, starting with SQ1.
944 		 */
945 		i++;
946 		if (i > STM32_ADC_MAX_SQ)
947 			return -EINVAL;
948 
949 		dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
950 			__func__, chan->channel, i);
951 
952 		val = stm32_adc_readl(adc, sqr[i].reg);
953 		val &= ~sqr[i].mask;
954 		val |= chan->channel << sqr[i].shift;
955 		stm32_adc_writel(adc, sqr[i].reg, val);
956 	}
957 
958 	if (!i)
959 		return -EINVAL;
960 
961 	/* Sequence len */
962 	val = stm32_adc_readl(adc, sqr[0].reg);
963 	val &= ~sqr[0].mask;
964 	val |= ((i - 1) << sqr[0].shift);
965 	stm32_adc_writel(adc, sqr[0].reg, val);
966 
967 	return 0;
968 }
969 
970 /**
971  * stm32_adc_get_trig_extsel() - Get external trigger selection
972  * @trig: trigger
973  *
974  * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
975  */
stm32_adc_get_trig_extsel(struct iio_dev * indio_dev,struct iio_trigger * trig)976 static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
977 				     struct iio_trigger *trig)
978 {
979 	struct stm32_adc *adc = iio_priv(indio_dev);
980 	int i;
981 
982 	/* lookup triggers registered by stm32 timer trigger driver */
983 	for (i = 0; adc->cfg->trigs[i].name; i++) {
984 		/**
985 		 * Checking both stm32 timer trigger type and trig name
986 		 * should be safe against arbitrary trigger names.
987 		 */
988 		if ((is_stm32_timer_trigger(trig) ||
989 		     is_stm32_lptim_trigger(trig)) &&
990 		    !strcmp(adc->cfg->trigs[i].name, trig->name)) {
991 			return adc->cfg->trigs[i].extsel;
992 		}
993 	}
994 
995 	return -EINVAL;
996 }
997 
998 /**
999  * stm32_adc_set_trig() - Set a regular trigger
1000  * @indio_dev: IIO device
1001  * @trig: IIO trigger
1002  *
1003  * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1004  * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1005  * - if HW trigger enabled, set source & polarity
1006  */
stm32_adc_set_trig(struct iio_dev * indio_dev,struct iio_trigger * trig)1007 static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1008 			      struct iio_trigger *trig)
1009 {
1010 	struct stm32_adc *adc = iio_priv(indio_dev);
1011 	u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1012 	unsigned long flags;
1013 	int ret;
1014 
1015 	if (trig) {
1016 		ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1017 		if (ret < 0)
1018 			return ret;
1019 
1020 		/* set trigger source and polarity (default to rising edge) */
1021 		extsel = ret;
1022 		exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1023 	}
1024 
1025 	spin_lock_irqsave(&adc->lock, flags);
1026 	val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1027 	val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1028 	val |= exten << adc->cfg->regs->exten.shift;
1029 	val |= extsel << adc->cfg->regs->extsel.shift;
1030 	stm32_adc_writel(adc,  adc->cfg->regs->exten.reg, val);
1031 	spin_unlock_irqrestore(&adc->lock, flags);
1032 
1033 	return 0;
1034 }
1035 
stm32_adc_set_trig_pol(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,unsigned int type)1036 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1037 				  const struct iio_chan_spec *chan,
1038 				  unsigned int type)
1039 {
1040 	struct stm32_adc *adc = iio_priv(indio_dev);
1041 
1042 	adc->trigger_polarity = type;
1043 
1044 	return 0;
1045 }
1046 
stm32_adc_get_trig_pol(struct iio_dev * indio_dev,const struct iio_chan_spec * chan)1047 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1048 				  const struct iio_chan_spec *chan)
1049 {
1050 	struct stm32_adc *adc = iio_priv(indio_dev);
1051 
1052 	return adc->trigger_polarity;
1053 }
1054 
1055 static const char * const stm32_trig_pol_items[] = {
1056 	"rising-edge", "falling-edge", "both-edges",
1057 };
1058 
1059 static const struct iio_enum stm32_adc_trig_pol = {
1060 	.items = stm32_trig_pol_items,
1061 	.num_items = ARRAY_SIZE(stm32_trig_pol_items),
1062 	.get = stm32_adc_get_trig_pol,
1063 	.set = stm32_adc_set_trig_pol,
1064 };
1065 
1066 /**
1067  * stm32_adc_single_conv() - Performs a single conversion
1068  * @indio_dev: IIO device
1069  * @chan: IIO channel
1070  * @res: conversion result
1071  *
1072  * The function performs a single conversion on a given channel:
1073  * - Apply sampling time settings
1074  * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1075  * - Use SW trigger
1076  * - Start conversion, then wait for interrupt completion.
1077  */
stm32_adc_single_conv(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int * res)1078 static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1079 				 const struct iio_chan_spec *chan,
1080 				 int *res)
1081 {
1082 	struct stm32_adc *adc = iio_priv(indio_dev);
1083 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1084 	long timeout;
1085 	u32 val;
1086 	int ret;
1087 
1088 	reinit_completion(&adc->completion);
1089 
1090 	adc->bufi = 0;
1091 
1092 	if (adc->cfg->prepare) {
1093 		ret = adc->cfg->prepare(adc);
1094 		if (ret)
1095 			return ret;
1096 	}
1097 
1098 	/* Apply sampling time settings */
1099 	stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1100 	stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1101 
1102 	/* Program chan number in regular sequence (SQ1) */
1103 	val = stm32_adc_readl(adc, regs->sqr[1].reg);
1104 	val &= ~regs->sqr[1].mask;
1105 	val |= chan->channel << regs->sqr[1].shift;
1106 	stm32_adc_writel(adc, regs->sqr[1].reg, val);
1107 
1108 	/* Set regular sequence len (0 for 1 conversion) */
1109 	stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1110 
1111 	/* Trigger detection disabled (conversion can be launched in SW) */
1112 	stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1113 
1114 	stm32_adc_conv_irq_enable(adc);
1115 
1116 	adc->cfg->start_conv(adc, false);
1117 
1118 	timeout = wait_for_completion_interruptible_timeout(
1119 					&adc->completion, STM32_ADC_TIMEOUT);
1120 	if (timeout == 0) {
1121 		ret = -ETIMEDOUT;
1122 	} else if (timeout < 0) {
1123 		ret = timeout;
1124 	} else {
1125 		*res = adc->buffer[0];
1126 		ret = IIO_VAL_INT;
1127 	}
1128 
1129 	adc->cfg->stop_conv(adc);
1130 
1131 	stm32_adc_conv_irq_disable(adc);
1132 
1133 	if (adc->cfg->unprepare)
1134 		adc->cfg->unprepare(adc);
1135 
1136 	return ret;
1137 }
1138 
stm32_adc_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)1139 static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1140 			      struct iio_chan_spec const *chan,
1141 			      int *val, int *val2, long mask)
1142 {
1143 	struct stm32_adc *adc = iio_priv(indio_dev);
1144 	int ret;
1145 
1146 	switch (mask) {
1147 	case IIO_CHAN_INFO_RAW:
1148 		ret = iio_device_claim_direct_mode(indio_dev);
1149 		if (ret)
1150 			return ret;
1151 		if (chan->type == IIO_VOLTAGE)
1152 			ret = stm32_adc_single_conv(indio_dev, chan, val);
1153 		else
1154 			ret = -EINVAL;
1155 		iio_device_release_direct_mode(indio_dev);
1156 		return ret;
1157 
1158 	case IIO_CHAN_INFO_SCALE:
1159 		*val = adc->common->vref_mv;
1160 		*val2 = chan->scan_type.realbits;
1161 		return IIO_VAL_FRACTIONAL_LOG2;
1162 
1163 	default:
1164 		return -EINVAL;
1165 	}
1166 }
1167 
stm32_adc_isr(int irq,void * data)1168 static irqreturn_t stm32_adc_isr(int irq, void *data)
1169 {
1170 	struct stm32_adc *adc = data;
1171 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1172 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1173 	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1174 
1175 	if (status & regs->isr_eoc.mask) {
1176 		/* Reading DR also clears EOC status flag */
1177 		adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1178 		if (iio_buffer_enabled(indio_dev)) {
1179 			adc->bufi++;
1180 			if (adc->bufi >= adc->num_conv) {
1181 				stm32_adc_conv_irq_disable(adc);
1182 				iio_trigger_poll(indio_dev->trig);
1183 			}
1184 		} else {
1185 			complete(&adc->completion);
1186 		}
1187 		return IRQ_HANDLED;
1188 	}
1189 
1190 	return IRQ_NONE;
1191 }
1192 
1193 /**
1194  * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1195  * @indio_dev: IIO device
1196  * @trig: new trigger
1197  *
1198  * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1199  * driver, -EINVAL otherwise.
1200  */
stm32_adc_validate_trigger(struct iio_dev * indio_dev,struct iio_trigger * trig)1201 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1202 				      struct iio_trigger *trig)
1203 {
1204 	return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1205 }
1206 
stm32_adc_set_watermark(struct iio_dev * indio_dev,unsigned int val)1207 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1208 {
1209 	struct stm32_adc *adc = iio_priv(indio_dev);
1210 	unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1211 	unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1212 
1213 	/*
1214 	 * dma cyclic transfers are used, buffer is split into two periods.
1215 	 * There should be :
1216 	 * - always one buffer (period) dma is working on
1217 	 * - one buffer (period) driver can push with iio_trigger_poll().
1218 	 */
1219 	watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1220 	adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1221 
1222 	return 0;
1223 }
1224 
stm32_adc_update_scan_mode(struct iio_dev * indio_dev,const unsigned long * scan_mask)1225 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1226 				      const unsigned long *scan_mask)
1227 {
1228 	struct stm32_adc *adc = iio_priv(indio_dev);
1229 	int ret;
1230 
1231 	adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1232 
1233 	ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1234 	if (ret)
1235 		return ret;
1236 
1237 	return 0;
1238 }
1239 
stm32_adc_of_xlate(struct iio_dev * indio_dev,const struct of_phandle_args * iiospec)1240 static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1241 			      const struct of_phandle_args *iiospec)
1242 {
1243 	int i;
1244 
1245 	for (i = 0; i < indio_dev->num_channels; i++)
1246 		if (indio_dev->channels[i].channel == iiospec->args[0])
1247 			return i;
1248 
1249 	return -EINVAL;
1250 }
1251 
1252 /**
1253  * stm32_adc_debugfs_reg_access - read or write register value
1254  *
1255  * To read a value from an ADC register:
1256  *   echo [ADC reg offset] > direct_reg_access
1257  *   cat direct_reg_access
1258  *
1259  * To write a value in a ADC register:
1260  *   echo [ADC_reg_offset] [value] > direct_reg_access
1261  */
stm32_adc_debugfs_reg_access(struct iio_dev * indio_dev,unsigned reg,unsigned writeval,unsigned * readval)1262 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1263 					unsigned reg, unsigned writeval,
1264 					unsigned *readval)
1265 {
1266 	struct stm32_adc *adc = iio_priv(indio_dev);
1267 
1268 	if (!readval)
1269 		stm32_adc_writel(adc, reg, writeval);
1270 	else
1271 		*readval = stm32_adc_readl(adc, reg);
1272 
1273 	return 0;
1274 }
1275 
1276 static const struct iio_info stm32_adc_iio_info = {
1277 	.read_raw = stm32_adc_read_raw,
1278 	.validate_trigger = stm32_adc_validate_trigger,
1279 	.hwfifo_set_watermark = stm32_adc_set_watermark,
1280 	.update_scan_mode = stm32_adc_update_scan_mode,
1281 	.debugfs_reg_access = stm32_adc_debugfs_reg_access,
1282 	.of_xlate = stm32_adc_of_xlate,
1283 	.driver_module = THIS_MODULE,
1284 };
1285 
stm32_adc_dma_residue(struct stm32_adc * adc)1286 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1287 {
1288 	struct dma_tx_state state;
1289 	enum dma_status status;
1290 
1291 	status = dmaengine_tx_status(adc->dma_chan,
1292 				     adc->dma_chan->cookie,
1293 				     &state);
1294 	if (status == DMA_IN_PROGRESS) {
1295 		/* Residue is size in bytes from end of buffer */
1296 		unsigned int i = adc->rx_buf_sz - state.residue;
1297 		unsigned int size;
1298 
1299 		/* Return available bytes */
1300 		if (i >= adc->bufi)
1301 			size = i - adc->bufi;
1302 		else
1303 			size = adc->rx_buf_sz + i - adc->bufi;
1304 
1305 		return size;
1306 	}
1307 
1308 	return 0;
1309 }
1310 
stm32_adc_dma_buffer_done(void * data)1311 static void stm32_adc_dma_buffer_done(void *data)
1312 {
1313 	struct iio_dev *indio_dev = data;
1314 
1315 	iio_trigger_poll_chained(indio_dev->trig);
1316 }
1317 
stm32_adc_dma_start(struct iio_dev * indio_dev)1318 static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1319 {
1320 	struct stm32_adc *adc = iio_priv(indio_dev);
1321 	struct dma_async_tx_descriptor *desc;
1322 	dma_cookie_t cookie;
1323 	int ret;
1324 
1325 	if (!adc->dma_chan)
1326 		return 0;
1327 
1328 	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1329 		adc->rx_buf_sz, adc->rx_buf_sz / 2);
1330 
1331 	/* Prepare a DMA cyclic transaction */
1332 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1333 					 adc->rx_dma_buf,
1334 					 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1335 					 DMA_DEV_TO_MEM,
1336 					 DMA_PREP_INTERRUPT);
1337 	if (!desc)
1338 		return -EBUSY;
1339 
1340 	desc->callback = stm32_adc_dma_buffer_done;
1341 	desc->callback_param = indio_dev;
1342 
1343 	cookie = dmaengine_submit(desc);
1344 	ret = dma_submit_error(cookie);
1345 	if (ret) {
1346 		dmaengine_terminate_sync(adc->dma_chan);
1347 		return ret;
1348 	}
1349 
1350 	/* Issue pending DMA requests */
1351 	dma_async_issue_pending(adc->dma_chan);
1352 
1353 	return 0;
1354 }
1355 
stm32_adc_buffer_postenable(struct iio_dev * indio_dev)1356 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1357 {
1358 	struct stm32_adc *adc = iio_priv(indio_dev);
1359 	int ret;
1360 
1361 	if (adc->cfg->prepare) {
1362 		ret = adc->cfg->prepare(adc);
1363 		if (ret)
1364 			return ret;
1365 	}
1366 
1367 	ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1368 	if (ret) {
1369 		dev_err(&indio_dev->dev, "Can't set trigger\n");
1370 		goto err_unprepare;
1371 	}
1372 
1373 	ret = stm32_adc_dma_start(indio_dev);
1374 	if (ret) {
1375 		dev_err(&indio_dev->dev, "Can't start dma\n");
1376 		goto err_clr_trig;
1377 	}
1378 
1379 	ret = iio_triggered_buffer_postenable(indio_dev);
1380 	if (ret < 0)
1381 		goto err_stop_dma;
1382 
1383 	/* Reset adc buffer index */
1384 	adc->bufi = 0;
1385 
1386 	if (!adc->dma_chan)
1387 		stm32_adc_conv_irq_enable(adc);
1388 
1389 	adc->cfg->start_conv(adc, !!adc->dma_chan);
1390 
1391 	return 0;
1392 
1393 err_stop_dma:
1394 	if (adc->dma_chan)
1395 		dmaengine_terminate_all(adc->dma_chan);
1396 err_clr_trig:
1397 	stm32_adc_set_trig(indio_dev, NULL);
1398 err_unprepare:
1399 	if (adc->cfg->unprepare)
1400 		adc->cfg->unprepare(adc);
1401 
1402 	return ret;
1403 }
1404 
stm32_adc_buffer_predisable(struct iio_dev * indio_dev)1405 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1406 {
1407 	struct stm32_adc *adc = iio_priv(indio_dev);
1408 	int ret;
1409 
1410 	adc->cfg->stop_conv(adc);
1411 	if (!adc->dma_chan)
1412 		stm32_adc_conv_irq_disable(adc);
1413 
1414 	ret = iio_triggered_buffer_predisable(indio_dev);
1415 	if (ret < 0)
1416 		dev_err(&indio_dev->dev, "predisable failed\n");
1417 
1418 	if (adc->dma_chan)
1419 		dmaengine_terminate_sync(adc->dma_chan);
1420 
1421 	if (stm32_adc_set_trig(indio_dev, NULL))
1422 		dev_err(&indio_dev->dev, "Can't clear trigger\n");
1423 
1424 	if (adc->cfg->unprepare)
1425 		adc->cfg->unprepare(adc);
1426 
1427 	return ret;
1428 }
1429 
1430 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1431 	.postenable = &stm32_adc_buffer_postenable,
1432 	.predisable = &stm32_adc_buffer_predisable,
1433 };
1434 
stm32_adc_trigger_handler(int irq,void * p)1435 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1436 {
1437 	struct iio_poll_func *pf = p;
1438 	struct iio_dev *indio_dev = pf->indio_dev;
1439 	struct stm32_adc *adc = iio_priv(indio_dev);
1440 
1441 	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1442 
1443 	if (!adc->dma_chan) {
1444 		/* reset buffer index */
1445 		adc->bufi = 0;
1446 		iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1447 						   pf->timestamp);
1448 	} else {
1449 		int residue = stm32_adc_dma_residue(adc);
1450 
1451 		while (residue >= indio_dev->scan_bytes) {
1452 			u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1453 
1454 			iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1455 							   pf->timestamp);
1456 			residue -= indio_dev->scan_bytes;
1457 			adc->bufi += indio_dev->scan_bytes;
1458 			if (adc->bufi >= adc->rx_buf_sz)
1459 				adc->bufi = 0;
1460 		}
1461 	}
1462 
1463 	iio_trigger_notify_done(indio_dev->trig);
1464 
1465 	/* re-enable eoc irq */
1466 	if (!adc->dma_chan)
1467 		stm32_adc_conv_irq_enable(adc);
1468 
1469 	return IRQ_HANDLED;
1470 }
1471 
1472 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1473 	IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1474 	{
1475 		.name = "trigger_polarity_available",
1476 		.shared = IIO_SHARED_BY_ALL,
1477 		.read = iio_enum_available_read,
1478 		.private = (uintptr_t)&stm32_adc_trig_pol,
1479 	},
1480 	{},
1481 };
1482 
stm32_adc_of_get_resolution(struct iio_dev * indio_dev)1483 static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1484 {
1485 	struct device_node *node = indio_dev->dev.of_node;
1486 	struct stm32_adc *adc = iio_priv(indio_dev);
1487 	unsigned int i;
1488 	u32 res;
1489 
1490 	if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1491 		res = adc->cfg->adc_info->resolutions[0];
1492 
1493 	for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1494 		if (res == adc->cfg->adc_info->resolutions[i])
1495 			break;
1496 	if (i >= adc->cfg->adc_info->num_res) {
1497 		dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1498 		return -EINVAL;
1499 	}
1500 
1501 	dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1502 	adc->res = i;
1503 
1504 	return 0;
1505 }
1506 
stm32_adc_smpr_init(struct stm32_adc * adc,int channel,u32 smp_ns)1507 static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1508 {
1509 	const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1510 	u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1511 	unsigned int smp, r = smpr->reg;
1512 
1513 	/* Determine sampling time (ADC clock cycles) */
1514 	period_ns = NSEC_PER_SEC / adc->common->rate;
1515 	for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1516 		if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1517 			break;
1518 	if (smp > STM32_ADC_MAX_SMP)
1519 		smp = STM32_ADC_MAX_SMP;
1520 
1521 	/* pre-build sampling time registers (e.g. smpr1, smpr2) */
1522 	adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1523 }
1524 
stm32_adc_chan_init_one(struct iio_dev * indio_dev,struct iio_chan_spec * chan,const struct stm32_adc_chan_spec * channel,int scan_index,u32 smp)1525 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1526 				    struct iio_chan_spec *chan,
1527 				    const struct stm32_adc_chan_spec *channel,
1528 				    int scan_index, u32 smp)
1529 {
1530 	struct stm32_adc *adc = iio_priv(indio_dev);
1531 
1532 	chan->type = channel->type;
1533 	chan->channel = channel->channel;
1534 	chan->datasheet_name = channel->name;
1535 	chan->scan_index = scan_index;
1536 	chan->indexed = 1;
1537 	chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1538 	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
1539 	chan->scan_type.sign = 'u';
1540 	chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1541 	chan->scan_type.storagebits = 16;
1542 	chan->ext_info = stm32_adc_ext_info;
1543 
1544 	/* Prepare sampling time settings */
1545 	stm32_adc_smpr_init(adc, chan->channel, smp);
1546 
1547 	/* pre-build selected channels mask */
1548 	adc->pcsel |= BIT(chan->channel);
1549 }
1550 
stm32_adc_chan_of_init(struct iio_dev * indio_dev)1551 static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1552 {
1553 	struct device_node *node = indio_dev->dev.of_node;
1554 	struct stm32_adc *adc = iio_priv(indio_dev);
1555 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1556 	struct property *prop;
1557 	const __be32 *cur;
1558 	struct iio_chan_spec *channels;
1559 	int scan_index = 0, num_channels, ret;
1560 	u32 val, smp = 0;
1561 
1562 	num_channels = of_property_count_u32_elems(node, "st,adc-channels");
1563 	if (num_channels < 0 ||
1564 	    num_channels > adc_info->max_channels) {
1565 		dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1566 		return num_channels < 0 ? num_channels : -EINVAL;
1567 	}
1568 
1569 	/* Optional sample time is provided either for each, or all channels */
1570 	ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1571 	if (ret > 1 && ret != num_channels) {
1572 		dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1573 		return -EINVAL;
1574 	}
1575 
1576 	channels = devm_kcalloc(&indio_dev->dev, num_channels,
1577 				sizeof(struct iio_chan_spec), GFP_KERNEL);
1578 	if (!channels)
1579 		return -ENOMEM;
1580 
1581 	of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1582 		if (val >= adc_info->max_channels) {
1583 			dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1584 			return -EINVAL;
1585 		}
1586 
1587 		/*
1588 		 * Using of_property_read_u32_index(), smp value will only be
1589 		 * modified if valid u32 value can be decoded. This allows to
1590 		 * get either no value, 1 shared value for all indexes, or one
1591 		 * value per channel.
1592 		 */
1593 		of_property_read_u32_index(node, "st,min-sample-time-nsecs",
1594 					   scan_index, &smp);
1595 
1596 		stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1597 					&adc_info->channels[val],
1598 					scan_index, smp);
1599 		scan_index++;
1600 	}
1601 
1602 	indio_dev->num_channels = scan_index;
1603 	indio_dev->channels = channels;
1604 
1605 	return 0;
1606 }
1607 
stm32_adc_dma_request(struct iio_dev * indio_dev)1608 static int stm32_adc_dma_request(struct iio_dev *indio_dev)
1609 {
1610 	struct stm32_adc *adc = iio_priv(indio_dev);
1611 	struct dma_slave_config config;
1612 	int ret;
1613 
1614 	adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
1615 	if (!adc->dma_chan)
1616 		return 0;
1617 
1618 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1619 					 STM32_DMA_BUFFER_SIZE,
1620 					 &adc->rx_dma_buf, GFP_KERNEL);
1621 	if (!adc->rx_buf) {
1622 		ret = -ENOMEM;
1623 		goto err_release;
1624 	}
1625 
1626 	/* Configure DMA channel to read data register */
1627 	memset(&config, 0, sizeof(config));
1628 	config.src_addr = (dma_addr_t)adc->common->phys_base;
1629 	config.src_addr += adc->offset + adc->cfg->regs->dr;
1630 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1631 
1632 	ret = dmaengine_slave_config(adc->dma_chan, &config);
1633 	if (ret)
1634 		goto err_free;
1635 
1636 	return 0;
1637 
1638 err_free:
1639 	dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1640 			  adc->rx_buf, adc->rx_dma_buf);
1641 err_release:
1642 	dma_release_channel(adc->dma_chan);
1643 
1644 	return ret;
1645 }
1646 
stm32_adc_probe(struct platform_device * pdev)1647 static int stm32_adc_probe(struct platform_device *pdev)
1648 {
1649 	struct iio_dev *indio_dev;
1650 	struct device *dev = &pdev->dev;
1651 	struct stm32_adc *adc;
1652 	int ret;
1653 
1654 	if (!pdev->dev.of_node)
1655 		return -ENODEV;
1656 
1657 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1658 	if (!indio_dev)
1659 		return -ENOMEM;
1660 
1661 	adc = iio_priv(indio_dev);
1662 	adc->common = dev_get_drvdata(pdev->dev.parent);
1663 	spin_lock_init(&adc->lock);
1664 	init_completion(&adc->completion);
1665 	adc->cfg = (const struct stm32_adc_cfg *)
1666 		of_match_device(dev->driver->of_match_table, dev)->data;
1667 
1668 	indio_dev->name = dev_name(&pdev->dev);
1669 	indio_dev->dev.parent = &pdev->dev;
1670 	indio_dev->dev.of_node = pdev->dev.of_node;
1671 	indio_dev->info = &stm32_adc_iio_info;
1672 	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
1673 
1674 	platform_set_drvdata(pdev, adc);
1675 
1676 	ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1677 	if (ret != 0) {
1678 		dev_err(&pdev->dev, "missing reg property\n");
1679 		return -EINVAL;
1680 	}
1681 
1682 	adc->irq = platform_get_irq(pdev, 0);
1683 	if (adc->irq < 0) {
1684 		dev_err(&pdev->dev, "failed to get irq\n");
1685 		return adc->irq;
1686 	}
1687 
1688 	ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1689 			       0, pdev->name, adc);
1690 	if (ret) {
1691 		dev_err(&pdev->dev, "failed to request IRQ\n");
1692 		return ret;
1693 	}
1694 
1695 	adc->clk = devm_clk_get(&pdev->dev, NULL);
1696 	if (IS_ERR(adc->clk)) {
1697 		ret = PTR_ERR(adc->clk);
1698 		if (ret == -ENOENT && !adc->cfg->clk_required) {
1699 			adc->clk = NULL;
1700 		} else {
1701 			dev_err(&pdev->dev, "Can't get clock\n");
1702 			return ret;
1703 		}
1704 	}
1705 
1706 	if (adc->clk) {
1707 		ret = clk_prepare_enable(adc->clk);
1708 		if (ret < 0) {
1709 			dev_err(&pdev->dev, "clk enable failed\n");
1710 			return ret;
1711 		}
1712 	}
1713 
1714 	ret = stm32_adc_of_get_resolution(indio_dev);
1715 	if (ret < 0)
1716 		goto err_clk_disable;
1717 	stm32_adc_set_res(adc);
1718 
1719 	if (adc->cfg->selfcalib) {
1720 		ret = adc->cfg->selfcalib(adc);
1721 		if (ret)
1722 			goto err_clk_disable;
1723 	}
1724 
1725 	ret = stm32_adc_chan_of_init(indio_dev);
1726 	if (ret < 0)
1727 		goto err_clk_disable;
1728 
1729 	ret = stm32_adc_dma_request(indio_dev);
1730 	if (ret < 0)
1731 		goto err_clk_disable;
1732 
1733 	ret = iio_triggered_buffer_setup(indio_dev,
1734 					 &iio_pollfunc_store_time,
1735 					 &stm32_adc_trigger_handler,
1736 					 &stm32_adc_buffer_setup_ops);
1737 	if (ret) {
1738 		dev_err(&pdev->dev, "buffer setup failed\n");
1739 		goto err_dma_disable;
1740 	}
1741 
1742 	ret = iio_device_register(indio_dev);
1743 	if (ret) {
1744 		dev_err(&pdev->dev, "iio dev register failed\n");
1745 		goto err_buffer_cleanup;
1746 	}
1747 
1748 	return 0;
1749 
1750 err_buffer_cleanup:
1751 	iio_triggered_buffer_cleanup(indio_dev);
1752 
1753 err_dma_disable:
1754 	if (adc->dma_chan) {
1755 		dma_free_coherent(adc->dma_chan->device->dev,
1756 				  STM32_DMA_BUFFER_SIZE,
1757 				  adc->rx_buf, adc->rx_dma_buf);
1758 		dma_release_channel(adc->dma_chan);
1759 	}
1760 err_clk_disable:
1761 	if (adc->clk)
1762 		clk_disable_unprepare(adc->clk);
1763 
1764 	return ret;
1765 }
1766 
stm32_adc_remove(struct platform_device * pdev)1767 static int stm32_adc_remove(struct platform_device *pdev)
1768 {
1769 	struct stm32_adc *adc = platform_get_drvdata(pdev);
1770 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1771 
1772 	iio_device_unregister(indio_dev);
1773 	iio_triggered_buffer_cleanup(indio_dev);
1774 	if (adc->dma_chan) {
1775 		dma_free_coherent(adc->dma_chan->device->dev,
1776 				  STM32_DMA_BUFFER_SIZE,
1777 				  adc->rx_buf, adc->rx_dma_buf);
1778 		dma_release_channel(adc->dma_chan);
1779 	}
1780 	if (adc->clk)
1781 		clk_disable_unprepare(adc->clk);
1782 
1783 	return 0;
1784 }
1785 
1786 static const struct stm32_adc_cfg stm32f4_adc_cfg = {
1787 	.regs = &stm32f4_adc_regspec,
1788 	.adc_info = &stm32f4_adc_info,
1789 	.trigs = stm32f4_adc_trigs,
1790 	.clk_required = true,
1791 	.start_conv = stm32f4_adc_start_conv,
1792 	.stop_conv = stm32f4_adc_stop_conv,
1793 	.smp_cycles = stm32f4_adc_smp_cycles,
1794 };
1795 
1796 static const struct stm32_adc_cfg stm32h7_adc_cfg = {
1797 	.regs = &stm32h7_adc_regspec,
1798 	.adc_info = &stm32h7_adc_info,
1799 	.trigs = stm32h7_adc_trigs,
1800 	.selfcalib = stm32h7_adc_selfcalib,
1801 	.start_conv = stm32h7_adc_start_conv,
1802 	.stop_conv = stm32h7_adc_stop_conv,
1803 	.prepare = stm32h7_adc_prepare,
1804 	.unprepare = stm32h7_adc_unprepare,
1805 	.smp_cycles = stm32h7_adc_smp_cycles,
1806 };
1807 
1808 static const struct of_device_id stm32_adc_of_match[] = {
1809 	{ .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
1810 	{ .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
1811 	{},
1812 };
1813 MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
1814 
1815 static struct platform_driver stm32_adc_driver = {
1816 	.probe = stm32_adc_probe,
1817 	.remove = stm32_adc_remove,
1818 	.driver = {
1819 		.name = "stm32-adc",
1820 		.of_match_table = stm32_adc_of_match,
1821 	},
1822 };
1823 module_platform_driver(stm32_adc_driver);
1824 
1825 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
1826 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
1827 MODULE_LICENSE("GPL v2");
1828 MODULE_ALIAS("platform:stm32-adc");
1829