• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * STMicroelectronics st_lsm6dsx FIFO buffer library driver
3  *
4  * LSM6DS3/LSM6DS3H/LSM6DSL/LSM6DSM: The FIFO buffer can be configured
5  * to store data from gyroscope and accelerometer. Samples are queued
6  * without any tag according to a specific pattern based on 'FIFO data sets'
7  * (6 bytes each):
8  *  - 1st data set is reserved for gyroscope data
9  *  - 2nd data set is reserved for accelerometer data
10  * The FIFO pattern changes depending on the ODRs and decimation factors
11  * assigned to the FIFO data sets. The first sequence of data stored in FIFO
12  * buffer contains the data of all the enabled FIFO data sets
13  * (e.g. Gx, Gy, Gz, Ax, Ay, Az), then data are repeated depending on the
14  * value of the decimation factor and ODR set for each FIFO data set.
15  * FIFO supported modes:
16  *  - BYPASS: FIFO disabled
17  *  - CONTINUOUS: FIFO enabled. When the buffer is full, the FIFO index
18  *    restarts from the beginning and the oldest sample is overwritten
19  *
20  * Copyright 2016 STMicroelectronics Inc.
21  *
22  * Lorenzo Bianconi <lorenzo.bianconi@st.com>
23  * Denis Ciocca <denis.ciocca@st.com>
24  *
25  * Licensed under the GPL-2.
26  */
27 #include <linux/module.h>
28 #include <linux/interrupt.h>
29 #include <linux/irq.h>
30 #include <linux/iio/kfifo_buf.h>
31 #include <linux/iio/iio.h>
32 #include <linux/iio/buffer.h>
33 
34 #include <linux/platform_data/st_sensors_pdata.h>
35 
36 #include "st_lsm6dsx.h"
37 
38 #define ST_LSM6DSX_REG_FIFO_THL_ADDR		0x06
39 #define ST_LSM6DSX_REG_FIFO_THH_ADDR		0x07
40 #define ST_LSM6DSX_FIFO_TH_MASK			GENMASK(11, 0)
41 #define ST_LSM6DSX_REG_FIFO_DEC_GXL_ADDR	0x08
42 #define ST_LSM6DSX_REG_HLACTIVE_ADDR		0x12
43 #define ST_LSM6DSX_REG_HLACTIVE_MASK		BIT(5)
44 #define ST_LSM6DSX_REG_PP_OD_ADDR		0x12
45 #define ST_LSM6DSX_REG_PP_OD_MASK		BIT(4)
46 #define ST_LSM6DSX_REG_FIFO_MODE_ADDR		0x0a
47 #define ST_LSM6DSX_FIFO_MODE_MASK		GENMASK(2, 0)
48 #define ST_LSM6DSX_FIFO_ODR_MASK		GENMASK(6, 3)
49 #define ST_LSM6DSX_REG_FIFO_DIFFL_ADDR		0x3a
50 #define ST_LSM6DSX_FIFO_DIFF_MASK		GENMASK(11, 0)
51 #define ST_LSM6DSX_FIFO_EMPTY_MASK		BIT(12)
52 #define ST_LSM6DSX_REG_FIFO_OUTL_ADDR		0x3e
53 
54 #define ST_LSM6DSX_MAX_FIFO_ODR_VAL		0x08
55 
56 struct st_lsm6dsx_decimator_entry {
57 	u8 decimator;
58 	u8 val;
59 };
60 
61 static const
62 struct st_lsm6dsx_decimator_entry st_lsm6dsx_decimator_table[] = {
63 	{  0, 0x0 },
64 	{  1, 0x1 },
65 	{  2, 0x2 },
66 	{  3, 0x3 },
67 	{  4, 0x4 },
68 	{  8, 0x5 },
69 	{ 16, 0x6 },
70 	{ 32, 0x7 },
71 };
72 
st_lsm6dsx_get_decimator_val(u8 val)73 static int st_lsm6dsx_get_decimator_val(u8 val)
74 {
75 	const int max_size = ARRAY_SIZE(st_lsm6dsx_decimator_table);
76 	int i;
77 
78 	for (i = 0; i < max_size; i++)
79 		if (st_lsm6dsx_decimator_table[i].decimator == val)
80 			break;
81 
82 	return i == max_size ? 0 : st_lsm6dsx_decimator_table[i].val;
83 }
84 
st_lsm6dsx_get_max_min_odr(struct st_lsm6dsx_hw * hw,u16 * max_odr,u16 * min_odr)85 static void st_lsm6dsx_get_max_min_odr(struct st_lsm6dsx_hw *hw,
86 				       u16 *max_odr, u16 *min_odr)
87 {
88 	struct st_lsm6dsx_sensor *sensor;
89 	int i;
90 
91 	*max_odr = 0, *min_odr = ~0;
92 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
93 		sensor = iio_priv(hw->iio_devs[i]);
94 
95 		if (!(hw->enable_mask & BIT(sensor->id)))
96 			continue;
97 
98 		*max_odr = max_t(u16, *max_odr, sensor->odr);
99 		*min_odr = min_t(u16, *min_odr, sensor->odr);
100 	}
101 }
102 
st_lsm6dsx_update_decimators(struct st_lsm6dsx_hw * hw)103 static int st_lsm6dsx_update_decimators(struct st_lsm6dsx_hw *hw)
104 {
105 	struct st_lsm6dsx_sensor *sensor;
106 	u16 max_odr, min_odr, sip = 0;
107 	int err, i;
108 	u8 data;
109 
110 	st_lsm6dsx_get_max_min_odr(hw, &max_odr, &min_odr);
111 
112 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
113 		sensor = iio_priv(hw->iio_devs[i]);
114 
115 		/* update fifo decimators and sample in pattern */
116 		if (hw->enable_mask & BIT(sensor->id)) {
117 			sensor->sip = sensor->odr / min_odr;
118 			sensor->decimator = max_odr / sensor->odr;
119 			data = st_lsm6dsx_get_decimator_val(sensor->decimator);
120 		} else {
121 			sensor->sip = 0;
122 			sensor->decimator = 0;
123 			data = 0;
124 		}
125 
126 		err = st_lsm6dsx_write_with_mask(hw,
127 					ST_LSM6DSX_REG_FIFO_DEC_GXL_ADDR,
128 					sensor->decimator_mask, data);
129 		if (err < 0)
130 			return err;
131 
132 		sip += sensor->sip;
133 	}
134 	hw->sip = sip;
135 
136 	return 0;
137 }
138 
st_lsm6dsx_set_fifo_mode(struct st_lsm6dsx_hw * hw,enum st_lsm6dsx_fifo_mode fifo_mode)139 int st_lsm6dsx_set_fifo_mode(struct st_lsm6dsx_hw *hw,
140 			     enum st_lsm6dsx_fifo_mode fifo_mode)
141 {
142 	u8 data;
143 	int err;
144 
145 	switch (fifo_mode) {
146 	case ST_LSM6DSX_FIFO_BYPASS:
147 		data = fifo_mode;
148 		break;
149 	case ST_LSM6DSX_FIFO_CONT:
150 		data = (ST_LSM6DSX_MAX_FIFO_ODR_VAL <<
151 			__ffs(ST_LSM6DSX_FIFO_ODR_MASK)) | fifo_mode;
152 		break;
153 	default:
154 		return -EINVAL;
155 	}
156 
157 	err = hw->tf->write(hw->dev, ST_LSM6DSX_REG_FIFO_MODE_ADDR,
158 			    sizeof(data), &data);
159 	if (err < 0)
160 		return err;
161 
162 	hw->fifo_mode = fifo_mode;
163 
164 	return 0;
165 }
166 
st_lsm6dsx_update_watermark(struct st_lsm6dsx_sensor * sensor,u16 watermark)167 int st_lsm6dsx_update_watermark(struct st_lsm6dsx_sensor *sensor, u16 watermark)
168 {
169 	u16 fifo_watermark = ~0, cur_watermark, sip = 0;
170 	struct st_lsm6dsx_hw *hw = sensor->hw;
171 	struct st_lsm6dsx_sensor *cur_sensor;
172 	__le16 wdata;
173 	int i, err;
174 	u8 data;
175 
176 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
177 		cur_sensor = iio_priv(hw->iio_devs[i]);
178 
179 		if (!(hw->enable_mask & BIT(cur_sensor->id)))
180 			continue;
181 
182 		cur_watermark = (cur_sensor == sensor) ? watermark
183 						       : cur_sensor->watermark;
184 
185 		fifo_watermark = min_t(u16, fifo_watermark, cur_watermark);
186 		sip += cur_sensor->sip;
187 	}
188 
189 	if (!sip)
190 		return 0;
191 
192 	fifo_watermark = max_t(u16, fifo_watermark, sip);
193 	fifo_watermark = (fifo_watermark / sip) * sip;
194 	fifo_watermark = fifo_watermark * ST_LSM6DSX_SAMPLE_DEPTH;
195 
196 	mutex_lock(&hw->lock);
197 
198 	err = hw->tf->read(hw->dev, ST_LSM6DSX_REG_FIFO_THH_ADDR,
199 			   sizeof(data), &data);
200 	if (err < 0)
201 		goto out;
202 
203 	fifo_watermark = ((data << 8) & ~ST_LSM6DSX_FIFO_TH_MASK) |
204 			 (fifo_watermark & ST_LSM6DSX_FIFO_TH_MASK);
205 
206 	wdata = cpu_to_le16(fifo_watermark);
207 	err = hw->tf->write(hw->dev, ST_LSM6DSX_REG_FIFO_THL_ADDR,
208 			    sizeof(wdata), (u8 *)&wdata);
209 out:
210 	mutex_unlock(&hw->lock);
211 
212 	return err < 0 ? err : 0;
213 }
214 
215 /**
216  * st_lsm6dsx_read_fifo() - LSM6DS3-LSM6DS3H-LSM6DSL-LSM6DSM read FIFO routine
217  * @hw: Pointer to instance of struct st_lsm6dsx_hw.
218  *
219  * Read samples from the hw FIFO and push them to IIO buffers.
220  *
221  * Return: Number of bytes read from the FIFO
222  */
st_lsm6dsx_read_fifo(struct st_lsm6dsx_hw * hw)223 static int st_lsm6dsx_read_fifo(struct st_lsm6dsx_hw *hw)
224 {
225 	u16 fifo_len, pattern_len = hw->sip * ST_LSM6DSX_SAMPLE_SIZE;
226 	int err, acc_sip, gyro_sip, read_len, samples, offset;
227 	struct st_lsm6dsx_sensor *acc_sensor, *gyro_sensor;
228 	s64 acc_ts, acc_delta_ts, gyro_ts, gyro_delta_ts;
229 	u8 iio_buff[ALIGN(ST_LSM6DSX_SAMPLE_SIZE, sizeof(s64)) + sizeof(s64)];
230 	u8 buff[pattern_len];
231 	__le16 fifo_status;
232 
233 	err = hw->tf->read(hw->dev, ST_LSM6DSX_REG_FIFO_DIFFL_ADDR,
234 			   sizeof(fifo_status), (u8 *)&fifo_status);
235 	if (err < 0)
236 		return err;
237 
238 	if (fifo_status & cpu_to_le16(ST_LSM6DSX_FIFO_EMPTY_MASK))
239 		return 0;
240 
241 	fifo_len = (le16_to_cpu(fifo_status) & ST_LSM6DSX_FIFO_DIFF_MASK) *
242 		   ST_LSM6DSX_CHAN_SIZE;
243 	samples = fifo_len / ST_LSM6DSX_SAMPLE_SIZE;
244 	fifo_len = (fifo_len / pattern_len) * pattern_len;
245 
246 	/*
247 	 * compute delta timestamp between two consecutive samples
248 	 * in order to estimate queueing time of data generated
249 	 * by the sensor
250 	 */
251 	acc_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]);
252 	acc_ts = acc_sensor->ts - acc_sensor->delta_ts;
253 	acc_delta_ts = div_s64(acc_sensor->delta_ts * acc_sensor->decimator,
254 			       samples);
255 
256 	gyro_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_GYRO]);
257 	gyro_ts = gyro_sensor->ts - gyro_sensor->delta_ts;
258 	gyro_delta_ts = div_s64(gyro_sensor->delta_ts * gyro_sensor->decimator,
259 				samples);
260 
261 	for (read_len = 0; read_len < fifo_len; read_len += pattern_len) {
262 		err = hw->tf->read(hw->dev, ST_LSM6DSX_REG_FIFO_OUTL_ADDR,
263 				   sizeof(buff), buff);
264 		if (err < 0)
265 			return err;
266 
267 		/*
268 		 * Data are written to the FIFO with a specific pattern
269 		 * depending on the configured ODRs. The first sequence of data
270 		 * stored in FIFO contains the data of all enabled sensors
271 		 * (e.g. Gx, Gy, Gz, Ax, Ay, Az), then data are repeated
272 		 * depending on the value of the decimation factor set for each
273 		 * sensor.
274 		 *
275 		 * Supposing the FIFO is storing data from gyroscope and
276 		 * accelerometer at different ODRs:
277 		 *   - gyroscope ODR = 208Hz, accelerometer ODR = 104Hz
278 		 * Since the gyroscope ODR is twice the accelerometer one, the
279 		 * following pattern is repeated every 9 samples:
280 		 *   - Gx, Gy, Gz, Ax, Ay, Az, Gx, Gy, Gz
281 		 */
282 		gyro_sip = gyro_sensor->sip;
283 		acc_sip = acc_sensor->sip;
284 		offset = 0;
285 
286 		while (acc_sip > 0 || gyro_sip > 0) {
287 			if (gyro_sip-- > 0) {
288 				memcpy(iio_buff, &buff[offset],
289 				       ST_LSM6DSX_SAMPLE_SIZE);
290 				iio_push_to_buffers_with_timestamp(
291 					hw->iio_devs[ST_LSM6DSX_ID_GYRO],
292 					iio_buff, gyro_ts);
293 				offset += ST_LSM6DSX_SAMPLE_SIZE;
294 				gyro_ts += gyro_delta_ts;
295 			}
296 
297 			if (acc_sip-- > 0) {
298 				memcpy(iio_buff, &buff[offset],
299 				       ST_LSM6DSX_SAMPLE_SIZE);
300 				iio_push_to_buffers_with_timestamp(
301 					hw->iio_devs[ST_LSM6DSX_ID_ACC],
302 					iio_buff, acc_ts);
303 				offset += ST_LSM6DSX_SAMPLE_SIZE;
304 				acc_ts += acc_delta_ts;
305 			}
306 		}
307 	}
308 
309 	return read_len;
310 }
311 
st_lsm6dsx_flush_fifo(struct st_lsm6dsx_hw * hw)312 int st_lsm6dsx_flush_fifo(struct st_lsm6dsx_hw *hw)
313 {
314 	int err;
315 
316 	mutex_lock(&hw->fifo_lock);
317 
318 	st_lsm6dsx_read_fifo(hw);
319 	err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_BYPASS);
320 
321 	mutex_unlock(&hw->fifo_lock);
322 
323 	return err;
324 }
325 
st_lsm6dsx_update_fifo(struct iio_dev * iio_dev,bool enable)326 static int st_lsm6dsx_update_fifo(struct iio_dev *iio_dev, bool enable)
327 {
328 	struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
329 	struct st_lsm6dsx_hw *hw = sensor->hw;
330 	int err;
331 
332 	if (hw->fifo_mode != ST_LSM6DSX_FIFO_BYPASS) {
333 		err = st_lsm6dsx_flush_fifo(hw);
334 		if (err < 0)
335 			return err;
336 	}
337 
338 	if (enable) {
339 		err = st_lsm6dsx_sensor_enable(sensor);
340 		if (err < 0)
341 			return err;
342 	} else {
343 		err = st_lsm6dsx_sensor_disable(sensor);
344 		if (err < 0)
345 			return err;
346 	}
347 
348 	err = st_lsm6dsx_update_decimators(hw);
349 	if (err < 0)
350 		return err;
351 
352 	err = st_lsm6dsx_update_watermark(sensor, sensor->watermark);
353 	if (err < 0)
354 		return err;
355 
356 	if (hw->enable_mask) {
357 		err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_CONT);
358 		if (err < 0)
359 			return err;
360 
361 		/*
362 		 * store enable buffer timestamp as reference to compute
363 		 * first delta timestamp
364 		 */
365 		sensor->ts = iio_get_time_ns(iio_dev);
366 	}
367 
368 	return 0;
369 }
370 
st_lsm6dsx_handler_irq(int irq,void * private)371 static irqreturn_t st_lsm6dsx_handler_irq(int irq, void *private)
372 {
373 	struct st_lsm6dsx_hw *hw = private;
374 	struct st_lsm6dsx_sensor *sensor;
375 	int i;
376 
377 	if (!hw->sip)
378 		return IRQ_NONE;
379 
380 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
381 		sensor = iio_priv(hw->iio_devs[i]);
382 
383 		if (sensor->sip > 0) {
384 			s64 timestamp;
385 
386 			timestamp = iio_get_time_ns(hw->iio_devs[i]);
387 			sensor->delta_ts = timestamp - sensor->ts;
388 			sensor->ts = timestamp;
389 		}
390 	}
391 
392 	return IRQ_WAKE_THREAD;
393 }
394 
st_lsm6dsx_handler_thread(int irq,void * private)395 static irqreturn_t st_lsm6dsx_handler_thread(int irq, void *private)
396 {
397 	struct st_lsm6dsx_hw *hw = private;
398 	int count;
399 
400 	mutex_lock(&hw->fifo_lock);
401 	count = st_lsm6dsx_read_fifo(hw);
402 	mutex_unlock(&hw->fifo_lock);
403 
404 	return !count ? IRQ_NONE : IRQ_HANDLED;
405 }
406 
st_lsm6dsx_buffer_preenable(struct iio_dev * iio_dev)407 static int st_lsm6dsx_buffer_preenable(struct iio_dev *iio_dev)
408 {
409 	return st_lsm6dsx_update_fifo(iio_dev, true);
410 }
411 
st_lsm6dsx_buffer_postdisable(struct iio_dev * iio_dev)412 static int st_lsm6dsx_buffer_postdisable(struct iio_dev *iio_dev)
413 {
414 	return st_lsm6dsx_update_fifo(iio_dev, false);
415 }
416 
417 static const struct iio_buffer_setup_ops st_lsm6dsx_buffer_ops = {
418 	.preenable = st_lsm6dsx_buffer_preenable,
419 	.postdisable = st_lsm6dsx_buffer_postdisable,
420 };
421 
st_lsm6dsx_fifo_setup(struct st_lsm6dsx_hw * hw)422 int st_lsm6dsx_fifo_setup(struct st_lsm6dsx_hw *hw)
423 {
424 	struct device_node *np = hw->dev->of_node;
425 	struct st_sensors_platform_data *pdata;
426 	struct iio_buffer *buffer;
427 	unsigned long irq_type;
428 	bool irq_active_low;
429 	int i, err;
430 
431 	irq_type = irqd_get_trigger_type(irq_get_irq_data(hw->irq));
432 
433 	switch (irq_type) {
434 	case IRQF_TRIGGER_HIGH:
435 	case IRQF_TRIGGER_RISING:
436 		irq_active_low = false;
437 		break;
438 	case IRQF_TRIGGER_LOW:
439 	case IRQF_TRIGGER_FALLING:
440 		irq_active_low = true;
441 		break;
442 	default:
443 		dev_info(hw->dev, "mode %lx unsupported\n", irq_type);
444 		return -EINVAL;
445 	}
446 
447 	err = st_lsm6dsx_write_with_mask(hw, ST_LSM6DSX_REG_HLACTIVE_ADDR,
448 					 ST_LSM6DSX_REG_HLACTIVE_MASK,
449 					 irq_active_low);
450 	if (err < 0)
451 		return err;
452 
453 	pdata = (struct st_sensors_platform_data *)hw->dev->platform_data;
454 	if ((np && of_property_read_bool(np, "drive-open-drain")) ||
455 	    (pdata && pdata->open_drain)) {
456 		err = st_lsm6dsx_write_with_mask(hw, ST_LSM6DSX_REG_PP_OD_ADDR,
457 						 ST_LSM6DSX_REG_PP_OD_MASK, 1);
458 		if (err < 0)
459 			return err;
460 
461 		irq_type |= IRQF_SHARED;
462 	}
463 
464 	err = devm_request_threaded_irq(hw->dev, hw->irq,
465 					st_lsm6dsx_handler_irq,
466 					st_lsm6dsx_handler_thread,
467 					irq_type | IRQF_ONESHOT,
468 					"lsm6dsx", hw);
469 	if (err) {
470 		dev_err(hw->dev, "failed to request trigger irq %d\n",
471 			hw->irq);
472 		return err;
473 	}
474 
475 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
476 		buffer = devm_iio_kfifo_allocate(hw->dev);
477 		if (!buffer)
478 			return -ENOMEM;
479 
480 		iio_device_attach_buffer(hw->iio_devs[i], buffer);
481 		hw->iio_devs[i]->modes |= INDIO_BUFFER_SOFTWARE;
482 		hw->iio_devs[i]->setup_ops = &st_lsm6dsx_buffer_ops;
483 	}
484 
485 	return 0;
486 }
487