1 /*
2 * Copyright (c) 2014 Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #include <linux/types.h>
34 #include <linux/sched.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/task.h>
37 #include <linux/pid.h>
38 #include <linux/slab.h>
39 #include <linux/export.h>
40 #include <linux/vmalloc.h>
41 #include <linux/hugetlb.h>
42
43 #include <rdma/ib_verbs.h>
44 #include <rdma/ib_umem.h>
45 #include <rdma/ib_umem_odp.h>
46
ib_umem_notifier_start_account(struct ib_umem * item)47 static void ib_umem_notifier_start_account(struct ib_umem *item)
48 {
49 mutex_lock(&item->odp_data->umem_mutex);
50
51 /* Only update private counters for this umem if it has them.
52 * Otherwise skip it. All page faults will be delayed for this umem. */
53 if (item->odp_data->mn_counters_active) {
54 int notifiers_count = item->odp_data->notifiers_count++;
55
56 if (notifiers_count == 0)
57 /* Initialize the completion object for waiting on
58 * notifiers. Since notifier_count is zero, no one
59 * should be waiting right now. */
60 reinit_completion(&item->odp_data->notifier_completion);
61 }
62 mutex_unlock(&item->odp_data->umem_mutex);
63 }
64
ib_umem_notifier_end_account(struct ib_umem * item)65 static void ib_umem_notifier_end_account(struct ib_umem *item)
66 {
67 mutex_lock(&item->odp_data->umem_mutex);
68
69 /* Only update private counters for this umem if it has them.
70 * Otherwise skip it. All page faults will be delayed for this umem. */
71 if (item->odp_data->mn_counters_active) {
72 /*
73 * This sequence increase will notify the QP page fault that
74 * the page that is going to be mapped in the spte could have
75 * been freed.
76 */
77 ++item->odp_data->notifiers_seq;
78 if (--item->odp_data->notifiers_count == 0)
79 complete_all(&item->odp_data->notifier_completion);
80 }
81 mutex_unlock(&item->odp_data->umem_mutex);
82 }
83
84 /* Account for a new mmu notifier in an ib_ucontext. */
ib_ucontext_notifier_start_account(struct ib_ucontext * context)85 static void ib_ucontext_notifier_start_account(struct ib_ucontext *context)
86 {
87 atomic_inc(&context->notifier_count);
88 }
89
90 /* Account for a terminating mmu notifier in an ib_ucontext.
91 *
92 * Must be called with the ib_ucontext->umem_rwsem semaphore unlocked, since
93 * the function takes the semaphore itself. */
ib_ucontext_notifier_end_account(struct ib_ucontext * context)94 static void ib_ucontext_notifier_end_account(struct ib_ucontext *context)
95 {
96 int zero_notifiers = atomic_dec_and_test(&context->notifier_count);
97
98 if (zero_notifiers &&
99 !list_empty(&context->no_private_counters)) {
100 /* No currently running mmu notifiers. Now is the chance to
101 * add private accounting to all previously added umems. */
102 struct ib_umem_odp *odp_data, *next;
103
104 /* Prevent concurrent mmu notifiers from working on the
105 * no_private_counters list. */
106 down_write(&context->umem_rwsem);
107
108 /* Read the notifier_count again, with the umem_rwsem
109 * semaphore taken for write. */
110 if (!atomic_read(&context->notifier_count)) {
111 list_for_each_entry_safe(odp_data, next,
112 &context->no_private_counters,
113 no_private_counters) {
114 mutex_lock(&odp_data->umem_mutex);
115 odp_data->mn_counters_active = true;
116 list_del(&odp_data->no_private_counters);
117 complete_all(&odp_data->notifier_completion);
118 mutex_unlock(&odp_data->umem_mutex);
119 }
120 }
121
122 up_write(&context->umem_rwsem);
123 }
124 }
125
ib_umem_notifier_release_trampoline(struct ib_umem * item,u64 start,u64 end,void * cookie)126 static int ib_umem_notifier_release_trampoline(struct ib_umem *item, u64 start,
127 u64 end, void *cookie) {
128 /*
129 * Increase the number of notifiers running, to
130 * prevent any further fault handling on this MR.
131 */
132 ib_umem_notifier_start_account(item);
133 item->odp_data->dying = 1;
134 /* Make sure that the fact the umem is dying is out before we release
135 * all pending page faults. */
136 smp_wmb();
137 complete_all(&item->odp_data->notifier_completion);
138 item->context->invalidate_range(item, ib_umem_start(item),
139 ib_umem_end(item));
140 return 0;
141 }
142
ib_umem_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)143 static void ib_umem_notifier_release(struct mmu_notifier *mn,
144 struct mm_struct *mm)
145 {
146 struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
147
148 if (!context->invalidate_range)
149 return;
150
151 ib_ucontext_notifier_start_account(context);
152 down_read(&context->umem_rwsem);
153 rbt_ib_umem_for_each_in_range(&context->umem_tree, 0,
154 ULLONG_MAX,
155 ib_umem_notifier_release_trampoline,
156 NULL);
157 up_read(&context->umem_rwsem);
158 }
159
invalidate_page_trampoline(struct ib_umem * item,u64 start,u64 end,void * cookie)160 static int invalidate_page_trampoline(struct ib_umem *item, u64 start,
161 u64 end, void *cookie)
162 {
163 ib_umem_notifier_start_account(item);
164 item->context->invalidate_range(item, start, start + PAGE_SIZE);
165 ib_umem_notifier_end_account(item);
166 return 0;
167 }
168
invalidate_range_start_trampoline(struct ib_umem * item,u64 start,u64 end,void * cookie)169 static int invalidate_range_start_trampoline(struct ib_umem *item, u64 start,
170 u64 end, void *cookie)
171 {
172 ib_umem_notifier_start_account(item);
173 item->context->invalidate_range(item, start, end);
174 return 0;
175 }
176
ib_umem_notifier_invalidate_range_start(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)177 static void ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn,
178 struct mm_struct *mm,
179 unsigned long start,
180 unsigned long end)
181 {
182 struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
183
184 if (!context->invalidate_range)
185 return;
186
187 ib_ucontext_notifier_start_account(context);
188 down_read(&context->umem_rwsem);
189 rbt_ib_umem_for_each_in_range(&context->umem_tree, start,
190 end,
191 invalidate_range_start_trampoline, NULL);
192 up_read(&context->umem_rwsem);
193 }
194
invalidate_range_end_trampoline(struct ib_umem * item,u64 start,u64 end,void * cookie)195 static int invalidate_range_end_trampoline(struct ib_umem *item, u64 start,
196 u64 end, void *cookie)
197 {
198 ib_umem_notifier_end_account(item);
199 return 0;
200 }
201
ib_umem_notifier_invalidate_range_end(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)202 static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn,
203 struct mm_struct *mm,
204 unsigned long start,
205 unsigned long end)
206 {
207 struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
208
209 if (!context->invalidate_range)
210 return;
211
212 down_read(&context->umem_rwsem);
213 rbt_ib_umem_for_each_in_range(&context->umem_tree, start,
214 end,
215 invalidate_range_end_trampoline, NULL);
216 up_read(&context->umem_rwsem);
217 ib_ucontext_notifier_end_account(context);
218 }
219
220 static const struct mmu_notifier_ops ib_umem_notifiers = {
221 .release = ib_umem_notifier_release,
222 .invalidate_range_start = ib_umem_notifier_invalidate_range_start,
223 .invalidate_range_end = ib_umem_notifier_invalidate_range_end,
224 };
225
ib_alloc_odp_umem(struct ib_ucontext * context,unsigned long addr,size_t size)226 struct ib_umem *ib_alloc_odp_umem(struct ib_ucontext *context,
227 unsigned long addr,
228 size_t size)
229 {
230 struct ib_umem *umem;
231 struct ib_umem_odp *odp_data;
232 int pages = size >> PAGE_SHIFT;
233 int ret;
234
235 umem = kzalloc(sizeof(*umem), GFP_KERNEL);
236 if (!umem)
237 return ERR_PTR(-ENOMEM);
238
239 umem->context = context;
240 umem->length = size;
241 umem->address = addr;
242 umem->page_shift = PAGE_SHIFT;
243 umem->writable = 1;
244
245 odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL);
246 if (!odp_data) {
247 ret = -ENOMEM;
248 goto out_umem;
249 }
250 odp_data->umem = umem;
251
252 mutex_init(&odp_data->umem_mutex);
253 init_completion(&odp_data->notifier_completion);
254
255 odp_data->page_list = vzalloc(pages * sizeof(*odp_data->page_list));
256 if (!odp_data->page_list) {
257 ret = -ENOMEM;
258 goto out_odp_data;
259 }
260
261 odp_data->dma_list = vzalloc(pages * sizeof(*odp_data->dma_list));
262 if (!odp_data->dma_list) {
263 ret = -ENOMEM;
264 goto out_page_list;
265 }
266
267 down_write(&context->umem_rwsem);
268 context->odp_mrs_count++;
269 rbt_ib_umem_insert(&odp_data->interval_tree, &context->umem_tree);
270 if (likely(!atomic_read(&context->notifier_count)))
271 odp_data->mn_counters_active = true;
272 else
273 list_add(&odp_data->no_private_counters,
274 &context->no_private_counters);
275 up_write(&context->umem_rwsem);
276
277 umem->odp_data = odp_data;
278
279 return umem;
280
281 out_page_list:
282 vfree(odp_data->page_list);
283 out_odp_data:
284 kfree(odp_data);
285 out_umem:
286 kfree(umem);
287 return ERR_PTR(ret);
288 }
289 EXPORT_SYMBOL(ib_alloc_odp_umem);
290
ib_umem_odp_get(struct ib_ucontext * context,struct ib_umem * umem,int access)291 int ib_umem_odp_get(struct ib_ucontext *context, struct ib_umem *umem,
292 int access)
293 {
294 int ret_val;
295 struct pid *our_pid;
296 struct mm_struct *mm = get_task_mm(current);
297
298 if (!mm)
299 return -EINVAL;
300
301 if (access & IB_ACCESS_HUGETLB) {
302 struct vm_area_struct *vma;
303 struct hstate *h;
304
305 down_read(&mm->mmap_sem);
306 vma = find_vma(mm, ib_umem_start(umem));
307 if (!vma || !is_vm_hugetlb_page(vma)) {
308 up_read(&mm->mmap_sem);
309 return -EINVAL;
310 }
311 h = hstate_vma(vma);
312 umem->page_shift = huge_page_shift(h);
313 up_read(&mm->mmap_sem);
314 umem->hugetlb = 1;
315 } else {
316 umem->hugetlb = 0;
317 }
318
319 /* Prevent creating ODP MRs in child processes */
320 rcu_read_lock();
321 our_pid = get_task_pid(current->group_leader, PIDTYPE_PID);
322 rcu_read_unlock();
323 put_pid(our_pid);
324 if (context->tgid != our_pid) {
325 ret_val = -EINVAL;
326 goto out_mm;
327 }
328
329 umem->odp_data = kzalloc(sizeof(*umem->odp_data), GFP_KERNEL);
330 if (!umem->odp_data) {
331 ret_val = -ENOMEM;
332 goto out_mm;
333 }
334 umem->odp_data->umem = umem;
335
336 mutex_init(&umem->odp_data->umem_mutex);
337
338 init_completion(&umem->odp_data->notifier_completion);
339
340 if (ib_umem_num_pages(umem)) {
341 umem->odp_data->page_list = vzalloc(ib_umem_num_pages(umem) *
342 sizeof(*umem->odp_data->page_list));
343 if (!umem->odp_data->page_list) {
344 ret_val = -ENOMEM;
345 goto out_odp_data;
346 }
347
348 umem->odp_data->dma_list = vzalloc(ib_umem_num_pages(umem) *
349 sizeof(*umem->odp_data->dma_list));
350 if (!umem->odp_data->dma_list) {
351 ret_val = -ENOMEM;
352 goto out_page_list;
353 }
354 }
355
356 /*
357 * When using MMU notifiers, we will get a
358 * notification before the "current" task (and MM) is
359 * destroyed. We use the umem_rwsem semaphore to synchronize.
360 */
361 down_write(&context->umem_rwsem);
362 context->odp_mrs_count++;
363 if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
364 rbt_ib_umem_insert(&umem->odp_data->interval_tree,
365 &context->umem_tree);
366 if (likely(!atomic_read(&context->notifier_count)) ||
367 context->odp_mrs_count == 1)
368 umem->odp_data->mn_counters_active = true;
369 else
370 list_add(&umem->odp_data->no_private_counters,
371 &context->no_private_counters);
372 downgrade_write(&context->umem_rwsem);
373
374 if (context->odp_mrs_count == 1) {
375 /*
376 * Note that at this point, no MMU notifier is running
377 * for this context!
378 */
379 atomic_set(&context->notifier_count, 0);
380 INIT_HLIST_NODE(&context->mn.hlist);
381 context->mn.ops = &ib_umem_notifiers;
382 /*
383 * Lock-dep detects a false positive for mmap_sem vs.
384 * umem_rwsem, due to not grasping downgrade_write correctly.
385 */
386 lockdep_off();
387 ret_val = mmu_notifier_register(&context->mn, mm);
388 lockdep_on();
389 if (ret_val) {
390 pr_err("Failed to register mmu_notifier %d\n", ret_val);
391 ret_val = -EBUSY;
392 goto out_mutex;
393 }
394 }
395
396 up_read(&context->umem_rwsem);
397
398 /*
399 * Note that doing an mmput can cause a notifier for the relevant mm.
400 * If the notifier is called while we hold the umem_rwsem, this will
401 * cause a deadlock. Therefore, we release the reference only after we
402 * released the semaphore.
403 */
404 mmput(mm);
405 return 0;
406
407 out_mutex:
408 up_read(&context->umem_rwsem);
409 vfree(umem->odp_data->dma_list);
410 out_page_list:
411 vfree(umem->odp_data->page_list);
412 out_odp_data:
413 kfree(umem->odp_data);
414 out_mm:
415 mmput(mm);
416 return ret_val;
417 }
418
ib_umem_odp_release(struct ib_umem * umem)419 void ib_umem_odp_release(struct ib_umem *umem)
420 {
421 struct ib_ucontext *context = umem->context;
422
423 /*
424 * Ensure that no more pages are mapped in the umem.
425 *
426 * It is the driver's responsibility to ensure, before calling us,
427 * that the hardware will not attempt to access the MR any more.
428 */
429 ib_umem_odp_unmap_dma_pages(umem, ib_umem_start(umem),
430 ib_umem_end(umem));
431
432 down_write(&context->umem_rwsem);
433 if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
434 rbt_ib_umem_remove(&umem->odp_data->interval_tree,
435 &context->umem_tree);
436 context->odp_mrs_count--;
437 if (!umem->odp_data->mn_counters_active) {
438 list_del(&umem->odp_data->no_private_counters);
439 complete_all(&umem->odp_data->notifier_completion);
440 }
441
442 /*
443 * Downgrade the lock to a read lock. This ensures that the notifiers
444 * (who lock the mutex for reading) will be able to finish, and we
445 * will be able to enventually obtain the mmu notifiers SRCU. Note
446 * that since we are doing it atomically, no other user could register
447 * and unregister while we do the check.
448 */
449 downgrade_write(&context->umem_rwsem);
450 if (!context->odp_mrs_count) {
451 struct task_struct *owning_process = NULL;
452 struct mm_struct *owning_mm = NULL;
453
454 owning_process = get_pid_task(context->tgid,
455 PIDTYPE_PID);
456 if (owning_process == NULL)
457 /*
458 * The process is already dead, notifier were removed
459 * already.
460 */
461 goto out;
462
463 owning_mm = get_task_mm(owning_process);
464 if (owning_mm == NULL)
465 /*
466 * The process' mm is already dead, notifier were
467 * removed already.
468 */
469 goto out_put_task;
470 mmu_notifier_unregister(&context->mn, owning_mm);
471
472 mmput(owning_mm);
473
474 out_put_task:
475 put_task_struct(owning_process);
476 }
477 out:
478 up_read(&context->umem_rwsem);
479
480 vfree(umem->odp_data->dma_list);
481 vfree(umem->odp_data->page_list);
482 kfree(umem->odp_data);
483 kfree(umem);
484 }
485
486 /*
487 * Map for DMA and insert a single page into the on-demand paging page tables.
488 *
489 * @umem: the umem to insert the page to.
490 * @page_index: index in the umem to add the page to.
491 * @page: the page struct to map and add.
492 * @access_mask: access permissions needed for this page.
493 * @current_seq: sequence number for synchronization with invalidations.
494 * the sequence number is taken from
495 * umem->odp_data->notifiers_seq.
496 *
497 * The function returns -EFAULT if the DMA mapping operation fails. It returns
498 * -EAGAIN if a concurrent invalidation prevents us from updating the page.
499 *
500 * The page is released via put_page even if the operation failed. For
501 * on-demand pinning, the page is released whenever it isn't stored in the
502 * umem.
503 */
ib_umem_odp_map_dma_single_page(struct ib_umem * umem,int page_index,struct page * page,u64 access_mask,unsigned long current_seq)504 static int ib_umem_odp_map_dma_single_page(
505 struct ib_umem *umem,
506 int page_index,
507 struct page *page,
508 u64 access_mask,
509 unsigned long current_seq)
510 {
511 struct ib_device *dev = umem->context->device;
512 dma_addr_t dma_addr;
513 int stored_page = 0;
514 int remove_existing_mapping = 0;
515 int ret = 0;
516
517 /*
518 * Note: we avoid writing if seq is different from the initial seq, to
519 * handle case of a racing notifier. This check also allows us to bail
520 * early if we have a notifier running in parallel with us.
521 */
522 if (ib_umem_mmu_notifier_retry(umem, current_seq)) {
523 ret = -EAGAIN;
524 goto out;
525 }
526 if (!(umem->odp_data->dma_list[page_index])) {
527 dma_addr = ib_dma_map_page(dev,
528 page,
529 0, BIT(umem->page_shift),
530 DMA_BIDIRECTIONAL);
531 if (ib_dma_mapping_error(dev, dma_addr)) {
532 ret = -EFAULT;
533 goto out;
534 }
535 umem->odp_data->dma_list[page_index] = dma_addr | access_mask;
536 umem->odp_data->page_list[page_index] = page;
537 umem->npages++;
538 stored_page = 1;
539 } else if (umem->odp_data->page_list[page_index] == page) {
540 umem->odp_data->dma_list[page_index] |= access_mask;
541 } else {
542 pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n",
543 umem->odp_data->page_list[page_index], page);
544 /* Better remove the mapping now, to prevent any further
545 * damage. */
546 remove_existing_mapping = 1;
547 }
548
549 out:
550 /* On Demand Paging - avoid pinning the page */
551 if (umem->context->invalidate_range || !stored_page)
552 put_page(page);
553
554 if (remove_existing_mapping && umem->context->invalidate_range) {
555 invalidate_page_trampoline(
556 umem,
557 ib_umem_start(umem) + (page_index >> umem->page_shift),
558 ib_umem_start(umem) + ((page_index + 1) >>
559 umem->page_shift),
560 NULL);
561 ret = -EAGAIN;
562 }
563
564 return ret;
565 }
566
567 /**
568 * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR.
569 *
570 * Pins the range of pages passed in the argument, and maps them to
571 * DMA addresses. The DMA addresses of the mapped pages is updated in
572 * umem->odp_data->dma_list.
573 *
574 * Returns the number of pages mapped in success, negative error code
575 * for failure.
576 * An -EAGAIN error code is returned when a concurrent mmu notifier prevents
577 * the function from completing its task.
578 * An -ENOENT error code indicates that userspace process is being terminated
579 * and mm was already destroyed.
580 * @umem: the umem to map and pin
581 * @user_virt: the address from which we need to map.
582 * @bcnt: the minimal number of bytes to pin and map. The mapping might be
583 * bigger due to alignment, and may also be smaller in case of an error
584 * pinning or mapping a page. The actual pages mapped is returned in
585 * the return value.
586 * @access_mask: bit mask of the requested access permissions for the given
587 * range.
588 * @current_seq: the MMU notifiers sequance value for synchronization with
589 * invalidations. the sequance number is read from
590 * umem->odp_data->notifiers_seq before calling this function
591 */
ib_umem_odp_map_dma_pages(struct ib_umem * umem,u64 user_virt,u64 bcnt,u64 access_mask,unsigned long current_seq)592 int ib_umem_odp_map_dma_pages(struct ib_umem *umem, u64 user_virt, u64 bcnt,
593 u64 access_mask, unsigned long current_seq)
594 {
595 struct task_struct *owning_process = NULL;
596 struct mm_struct *owning_mm = NULL;
597 struct page **local_page_list = NULL;
598 u64 page_mask, off;
599 int j, k, ret = 0, start_idx, npages = 0, page_shift;
600 unsigned int flags = 0;
601 phys_addr_t p = 0;
602
603 if (access_mask == 0)
604 return -EINVAL;
605
606 if (user_virt < ib_umem_start(umem) ||
607 user_virt + bcnt > ib_umem_end(umem))
608 return -EFAULT;
609
610 local_page_list = (struct page **)__get_free_page(GFP_KERNEL);
611 if (!local_page_list)
612 return -ENOMEM;
613
614 page_shift = umem->page_shift;
615 page_mask = ~(BIT(page_shift) - 1);
616 off = user_virt & (~page_mask);
617 user_virt = user_virt & page_mask;
618 bcnt += off; /* Charge for the first page offset as well. */
619
620 owning_process = get_pid_task(umem->context->tgid, PIDTYPE_PID);
621 if (owning_process == NULL) {
622 ret = -EINVAL;
623 goto out_no_task;
624 }
625
626 owning_mm = get_task_mm(owning_process);
627 if (owning_mm == NULL) {
628 ret = -ENOENT;
629 goto out_put_task;
630 }
631
632 if (access_mask & ODP_WRITE_ALLOWED_BIT)
633 flags |= FOLL_WRITE;
634
635 start_idx = (user_virt - ib_umem_start(umem)) >> page_shift;
636 k = start_idx;
637
638 while (bcnt > 0) {
639 const size_t gup_num_pages = min_t(size_t,
640 ALIGN(bcnt, PAGE_SIZE) / PAGE_SIZE,
641 PAGE_SIZE / sizeof(struct page *));
642
643 down_read(&owning_mm->mmap_sem);
644 /*
645 * Note: this might result in redundent page getting. We can
646 * avoid this by checking dma_list to be 0 before calling
647 * get_user_pages. However, this make the code much more
648 * complex (and doesn't gain us much performance in most use
649 * cases).
650 */
651 npages = get_user_pages_remote(owning_process, owning_mm,
652 user_virt, gup_num_pages,
653 flags, local_page_list, NULL, NULL);
654 up_read(&owning_mm->mmap_sem);
655
656 if (npages < 0)
657 break;
658
659 bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt);
660 mutex_lock(&umem->odp_data->umem_mutex);
661 for (j = 0; j < npages; j++, user_virt += PAGE_SIZE) {
662 if (user_virt & ~page_mask) {
663 p += PAGE_SIZE;
664 if (page_to_phys(local_page_list[j]) != p) {
665 ret = -EFAULT;
666 break;
667 }
668 put_page(local_page_list[j]);
669 continue;
670 }
671
672 ret = ib_umem_odp_map_dma_single_page(
673 umem, k, local_page_list[j],
674 access_mask, current_seq);
675 if (ret < 0)
676 break;
677
678 p = page_to_phys(local_page_list[j]);
679 k++;
680 }
681 mutex_unlock(&umem->odp_data->umem_mutex);
682
683 if (ret < 0) {
684 /* Release left over pages when handling errors. */
685 for (++j; j < npages; ++j)
686 put_page(local_page_list[j]);
687 break;
688 }
689 }
690
691 if (ret >= 0) {
692 if (npages < 0 && k == start_idx)
693 ret = npages;
694 else
695 ret = k - start_idx;
696 }
697
698 mmput(owning_mm);
699 out_put_task:
700 put_task_struct(owning_process);
701 out_no_task:
702 free_page((unsigned long)local_page_list);
703 return ret;
704 }
705 EXPORT_SYMBOL(ib_umem_odp_map_dma_pages);
706
ib_umem_odp_unmap_dma_pages(struct ib_umem * umem,u64 virt,u64 bound)707 void ib_umem_odp_unmap_dma_pages(struct ib_umem *umem, u64 virt,
708 u64 bound)
709 {
710 int idx;
711 u64 addr;
712 struct ib_device *dev = umem->context->device;
713
714 virt = max_t(u64, virt, ib_umem_start(umem));
715 bound = min_t(u64, bound, ib_umem_end(umem));
716 /* Note that during the run of this function, the
717 * notifiers_count of the MR is > 0, preventing any racing
718 * faults from completion. We might be racing with other
719 * invalidations, so we must make sure we free each page only
720 * once. */
721 mutex_lock(&umem->odp_data->umem_mutex);
722 for (addr = virt; addr < bound; addr += BIT(umem->page_shift)) {
723 idx = (addr - ib_umem_start(umem)) >> umem->page_shift;
724 if (umem->odp_data->page_list[idx]) {
725 struct page *page = umem->odp_data->page_list[idx];
726 dma_addr_t dma = umem->odp_data->dma_list[idx];
727 dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK;
728
729 WARN_ON(!dma_addr);
730
731 ib_dma_unmap_page(dev, dma_addr, PAGE_SIZE,
732 DMA_BIDIRECTIONAL);
733 if (dma & ODP_WRITE_ALLOWED_BIT) {
734 struct page *head_page = compound_head(page);
735 /*
736 * set_page_dirty prefers being called with
737 * the page lock. However, MMU notifiers are
738 * called sometimes with and sometimes without
739 * the lock. We rely on the umem_mutex instead
740 * to prevent other mmu notifiers from
741 * continuing and allowing the page mapping to
742 * be removed.
743 */
744 set_page_dirty(head_page);
745 }
746 /* on demand pinning support */
747 if (!umem->context->invalidate_range)
748 put_page(page);
749 umem->odp_data->page_list[idx] = NULL;
750 umem->odp_data->dma_list[idx] = 0;
751 umem->npages--;
752 }
753 }
754 mutex_unlock(&umem->odp_data->umem_mutex);
755 }
756 EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages);
757