1 /*
2 * Copyright(c) 2015-2017 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47 #include <asm/page.h>
48 #include <linux/string.h>
49
50 #include "mmu_rb.h"
51 #include "user_exp_rcv.h"
52 #include "trace.h"
53
54 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
55 struct exp_tid_set *set,
56 struct hfi1_filedata *fd);
57 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages);
58 static int set_rcvarray_entry(struct hfi1_filedata *fd,
59 struct tid_user_buf *tbuf,
60 u32 rcventry, struct tid_group *grp,
61 u16 pageidx, unsigned int npages);
62 static int tid_rb_insert(void *arg, struct mmu_rb_node *node);
63 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
64 struct tid_rb_node *tnode);
65 static void tid_rb_remove(void *arg, struct mmu_rb_node *node);
66 static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode);
67 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *,
68 struct tid_group *grp,
69 unsigned int start, u16 count,
70 u32 *tidlist, unsigned int *tididx,
71 unsigned int *pmapped);
72 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
73 struct tid_group **grp);
74 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node);
75
76 static struct mmu_rb_ops tid_rb_ops = {
77 .insert = tid_rb_insert,
78 .remove = tid_rb_remove,
79 .invalidate = tid_rb_invalidate
80 };
81
82 /*
83 * Initialize context and file private data needed for Expected
84 * receive caching. This needs to be done after the context has
85 * been configured with the eager/expected RcvEntry counts.
86 */
hfi1_user_exp_rcv_init(struct hfi1_filedata * fd,struct hfi1_ctxtdata * uctxt)87 int hfi1_user_exp_rcv_init(struct hfi1_filedata *fd,
88 struct hfi1_ctxtdata *uctxt)
89 {
90 struct hfi1_devdata *dd = uctxt->dd;
91 int ret = 0;
92
93 fd->entry_to_rb = kcalloc(uctxt->expected_count,
94 sizeof(struct rb_node *),
95 GFP_KERNEL);
96 if (!fd->entry_to_rb)
97 return -ENOMEM;
98
99 if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) {
100 fd->invalid_tid_idx = 0;
101 fd->invalid_tids = kcalloc(uctxt->expected_count,
102 sizeof(*fd->invalid_tids),
103 GFP_KERNEL);
104 if (!fd->invalid_tids) {
105 kfree(fd->entry_to_rb);
106 fd->entry_to_rb = NULL;
107 return -ENOMEM;
108 }
109
110 /*
111 * Register MMU notifier callbacks. If the registration
112 * fails, continue without TID caching for this context.
113 */
114 ret = hfi1_mmu_rb_register(fd, fd->mm, &tid_rb_ops,
115 dd->pport->hfi1_wq,
116 &fd->handler);
117 if (ret) {
118 dd_dev_info(dd,
119 "Failed MMU notifier registration %d\n",
120 ret);
121 ret = 0;
122 }
123 }
124
125 /*
126 * PSM does not have a good way to separate, count, and
127 * effectively enforce a limit on RcvArray entries used by
128 * subctxts (when context sharing is used) when TID caching
129 * is enabled. To help with that, we calculate a per-process
130 * RcvArray entry share and enforce that.
131 * If TID caching is not in use, PSM deals with usage on its
132 * own. In that case, we allow any subctxt to take all of the
133 * entries.
134 *
135 * Make sure that we set the tid counts only after successful
136 * init.
137 */
138 spin_lock(&fd->tid_lock);
139 if (uctxt->subctxt_cnt && fd->handler) {
140 u16 remainder;
141
142 fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
143 remainder = uctxt->expected_count % uctxt->subctxt_cnt;
144 if (remainder && fd->subctxt < remainder)
145 fd->tid_limit++;
146 } else {
147 fd->tid_limit = uctxt->expected_count;
148 }
149 spin_unlock(&fd->tid_lock);
150
151 return ret;
152 }
153
hfi1_user_exp_rcv_free(struct hfi1_filedata * fd)154 void hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
155 {
156 struct hfi1_ctxtdata *uctxt = fd->uctxt;
157
158 /*
159 * The notifier would have been removed when the process'es mm
160 * was freed.
161 */
162 if (fd->handler) {
163 hfi1_mmu_rb_unregister(fd->handler);
164 } else {
165 if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
166 unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd);
167 if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
168 unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd);
169 }
170
171 kfree(fd->invalid_tids);
172 fd->invalid_tids = NULL;
173
174 kfree(fd->entry_to_rb);
175 fd->entry_to_rb = NULL;
176 }
177
178 /**
179 * Release pinned receive buffer pages.
180 *
181 * @mapped - true if the pages have been DMA mapped. false otherwise.
182 * @idx - Index of the first page to unpin.
183 * @npages - No of pages to unpin.
184 *
185 * If the pages have been DMA mapped (indicated by mapped parameter), their
186 * info will be passed via a struct tid_rb_node. If they haven't been mapped,
187 * their info will be passed via a struct tid_user_buf.
188 */
unpin_rcv_pages(struct hfi1_filedata * fd,struct tid_user_buf * tidbuf,struct tid_rb_node * node,unsigned int idx,unsigned int npages,bool mapped)189 static void unpin_rcv_pages(struct hfi1_filedata *fd,
190 struct tid_user_buf *tidbuf,
191 struct tid_rb_node *node,
192 unsigned int idx,
193 unsigned int npages,
194 bool mapped)
195 {
196 struct page **pages;
197 struct hfi1_devdata *dd = fd->uctxt->dd;
198
199 if (mapped) {
200 pci_unmap_single(dd->pcidev, node->dma_addr,
201 node->mmu.len, PCI_DMA_FROMDEVICE);
202 pages = &node->pages[idx];
203 } else {
204 pages = &tidbuf->pages[idx];
205 }
206 hfi1_release_user_pages(fd->mm, pages, npages, mapped);
207 fd->tid_n_pinned -= npages;
208 }
209
210 /**
211 * Pin receive buffer pages.
212 */
pin_rcv_pages(struct hfi1_filedata * fd,struct tid_user_buf * tidbuf)213 static int pin_rcv_pages(struct hfi1_filedata *fd, struct tid_user_buf *tidbuf)
214 {
215 int pinned;
216 unsigned int npages;
217 unsigned long vaddr = tidbuf->vaddr;
218 struct page **pages = NULL;
219 struct hfi1_devdata *dd = fd->uctxt->dd;
220
221 /* Get the number of pages the user buffer spans */
222 npages = num_user_pages(vaddr, tidbuf->length);
223 if (!npages)
224 return -EINVAL;
225
226 if (npages > fd->uctxt->expected_count) {
227 dd_dev_err(dd, "Expected buffer too big\n");
228 return -EINVAL;
229 }
230
231 /* Verify that access is OK for the user buffer */
232 if (!access_ok(VERIFY_WRITE, (void __user *)vaddr,
233 npages * PAGE_SIZE)) {
234 dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n",
235 (void *)vaddr, npages);
236 return -EFAULT;
237 }
238 /* Allocate the array of struct page pointers needed for pinning */
239 pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
240 if (!pages)
241 return -ENOMEM;
242
243 /*
244 * Pin all the pages of the user buffer. If we can't pin all the
245 * pages, accept the amount pinned so far and program only that.
246 * User space knows how to deal with partially programmed buffers.
247 */
248 if (!hfi1_can_pin_pages(dd, fd->mm, fd->tid_n_pinned, npages)) {
249 kfree(pages);
250 return -ENOMEM;
251 }
252
253 pinned = hfi1_acquire_user_pages(fd->mm, vaddr, npages, true, pages);
254 if (pinned <= 0) {
255 kfree(pages);
256 return pinned;
257 }
258 tidbuf->pages = pages;
259 tidbuf->npages = npages;
260 fd->tid_n_pinned += pinned;
261 return pinned;
262 }
263
264 /*
265 * RcvArray entry allocation for Expected Receives is done by the
266 * following algorithm:
267 *
268 * The context keeps 3 lists of groups of RcvArray entries:
269 * 1. List of empty groups - tid_group_list
270 * This list is created during user context creation and
271 * contains elements which describe sets (of 8) of empty
272 * RcvArray entries.
273 * 2. List of partially used groups - tid_used_list
274 * This list contains sets of RcvArray entries which are
275 * not completely used up. Another mapping request could
276 * use some of all of the remaining entries.
277 * 3. List of full groups - tid_full_list
278 * This is the list where sets that are completely used
279 * up go.
280 *
281 * An attempt to optimize the usage of RcvArray entries is
282 * made by finding all sets of physically contiguous pages in a
283 * user's buffer.
284 * These physically contiguous sets are further split into
285 * sizes supported by the receive engine of the HFI. The
286 * resulting sets of pages are stored in struct tid_pageset,
287 * which describes the sets as:
288 * * .count - number of pages in this set
289 * * .idx - starting index into struct page ** array
290 * of this set
291 *
292 * From this point on, the algorithm deals with the page sets
293 * described above. The number of pagesets is divided by the
294 * RcvArray group size to produce the number of full groups
295 * needed.
296 *
297 * Groups from the 3 lists are manipulated using the following
298 * rules:
299 * 1. For each set of 8 pagesets, a complete group from
300 * tid_group_list is taken, programmed, and moved to
301 * the tid_full_list list.
302 * 2. For all remaining pagesets:
303 * 2.1 If the tid_used_list is empty and the tid_group_list
304 * is empty, stop processing pageset and return only
305 * what has been programmed up to this point.
306 * 2.2 If the tid_used_list is empty and the tid_group_list
307 * is not empty, move a group from tid_group_list to
308 * tid_used_list.
309 * 2.3 For each group is tid_used_group, program as much as
310 * can fit into the group. If the group becomes fully
311 * used, move it to tid_full_list.
312 */
hfi1_user_exp_rcv_setup(struct hfi1_filedata * fd,struct hfi1_tid_info * tinfo)313 int hfi1_user_exp_rcv_setup(struct hfi1_filedata *fd,
314 struct hfi1_tid_info *tinfo)
315 {
316 int ret = 0, need_group = 0, pinned;
317 struct hfi1_ctxtdata *uctxt = fd->uctxt;
318 struct hfi1_devdata *dd = uctxt->dd;
319 unsigned int ngroups, pageidx = 0, pageset_count,
320 tididx = 0, mapped, mapped_pages = 0;
321 u32 *tidlist = NULL;
322 struct tid_user_buf *tidbuf;
323
324 if (!PAGE_ALIGNED(tinfo->vaddr))
325 return -EINVAL;
326
327 tidbuf = kzalloc(sizeof(*tidbuf), GFP_KERNEL);
328 if (!tidbuf)
329 return -ENOMEM;
330
331 tidbuf->vaddr = tinfo->vaddr;
332 tidbuf->length = tinfo->length;
333 tidbuf->psets = kcalloc(uctxt->expected_count, sizeof(*tidbuf->psets),
334 GFP_KERNEL);
335 if (!tidbuf->psets) {
336 kfree(tidbuf);
337 return -ENOMEM;
338 }
339
340 pinned = pin_rcv_pages(fd, tidbuf);
341 if (pinned <= 0) {
342 kfree(tidbuf->psets);
343 kfree(tidbuf);
344 return pinned;
345 }
346
347 /* Find sets of physically contiguous pages */
348 tidbuf->n_psets = find_phys_blocks(tidbuf, pinned);
349
350 /*
351 * We don't need to access this under a lock since tid_used is per
352 * process and the same process cannot be in hfi1_user_exp_rcv_clear()
353 * and hfi1_user_exp_rcv_setup() at the same time.
354 */
355 spin_lock(&fd->tid_lock);
356 if (fd->tid_used + tidbuf->n_psets > fd->tid_limit)
357 pageset_count = fd->tid_limit - fd->tid_used;
358 else
359 pageset_count = tidbuf->n_psets;
360 spin_unlock(&fd->tid_lock);
361
362 if (!pageset_count)
363 goto bail;
364
365 ngroups = pageset_count / dd->rcv_entries.group_size;
366 tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL);
367 if (!tidlist) {
368 ret = -ENOMEM;
369 goto nomem;
370 }
371
372 tididx = 0;
373
374 /*
375 * From this point on, we are going to be using shared (between master
376 * and subcontexts) context resources. We need to take the lock.
377 */
378 mutex_lock(&uctxt->exp_lock);
379 /*
380 * The first step is to program the RcvArray entries which are complete
381 * groups.
382 */
383 while (ngroups && uctxt->tid_group_list.count) {
384 struct tid_group *grp =
385 tid_group_pop(&uctxt->tid_group_list);
386
387 ret = program_rcvarray(fd, tidbuf, grp,
388 pageidx, dd->rcv_entries.group_size,
389 tidlist, &tididx, &mapped);
390 /*
391 * If there was a failure to program the RcvArray
392 * entries for the entire group, reset the grp fields
393 * and add the grp back to the free group list.
394 */
395 if (ret <= 0) {
396 tid_group_add_tail(grp, &uctxt->tid_group_list);
397 hfi1_cdbg(TID,
398 "Failed to program RcvArray group %d", ret);
399 goto unlock;
400 }
401
402 tid_group_add_tail(grp, &uctxt->tid_full_list);
403 ngroups--;
404 pageidx += ret;
405 mapped_pages += mapped;
406 }
407
408 while (pageidx < pageset_count) {
409 struct tid_group *grp, *ptr;
410 /*
411 * If we don't have any partially used tid groups, check
412 * if we have empty groups. If so, take one from there and
413 * put in the partially used list.
414 */
415 if (!uctxt->tid_used_list.count || need_group) {
416 if (!uctxt->tid_group_list.count)
417 goto unlock;
418
419 grp = tid_group_pop(&uctxt->tid_group_list);
420 tid_group_add_tail(grp, &uctxt->tid_used_list);
421 need_group = 0;
422 }
423 /*
424 * There is an optimization opportunity here - instead of
425 * fitting as many page sets as we can, check for a group
426 * later on in the list that could fit all of them.
427 */
428 list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list,
429 list) {
430 unsigned use = min_t(unsigned, pageset_count - pageidx,
431 grp->size - grp->used);
432
433 ret = program_rcvarray(fd, tidbuf, grp,
434 pageidx, use, tidlist,
435 &tididx, &mapped);
436 if (ret < 0) {
437 hfi1_cdbg(TID,
438 "Failed to program RcvArray entries %d",
439 ret);
440 ret = -EFAULT;
441 goto unlock;
442 } else if (ret > 0) {
443 if (grp->used == grp->size)
444 tid_group_move(grp,
445 &uctxt->tid_used_list,
446 &uctxt->tid_full_list);
447 pageidx += ret;
448 mapped_pages += mapped;
449 need_group = 0;
450 /* Check if we are done so we break out early */
451 if (pageidx >= pageset_count)
452 break;
453 } else if (WARN_ON(ret == 0)) {
454 /*
455 * If ret is 0, we did not program any entries
456 * into this group, which can only happen if
457 * we've screwed up the accounting somewhere.
458 * Warn and try to continue.
459 */
460 need_group = 1;
461 }
462 }
463 }
464 unlock:
465 mutex_unlock(&uctxt->exp_lock);
466 nomem:
467 hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx,
468 mapped_pages, ret);
469 if (tididx) {
470 spin_lock(&fd->tid_lock);
471 fd->tid_used += tididx;
472 spin_unlock(&fd->tid_lock);
473 tinfo->tidcnt = tididx;
474 tinfo->length = mapped_pages * PAGE_SIZE;
475
476 if (copy_to_user((void __user *)(unsigned long)tinfo->tidlist,
477 tidlist, sizeof(tidlist[0]) * tididx)) {
478 /*
479 * On failure to copy to the user level, we need to undo
480 * everything done so far so we don't leak resources.
481 */
482 tinfo->tidlist = (unsigned long)&tidlist;
483 hfi1_user_exp_rcv_clear(fd, tinfo);
484 tinfo->tidlist = 0;
485 ret = -EFAULT;
486 goto bail;
487 }
488 }
489
490 /*
491 * If not everything was mapped (due to insufficient RcvArray entries,
492 * for example), unpin all unmapped pages so we can pin them nex time.
493 */
494 if (mapped_pages != pinned)
495 unpin_rcv_pages(fd, tidbuf, NULL, mapped_pages,
496 (pinned - mapped_pages), false);
497 bail:
498 kfree(tidbuf->psets);
499 kfree(tidlist);
500 kfree(tidbuf->pages);
501 kfree(tidbuf);
502 return ret > 0 ? 0 : ret;
503 }
504
hfi1_user_exp_rcv_clear(struct hfi1_filedata * fd,struct hfi1_tid_info * tinfo)505 int hfi1_user_exp_rcv_clear(struct hfi1_filedata *fd,
506 struct hfi1_tid_info *tinfo)
507 {
508 int ret = 0;
509 struct hfi1_ctxtdata *uctxt = fd->uctxt;
510 u32 *tidinfo;
511 unsigned tididx;
512
513 if (unlikely(tinfo->tidcnt > fd->tid_used))
514 return -EINVAL;
515
516 tidinfo = memdup_user((void __user *)(unsigned long)tinfo->tidlist,
517 sizeof(tidinfo[0]) * tinfo->tidcnt);
518 if (IS_ERR(tidinfo))
519 return PTR_ERR(tidinfo);
520
521 mutex_lock(&uctxt->exp_lock);
522 for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
523 ret = unprogram_rcvarray(fd, tidinfo[tididx], NULL);
524 if (ret) {
525 hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
526 ret);
527 break;
528 }
529 }
530 spin_lock(&fd->tid_lock);
531 fd->tid_used -= tididx;
532 spin_unlock(&fd->tid_lock);
533 tinfo->tidcnt = tididx;
534 mutex_unlock(&uctxt->exp_lock);
535
536 kfree(tidinfo);
537 return ret;
538 }
539
hfi1_user_exp_rcv_invalid(struct hfi1_filedata * fd,struct hfi1_tid_info * tinfo)540 int hfi1_user_exp_rcv_invalid(struct hfi1_filedata *fd,
541 struct hfi1_tid_info *tinfo)
542 {
543 struct hfi1_ctxtdata *uctxt = fd->uctxt;
544 unsigned long *ev = uctxt->dd->events +
545 (((uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) *
546 HFI1_MAX_SHARED_CTXTS) + fd->subctxt);
547 u32 *array;
548 int ret = 0;
549
550 if (!fd->invalid_tids)
551 return -EINVAL;
552
553 /*
554 * copy_to_user() can sleep, which will leave the invalid_lock
555 * locked and cause the MMU notifier to be blocked on the lock
556 * for a long time.
557 * Copy the data to a local buffer so we can release the lock.
558 */
559 array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL);
560 if (!array)
561 return -EFAULT;
562
563 spin_lock(&fd->invalid_lock);
564 if (fd->invalid_tid_idx) {
565 memcpy(array, fd->invalid_tids, sizeof(*array) *
566 fd->invalid_tid_idx);
567 memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
568 fd->invalid_tid_idx);
569 tinfo->tidcnt = fd->invalid_tid_idx;
570 fd->invalid_tid_idx = 0;
571 /*
572 * Reset the user flag while still holding the lock.
573 * Otherwise, PSM can miss events.
574 */
575 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
576 } else {
577 tinfo->tidcnt = 0;
578 }
579 spin_unlock(&fd->invalid_lock);
580
581 if (tinfo->tidcnt) {
582 if (copy_to_user((void __user *)tinfo->tidlist,
583 array, sizeof(*array) * tinfo->tidcnt))
584 ret = -EFAULT;
585 }
586 kfree(array);
587
588 return ret;
589 }
590
find_phys_blocks(struct tid_user_buf * tidbuf,unsigned int npages)591 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages)
592 {
593 unsigned pagecount, pageidx, setcount = 0, i;
594 unsigned long pfn, this_pfn;
595 struct page **pages = tidbuf->pages;
596 struct tid_pageset *list = tidbuf->psets;
597
598 if (!npages)
599 return 0;
600
601 /*
602 * Look for sets of physically contiguous pages in the user buffer.
603 * This will allow us to optimize Expected RcvArray entry usage by
604 * using the bigger supported sizes.
605 */
606 pfn = page_to_pfn(pages[0]);
607 for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
608 this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
609
610 /*
611 * If the pfn's are not sequential, pages are not physically
612 * contiguous.
613 */
614 if (this_pfn != ++pfn) {
615 /*
616 * At this point we have to loop over the set of
617 * physically contiguous pages and break them down it
618 * sizes supported by the HW.
619 * There are two main constraints:
620 * 1. The max buffer size is MAX_EXPECTED_BUFFER.
621 * If the total set size is bigger than that
622 * program only a MAX_EXPECTED_BUFFER chunk.
623 * 2. The buffer size has to be a power of two. If
624 * it is not, round down to the closes power of
625 * 2 and program that size.
626 */
627 while (pagecount) {
628 int maxpages = pagecount;
629 u32 bufsize = pagecount * PAGE_SIZE;
630
631 if (bufsize > MAX_EXPECTED_BUFFER)
632 maxpages =
633 MAX_EXPECTED_BUFFER >>
634 PAGE_SHIFT;
635 else if (!is_power_of_2(bufsize))
636 maxpages =
637 rounddown_pow_of_two(bufsize) >>
638 PAGE_SHIFT;
639
640 list[setcount].idx = pageidx;
641 list[setcount].count = maxpages;
642 pagecount -= maxpages;
643 pageidx += maxpages;
644 setcount++;
645 }
646 pageidx = i;
647 pagecount = 1;
648 pfn = this_pfn;
649 } else {
650 pagecount++;
651 }
652 }
653 return setcount;
654 }
655
656 /**
657 * program_rcvarray() - program an RcvArray group with receive buffers
658 * @fd: filedata pointer
659 * @tbuf: pointer to struct tid_user_buf that has the user buffer starting
660 * virtual address, buffer length, page pointers, pagesets (array of
661 * struct tid_pageset holding information on physically contiguous
662 * chunks from the user buffer), and other fields.
663 * @grp: RcvArray group
664 * @start: starting index into sets array
665 * @count: number of struct tid_pageset's to program
666 * @tidlist: the array of u32 elements when the information about the
667 * programmed RcvArray entries is to be encoded.
668 * @tididx: starting offset into tidlist
669 * @pmapped: (output parameter) number of pages programmed into the RcvArray
670 * entries.
671 *
672 * This function will program up to 'count' number of RcvArray entries from the
673 * group 'grp'. To make best use of write-combining writes, the function will
674 * perform writes to the unused RcvArray entries which will be ignored by the
675 * HW. Each RcvArray entry will be programmed with a physically contiguous
676 * buffer chunk from the user's virtual buffer.
677 *
678 * Return:
679 * -EINVAL if the requested count is larger than the size of the group,
680 * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
681 * number of RcvArray entries programmed.
682 */
program_rcvarray(struct hfi1_filedata * fd,struct tid_user_buf * tbuf,struct tid_group * grp,unsigned int start,u16 count,u32 * tidlist,unsigned int * tididx,unsigned int * pmapped)683 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *tbuf,
684 struct tid_group *grp,
685 unsigned int start, u16 count,
686 u32 *tidlist, unsigned int *tididx,
687 unsigned int *pmapped)
688 {
689 struct hfi1_ctxtdata *uctxt = fd->uctxt;
690 struct hfi1_devdata *dd = uctxt->dd;
691 u16 idx;
692 u32 tidinfo = 0, rcventry, useidx = 0;
693 int mapped = 0;
694
695 /* Count should never be larger than the group size */
696 if (count > grp->size)
697 return -EINVAL;
698
699 /* Find the first unused entry in the group */
700 for (idx = 0; idx < grp->size; idx++) {
701 if (!(grp->map & (1 << idx))) {
702 useidx = idx;
703 break;
704 }
705 rcv_array_wc_fill(dd, grp->base + idx);
706 }
707
708 idx = 0;
709 while (idx < count) {
710 u16 npages, pageidx, setidx = start + idx;
711 int ret = 0;
712
713 /*
714 * If this entry in the group is used, move to the next one.
715 * If we go past the end of the group, exit the loop.
716 */
717 if (useidx >= grp->size) {
718 break;
719 } else if (grp->map & (1 << useidx)) {
720 rcv_array_wc_fill(dd, grp->base + useidx);
721 useidx++;
722 continue;
723 }
724
725 rcventry = grp->base + useidx;
726 npages = tbuf->psets[setidx].count;
727 pageidx = tbuf->psets[setidx].idx;
728
729 ret = set_rcvarray_entry(fd, tbuf,
730 rcventry, grp, pageidx,
731 npages);
732 if (ret)
733 return ret;
734 mapped += npages;
735
736 tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
737 EXP_TID_SET(LEN, npages);
738 tidlist[(*tididx)++] = tidinfo;
739 grp->used++;
740 grp->map |= 1 << useidx++;
741 idx++;
742 }
743
744 /* Fill the rest of the group with "blank" writes */
745 for (; useidx < grp->size; useidx++)
746 rcv_array_wc_fill(dd, grp->base + useidx);
747 *pmapped = mapped;
748 return idx;
749 }
750
set_rcvarray_entry(struct hfi1_filedata * fd,struct tid_user_buf * tbuf,u32 rcventry,struct tid_group * grp,u16 pageidx,unsigned int npages)751 static int set_rcvarray_entry(struct hfi1_filedata *fd,
752 struct tid_user_buf *tbuf,
753 u32 rcventry, struct tid_group *grp,
754 u16 pageidx, unsigned int npages)
755 {
756 int ret;
757 struct hfi1_ctxtdata *uctxt = fd->uctxt;
758 struct tid_rb_node *node;
759 struct hfi1_devdata *dd = uctxt->dd;
760 dma_addr_t phys;
761 struct page **pages = tbuf->pages + pageidx;
762
763 /*
764 * Allocate the node first so we can handle a potential
765 * failure before we've programmed anything.
766 */
767 node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
768 GFP_KERNEL);
769 if (!node)
770 return -ENOMEM;
771
772 phys = pci_map_single(dd->pcidev,
773 __va(page_to_phys(pages[0])),
774 npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
775 if (dma_mapping_error(&dd->pcidev->dev, phys)) {
776 dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
777 phys);
778 kfree(node);
779 return -EFAULT;
780 }
781
782 node->mmu.addr = tbuf->vaddr + (pageidx * PAGE_SIZE);
783 node->mmu.len = npages * PAGE_SIZE;
784 node->phys = page_to_phys(pages[0]);
785 node->npages = npages;
786 node->rcventry = rcventry;
787 node->dma_addr = phys;
788 node->grp = grp;
789 node->freed = false;
790 memcpy(node->pages, pages, sizeof(struct page *) * npages);
791
792 if (!fd->handler)
793 ret = tid_rb_insert(fd, &node->mmu);
794 else
795 ret = hfi1_mmu_rb_insert(fd->handler, &node->mmu);
796
797 if (ret) {
798 hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
799 node->rcventry, node->mmu.addr, node->phys, ret);
800 pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
801 PCI_DMA_FROMDEVICE);
802 kfree(node);
803 return -EFAULT;
804 }
805 hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
806 trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
807 node->mmu.addr, node->phys, phys);
808 return 0;
809 }
810
unprogram_rcvarray(struct hfi1_filedata * fd,u32 tidinfo,struct tid_group ** grp)811 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
812 struct tid_group **grp)
813 {
814 struct hfi1_ctxtdata *uctxt = fd->uctxt;
815 struct hfi1_devdata *dd = uctxt->dd;
816 struct tid_rb_node *node;
817 u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
818 u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
819
820 if (tididx >= uctxt->expected_count) {
821 dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
822 tididx, uctxt->ctxt);
823 return -EINVAL;
824 }
825
826 if (tidctrl == 0x3)
827 return -EINVAL;
828
829 rcventry = tididx + (tidctrl - 1);
830
831 node = fd->entry_to_rb[rcventry];
832 if (!node || node->rcventry != (uctxt->expected_base + rcventry))
833 return -EBADF;
834
835 if (grp)
836 *grp = node->grp;
837
838 if (!fd->handler)
839 cacheless_tid_rb_remove(fd, node);
840 else
841 hfi1_mmu_rb_remove(fd->handler, &node->mmu);
842
843 return 0;
844 }
845
clear_tid_node(struct hfi1_filedata * fd,struct tid_rb_node * node)846 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node)
847 {
848 struct hfi1_ctxtdata *uctxt = fd->uctxt;
849 struct hfi1_devdata *dd = uctxt->dd;
850
851 trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
852 node->npages, node->mmu.addr, node->phys,
853 node->dma_addr);
854
855 /*
856 * Make sure device has seen the write before we unpin the
857 * pages.
858 */
859 hfi1_put_tid(dd, node->rcventry, PT_INVALID_FLUSH, 0, 0);
860
861 unpin_rcv_pages(fd, NULL, node, 0, node->npages, true);
862
863 node->grp->used--;
864 node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
865
866 if (node->grp->used == node->grp->size - 1)
867 tid_group_move(node->grp, &uctxt->tid_full_list,
868 &uctxt->tid_used_list);
869 else if (!node->grp->used)
870 tid_group_move(node->grp, &uctxt->tid_used_list,
871 &uctxt->tid_group_list);
872 kfree(node);
873 }
874
875 /*
876 * As a simple helper for hfi1_user_exp_rcv_free, this function deals with
877 * clearing nodes in the non-cached case.
878 */
unlock_exp_tids(struct hfi1_ctxtdata * uctxt,struct exp_tid_set * set,struct hfi1_filedata * fd)879 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
880 struct exp_tid_set *set,
881 struct hfi1_filedata *fd)
882 {
883 struct tid_group *grp, *ptr;
884 int i;
885
886 list_for_each_entry_safe(grp, ptr, &set->list, list) {
887 list_del_init(&grp->list);
888
889 for (i = 0; i < grp->size; i++) {
890 if (grp->map & (1 << i)) {
891 u16 rcventry = grp->base + i;
892 struct tid_rb_node *node;
893
894 node = fd->entry_to_rb[rcventry -
895 uctxt->expected_base];
896 if (!node || node->rcventry != rcventry)
897 continue;
898
899 cacheless_tid_rb_remove(fd, node);
900 }
901 }
902 }
903 }
904
905 /*
906 * Always return 0 from this function. A non-zero return indicates that the
907 * remove operation will be called and that memory should be unpinned.
908 * However, the driver cannot unpin out from under PSM. Instead, retain the
909 * memory (by returning 0) and inform PSM that the memory is going away. PSM
910 * will call back later when it has removed the memory from its list.
911 */
tid_rb_invalidate(void * arg,struct mmu_rb_node * mnode)912 static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode)
913 {
914 struct hfi1_filedata *fdata = arg;
915 struct hfi1_ctxtdata *uctxt = fdata->uctxt;
916 struct tid_rb_node *node =
917 container_of(mnode, struct tid_rb_node, mmu);
918
919 if (node->freed)
920 return 0;
921
922 trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt, node->mmu.addr,
923 node->rcventry, node->npages, node->dma_addr);
924 node->freed = true;
925
926 spin_lock(&fdata->invalid_lock);
927 if (fdata->invalid_tid_idx < uctxt->expected_count) {
928 fdata->invalid_tids[fdata->invalid_tid_idx] =
929 rcventry2tidinfo(node->rcventry - uctxt->expected_base);
930 fdata->invalid_tids[fdata->invalid_tid_idx] |=
931 EXP_TID_SET(LEN, node->npages);
932 if (!fdata->invalid_tid_idx) {
933 unsigned long *ev;
934
935 /*
936 * hfi1_set_uevent_bits() sets a user event flag
937 * for all processes. Because calling into the
938 * driver to process TID cache invalidations is
939 * expensive and TID cache invalidations are
940 * handled on a per-process basis, we can
941 * optimize this to set the flag only for the
942 * process in question.
943 */
944 ev = uctxt->dd->events +
945 (((uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) *
946 HFI1_MAX_SHARED_CTXTS) + fdata->subctxt);
947 set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
948 }
949 fdata->invalid_tid_idx++;
950 }
951 spin_unlock(&fdata->invalid_lock);
952 return 0;
953 }
954
tid_rb_insert(void * arg,struct mmu_rb_node * node)955 static int tid_rb_insert(void *arg, struct mmu_rb_node *node)
956 {
957 struct hfi1_filedata *fdata = arg;
958 struct tid_rb_node *tnode =
959 container_of(node, struct tid_rb_node, mmu);
960 u32 base = fdata->uctxt->expected_base;
961
962 fdata->entry_to_rb[tnode->rcventry - base] = tnode;
963 return 0;
964 }
965
cacheless_tid_rb_remove(struct hfi1_filedata * fdata,struct tid_rb_node * tnode)966 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
967 struct tid_rb_node *tnode)
968 {
969 u32 base = fdata->uctxt->expected_base;
970
971 fdata->entry_to_rb[tnode->rcventry - base] = NULL;
972 clear_tid_node(fdata, tnode);
973 }
974
tid_rb_remove(void * arg,struct mmu_rb_node * node)975 static void tid_rb_remove(void *arg, struct mmu_rb_node *node)
976 {
977 struct hfi1_filedata *fdata = arg;
978 struct tid_rb_node *tnode =
979 container_of(node, struct tid_rb_node, mmu);
980
981 cacheless_tid_rb_remove(fdata, tnode);
982 }
983