1 /* hfcsusb.c
2 * mISDN driver for Colognechip HFC-S USB chip
3 *
4 * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
5 * Copyright 2008 by Martin Bachem (info@bachem-it.com)
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 *
21 *
22 * module params
23 * debug=<n>, default=0, with n=0xHHHHGGGG
24 * H - l1 driver flags described in hfcsusb.h
25 * G - common mISDN debug flags described at mISDNhw.h
26 *
27 * poll=<n>, default 128
28 * n : burst size of PH_DATA_IND at transparent rx data
29 *
30 * Revision: 0.3.3 (socket), 2008-11-05
31 */
32
33 #include <linux/module.h>
34 #include <linux/delay.h>
35 #include <linux/usb.h>
36 #include <linux/mISDNhw.h>
37 #include <linux/slab.h>
38 #include "hfcsusb.h"
39
40 static unsigned int debug;
41 static int poll = DEFAULT_TRANSP_BURST_SZ;
42
43 static LIST_HEAD(HFClist);
44 static DEFINE_RWLOCK(HFClock);
45
46
47 MODULE_AUTHOR("Martin Bachem");
48 MODULE_LICENSE("GPL");
49 module_param(debug, uint, S_IRUGO | S_IWUSR);
50 module_param(poll, int, 0);
51
52 static int hfcsusb_cnt;
53
54 /* some function prototypes */
55 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
56 static void release_hw(struct hfcsusb *hw);
57 static void reset_hfcsusb(struct hfcsusb *hw);
58 static void setPortMode(struct hfcsusb *hw);
59 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
60 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
61 static int hfcsusb_setup_bch(struct bchannel *bch, int protocol);
62 static void deactivate_bchannel(struct bchannel *bch);
63 static void hfcsusb_ph_info(struct hfcsusb *hw);
64
65 /* start next background transfer for control channel */
66 static void
ctrl_start_transfer(struct hfcsusb * hw)67 ctrl_start_transfer(struct hfcsusb *hw)
68 {
69 if (debug & DBG_HFC_CALL_TRACE)
70 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
71
72 if (hw->ctrl_cnt) {
73 hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
74 hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
75 hw->ctrl_urb->transfer_buffer = NULL;
76 hw->ctrl_urb->transfer_buffer_length = 0;
77 hw->ctrl_write.wIndex =
78 cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
79 hw->ctrl_write.wValue =
80 cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
81
82 usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
83 }
84 }
85
86 /*
87 * queue a control transfer request to write HFC-S USB
88 * chip register using CTRL resuest queue
89 */
write_reg(struct hfcsusb * hw,__u8 reg,__u8 val)90 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
91 {
92 struct ctrl_buf *buf;
93
94 if (debug & DBG_HFC_CALL_TRACE)
95 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
96 hw->name, __func__, reg, val);
97
98 spin_lock(&hw->ctrl_lock);
99 if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
100 spin_unlock(&hw->ctrl_lock);
101 return 1;
102 }
103 buf = &hw->ctrl_buff[hw->ctrl_in_idx];
104 buf->hfcs_reg = reg;
105 buf->reg_val = val;
106 if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
107 hw->ctrl_in_idx = 0;
108 if (++hw->ctrl_cnt == 1)
109 ctrl_start_transfer(hw);
110 spin_unlock(&hw->ctrl_lock);
111
112 return 0;
113 }
114
115 /* control completion routine handling background control cmds */
116 static void
ctrl_complete(struct urb * urb)117 ctrl_complete(struct urb *urb)
118 {
119 struct hfcsusb *hw = (struct hfcsusb *) urb->context;
120
121 if (debug & DBG_HFC_CALL_TRACE)
122 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
123
124 urb->dev = hw->dev;
125 if (hw->ctrl_cnt) {
126 hw->ctrl_cnt--; /* decrement actual count */
127 if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
128 hw->ctrl_out_idx = 0; /* pointer wrap */
129
130 ctrl_start_transfer(hw); /* start next transfer */
131 }
132 }
133
134 /* handle LED bits */
135 static void
set_led_bit(struct hfcsusb * hw,signed short led_bits,int set_on)136 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
137 {
138 if (set_on) {
139 if (led_bits < 0)
140 hw->led_state &= ~abs(led_bits);
141 else
142 hw->led_state |= led_bits;
143 } else {
144 if (led_bits < 0)
145 hw->led_state |= abs(led_bits);
146 else
147 hw->led_state &= ~led_bits;
148 }
149 }
150
151 /* handle LED requests */
152 static void
handle_led(struct hfcsusb * hw,int event)153 handle_led(struct hfcsusb *hw, int event)
154 {
155 struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
156 hfcsusb_idtab[hw->vend_idx].driver_info;
157 __u8 tmpled;
158
159 if (driver_info->led_scheme == LED_OFF)
160 return;
161 tmpled = hw->led_state;
162
163 switch (event) {
164 case LED_POWER_ON:
165 set_led_bit(hw, driver_info->led_bits[0], 1);
166 set_led_bit(hw, driver_info->led_bits[1], 0);
167 set_led_bit(hw, driver_info->led_bits[2], 0);
168 set_led_bit(hw, driver_info->led_bits[3], 0);
169 break;
170 case LED_POWER_OFF:
171 set_led_bit(hw, driver_info->led_bits[0], 0);
172 set_led_bit(hw, driver_info->led_bits[1], 0);
173 set_led_bit(hw, driver_info->led_bits[2], 0);
174 set_led_bit(hw, driver_info->led_bits[3], 0);
175 break;
176 case LED_S0_ON:
177 set_led_bit(hw, driver_info->led_bits[1], 1);
178 break;
179 case LED_S0_OFF:
180 set_led_bit(hw, driver_info->led_bits[1], 0);
181 break;
182 case LED_B1_ON:
183 set_led_bit(hw, driver_info->led_bits[2], 1);
184 break;
185 case LED_B1_OFF:
186 set_led_bit(hw, driver_info->led_bits[2], 0);
187 break;
188 case LED_B2_ON:
189 set_led_bit(hw, driver_info->led_bits[3], 1);
190 break;
191 case LED_B2_OFF:
192 set_led_bit(hw, driver_info->led_bits[3], 0);
193 break;
194 }
195
196 if (hw->led_state != tmpled) {
197 if (debug & DBG_HFC_CALL_TRACE)
198 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
199 hw->name, __func__,
200 HFCUSB_P_DATA, hw->led_state);
201
202 write_reg(hw, HFCUSB_P_DATA, hw->led_state);
203 }
204 }
205
206 /*
207 * Layer2 -> Layer 1 Bchannel data
208 */
209 static int
hfcusb_l2l1B(struct mISDNchannel * ch,struct sk_buff * skb)210 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
211 {
212 struct bchannel *bch = container_of(ch, struct bchannel, ch);
213 struct hfcsusb *hw = bch->hw;
214 int ret = -EINVAL;
215 struct mISDNhead *hh = mISDN_HEAD_P(skb);
216 u_long flags;
217
218 if (debug & DBG_HFC_CALL_TRACE)
219 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
220
221 switch (hh->prim) {
222 case PH_DATA_REQ:
223 spin_lock_irqsave(&hw->lock, flags);
224 ret = bchannel_senddata(bch, skb);
225 spin_unlock_irqrestore(&hw->lock, flags);
226 if (debug & DBG_HFC_CALL_TRACE)
227 printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
228 hw->name, __func__, ret);
229 if (ret > 0)
230 ret = 0;
231 return ret;
232 case PH_ACTIVATE_REQ:
233 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
234 hfcsusb_start_endpoint(hw, bch->nr - 1);
235 ret = hfcsusb_setup_bch(bch, ch->protocol);
236 } else
237 ret = 0;
238 if (!ret)
239 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
240 0, NULL, GFP_KERNEL);
241 break;
242 case PH_DEACTIVATE_REQ:
243 deactivate_bchannel(bch);
244 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
245 0, NULL, GFP_KERNEL);
246 ret = 0;
247 break;
248 }
249 if (!ret)
250 dev_kfree_skb(skb);
251 return ret;
252 }
253
254 /*
255 * send full D/B channel status information
256 * as MPH_INFORMATION_IND
257 */
258 static void
hfcsusb_ph_info(struct hfcsusb * hw)259 hfcsusb_ph_info(struct hfcsusb *hw)
260 {
261 struct ph_info *phi;
262 struct dchannel *dch = &hw->dch;
263 int i;
264
265 phi = kzalloc(sizeof(struct ph_info) +
266 dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC);
267 phi->dch.ch.protocol = hw->protocol;
268 phi->dch.ch.Flags = dch->Flags;
269 phi->dch.state = dch->state;
270 phi->dch.num_bch = dch->dev.nrbchan;
271 for (i = 0; i < dch->dev.nrbchan; i++) {
272 phi->bch[i].protocol = hw->bch[i].ch.protocol;
273 phi->bch[i].Flags = hw->bch[i].Flags;
274 }
275 _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
276 sizeof(struct ph_info_dch) + dch->dev.nrbchan *
277 sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
278 kfree(phi);
279 }
280
281 /*
282 * Layer2 -> Layer 1 Dchannel data
283 */
284 static int
hfcusb_l2l1D(struct mISDNchannel * ch,struct sk_buff * skb)285 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
286 {
287 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
288 struct dchannel *dch = container_of(dev, struct dchannel, dev);
289 struct mISDNhead *hh = mISDN_HEAD_P(skb);
290 struct hfcsusb *hw = dch->hw;
291 int ret = -EINVAL;
292 u_long flags;
293
294 switch (hh->prim) {
295 case PH_DATA_REQ:
296 if (debug & DBG_HFC_CALL_TRACE)
297 printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
298 hw->name, __func__);
299
300 spin_lock_irqsave(&hw->lock, flags);
301 ret = dchannel_senddata(dch, skb);
302 spin_unlock_irqrestore(&hw->lock, flags);
303 if (ret > 0) {
304 ret = 0;
305 queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
306 }
307 break;
308
309 case PH_ACTIVATE_REQ:
310 if (debug & DBG_HFC_CALL_TRACE)
311 printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
312 hw->name, __func__,
313 (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
314
315 if (hw->protocol == ISDN_P_NT_S0) {
316 ret = 0;
317 if (test_bit(FLG_ACTIVE, &dch->Flags)) {
318 _queue_data(&dch->dev.D,
319 PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
320 NULL, GFP_ATOMIC);
321 } else {
322 hfcsusb_ph_command(hw,
323 HFC_L1_ACTIVATE_NT);
324 test_and_set_bit(FLG_L2_ACTIVATED,
325 &dch->Flags);
326 }
327 } else {
328 hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
329 ret = l1_event(dch->l1, hh->prim);
330 }
331 break;
332
333 case PH_DEACTIVATE_REQ:
334 if (debug & DBG_HFC_CALL_TRACE)
335 printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
336 hw->name, __func__);
337 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
338
339 if (hw->protocol == ISDN_P_NT_S0) {
340 hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
341 spin_lock_irqsave(&hw->lock, flags);
342 skb_queue_purge(&dch->squeue);
343 if (dch->tx_skb) {
344 dev_kfree_skb(dch->tx_skb);
345 dch->tx_skb = NULL;
346 }
347 dch->tx_idx = 0;
348 if (dch->rx_skb) {
349 dev_kfree_skb(dch->rx_skb);
350 dch->rx_skb = NULL;
351 }
352 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
353 spin_unlock_irqrestore(&hw->lock, flags);
354 #ifdef FIXME
355 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
356 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
357 #endif
358 ret = 0;
359 } else
360 ret = l1_event(dch->l1, hh->prim);
361 break;
362 case MPH_INFORMATION_REQ:
363 hfcsusb_ph_info(hw);
364 ret = 0;
365 break;
366 }
367
368 return ret;
369 }
370
371 /*
372 * Layer 1 callback function
373 */
374 static int
hfc_l1callback(struct dchannel * dch,u_int cmd)375 hfc_l1callback(struct dchannel *dch, u_int cmd)
376 {
377 struct hfcsusb *hw = dch->hw;
378
379 if (debug & DBG_HFC_CALL_TRACE)
380 printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
381 hw->name, __func__, cmd);
382
383 switch (cmd) {
384 case INFO3_P8:
385 case INFO3_P10:
386 case HW_RESET_REQ:
387 case HW_POWERUP_REQ:
388 break;
389
390 case HW_DEACT_REQ:
391 skb_queue_purge(&dch->squeue);
392 if (dch->tx_skb) {
393 dev_kfree_skb(dch->tx_skb);
394 dch->tx_skb = NULL;
395 }
396 dch->tx_idx = 0;
397 if (dch->rx_skb) {
398 dev_kfree_skb(dch->rx_skb);
399 dch->rx_skb = NULL;
400 }
401 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
402 break;
403 case PH_ACTIVATE_IND:
404 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
405 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
406 GFP_ATOMIC);
407 break;
408 case PH_DEACTIVATE_IND:
409 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
410 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
411 GFP_ATOMIC);
412 break;
413 default:
414 if (dch->debug & DEBUG_HW)
415 printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
416 hw->name, __func__, cmd);
417 return -1;
418 }
419 hfcsusb_ph_info(hw);
420 return 0;
421 }
422
423 static int
open_dchannel(struct hfcsusb * hw,struct mISDNchannel * ch,struct channel_req * rq)424 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
425 struct channel_req *rq)
426 {
427 int err = 0;
428
429 if (debug & DEBUG_HW_OPEN)
430 printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
431 hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
432 __builtin_return_address(0));
433 if (rq->protocol == ISDN_P_NONE)
434 return -EINVAL;
435
436 test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
437 test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
438 hfcsusb_start_endpoint(hw, HFC_CHAN_D);
439
440 /* E-Channel logging */
441 if (rq->adr.channel == 1) {
442 if (hw->fifos[HFCUSB_PCM_RX].pipe) {
443 hfcsusb_start_endpoint(hw, HFC_CHAN_E);
444 set_bit(FLG_ACTIVE, &hw->ech.Flags);
445 _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
446 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
447 } else
448 return -EINVAL;
449 }
450
451 if (!hw->initdone) {
452 hw->protocol = rq->protocol;
453 if (rq->protocol == ISDN_P_TE_S0) {
454 err = create_l1(&hw->dch, hfc_l1callback);
455 if (err)
456 return err;
457 }
458 setPortMode(hw);
459 ch->protocol = rq->protocol;
460 hw->initdone = 1;
461 } else {
462 if (rq->protocol != ch->protocol)
463 return -EPROTONOSUPPORT;
464 }
465
466 if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
467 ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
468 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
469 0, NULL, GFP_KERNEL);
470 rq->ch = ch;
471 if (!try_module_get(THIS_MODULE))
472 printk(KERN_WARNING "%s: %s: cannot get module\n",
473 hw->name, __func__);
474 return 0;
475 }
476
477 static int
open_bchannel(struct hfcsusb * hw,struct channel_req * rq)478 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
479 {
480 struct bchannel *bch;
481
482 if (rq->adr.channel == 0 || rq->adr.channel > 2)
483 return -EINVAL;
484 if (rq->protocol == ISDN_P_NONE)
485 return -EINVAL;
486
487 if (debug & DBG_HFC_CALL_TRACE)
488 printk(KERN_DEBUG "%s: %s B%i\n",
489 hw->name, __func__, rq->adr.channel);
490
491 bch = &hw->bch[rq->adr.channel - 1];
492 if (test_and_set_bit(FLG_OPEN, &bch->Flags))
493 return -EBUSY; /* b-channel can be only open once */
494 bch->ch.protocol = rq->protocol;
495 rq->ch = &bch->ch;
496
497 if (!try_module_get(THIS_MODULE))
498 printk(KERN_WARNING "%s: %s:cannot get module\n",
499 hw->name, __func__);
500 return 0;
501 }
502
503 static int
channel_ctrl(struct hfcsusb * hw,struct mISDN_ctrl_req * cq)504 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
505 {
506 int ret = 0;
507
508 if (debug & DBG_HFC_CALL_TRACE)
509 printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
510 hw->name, __func__, (cq->op), (cq->channel));
511
512 switch (cq->op) {
513 case MISDN_CTRL_GETOP:
514 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
515 MISDN_CTRL_DISCONNECT;
516 break;
517 default:
518 printk(KERN_WARNING "%s: %s: unknown Op %x\n",
519 hw->name, __func__, cq->op);
520 ret = -EINVAL;
521 break;
522 }
523 return ret;
524 }
525
526 /*
527 * device control function
528 */
529 static int
hfc_dctrl(struct mISDNchannel * ch,u_int cmd,void * arg)530 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
531 {
532 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
533 struct dchannel *dch = container_of(dev, struct dchannel, dev);
534 struct hfcsusb *hw = dch->hw;
535 struct channel_req *rq;
536 int err = 0;
537
538 if (dch->debug & DEBUG_HW)
539 printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
540 hw->name, __func__, cmd, arg);
541 switch (cmd) {
542 case OPEN_CHANNEL:
543 rq = arg;
544 if ((rq->protocol == ISDN_P_TE_S0) ||
545 (rq->protocol == ISDN_P_NT_S0))
546 err = open_dchannel(hw, ch, rq);
547 else
548 err = open_bchannel(hw, rq);
549 if (!err)
550 hw->open++;
551 break;
552 case CLOSE_CHANNEL:
553 hw->open--;
554 if (debug & DEBUG_HW_OPEN)
555 printk(KERN_DEBUG
556 "%s: %s: dev(%d) close from %p (open %d)\n",
557 hw->name, __func__, hw->dch.dev.id,
558 __builtin_return_address(0), hw->open);
559 if (!hw->open) {
560 hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
561 if (hw->fifos[HFCUSB_PCM_RX].pipe)
562 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
563 handle_led(hw, LED_POWER_ON);
564 }
565 module_put(THIS_MODULE);
566 break;
567 case CONTROL_CHANNEL:
568 err = channel_ctrl(hw, arg);
569 break;
570 default:
571 if (dch->debug & DEBUG_HW)
572 printk(KERN_DEBUG "%s: %s: unknown command %x\n",
573 hw->name, __func__, cmd);
574 return -EINVAL;
575 }
576 return err;
577 }
578
579 /*
580 * S0 TE state change event handler
581 */
582 static void
ph_state_te(struct dchannel * dch)583 ph_state_te(struct dchannel *dch)
584 {
585 struct hfcsusb *hw = dch->hw;
586
587 if (debug & DEBUG_HW) {
588 if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
589 printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
590 HFC_TE_LAYER1_STATES[dch->state]);
591 else
592 printk(KERN_DEBUG "%s: %s: TE F%d\n",
593 hw->name, __func__, dch->state);
594 }
595
596 switch (dch->state) {
597 case 0:
598 l1_event(dch->l1, HW_RESET_IND);
599 break;
600 case 3:
601 l1_event(dch->l1, HW_DEACT_IND);
602 break;
603 case 5:
604 case 8:
605 l1_event(dch->l1, ANYSIGNAL);
606 break;
607 case 6:
608 l1_event(dch->l1, INFO2);
609 break;
610 case 7:
611 l1_event(dch->l1, INFO4_P8);
612 break;
613 }
614 if (dch->state == 7)
615 handle_led(hw, LED_S0_ON);
616 else
617 handle_led(hw, LED_S0_OFF);
618 }
619
620 /*
621 * S0 NT state change event handler
622 */
623 static void
ph_state_nt(struct dchannel * dch)624 ph_state_nt(struct dchannel *dch)
625 {
626 struct hfcsusb *hw = dch->hw;
627
628 if (debug & DEBUG_HW) {
629 if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
630 printk(KERN_DEBUG "%s: %s: %s\n",
631 hw->name, __func__,
632 HFC_NT_LAYER1_STATES[dch->state]);
633
634 else
635 printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
636 hw->name, __func__, dch->state);
637 }
638
639 switch (dch->state) {
640 case (1):
641 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
642 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
643 hw->nt_timer = 0;
644 hw->timers &= ~NT_ACTIVATION_TIMER;
645 handle_led(hw, LED_S0_OFF);
646 break;
647
648 case (2):
649 if (hw->nt_timer < 0) {
650 hw->nt_timer = 0;
651 hw->timers &= ~NT_ACTIVATION_TIMER;
652 hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
653 } else {
654 hw->timers |= NT_ACTIVATION_TIMER;
655 hw->nt_timer = NT_T1_COUNT;
656 /* allow G2 -> G3 transition */
657 write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
658 }
659 break;
660 case (3):
661 hw->nt_timer = 0;
662 hw->timers &= ~NT_ACTIVATION_TIMER;
663 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
664 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
665 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
666 handle_led(hw, LED_S0_ON);
667 break;
668 case (4):
669 hw->nt_timer = 0;
670 hw->timers &= ~NT_ACTIVATION_TIMER;
671 break;
672 default:
673 break;
674 }
675 hfcsusb_ph_info(hw);
676 }
677
678 static void
ph_state(struct dchannel * dch)679 ph_state(struct dchannel *dch)
680 {
681 struct hfcsusb *hw = dch->hw;
682
683 if (hw->protocol == ISDN_P_NT_S0)
684 ph_state_nt(dch);
685 else if (hw->protocol == ISDN_P_TE_S0)
686 ph_state_te(dch);
687 }
688
689 /*
690 * disable/enable BChannel for desired protocoll
691 */
692 static int
hfcsusb_setup_bch(struct bchannel * bch,int protocol)693 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
694 {
695 struct hfcsusb *hw = bch->hw;
696 __u8 conhdlc, sctrl, sctrl_r;
697
698 if (debug & DEBUG_HW)
699 printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
700 hw->name, __func__, bch->state, protocol,
701 bch->nr);
702
703 /* setup val for CON_HDLC */
704 conhdlc = 0;
705 if (protocol > ISDN_P_NONE)
706 conhdlc = 8; /* enable FIFO */
707
708 switch (protocol) {
709 case (-1): /* used for init */
710 bch->state = -1;
711 /* fall through */
712 case (ISDN_P_NONE):
713 if (bch->state == ISDN_P_NONE)
714 return 0; /* already in idle state */
715 bch->state = ISDN_P_NONE;
716 clear_bit(FLG_HDLC, &bch->Flags);
717 clear_bit(FLG_TRANSPARENT, &bch->Flags);
718 break;
719 case (ISDN_P_B_RAW):
720 conhdlc |= 2;
721 bch->state = protocol;
722 set_bit(FLG_TRANSPARENT, &bch->Flags);
723 break;
724 case (ISDN_P_B_HDLC):
725 bch->state = protocol;
726 set_bit(FLG_HDLC, &bch->Flags);
727 break;
728 default:
729 if (debug & DEBUG_HW)
730 printk(KERN_DEBUG "%s: %s: prot not known %x\n",
731 hw->name, __func__, protocol);
732 return -ENOPROTOOPT;
733 }
734
735 if (protocol >= ISDN_P_NONE) {
736 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
737 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
738 write_reg(hw, HFCUSB_INC_RES_F, 2);
739 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
740 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
741 write_reg(hw, HFCUSB_INC_RES_F, 2);
742
743 sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
744 sctrl_r = 0x0;
745 if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
746 sctrl |= 1;
747 sctrl_r |= 1;
748 }
749 if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
750 sctrl |= 2;
751 sctrl_r |= 2;
752 }
753 write_reg(hw, HFCUSB_SCTRL, sctrl);
754 write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
755
756 if (protocol > ISDN_P_NONE)
757 handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
758 else
759 handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
760 LED_B2_OFF);
761 }
762 hfcsusb_ph_info(hw);
763 return 0;
764 }
765
766 static void
hfcsusb_ph_command(struct hfcsusb * hw,u_char command)767 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
768 {
769 if (debug & DEBUG_HW)
770 printk(KERN_DEBUG "%s: %s: %x\n",
771 hw->name, __func__, command);
772
773 switch (command) {
774 case HFC_L1_ACTIVATE_TE:
775 /* force sending sending INFO1 */
776 write_reg(hw, HFCUSB_STATES, 0x14);
777 /* start l1 activation */
778 write_reg(hw, HFCUSB_STATES, 0x04);
779 break;
780
781 case HFC_L1_FORCE_DEACTIVATE_TE:
782 write_reg(hw, HFCUSB_STATES, 0x10);
783 write_reg(hw, HFCUSB_STATES, 0x03);
784 break;
785
786 case HFC_L1_ACTIVATE_NT:
787 if (hw->dch.state == 3)
788 _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
789 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
790 else
791 write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
792 HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
793 break;
794
795 case HFC_L1_DEACTIVATE_NT:
796 write_reg(hw, HFCUSB_STATES,
797 HFCUSB_DO_ACTION);
798 break;
799 }
800 }
801
802 /*
803 * Layer 1 B-channel hardware access
804 */
805 static int
channel_bctrl(struct bchannel * bch,struct mISDN_ctrl_req * cq)806 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
807 {
808 return mISDN_ctrl_bchannel(bch, cq);
809 }
810
811 /* collect data from incoming interrupt or isochron USB data */
812 static void
hfcsusb_rx_frame(struct usb_fifo * fifo,__u8 * data,unsigned int len,int finish)813 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
814 int finish)
815 {
816 struct hfcsusb *hw = fifo->hw;
817 struct sk_buff *rx_skb = NULL;
818 int maxlen = 0;
819 int fifon = fifo->fifonum;
820 int i;
821 int hdlc = 0;
822
823 if (debug & DBG_HFC_CALL_TRACE)
824 printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
825 "dch(%p) bch(%p) ech(%p)\n",
826 hw->name, __func__, fifon, len,
827 fifo->dch, fifo->bch, fifo->ech);
828
829 if (!len)
830 return;
831
832 if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
833 printk(KERN_DEBUG "%s: %s: undefined channel\n",
834 hw->name, __func__);
835 return;
836 }
837
838 spin_lock(&hw->lock);
839 if (fifo->dch) {
840 rx_skb = fifo->dch->rx_skb;
841 maxlen = fifo->dch->maxlen;
842 hdlc = 1;
843 }
844 if (fifo->bch) {
845 if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
846 fifo->bch->dropcnt += len;
847 spin_unlock(&hw->lock);
848 return;
849 }
850 maxlen = bchannel_get_rxbuf(fifo->bch, len);
851 rx_skb = fifo->bch->rx_skb;
852 if (maxlen < 0) {
853 if (rx_skb)
854 skb_trim(rx_skb, 0);
855 pr_warning("%s.B%d: No bufferspace for %d bytes\n",
856 hw->name, fifo->bch->nr, len);
857 spin_unlock(&hw->lock);
858 return;
859 }
860 maxlen = fifo->bch->maxlen;
861 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
862 }
863 if (fifo->ech) {
864 rx_skb = fifo->ech->rx_skb;
865 maxlen = fifo->ech->maxlen;
866 hdlc = 1;
867 }
868
869 if (fifo->dch || fifo->ech) {
870 if (!rx_skb) {
871 rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
872 if (rx_skb) {
873 if (fifo->dch)
874 fifo->dch->rx_skb = rx_skb;
875 if (fifo->ech)
876 fifo->ech->rx_skb = rx_skb;
877 skb_trim(rx_skb, 0);
878 } else {
879 printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
880 hw->name, __func__);
881 spin_unlock(&hw->lock);
882 return;
883 }
884 }
885 /* D/E-Channel SKB range check */
886 if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
887 printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
888 "for fifo(%d) HFCUSB_D_RX\n",
889 hw->name, __func__, fifon);
890 skb_trim(rx_skb, 0);
891 spin_unlock(&hw->lock);
892 return;
893 }
894 }
895
896 skb_put_data(rx_skb, data, len);
897
898 if (hdlc) {
899 /* we have a complete hdlc packet */
900 if (finish) {
901 if ((rx_skb->len > 3) &&
902 (!(rx_skb->data[rx_skb->len - 1]))) {
903 if (debug & DBG_HFC_FIFO_VERBOSE) {
904 printk(KERN_DEBUG "%s: %s: fifon(%i)"
905 " new RX len(%i): ",
906 hw->name, __func__, fifon,
907 rx_skb->len);
908 i = 0;
909 while (i < rx_skb->len)
910 printk("%02x ",
911 rx_skb->data[i++]);
912 printk("\n");
913 }
914
915 /* remove CRC & status */
916 skb_trim(rx_skb, rx_skb->len - 3);
917
918 if (fifo->dch)
919 recv_Dchannel(fifo->dch);
920 if (fifo->bch)
921 recv_Bchannel(fifo->bch, MISDN_ID_ANY,
922 0);
923 if (fifo->ech)
924 recv_Echannel(fifo->ech,
925 &hw->dch);
926 } else {
927 if (debug & DBG_HFC_FIFO_VERBOSE) {
928 printk(KERN_DEBUG
929 "%s: CRC or minlen ERROR fifon(%i) "
930 "RX len(%i): ",
931 hw->name, fifon, rx_skb->len);
932 i = 0;
933 while (i < rx_skb->len)
934 printk("%02x ",
935 rx_skb->data[i++]);
936 printk("\n");
937 }
938 skb_trim(rx_skb, 0);
939 }
940 }
941 } else {
942 /* deliver transparent data to layer2 */
943 recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
944 }
945 spin_unlock(&hw->lock);
946 }
947
948 static void
fill_isoc_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * buf,int num_packets,int packet_size,int interval,usb_complete_t complete,void * context)949 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
950 void *buf, int num_packets, int packet_size, int interval,
951 usb_complete_t complete, void *context)
952 {
953 int k;
954
955 usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
956 complete, context);
957
958 urb->number_of_packets = num_packets;
959 urb->transfer_flags = URB_ISO_ASAP;
960 urb->actual_length = 0;
961 urb->interval = interval;
962
963 for (k = 0; k < num_packets; k++) {
964 urb->iso_frame_desc[k].offset = packet_size * k;
965 urb->iso_frame_desc[k].length = packet_size;
966 urb->iso_frame_desc[k].actual_length = 0;
967 }
968 }
969
970 /* receive completion routine for all ISO tx fifos */
971 static void
rx_iso_complete(struct urb * urb)972 rx_iso_complete(struct urb *urb)
973 {
974 struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
975 struct usb_fifo *fifo = context_iso_urb->owner_fifo;
976 struct hfcsusb *hw = fifo->hw;
977 int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
978 status, iso_status, i;
979 __u8 *buf;
980 static __u8 eof[8];
981 __u8 s0_state;
982
983 fifon = fifo->fifonum;
984 status = urb->status;
985
986 spin_lock(&hw->lock);
987 if (fifo->stop_gracefull) {
988 fifo->stop_gracefull = 0;
989 fifo->active = 0;
990 spin_unlock(&hw->lock);
991 return;
992 }
993 spin_unlock(&hw->lock);
994
995 /*
996 * ISO transfer only partially completed,
997 * look at individual frame status for details
998 */
999 if (status == -EXDEV) {
1000 if (debug & DEBUG_HW)
1001 printk(KERN_DEBUG "%s: %s: with -EXDEV "
1002 "urb->status %d, fifonum %d\n",
1003 hw->name, __func__, status, fifon);
1004
1005 /* clear status, so go on with ISO transfers */
1006 status = 0;
1007 }
1008
1009 s0_state = 0;
1010 if (fifo->active && !status) {
1011 num_isoc_packets = iso_packets[fifon];
1012 maxlen = fifo->usb_packet_maxlen;
1013
1014 for (k = 0; k < num_isoc_packets; ++k) {
1015 len = urb->iso_frame_desc[k].actual_length;
1016 offset = urb->iso_frame_desc[k].offset;
1017 buf = context_iso_urb->buffer + offset;
1018 iso_status = urb->iso_frame_desc[k].status;
1019
1020 if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1021 printk(KERN_DEBUG "%s: %s: "
1022 "ISO packet %i, status: %i\n",
1023 hw->name, __func__, k, iso_status);
1024 }
1025
1026 /* USB data log for every D ISO in */
1027 if ((fifon == HFCUSB_D_RX) &&
1028 (debug & DBG_HFC_USB_VERBOSE)) {
1029 printk(KERN_DEBUG
1030 "%s: %s: %d (%d/%d) len(%d) ",
1031 hw->name, __func__, urb->start_frame,
1032 k, num_isoc_packets - 1,
1033 len);
1034 for (i = 0; i < len; i++)
1035 printk("%x ", buf[i]);
1036 printk("\n");
1037 }
1038
1039 if (!iso_status) {
1040 if (fifo->last_urblen != maxlen) {
1041 /*
1042 * save fifo fill-level threshold bits
1043 * to use them later in TX ISO URB
1044 * completions
1045 */
1046 hw->threshold_mask = buf[1];
1047
1048 if (fifon == HFCUSB_D_RX)
1049 s0_state = (buf[0] >> 4);
1050
1051 eof[fifon] = buf[0] & 1;
1052 if (len > 2)
1053 hfcsusb_rx_frame(fifo, buf + 2,
1054 len - 2, (len < maxlen)
1055 ? eof[fifon] : 0);
1056 } else
1057 hfcsusb_rx_frame(fifo, buf, len,
1058 (len < maxlen) ?
1059 eof[fifon] : 0);
1060 fifo->last_urblen = len;
1061 }
1062 }
1063
1064 /* signal S0 layer1 state change */
1065 if ((s0_state) && (hw->initdone) &&
1066 (s0_state != hw->dch.state)) {
1067 hw->dch.state = s0_state;
1068 schedule_event(&hw->dch, FLG_PHCHANGE);
1069 }
1070
1071 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1072 context_iso_urb->buffer, num_isoc_packets,
1073 fifo->usb_packet_maxlen, fifo->intervall,
1074 (usb_complete_t)rx_iso_complete, urb->context);
1075 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1076 if (errcode < 0) {
1077 if (debug & DEBUG_HW)
1078 printk(KERN_DEBUG "%s: %s: error submitting "
1079 "ISO URB: %d\n",
1080 hw->name, __func__, errcode);
1081 }
1082 } else {
1083 if (status && (debug & DBG_HFC_URB_INFO))
1084 printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1085 "urb->status %d, fifonum %d\n",
1086 hw->name, __func__, status, fifon);
1087 }
1088 }
1089
1090 /* receive completion routine for all interrupt rx fifos */
1091 static void
rx_int_complete(struct urb * urb)1092 rx_int_complete(struct urb *urb)
1093 {
1094 int len, status, i;
1095 __u8 *buf, maxlen, fifon;
1096 struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1097 struct hfcsusb *hw = fifo->hw;
1098 static __u8 eof[8];
1099
1100 spin_lock(&hw->lock);
1101 if (fifo->stop_gracefull) {
1102 fifo->stop_gracefull = 0;
1103 fifo->active = 0;
1104 spin_unlock(&hw->lock);
1105 return;
1106 }
1107 spin_unlock(&hw->lock);
1108
1109 fifon = fifo->fifonum;
1110 if ((!fifo->active) || (urb->status)) {
1111 if (debug & DBG_HFC_URB_ERROR)
1112 printk(KERN_DEBUG
1113 "%s: %s: RX-Fifo %i is going down (%i)\n",
1114 hw->name, __func__, fifon, urb->status);
1115
1116 fifo->urb->interval = 0; /* cancel automatic rescheduling */
1117 return;
1118 }
1119 len = urb->actual_length;
1120 buf = fifo->buffer;
1121 maxlen = fifo->usb_packet_maxlen;
1122
1123 /* USB data log for every D INT in */
1124 if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1125 printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1126 hw->name, __func__, len);
1127 for (i = 0; i < len; i++)
1128 printk("%02x ", buf[i]);
1129 printk("\n");
1130 }
1131
1132 if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1133 /* the threshold mask is in the 2nd status byte */
1134 hw->threshold_mask = buf[1];
1135
1136 /* signal S0 layer1 state change */
1137 if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1138 hw->dch.state = (buf[0] >> 4);
1139 schedule_event(&hw->dch, FLG_PHCHANGE);
1140 }
1141
1142 eof[fifon] = buf[0] & 1;
1143 /* if we have more than the 2 status bytes -> collect data */
1144 if (len > 2)
1145 hfcsusb_rx_frame(fifo, buf + 2,
1146 urb->actual_length - 2,
1147 (len < maxlen) ? eof[fifon] : 0);
1148 } else {
1149 hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1150 (len < maxlen) ? eof[fifon] : 0);
1151 }
1152 fifo->last_urblen = urb->actual_length;
1153
1154 status = usb_submit_urb(urb, GFP_ATOMIC);
1155 if (status) {
1156 if (debug & DEBUG_HW)
1157 printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1158 hw->name, __func__);
1159 }
1160 }
1161
1162 /* transmit completion routine for all ISO tx fifos */
1163 static void
tx_iso_complete(struct urb * urb)1164 tx_iso_complete(struct urb *urb)
1165 {
1166 struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1167 struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1168 struct hfcsusb *hw = fifo->hw;
1169 struct sk_buff *tx_skb;
1170 int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1171 errcode, hdlc, i;
1172 int *tx_idx;
1173 int frame_complete, fifon, status, fillempty = 0;
1174 __u8 threshbit, *p;
1175
1176 spin_lock(&hw->lock);
1177 if (fifo->stop_gracefull) {
1178 fifo->stop_gracefull = 0;
1179 fifo->active = 0;
1180 spin_unlock(&hw->lock);
1181 return;
1182 }
1183
1184 if (fifo->dch) {
1185 tx_skb = fifo->dch->tx_skb;
1186 tx_idx = &fifo->dch->tx_idx;
1187 hdlc = 1;
1188 } else if (fifo->bch) {
1189 tx_skb = fifo->bch->tx_skb;
1190 tx_idx = &fifo->bch->tx_idx;
1191 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1192 if (!tx_skb && !hdlc &&
1193 test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1194 fillempty = 1;
1195 } else {
1196 printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1197 hw->name, __func__);
1198 spin_unlock(&hw->lock);
1199 return;
1200 }
1201
1202 fifon = fifo->fifonum;
1203 status = urb->status;
1204
1205 tx_offset = 0;
1206
1207 /*
1208 * ISO transfer only partially completed,
1209 * look at individual frame status for details
1210 */
1211 if (status == -EXDEV) {
1212 if (debug & DBG_HFC_URB_ERROR)
1213 printk(KERN_DEBUG "%s: %s: "
1214 "-EXDEV (%i) fifon (%d)\n",
1215 hw->name, __func__, status, fifon);
1216
1217 /* clear status, so go on with ISO transfers */
1218 status = 0;
1219 }
1220
1221 if (fifo->active && !status) {
1222 /* is FifoFull-threshold set for our channel? */
1223 threshbit = (hw->threshold_mask & (1 << fifon));
1224 num_isoc_packets = iso_packets[fifon];
1225
1226 /* predict dataflow to avoid fifo overflow */
1227 if (fifon >= HFCUSB_D_TX)
1228 sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1229 else
1230 sink = (threshbit) ? SINK_MIN : SINK_MAX;
1231 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1232 context_iso_urb->buffer, num_isoc_packets,
1233 fifo->usb_packet_maxlen, fifo->intervall,
1234 (usb_complete_t)tx_iso_complete, urb->context);
1235 memset(context_iso_urb->buffer, 0,
1236 sizeof(context_iso_urb->buffer));
1237 frame_complete = 0;
1238
1239 for (k = 0; k < num_isoc_packets; ++k) {
1240 /* analyze tx success of previous ISO packets */
1241 if (debug & DBG_HFC_URB_ERROR) {
1242 errcode = urb->iso_frame_desc[k].status;
1243 if (errcode) {
1244 printk(KERN_DEBUG "%s: %s: "
1245 "ISO packet %i, status: %i\n",
1246 hw->name, __func__, k, errcode);
1247 }
1248 }
1249
1250 /* Generate next ISO Packets */
1251 if (tx_skb)
1252 remain = tx_skb->len - *tx_idx;
1253 else if (fillempty)
1254 remain = 15; /* > not complete */
1255 else
1256 remain = 0;
1257
1258 if (remain > 0) {
1259 fifo->bit_line -= sink;
1260 current_len = (0 - fifo->bit_line) / 8;
1261 if (current_len > 14)
1262 current_len = 14;
1263 if (current_len < 0)
1264 current_len = 0;
1265 if (remain < current_len)
1266 current_len = remain;
1267
1268 /* how much bit do we put on the line? */
1269 fifo->bit_line += current_len * 8;
1270
1271 context_iso_urb->buffer[tx_offset] = 0;
1272 if (current_len == remain) {
1273 if (hdlc) {
1274 /* signal frame completion */
1275 context_iso_urb->
1276 buffer[tx_offset] = 1;
1277 /* add 2 byte flags and 16bit
1278 * CRC at end of ISDN frame */
1279 fifo->bit_line += 32;
1280 }
1281 frame_complete = 1;
1282 }
1283
1284 /* copy tx data to iso-urb buffer */
1285 p = context_iso_urb->buffer + tx_offset + 1;
1286 if (fillempty) {
1287 memset(p, fifo->bch->fill[0],
1288 current_len);
1289 } else {
1290 memcpy(p, (tx_skb->data + *tx_idx),
1291 current_len);
1292 *tx_idx += current_len;
1293 }
1294 urb->iso_frame_desc[k].offset = tx_offset;
1295 urb->iso_frame_desc[k].length = current_len + 1;
1296
1297 /* USB data log for every D ISO out */
1298 if ((fifon == HFCUSB_D_RX) && !fillempty &&
1299 (debug & DBG_HFC_USB_VERBOSE)) {
1300 printk(KERN_DEBUG
1301 "%s: %s (%d/%d) offs(%d) len(%d) ",
1302 hw->name, __func__,
1303 k, num_isoc_packets - 1,
1304 urb->iso_frame_desc[k].offset,
1305 urb->iso_frame_desc[k].length);
1306
1307 for (i = urb->iso_frame_desc[k].offset;
1308 i < (urb->iso_frame_desc[k].offset
1309 + urb->iso_frame_desc[k].length);
1310 i++)
1311 printk("%x ",
1312 context_iso_urb->buffer[i]);
1313
1314 printk(" skb->len(%i) tx-idx(%d)\n",
1315 tx_skb->len, *tx_idx);
1316 }
1317
1318 tx_offset += (current_len + 1);
1319 } else {
1320 urb->iso_frame_desc[k].offset = tx_offset++;
1321 urb->iso_frame_desc[k].length = 1;
1322 /* we lower data margin every msec */
1323 fifo->bit_line -= sink;
1324 if (fifo->bit_line < BITLINE_INF)
1325 fifo->bit_line = BITLINE_INF;
1326 }
1327
1328 if (frame_complete) {
1329 frame_complete = 0;
1330
1331 if (debug & DBG_HFC_FIFO_VERBOSE) {
1332 printk(KERN_DEBUG "%s: %s: "
1333 "fifon(%i) new TX len(%i): ",
1334 hw->name, __func__,
1335 fifon, tx_skb->len);
1336 i = 0;
1337 while (i < tx_skb->len)
1338 printk("%02x ",
1339 tx_skb->data[i++]);
1340 printk("\n");
1341 }
1342
1343 dev_kfree_skb(tx_skb);
1344 tx_skb = NULL;
1345 if (fifo->dch && get_next_dframe(fifo->dch))
1346 tx_skb = fifo->dch->tx_skb;
1347 else if (fifo->bch &&
1348 get_next_bframe(fifo->bch))
1349 tx_skb = fifo->bch->tx_skb;
1350 }
1351 }
1352 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1353 if (errcode < 0) {
1354 if (debug & DEBUG_HW)
1355 printk(KERN_DEBUG
1356 "%s: %s: error submitting ISO URB: %d \n",
1357 hw->name, __func__, errcode);
1358 }
1359
1360 /*
1361 * abuse DChannel tx iso completion to trigger NT mode state
1362 * changes tx_iso_complete is assumed to be called every
1363 * fifo->intervall (ms)
1364 */
1365 if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1366 && (hw->timers & NT_ACTIVATION_TIMER)) {
1367 if ((--hw->nt_timer) < 0)
1368 schedule_event(&hw->dch, FLG_PHCHANGE);
1369 }
1370
1371 } else {
1372 if (status && (debug & DBG_HFC_URB_ERROR))
1373 printk(KERN_DEBUG "%s: %s: urb->status %s (%i)"
1374 "fifonum=%d\n",
1375 hw->name, __func__,
1376 symbolic(urb_errlist, status), status, fifon);
1377 }
1378 spin_unlock(&hw->lock);
1379 }
1380
1381 /*
1382 * allocs urbs and start isoc transfer with two pending urbs to avoid
1383 * gaps in the transfer chain
1384 */
1385 static int
start_isoc_chain(struct usb_fifo * fifo,int num_packets_per_urb,usb_complete_t complete,int packet_size)1386 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1387 usb_complete_t complete, int packet_size)
1388 {
1389 struct hfcsusb *hw = fifo->hw;
1390 int i, k, errcode;
1391
1392 if (debug)
1393 printk(KERN_DEBUG "%s: %s: fifo %i\n",
1394 hw->name, __func__, fifo->fifonum);
1395
1396 /* allocate Memory for Iso out Urbs */
1397 for (i = 0; i < 2; i++) {
1398 if (!(fifo->iso[i].urb)) {
1399 fifo->iso[i].urb =
1400 usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1401 if (!(fifo->iso[i].urb)) {
1402 printk(KERN_DEBUG
1403 "%s: %s: alloc urb for fifo %i failed",
1404 hw->name, __func__, fifo->fifonum);
1405 continue;
1406 }
1407 fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1408 fifo->iso[i].indx = i;
1409
1410 /* Init the first iso */
1411 if (ISO_BUFFER_SIZE >=
1412 (fifo->usb_packet_maxlen *
1413 num_packets_per_urb)) {
1414 fill_isoc_urb(fifo->iso[i].urb,
1415 fifo->hw->dev, fifo->pipe,
1416 fifo->iso[i].buffer,
1417 num_packets_per_urb,
1418 fifo->usb_packet_maxlen,
1419 fifo->intervall, complete,
1420 &fifo->iso[i]);
1421 memset(fifo->iso[i].buffer, 0,
1422 sizeof(fifo->iso[i].buffer));
1423
1424 for (k = 0; k < num_packets_per_urb; k++) {
1425 fifo->iso[i].urb->
1426 iso_frame_desc[k].offset =
1427 k * packet_size;
1428 fifo->iso[i].urb->
1429 iso_frame_desc[k].length =
1430 packet_size;
1431 }
1432 } else {
1433 printk(KERN_DEBUG
1434 "%s: %s: ISO Buffer size to small!\n",
1435 hw->name, __func__);
1436 }
1437 }
1438 fifo->bit_line = BITLINE_INF;
1439
1440 errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1441 fifo->active = (errcode >= 0) ? 1 : 0;
1442 fifo->stop_gracefull = 0;
1443 if (errcode < 0) {
1444 printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1445 hw->name, __func__,
1446 symbolic(urb_errlist, errcode), i);
1447 }
1448 }
1449 return fifo->active;
1450 }
1451
1452 static void
stop_iso_gracefull(struct usb_fifo * fifo)1453 stop_iso_gracefull(struct usb_fifo *fifo)
1454 {
1455 struct hfcsusb *hw = fifo->hw;
1456 int i, timeout;
1457 u_long flags;
1458
1459 for (i = 0; i < 2; i++) {
1460 spin_lock_irqsave(&hw->lock, flags);
1461 if (debug)
1462 printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1463 hw->name, __func__, fifo->fifonum, i);
1464 fifo->stop_gracefull = 1;
1465 spin_unlock_irqrestore(&hw->lock, flags);
1466 }
1467
1468 for (i = 0; i < 2; i++) {
1469 timeout = 3;
1470 while (fifo->stop_gracefull && timeout--)
1471 schedule_timeout_interruptible((HZ / 1000) * 16);
1472 if (debug && fifo->stop_gracefull)
1473 printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1474 hw->name, __func__, fifo->fifonum, i);
1475 }
1476 }
1477
1478 static void
stop_int_gracefull(struct usb_fifo * fifo)1479 stop_int_gracefull(struct usb_fifo *fifo)
1480 {
1481 struct hfcsusb *hw = fifo->hw;
1482 int timeout;
1483 u_long flags;
1484
1485 spin_lock_irqsave(&hw->lock, flags);
1486 if (debug)
1487 printk(KERN_DEBUG "%s: %s for fifo %i\n",
1488 hw->name, __func__, fifo->fifonum);
1489 fifo->stop_gracefull = 1;
1490 spin_unlock_irqrestore(&hw->lock, flags);
1491
1492 timeout = 3;
1493 while (fifo->stop_gracefull && timeout--)
1494 schedule_timeout_interruptible((HZ / 1000) * 3);
1495 if (debug && fifo->stop_gracefull)
1496 printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1497 hw->name, __func__, fifo->fifonum);
1498 }
1499
1500 /* start the interrupt transfer for the given fifo */
1501 static void
start_int_fifo(struct usb_fifo * fifo)1502 start_int_fifo(struct usb_fifo *fifo)
1503 {
1504 struct hfcsusb *hw = fifo->hw;
1505 int errcode;
1506
1507 if (debug)
1508 printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1509 hw->name, __func__, fifo->fifonum);
1510
1511 if (!fifo->urb) {
1512 fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1513 if (!fifo->urb)
1514 return;
1515 }
1516 usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1517 fifo->buffer, fifo->usb_packet_maxlen,
1518 (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1519 fifo->active = 1;
1520 fifo->stop_gracefull = 0;
1521 errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1522 if (errcode) {
1523 printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1524 hw->name, __func__, errcode);
1525 fifo->active = 0;
1526 }
1527 }
1528
1529 static void
setPortMode(struct hfcsusb * hw)1530 setPortMode(struct hfcsusb *hw)
1531 {
1532 if (debug & DEBUG_HW)
1533 printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1534 (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1535
1536 if (hw->protocol == ISDN_P_TE_S0) {
1537 write_reg(hw, HFCUSB_SCTRL, 0x40);
1538 write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1539 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1540 write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1541 write_reg(hw, HFCUSB_STATES, 3);
1542 } else {
1543 write_reg(hw, HFCUSB_SCTRL, 0x44);
1544 write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1545 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1546 write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1547 write_reg(hw, HFCUSB_STATES, 1);
1548 }
1549 }
1550
1551 static void
reset_hfcsusb(struct hfcsusb * hw)1552 reset_hfcsusb(struct hfcsusb *hw)
1553 {
1554 struct usb_fifo *fifo;
1555 int i;
1556
1557 if (debug & DEBUG_HW)
1558 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1559
1560 /* do Chip reset */
1561 write_reg(hw, HFCUSB_CIRM, 8);
1562
1563 /* aux = output, reset off */
1564 write_reg(hw, HFCUSB_CIRM, 0x10);
1565
1566 /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1567 write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1568 ((hw->packet_size / 8) << 4));
1569
1570 /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1571 write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1572
1573 /* enable PCM/GCI master mode */
1574 write_reg(hw, HFCUSB_MST_MODE1, 0); /* set default values */
1575 write_reg(hw, HFCUSB_MST_MODE0, 1); /* enable master mode */
1576
1577 /* init the fifos */
1578 write_reg(hw, HFCUSB_F_THRES,
1579 (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1580
1581 fifo = hw->fifos;
1582 for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1583 write_reg(hw, HFCUSB_FIFO, i); /* select the desired fifo */
1584 fifo[i].max_size =
1585 (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1586 fifo[i].last_urblen = 0;
1587
1588 /* set 2 bit for D- & E-channel */
1589 write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1590
1591 /* enable all fifos */
1592 if (i == HFCUSB_D_TX)
1593 write_reg(hw, HFCUSB_CON_HDLC,
1594 (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1595 else
1596 write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1597 write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1598 }
1599
1600 write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1601 handle_led(hw, LED_POWER_ON);
1602 }
1603
1604 /* start USB data pipes dependand on device's endpoint configuration */
1605 static void
hfcsusb_start_endpoint(struct hfcsusb * hw,int channel)1606 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1607 {
1608 /* quick check if endpoint already running */
1609 if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1610 return;
1611 if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1612 return;
1613 if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1614 return;
1615 if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1616 return;
1617
1618 /* start rx endpoints using USB INT IN method */
1619 if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1620 start_int_fifo(hw->fifos + channel * 2 + 1);
1621
1622 /* start rx endpoints using USB ISO IN method */
1623 if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1624 switch (channel) {
1625 case HFC_CHAN_D:
1626 start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1627 ISOC_PACKETS_D,
1628 (usb_complete_t)rx_iso_complete,
1629 16);
1630 break;
1631 case HFC_CHAN_E:
1632 start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1633 ISOC_PACKETS_D,
1634 (usb_complete_t)rx_iso_complete,
1635 16);
1636 break;
1637 case HFC_CHAN_B1:
1638 start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1639 ISOC_PACKETS_B,
1640 (usb_complete_t)rx_iso_complete,
1641 16);
1642 break;
1643 case HFC_CHAN_B2:
1644 start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1645 ISOC_PACKETS_B,
1646 (usb_complete_t)rx_iso_complete,
1647 16);
1648 break;
1649 }
1650 }
1651
1652 /* start tx endpoints using USB ISO OUT method */
1653 switch (channel) {
1654 case HFC_CHAN_D:
1655 start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1656 ISOC_PACKETS_B,
1657 (usb_complete_t)tx_iso_complete, 1);
1658 break;
1659 case HFC_CHAN_B1:
1660 start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1661 ISOC_PACKETS_D,
1662 (usb_complete_t)tx_iso_complete, 1);
1663 break;
1664 case HFC_CHAN_B2:
1665 start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1666 ISOC_PACKETS_B,
1667 (usb_complete_t)tx_iso_complete, 1);
1668 break;
1669 }
1670 }
1671
1672 /* stop USB data pipes dependand on device's endpoint configuration */
1673 static void
hfcsusb_stop_endpoint(struct hfcsusb * hw,int channel)1674 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1675 {
1676 /* quick check if endpoint currently running */
1677 if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1678 return;
1679 if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1680 return;
1681 if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1682 return;
1683 if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1684 return;
1685
1686 /* rx endpoints using USB INT IN method */
1687 if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1688 stop_int_gracefull(hw->fifos + channel * 2 + 1);
1689
1690 /* rx endpoints using USB ISO IN method */
1691 if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1692 stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1693
1694 /* tx endpoints using USB ISO OUT method */
1695 if (channel != HFC_CHAN_E)
1696 stop_iso_gracefull(hw->fifos + channel * 2);
1697 }
1698
1699
1700 /* Hardware Initialization */
1701 static int
setup_hfcsusb(struct hfcsusb * hw)1702 setup_hfcsusb(struct hfcsusb *hw)
1703 {
1704 void *dmabuf = kmalloc(sizeof(u_char), GFP_KERNEL);
1705 u_char b;
1706 int ret;
1707
1708 if (debug & DBG_HFC_CALL_TRACE)
1709 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1710
1711 if (!dmabuf)
1712 return -ENOMEM;
1713
1714 ret = read_reg_atomic(hw, HFCUSB_CHIP_ID, dmabuf);
1715
1716 memcpy(&b, dmabuf, sizeof(u_char));
1717 kfree(dmabuf);
1718
1719 /* check the chip id */
1720 if (ret != 1) {
1721 printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1722 hw->name, __func__);
1723 return 1;
1724 }
1725 if (b != HFCUSB_CHIPID) {
1726 printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1727 hw->name, __func__, b);
1728 return 1;
1729 }
1730
1731 /* first set the needed config, interface and alternate */
1732 (void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1733
1734 hw->led_state = 0;
1735
1736 /* init the background machinery for control requests */
1737 hw->ctrl_read.bRequestType = 0xc0;
1738 hw->ctrl_read.bRequest = 1;
1739 hw->ctrl_read.wLength = cpu_to_le16(1);
1740 hw->ctrl_write.bRequestType = 0x40;
1741 hw->ctrl_write.bRequest = 0;
1742 hw->ctrl_write.wLength = 0;
1743 usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1744 (u_char *)&hw->ctrl_write, NULL, 0,
1745 (usb_complete_t)ctrl_complete, hw);
1746
1747 reset_hfcsusb(hw);
1748 return 0;
1749 }
1750
1751 static void
release_hw(struct hfcsusb * hw)1752 release_hw(struct hfcsusb *hw)
1753 {
1754 if (debug & DBG_HFC_CALL_TRACE)
1755 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1756
1757 /*
1758 * stop all endpoints gracefully
1759 * TODO: mISDN_core should generate CLOSE_CHANNEL
1760 * signals after calling mISDN_unregister_device()
1761 */
1762 hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1763 hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1764 hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1765 if (hw->fifos[HFCUSB_PCM_RX].pipe)
1766 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1767 if (hw->protocol == ISDN_P_TE_S0)
1768 l1_event(hw->dch.l1, CLOSE_CHANNEL);
1769
1770 mISDN_unregister_device(&hw->dch.dev);
1771 mISDN_freebchannel(&hw->bch[1]);
1772 mISDN_freebchannel(&hw->bch[0]);
1773 mISDN_freedchannel(&hw->dch);
1774
1775 if (hw->ctrl_urb) {
1776 usb_kill_urb(hw->ctrl_urb);
1777 usb_free_urb(hw->ctrl_urb);
1778 hw->ctrl_urb = NULL;
1779 }
1780
1781 if (hw->intf)
1782 usb_set_intfdata(hw->intf, NULL);
1783 list_del(&hw->list);
1784 kfree(hw);
1785 hw = NULL;
1786 }
1787
1788 static void
deactivate_bchannel(struct bchannel * bch)1789 deactivate_bchannel(struct bchannel *bch)
1790 {
1791 struct hfcsusb *hw = bch->hw;
1792 u_long flags;
1793
1794 if (bch->debug & DEBUG_HW)
1795 printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1796 hw->name, __func__, bch->nr);
1797
1798 spin_lock_irqsave(&hw->lock, flags);
1799 mISDN_clear_bchannel(bch);
1800 spin_unlock_irqrestore(&hw->lock, flags);
1801 hfcsusb_setup_bch(bch, ISDN_P_NONE);
1802 hfcsusb_stop_endpoint(hw, bch->nr - 1);
1803 }
1804
1805 /*
1806 * Layer 1 B-channel hardware access
1807 */
1808 static int
hfc_bctrl(struct mISDNchannel * ch,u_int cmd,void * arg)1809 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1810 {
1811 struct bchannel *bch = container_of(ch, struct bchannel, ch);
1812 int ret = -EINVAL;
1813
1814 if (bch->debug & DEBUG_HW)
1815 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1816
1817 switch (cmd) {
1818 case HW_TESTRX_RAW:
1819 case HW_TESTRX_HDLC:
1820 case HW_TESTRX_OFF:
1821 ret = -EINVAL;
1822 break;
1823
1824 case CLOSE_CHANNEL:
1825 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1826 deactivate_bchannel(bch);
1827 ch->protocol = ISDN_P_NONE;
1828 ch->peer = NULL;
1829 module_put(THIS_MODULE);
1830 ret = 0;
1831 break;
1832 case CONTROL_CHANNEL:
1833 ret = channel_bctrl(bch, arg);
1834 break;
1835 default:
1836 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1837 __func__, cmd);
1838 }
1839 return ret;
1840 }
1841
1842 static int
setup_instance(struct hfcsusb * hw,struct device * parent)1843 setup_instance(struct hfcsusb *hw, struct device *parent)
1844 {
1845 u_long flags;
1846 int err, i;
1847
1848 if (debug & DBG_HFC_CALL_TRACE)
1849 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1850
1851 spin_lock_init(&hw->ctrl_lock);
1852 spin_lock_init(&hw->lock);
1853
1854 mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1855 hw->dch.debug = debug & 0xFFFF;
1856 hw->dch.hw = hw;
1857 hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1858 hw->dch.dev.D.send = hfcusb_l2l1D;
1859 hw->dch.dev.D.ctrl = hfc_dctrl;
1860
1861 /* enable E-Channel logging */
1862 if (hw->fifos[HFCUSB_PCM_RX].pipe)
1863 mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1864
1865 hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1866 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1867 hw->dch.dev.nrbchan = 2;
1868 for (i = 0; i < 2; i++) {
1869 hw->bch[i].nr = i + 1;
1870 set_channelmap(i + 1, hw->dch.dev.channelmap);
1871 hw->bch[i].debug = debug;
1872 mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1873 hw->bch[i].hw = hw;
1874 hw->bch[i].ch.send = hfcusb_l2l1B;
1875 hw->bch[i].ch.ctrl = hfc_bctrl;
1876 hw->bch[i].ch.nr = i + 1;
1877 list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1878 }
1879
1880 hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1881 hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1882 hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1883 hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1884 hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1885 hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1886 hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1887 hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1888
1889 err = setup_hfcsusb(hw);
1890 if (err)
1891 goto out;
1892
1893 snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1894 hfcsusb_cnt + 1);
1895 printk(KERN_INFO "%s: registered as '%s'\n",
1896 DRIVER_NAME, hw->name);
1897
1898 err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1899 if (err)
1900 goto out;
1901
1902 hfcsusb_cnt++;
1903 write_lock_irqsave(&HFClock, flags);
1904 list_add_tail(&hw->list, &HFClist);
1905 write_unlock_irqrestore(&HFClock, flags);
1906 return 0;
1907
1908 out:
1909 mISDN_freebchannel(&hw->bch[1]);
1910 mISDN_freebchannel(&hw->bch[0]);
1911 mISDN_freedchannel(&hw->dch);
1912 kfree(hw);
1913 return err;
1914 }
1915
1916 static int
hfcsusb_probe(struct usb_interface * intf,const struct usb_device_id * id)1917 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1918 {
1919 struct hfcsusb *hw;
1920 struct usb_device *dev = interface_to_usbdev(intf);
1921 struct usb_host_interface *iface = intf->cur_altsetting;
1922 struct usb_host_interface *iface_used = NULL;
1923 struct usb_host_endpoint *ep;
1924 struct hfcsusb_vdata *driver_info;
1925 int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1926 probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1927 ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1928 alt_used = 0;
1929
1930 vend_idx = 0xffff;
1931 for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1932 if ((le16_to_cpu(dev->descriptor.idVendor)
1933 == hfcsusb_idtab[i].idVendor) &&
1934 (le16_to_cpu(dev->descriptor.idProduct)
1935 == hfcsusb_idtab[i].idProduct)) {
1936 vend_idx = i;
1937 continue;
1938 }
1939 }
1940
1941 printk(KERN_DEBUG
1942 "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1943 __func__, ifnum, iface->desc.bAlternateSetting,
1944 intf->minor, vend_idx);
1945
1946 if (vend_idx == 0xffff) {
1947 printk(KERN_WARNING
1948 "%s: no valid vendor found in USB descriptor\n",
1949 __func__);
1950 return -EIO;
1951 }
1952 /* if vendor and product ID is OK, start probing alternate settings */
1953 alt_idx = 0;
1954 small_match = -1;
1955
1956 /* default settings */
1957 iso_packet_size = 16;
1958 packet_size = 64;
1959
1960 while (alt_idx < intf->num_altsetting) {
1961 iface = intf->altsetting + alt_idx;
1962 probe_alt_setting = iface->desc.bAlternateSetting;
1963 cfg_used = 0;
1964
1965 while (validconf[cfg_used][0]) {
1966 cfg_found = 1;
1967 vcf = validconf[cfg_used];
1968 ep = iface->endpoint;
1969 memcpy(cmptbl, vcf, 16 * sizeof(int));
1970
1971 /* check for all endpoints in this alternate setting */
1972 for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1973 ep_addr = ep->desc.bEndpointAddress;
1974
1975 /* get endpoint base */
1976 idx = ((ep_addr & 0x7f) - 1) * 2;
1977 if (idx > 15)
1978 return -EIO;
1979
1980 if (ep_addr & 0x80)
1981 idx++;
1982 attr = ep->desc.bmAttributes;
1983
1984 if (cmptbl[idx] != EP_NOP) {
1985 if (cmptbl[idx] == EP_NUL)
1986 cfg_found = 0;
1987 if (attr == USB_ENDPOINT_XFER_INT
1988 && cmptbl[idx] == EP_INT)
1989 cmptbl[idx] = EP_NUL;
1990 if (attr == USB_ENDPOINT_XFER_BULK
1991 && cmptbl[idx] == EP_BLK)
1992 cmptbl[idx] = EP_NUL;
1993 if (attr == USB_ENDPOINT_XFER_ISOC
1994 && cmptbl[idx] == EP_ISO)
1995 cmptbl[idx] = EP_NUL;
1996
1997 if (attr == USB_ENDPOINT_XFER_INT &&
1998 ep->desc.bInterval < vcf[17]) {
1999 cfg_found = 0;
2000 }
2001 }
2002 ep++;
2003 }
2004
2005 for (i = 0; i < 16; i++)
2006 if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
2007 cfg_found = 0;
2008
2009 if (cfg_found) {
2010 if (small_match < cfg_used) {
2011 small_match = cfg_used;
2012 alt_used = probe_alt_setting;
2013 iface_used = iface;
2014 }
2015 }
2016 cfg_used++;
2017 }
2018 alt_idx++;
2019 } /* (alt_idx < intf->num_altsetting) */
2020
2021 /* not found a valid USB Ta Endpoint config */
2022 if (small_match == -1)
2023 return -EIO;
2024
2025 iface = iface_used;
2026 hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2027 if (!hw)
2028 return -ENOMEM; /* got no mem */
2029 snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2030
2031 ep = iface->endpoint;
2032 vcf = validconf[small_match];
2033
2034 for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2035 struct usb_fifo *f;
2036
2037 ep_addr = ep->desc.bEndpointAddress;
2038 /* get endpoint base */
2039 idx = ((ep_addr & 0x7f) - 1) * 2;
2040 if (ep_addr & 0x80)
2041 idx++;
2042 f = &hw->fifos[idx & 7];
2043
2044 /* init Endpoints */
2045 if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2046 ep++;
2047 continue;
2048 }
2049 switch (ep->desc.bmAttributes) {
2050 case USB_ENDPOINT_XFER_INT:
2051 f->pipe = usb_rcvintpipe(dev,
2052 ep->desc.bEndpointAddress);
2053 f->usb_transfer_mode = USB_INT;
2054 packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2055 break;
2056 case USB_ENDPOINT_XFER_BULK:
2057 if (ep_addr & 0x80)
2058 f->pipe = usb_rcvbulkpipe(dev,
2059 ep->desc.bEndpointAddress);
2060 else
2061 f->pipe = usb_sndbulkpipe(dev,
2062 ep->desc.bEndpointAddress);
2063 f->usb_transfer_mode = USB_BULK;
2064 packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2065 break;
2066 case USB_ENDPOINT_XFER_ISOC:
2067 if (ep_addr & 0x80)
2068 f->pipe = usb_rcvisocpipe(dev,
2069 ep->desc.bEndpointAddress);
2070 else
2071 f->pipe = usb_sndisocpipe(dev,
2072 ep->desc.bEndpointAddress);
2073 f->usb_transfer_mode = USB_ISOC;
2074 iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2075 break;
2076 default:
2077 f->pipe = 0;
2078 }
2079
2080 if (f->pipe) {
2081 f->fifonum = idx & 7;
2082 f->hw = hw;
2083 f->usb_packet_maxlen =
2084 le16_to_cpu(ep->desc.wMaxPacketSize);
2085 f->intervall = ep->desc.bInterval;
2086 }
2087 ep++;
2088 }
2089 hw->dev = dev; /* save device */
2090 hw->if_used = ifnum; /* save used interface */
2091 hw->alt_used = alt_used; /* and alternate config */
2092 hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2093 hw->cfg_used = vcf[16]; /* store used config */
2094 hw->vend_idx = vend_idx; /* store found vendor */
2095 hw->packet_size = packet_size;
2096 hw->iso_packet_size = iso_packet_size;
2097
2098 /* create the control pipes needed for register access */
2099 hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2100 hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2101
2102 driver_info = (struct hfcsusb_vdata *)
2103 hfcsusb_idtab[vend_idx].driver_info;
2104
2105 hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2106 if (!hw->ctrl_urb) {
2107 pr_warn("%s: No memory for control urb\n",
2108 driver_info->vend_name);
2109 kfree(hw);
2110 return -ENOMEM;
2111 }
2112
2113 pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2114 hw->name, __func__, driver_info->vend_name,
2115 conf_str[small_match], ifnum, alt_used);
2116
2117 if (setup_instance(hw, dev->dev.parent))
2118 return -EIO;
2119
2120 hw->intf = intf;
2121 usb_set_intfdata(hw->intf, hw);
2122 return 0;
2123 }
2124
2125 /* function called when an active device is removed */
2126 static void
hfcsusb_disconnect(struct usb_interface * intf)2127 hfcsusb_disconnect(struct usb_interface *intf)
2128 {
2129 struct hfcsusb *hw = usb_get_intfdata(intf);
2130 struct hfcsusb *next;
2131 int cnt = 0;
2132
2133 printk(KERN_INFO "%s: device disconnected\n", hw->name);
2134
2135 handle_led(hw, LED_POWER_OFF);
2136 release_hw(hw);
2137
2138 list_for_each_entry_safe(hw, next, &HFClist, list)
2139 cnt++;
2140 if (!cnt)
2141 hfcsusb_cnt = 0;
2142
2143 usb_set_intfdata(intf, NULL);
2144 }
2145
2146 static struct usb_driver hfcsusb_drv = {
2147 .name = DRIVER_NAME,
2148 .id_table = hfcsusb_idtab,
2149 .probe = hfcsusb_probe,
2150 .disconnect = hfcsusb_disconnect,
2151 .disable_hub_initiated_lpm = 1,
2152 };
2153
2154 module_usb_driver(hfcsusb_drv);
2155