• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2016 CNEX Labs
3  * Initial release: Javier Gonzalez <javier@cnexlabs.com>
4  *
5  * Based upon the circular ringbuffer.
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License version
9  * 2 as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * pblk-rb.c - pblk's write buffer
17  */
18 
19 #include <linux/circ_buf.h>
20 
21 #include "pblk.h"
22 
23 static DECLARE_RWSEM(pblk_rb_lock);
24 
pblk_rb_data_free(struct pblk_rb * rb)25 void pblk_rb_data_free(struct pblk_rb *rb)
26 {
27 	struct pblk_rb_pages *p, *t;
28 
29 	down_write(&pblk_rb_lock);
30 	list_for_each_entry_safe(p, t, &rb->pages, list) {
31 		free_pages((unsigned long)page_address(p->pages), p->order);
32 		list_del(&p->list);
33 		kfree(p);
34 	}
35 	up_write(&pblk_rb_lock);
36 }
37 
38 /*
39  * Initialize ring buffer. The data and metadata buffers must be previously
40  * allocated and their size must be a power of two
41  * (Documentation/circular-buffers.txt)
42  */
pblk_rb_init(struct pblk_rb * rb,struct pblk_rb_entry * rb_entry_base,unsigned int power_size,unsigned int power_seg_sz)43 int pblk_rb_init(struct pblk_rb *rb, struct pblk_rb_entry *rb_entry_base,
44 		 unsigned int power_size, unsigned int power_seg_sz)
45 {
46 	struct pblk *pblk = container_of(rb, struct pblk, rwb);
47 	unsigned int init_entry = 0;
48 	unsigned int alloc_order = power_size;
49 	unsigned int max_order = MAX_ORDER - 1;
50 	unsigned int order, iter;
51 
52 	down_write(&pblk_rb_lock);
53 	rb->entries = rb_entry_base;
54 	rb->seg_size = (1 << power_seg_sz);
55 	rb->nr_entries = (1 << power_size);
56 	rb->mem = rb->subm = rb->sync = rb->l2p_update = 0;
57 	rb->sync_point = EMPTY_ENTRY;
58 
59 	spin_lock_init(&rb->w_lock);
60 	spin_lock_init(&rb->s_lock);
61 
62 	INIT_LIST_HEAD(&rb->pages);
63 
64 	if (alloc_order >= max_order) {
65 		order = max_order;
66 		iter = (1 << (alloc_order - max_order));
67 	} else {
68 		order = alloc_order;
69 		iter = 1;
70 	}
71 
72 	do {
73 		struct pblk_rb_entry *entry;
74 		struct pblk_rb_pages *page_set;
75 		void *kaddr;
76 		unsigned long set_size;
77 		int i;
78 
79 		page_set = kmalloc(sizeof(struct pblk_rb_pages), GFP_KERNEL);
80 		if (!page_set) {
81 			up_write(&pblk_rb_lock);
82 			return -ENOMEM;
83 		}
84 
85 		page_set->order = order;
86 		page_set->pages = alloc_pages(GFP_KERNEL, order);
87 		if (!page_set->pages) {
88 			kfree(page_set);
89 			pblk_rb_data_free(rb);
90 			up_write(&pblk_rb_lock);
91 			return -ENOMEM;
92 		}
93 		kaddr = page_address(page_set->pages);
94 
95 		entry = &rb->entries[init_entry];
96 		entry->data = kaddr;
97 		entry->cacheline = pblk_cacheline_to_addr(init_entry++);
98 		entry->w_ctx.flags = PBLK_WRITABLE_ENTRY;
99 
100 		set_size = (1 << order);
101 		for (i = 1; i < set_size; i++) {
102 			entry = &rb->entries[init_entry];
103 			entry->cacheline = pblk_cacheline_to_addr(init_entry++);
104 			entry->data = kaddr + (i * rb->seg_size);
105 			entry->w_ctx.flags = PBLK_WRITABLE_ENTRY;
106 			bio_list_init(&entry->w_ctx.bios);
107 		}
108 
109 		list_add_tail(&page_set->list, &rb->pages);
110 		iter--;
111 	} while (iter > 0);
112 	up_write(&pblk_rb_lock);
113 
114 #ifdef CONFIG_NVM_DEBUG
115 	atomic_set(&rb->inflight_sync_point, 0);
116 #endif
117 
118 	/*
119 	 * Initialize rate-limiter, which controls access to the write buffer
120 	 * but user and GC I/O
121 	 */
122 	pblk_rl_init(&pblk->rl, rb->nr_entries);
123 
124 	return 0;
125 }
126 
127 /*
128  * pblk_rb_calculate_size -- calculate the size of the write buffer
129  */
pblk_rb_calculate_size(unsigned int nr_entries)130 unsigned int pblk_rb_calculate_size(unsigned int nr_entries)
131 {
132 	/* Alloc a write buffer that can at least fit 128 entries */
133 	return (1 << max(get_count_order(nr_entries), 7));
134 }
135 
pblk_rb_entries_ref(struct pblk_rb * rb)136 void *pblk_rb_entries_ref(struct pblk_rb *rb)
137 {
138 	return rb->entries;
139 }
140 
clean_wctx(struct pblk_w_ctx * w_ctx)141 static void clean_wctx(struct pblk_w_ctx *w_ctx)
142 {
143 	int flags;
144 
145 	flags = READ_ONCE(w_ctx->flags);
146 	WARN_ONCE(!(flags & PBLK_SUBMITTED_ENTRY),
147 			"pblk: overwriting unsubmitted data\n");
148 
149 	/* Release flags on context. Protect from writes and reads */
150 	smp_store_release(&w_ctx->flags, PBLK_WRITABLE_ENTRY);
151 	pblk_ppa_set_empty(&w_ctx->ppa);
152 	w_ctx->lba = ADDR_EMPTY;
153 }
154 
155 #define pblk_rb_ring_count(head, tail, size) CIRC_CNT(head, tail, size)
156 #define pblk_rb_ring_space(rb, head, tail, size) \
157 					(CIRC_SPACE(head, tail, size))
158 
159 /*
160  * Buffer space is calculated with respect to the back pointer signaling
161  * synchronized entries to the media.
162  */
pblk_rb_space(struct pblk_rb * rb)163 static unsigned int pblk_rb_space(struct pblk_rb *rb)
164 {
165 	unsigned int mem = READ_ONCE(rb->mem);
166 	unsigned int sync = READ_ONCE(rb->sync);
167 
168 	return pblk_rb_ring_space(rb, mem, sync, rb->nr_entries);
169 }
170 
171 /*
172  * Buffer count is calculated with respect to the submission entry signaling the
173  * entries that are available to send to the media
174  */
pblk_rb_read_count(struct pblk_rb * rb)175 unsigned int pblk_rb_read_count(struct pblk_rb *rb)
176 {
177 	unsigned int mem = READ_ONCE(rb->mem);
178 	unsigned int subm = READ_ONCE(rb->subm);
179 
180 	return pblk_rb_ring_count(mem, subm, rb->nr_entries);
181 }
182 
pblk_rb_sync_count(struct pblk_rb * rb)183 unsigned int pblk_rb_sync_count(struct pblk_rb *rb)
184 {
185 	unsigned int mem = READ_ONCE(rb->mem);
186 	unsigned int sync = READ_ONCE(rb->sync);
187 
188 	return pblk_rb_ring_count(mem, sync, rb->nr_entries);
189 }
190 
pblk_rb_read_commit(struct pblk_rb * rb,unsigned int nr_entries)191 unsigned int pblk_rb_read_commit(struct pblk_rb *rb, unsigned int nr_entries)
192 {
193 	unsigned int subm;
194 
195 	subm = READ_ONCE(rb->subm);
196 	/* Commit read means updating submission pointer */
197 	smp_store_release(&rb->subm,
198 				(subm + nr_entries) & (rb->nr_entries - 1));
199 
200 	return subm;
201 }
202 
__pblk_rb_update_l2p(struct pblk_rb * rb,unsigned int * l2p_upd,unsigned int to_update)203 static int __pblk_rb_update_l2p(struct pblk_rb *rb, unsigned int *l2p_upd,
204 				unsigned int to_update)
205 {
206 	struct pblk *pblk = container_of(rb, struct pblk, rwb);
207 	struct pblk_line *line;
208 	struct pblk_rb_entry *entry;
209 	struct pblk_w_ctx *w_ctx;
210 	unsigned int user_io = 0, gc_io = 0;
211 	unsigned int i;
212 	int flags;
213 
214 	for (i = 0; i < to_update; i++) {
215 		entry = &rb->entries[*l2p_upd];
216 		w_ctx = &entry->w_ctx;
217 
218 		flags = READ_ONCE(entry->w_ctx.flags);
219 		if (flags & PBLK_IOTYPE_USER)
220 			user_io++;
221 		else if (flags & PBLK_IOTYPE_GC)
222 			gc_io++;
223 		else
224 			WARN(1, "pblk: unknown IO type\n");
225 
226 		pblk_update_map_dev(pblk, w_ctx->lba, w_ctx->ppa,
227 							entry->cacheline);
228 
229 		line = &pblk->lines[pblk_tgt_ppa_to_line(w_ctx->ppa)];
230 		kref_put(&line->ref, pblk_line_put);
231 		clean_wctx(w_ctx);
232 		*l2p_upd = (*l2p_upd + 1) & (rb->nr_entries - 1);
233 	}
234 
235 	pblk_rl_out(&pblk->rl, user_io, gc_io);
236 
237 	return 0;
238 }
239 
240 /*
241  * When we move the l2p_update pointer, we update the l2p table - lookups will
242  * point to the physical address instead of to the cacheline in the write buffer
243  * from this moment on.
244  */
pblk_rb_update_l2p(struct pblk_rb * rb,unsigned int nr_entries,unsigned int mem,unsigned int sync)245 static int pblk_rb_update_l2p(struct pblk_rb *rb, unsigned int nr_entries,
246 			      unsigned int mem, unsigned int sync)
247 {
248 	unsigned int space, count;
249 	int ret = 0;
250 
251 	lockdep_assert_held(&rb->w_lock);
252 
253 	/* Update l2p only as buffer entries are being overwritten */
254 	space = pblk_rb_ring_space(rb, mem, rb->l2p_update, rb->nr_entries);
255 	if (space > nr_entries)
256 		goto out;
257 
258 	count = nr_entries - space;
259 	/* l2p_update used exclusively under rb->w_lock */
260 	ret = __pblk_rb_update_l2p(rb, &rb->l2p_update, count);
261 
262 out:
263 	return ret;
264 }
265 
266 /*
267  * Update the l2p entry for all sectors stored on the write buffer. This means
268  * that all future lookups to the l2p table will point to a device address, not
269  * to the cacheline in the write buffer.
270  */
pblk_rb_sync_l2p(struct pblk_rb * rb)271 void pblk_rb_sync_l2p(struct pblk_rb *rb)
272 {
273 	unsigned int sync;
274 	unsigned int to_update;
275 
276 	spin_lock(&rb->w_lock);
277 
278 	/* Protect from reads and writes */
279 	sync = smp_load_acquire(&rb->sync);
280 
281 	to_update = pblk_rb_ring_count(sync, rb->l2p_update, rb->nr_entries);
282 	__pblk_rb_update_l2p(rb, &rb->l2p_update, to_update);
283 
284 	spin_unlock(&rb->w_lock);
285 }
286 
287 /*
288  * Write @nr_entries to ring buffer from @data buffer if there is enough space.
289  * Typically, 4KB data chunks coming from a bio will be copied to the ring
290  * buffer, thus the write will fail if not all incoming data can be copied.
291  *
292  */
__pblk_rb_write_entry(struct pblk_rb * rb,void * data,struct pblk_w_ctx w_ctx,struct pblk_rb_entry * entry)293 static void __pblk_rb_write_entry(struct pblk_rb *rb, void *data,
294 				  struct pblk_w_ctx w_ctx,
295 				  struct pblk_rb_entry *entry)
296 {
297 	memcpy(entry->data, data, rb->seg_size);
298 
299 	entry->w_ctx.lba = w_ctx.lba;
300 	entry->w_ctx.ppa = w_ctx.ppa;
301 }
302 
pblk_rb_write_entry_user(struct pblk_rb * rb,void * data,struct pblk_w_ctx w_ctx,unsigned int ring_pos)303 void pblk_rb_write_entry_user(struct pblk_rb *rb, void *data,
304 			      struct pblk_w_ctx w_ctx, unsigned int ring_pos)
305 {
306 	struct pblk *pblk = container_of(rb, struct pblk, rwb);
307 	struct pblk_rb_entry *entry;
308 	int flags;
309 
310 	entry = &rb->entries[ring_pos];
311 	flags = READ_ONCE(entry->w_ctx.flags);
312 #ifdef CONFIG_NVM_DEBUG
313 	/* Caller must guarantee that the entry is free */
314 	BUG_ON(!(flags & PBLK_WRITABLE_ENTRY));
315 #endif
316 
317 	__pblk_rb_write_entry(rb, data, w_ctx, entry);
318 
319 	pblk_update_map_cache(pblk, w_ctx.lba, entry->cacheline);
320 	flags = w_ctx.flags | PBLK_WRITTEN_DATA;
321 
322 	/* Release flags on write context. Protect from writes */
323 	smp_store_release(&entry->w_ctx.flags, flags);
324 }
325 
pblk_rb_write_entry_gc(struct pblk_rb * rb,void * data,struct pblk_w_ctx w_ctx,struct pblk_line * gc_line,unsigned int ring_pos)326 void pblk_rb_write_entry_gc(struct pblk_rb *rb, void *data,
327 			    struct pblk_w_ctx w_ctx, struct pblk_line *gc_line,
328 			    unsigned int ring_pos)
329 {
330 	struct pblk *pblk = container_of(rb, struct pblk, rwb);
331 	struct pblk_rb_entry *entry;
332 	int flags;
333 
334 	entry = &rb->entries[ring_pos];
335 	flags = READ_ONCE(entry->w_ctx.flags);
336 #ifdef CONFIG_NVM_DEBUG
337 	/* Caller must guarantee that the entry is free */
338 	BUG_ON(!(flags & PBLK_WRITABLE_ENTRY));
339 #endif
340 
341 	__pblk_rb_write_entry(rb, data, w_ctx, entry);
342 
343 	if (!pblk_update_map_gc(pblk, w_ctx.lba, entry->cacheline, gc_line))
344 		entry->w_ctx.lba = ADDR_EMPTY;
345 
346 	flags = w_ctx.flags | PBLK_WRITTEN_DATA;
347 
348 	/* Release flags on write context. Protect from writes */
349 	smp_store_release(&entry->w_ctx.flags, flags);
350 }
351 
pblk_rb_sync_point_set(struct pblk_rb * rb,struct bio * bio,unsigned int pos)352 static int pblk_rb_sync_point_set(struct pblk_rb *rb, struct bio *bio,
353 				  unsigned int pos)
354 {
355 	struct pblk_rb_entry *entry;
356 	unsigned int subm, sync_point;
357 	int flags;
358 
359 	subm = READ_ONCE(rb->subm);
360 
361 #ifdef CONFIG_NVM_DEBUG
362 	atomic_inc(&rb->inflight_sync_point);
363 #endif
364 
365 	if (pos == subm)
366 		return 0;
367 
368 	sync_point = (pos == 0) ? (rb->nr_entries - 1) : (pos - 1);
369 	entry = &rb->entries[sync_point];
370 
371 	flags = READ_ONCE(entry->w_ctx.flags);
372 	flags |= PBLK_FLUSH_ENTRY;
373 
374 	/* Release flags on context. Protect from writes */
375 	smp_store_release(&entry->w_ctx.flags, flags);
376 
377 	/* Protect syncs */
378 	smp_store_release(&rb->sync_point, sync_point);
379 
380 	if (!bio)
381 		return 0;
382 
383 	spin_lock_irq(&rb->s_lock);
384 	bio_list_add(&entry->w_ctx.bios, bio);
385 	spin_unlock_irq(&rb->s_lock);
386 
387 	return 1;
388 }
389 
__pblk_rb_may_write(struct pblk_rb * rb,unsigned int nr_entries,unsigned int * pos)390 static int __pblk_rb_may_write(struct pblk_rb *rb, unsigned int nr_entries,
391 			       unsigned int *pos)
392 {
393 	unsigned int mem;
394 	unsigned int sync;
395 
396 	sync = READ_ONCE(rb->sync);
397 	mem = READ_ONCE(rb->mem);
398 
399 	if (pblk_rb_ring_space(rb, mem, sync, rb->nr_entries) < nr_entries)
400 		return 0;
401 
402 	if (pblk_rb_update_l2p(rb, nr_entries, mem, sync))
403 		return 0;
404 
405 	*pos = mem;
406 
407 	return 1;
408 }
409 
pblk_rb_may_write(struct pblk_rb * rb,unsigned int nr_entries,unsigned int * pos)410 static int pblk_rb_may_write(struct pblk_rb *rb, unsigned int nr_entries,
411 			     unsigned int *pos)
412 {
413 	if (!__pblk_rb_may_write(rb, nr_entries, pos))
414 		return 0;
415 
416 	/* Protect from read count */
417 	smp_store_release(&rb->mem, (*pos + nr_entries) & (rb->nr_entries - 1));
418 	return 1;
419 }
420 
pblk_rb_flush(struct pblk_rb * rb)421 void pblk_rb_flush(struct pblk_rb *rb)
422 {
423 	struct pblk *pblk = container_of(rb, struct pblk, rwb);
424 	unsigned int mem = READ_ONCE(rb->mem);
425 
426 	if (pblk_rb_sync_point_set(rb, NULL, mem))
427 		return;
428 
429 	pblk_write_should_kick(pblk);
430 }
431 
pblk_rb_may_write_flush(struct pblk_rb * rb,unsigned int nr_entries,unsigned int * pos,struct bio * bio,int * io_ret)432 static int pblk_rb_may_write_flush(struct pblk_rb *rb, unsigned int nr_entries,
433 				   unsigned int *pos, struct bio *bio,
434 				   int *io_ret)
435 {
436 	unsigned int mem;
437 
438 	if (!__pblk_rb_may_write(rb, nr_entries, pos))
439 		return 0;
440 
441 	mem = (*pos + nr_entries) & (rb->nr_entries - 1);
442 	*io_ret = NVM_IO_DONE;
443 
444 	if (bio->bi_opf & REQ_PREFLUSH) {
445 		struct pblk *pblk = container_of(rb, struct pblk, rwb);
446 
447 #ifdef CONFIG_NVM_DEBUG
448 		atomic_long_inc(&pblk->nr_flush);
449 #endif
450 		if (pblk_rb_sync_point_set(&pblk->rwb, bio, mem))
451 			*io_ret = NVM_IO_OK;
452 	}
453 
454 	/* Protect from read count */
455 	smp_store_release(&rb->mem, mem);
456 	return 1;
457 }
458 
459 /*
460  * Atomically check that (i) there is space on the write buffer for the
461  * incoming I/O, and (ii) the current I/O type has enough budget in the write
462  * buffer (rate-limiter).
463  */
pblk_rb_may_write_user(struct pblk_rb * rb,struct bio * bio,unsigned int nr_entries,unsigned int * pos)464 int pblk_rb_may_write_user(struct pblk_rb *rb, struct bio *bio,
465 			   unsigned int nr_entries, unsigned int *pos)
466 {
467 	struct pblk *pblk = container_of(rb, struct pblk, rwb);
468 	int io_ret;
469 
470 	spin_lock(&rb->w_lock);
471 	io_ret = pblk_rl_user_may_insert(&pblk->rl, nr_entries);
472 	if (io_ret) {
473 		spin_unlock(&rb->w_lock);
474 		return io_ret;
475 	}
476 
477 	if (!pblk_rb_may_write_flush(rb, nr_entries, pos, bio, &io_ret)) {
478 		spin_unlock(&rb->w_lock);
479 		return NVM_IO_REQUEUE;
480 	}
481 
482 	pblk_rl_user_in(&pblk->rl, nr_entries);
483 	spin_unlock(&rb->w_lock);
484 
485 	return io_ret;
486 }
487 
488 /*
489  * Look at pblk_rb_may_write_user comment
490  */
pblk_rb_may_write_gc(struct pblk_rb * rb,unsigned int nr_entries,unsigned int * pos)491 int pblk_rb_may_write_gc(struct pblk_rb *rb, unsigned int nr_entries,
492 			 unsigned int *pos)
493 {
494 	struct pblk *pblk = container_of(rb, struct pblk, rwb);
495 
496 	spin_lock(&rb->w_lock);
497 	if (!pblk_rl_gc_may_insert(&pblk->rl, nr_entries)) {
498 		spin_unlock(&rb->w_lock);
499 		return 0;
500 	}
501 
502 	if (!pblk_rb_may_write(rb, nr_entries, pos)) {
503 		spin_unlock(&rb->w_lock);
504 		return 0;
505 	}
506 
507 	pblk_rl_gc_in(&pblk->rl, nr_entries);
508 	spin_unlock(&rb->w_lock);
509 
510 	return 1;
511 }
512 
513 /*
514  * The caller of this function must ensure that the backpointer will not
515  * overwrite the entries passed on the list.
516  */
pblk_rb_read_to_bio_list(struct pblk_rb * rb,struct bio * bio,struct list_head * list,unsigned int max)517 unsigned int pblk_rb_read_to_bio_list(struct pblk_rb *rb, struct bio *bio,
518 				      struct list_head *list,
519 				      unsigned int max)
520 {
521 	struct pblk_rb_entry *entry, *tentry;
522 	struct page *page;
523 	unsigned int read = 0;
524 	int ret;
525 
526 	list_for_each_entry_safe(entry, tentry, list, index) {
527 		if (read > max) {
528 			pr_err("pblk: too many entries on list\n");
529 			goto out;
530 		}
531 
532 		page = virt_to_page(entry->data);
533 		if (!page) {
534 			pr_err("pblk: could not allocate write bio page\n");
535 			goto out;
536 		}
537 
538 		ret = bio_add_page(bio, page, rb->seg_size, 0);
539 		if (ret != rb->seg_size) {
540 			pr_err("pblk: could not add page to write bio\n");
541 			goto out;
542 		}
543 
544 		list_del(&entry->index);
545 		read++;
546 	}
547 
548 out:
549 	return read;
550 }
551 
552 /*
553  * Read available entries on rb and add them to the given bio. To avoid a memory
554  * copy, a page reference to the write buffer is used to be added to the bio.
555  *
556  * This function is used by the write thread to form the write bio that will
557  * persist data on the write buffer to the media.
558  */
pblk_rb_read_to_bio(struct pblk_rb * rb,struct nvm_rq * rqd,struct bio * bio,unsigned int pos,unsigned int nr_entries,unsigned int count)559 unsigned int pblk_rb_read_to_bio(struct pblk_rb *rb, struct nvm_rq *rqd,
560 				 struct bio *bio, unsigned int pos,
561 				 unsigned int nr_entries, unsigned int count)
562 {
563 	struct pblk *pblk = container_of(rb, struct pblk, rwb);
564 	struct request_queue *q = pblk->dev->q;
565 	struct pblk_c_ctx *c_ctx = nvm_rq_to_pdu(rqd);
566 	struct pblk_rb_entry *entry;
567 	struct page *page;
568 	unsigned int pad = 0, to_read = nr_entries;
569 	unsigned int i;
570 	int flags;
571 
572 	if (count < nr_entries) {
573 		pad = nr_entries - count;
574 		to_read = count;
575 	}
576 
577 	c_ctx->sentry = pos;
578 	c_ctx->nr_valid = to_read;
579 	c_ctx->nr_padded = pad;
580 
581 	for (i = 0; i < to_read; i++) {
582 		entry = &rb->entries[pos];
583 
584 		/* A write has been allowed into the buffer, but data is still
585 		 * being copied to it. It is ok to busy wait.
586 		 */
587 try:
588 		flags = READ_ONCE(entry->w_ctx.flags);
589 		if (!(flags & PBLK_WRITTEN_DATA)) {
590 			io_schedule();
591 			goto try;
592 		}
593 
594 		page = virt_to_page(entry->data);
595 		if (!page) {
596 			pr_err("pblk: could not allocate write bio page\n");
597 			flags &= ~PBLK_WRITTEN_DATA;
598 			flags |= PBLK_SUBMITTED_ENTRY;
599 			/* Release flags on context. Protect from writes */
600 			smp_store_release(&entry->w_ctx.flags, flags);
601 			return NVM_IO_ERR;
602 		}
603 
604 		if (bio_add_pc_page(q, bio, page, rb->seg_size, 0) !=
605 								rb->seg_size) {
606 			pr_err("pblk: could not add page to write bio\n");
607 			flags &= ~PBLK_WRITTEN_DATA;
608 			flags |= PBLK_SUBMITTED_ENTRY;
609 			/* Release flags on context. Protect from writes */
610 			smp_store_release(&entry->w_ctx.flags, flags);
611 			return NVM_IO_ERR;
612 		}
613 
614 		if (flags & PBLK_FLUSH_ENTRY) {
615 			unsigned int sync_point;
616 
617 			sync_point = READ_ONCE(rb->sync_point);
618 			if (sync_point == pos) {
619 				/* Protect syncs */
620 				smp_store_release(&rb->sync_point, EMPTY_ENTRY);
621 			}
622 
623 			flags &= ~PBLK_FLUSH_ENTRY;
624 #ifdef CONFIG_NVM_DEBUG
625 			atomic_dec(&rb->inflight_sync_point);
626 #endif
627 		}
628 
629 		flags &= ~PBLK_WRITTEN_DATA;
630 		flags |= PBLK_SUBMITTED_ENTRY;
631 
632 		/* Release flags on context. Protect from writes */
633 		smp_store_release(&entry->w_ctx.flags, flags);
634 
635 		pos = (pos + 1) & (rb->nr_entries - 1);
636 	}
637 
638 	if (pad) {
639 		if (pblk_bio_add_pages(pblk, bio, GFP_KERNEL, pad)) {
640 			pr_err("pblk: could not pad page in write bio\n");
641 			return NVM_IO_ERR;
642 		}
643 	}
644 
645 #ifdef CONFIG_NVM_DEBUG
646 	atomic_long_add(pad, &((struct pblk *)
647 			(container_of(rb, struct pblk, rwb)))->padded_writes);
648 #endif
649 
650 	return NVM_IO_OK;
651 }
652 
653 /*
654  * Copy to bio only if the lba matches the one on the given cache entry.
655  * Otherwise, it means that the entry has been overwritten, and the bio should
656  * be directed to disk.
657  */
pblk_rb_copy_to_bio(struct pblk_rb * rb,struct bio * bio,sector_t lba,struct ppa_addr ppa,int bio_iter,bool advanced_bio)658 int pblk_rb_copy_to_bio(struct pblk_rb *rb, struct bio *bio, sector_t lba,
659 			struct ppa_addr ppa, int bio_iter, bool advanced_bio)
660 {
661 	struct pblk *pblk = container_of(rb, struct pblk, rwb);
662 	struct pblk_rb_entry *entry;
663 	struct pblk_w_ctx *w_ctx;
664 	struct ppa_addr l2p_ppa;
665 	u64 pos = pblk_addr_to_cacheline(ppa);
666 	void *data;
667 	int flags;
668 	int ret = 1;
669 
670 
671 #ifdef CONFIG_NVM_DEBUG
672 	/* Caller must ensure that the access will not cause an overflow */
673 	BUG_ON(pos >= rb->nr_entries);
674 #endif
675 	entry = &rb->entries[pos];
676 	w_ctx = &entry->w_ctx;
677 	flags = READ_ONCE(w_ctx->flags);
678 
679 	spin_lock(&rb->w_lock);
680 	spin_lock(&pblk->trans_lock);
681 	l2p_ppa = pblk_trans_map_get(pblk, lba);
682 	spin_unlock(&pblk->trans_lock);
683 
684 	/* Check if the entry has been overwritten or is scheduled to be */
685 	if (!pblk_ppa_comp(l2p_ppa, ppa) || w_ctx->lba != lba ||
686 						flags & PBLK_WRITABLE_ENTRY) {
687 		ret = 0;
688 		goto out;
689 	}
690 
691 	/* Only advance the bio if it hasn't been advanced already. If advanced,
692 	 * this bio is at least a partial bio (i.e., it has partially been
693 	 * filled with data from the cache). If part of the data resides on the
694 	 * media, we will read later on
695 	 */
696 	if (unlikely(!advanced_bio))
697 		bio_advance(bio, bio_iter * PBLK_EXPOSED_PAGE_SIZE);
698 
699 	data = bio_data(bio);
700 	memcpy(data, entry->data, rb->seg_size);
701 
702 out:
703 	spin_unlock(&rb->w_lock);
704 	return ret;
705 }
706 
pblk_rb_w_ctx(struct pblk_rb * rb,unsigned int pos)707 struct pblk_w_ctx *pblk_rb_w_ctx(struct pblk_rb *rb, unsigned int pos)
708 {
709 	unsigned int entry = pos & (rb->nr_entries - 1);
710 
711 	return &rb->entries[entry].w_ctx;
712 }
713 
pblk_rb_sync_init(struct pblk_rb * rb,unsigned long * flags)714 unsigned int pblk_rb_sync_init(struct pblk_rb *rb, unsigned long *flags)
715 	__acquires(&rb->s_lock)
716 {
717 	if (flags)
718 		spin_lock_irqsave(&rb->s_lock, *flags);
719 	else
720 		spin_lock_irq(&rb->s_lock);
721 
722 	return rb->sync;
723 }
724 
pblk_rb_sync_end(struct pblk_rb * rb,unsigned long * flags)725 void pblk_rb_sync_end(struct pblk_rb *rb, unsigned long *flags)
726 	__releases(&rb->s_lock)
727 {
728 	lockdep_assert_held(&rb->s_lock);
729 
730 	if (flags)
731 		spin_unlock_irqrestore(&rb->s_lock, *flags);
732 	else
733 		spin_unlock_irq(&rb->s_lock);
734 }
735 
pblk_rb_sync_advance(struct pblk_rb * rb,unsigned int nr_entries)736 unsigned int pblk_rb_sync_advance(struct pblk_rb *rb, unsigned int nr_entries)
737 {
738 	unsigned int sync;
739 	unsigned int i;
740 
741 	lockdep_assert_held(&rb->s_lock);
742 
743 	sync = READ_ONCE(rb->sync);
744 
745 	for (i = 0; i < nr_entries; i++)
746 		sync = (sync + 1) & (rb->nr_entries - 1);
747 
748 	/* Protect from counts */
749 	smp_store_release(&rb->sync, sync);
750 
751 	return sync;
752 }
753 
pblk_rb_sync_point_count(struct pblk_rb * rb)754 unsigned int pblk_rb_sync_point_count(struct pblk_rb *rb)
755 {
756 	unsigned int subm, sync_point;
757 	unsigned int count;
758 
759 	/* Protect syncs */
760 	sync_point = smp_load_acquire(&rb->sync_point);
761 	if (sync_point == EMPTY_ENTRY)
762 		return 0;
763 
764 	subm = READ_ONCE(rb->subm);
765 
766 	/* The sync point itself counts as a sector to sync */
767 	count = pblk_rb_ring_count(sync_point, subm, rb->nr_entries) + 1;
768 
769 	return count;
770 }
771 
772 /*
773  * Scan from the current position of the sync pointer to find the entry that
774  * corresponds to the given ppa. This is necessary since write requests can be
775  * completed out of order. The assumption is that the ppa is close to the sync
776  * pointer thus the search will not take long.
777  *
778  * The caller of this function must guarantee that the sync pointer will no
779  * reach the entry while it is using the metadata associated with it. With this
780  * assumption in mind, there is no need to take the sync lock.
781  */
pblk_rb_sync_scan_entry(struct pblk_rb * rb,struct ppa_addr * ppa)782 struct pblk_rb_entry *pblk_rb_sync_scan_entry(struct pblk_rb *rb,
783 					      struct ppa_addr *ppa)
784 {
785 	unsigned int sync, subm, count;
786 	unsigned int i;
787 
788 	sync = READ_ONCE(rb->sync);
789 	subm = READ_ONCE(rb->subm);
790 	count = pblk_rb_ring_count(subm, sync, rb->nr_entries);
791 
792 	for (i = 0; i < count; i++)
793 		sync = (sync + 1) & (rb->nr_entries - 1);
794 
795 	return NULL;
796 }
797 
pblk_rb_tear_down_check(struct pblk_rb * rb)798 int pblk_rb_tear_down_check(struct pblk_rb *rb)
799 {
800 	struct pblk_rb_entry *entry;
801 	int i;
802 	int ret = 0;
803 
804 	spin_lock(&rb->w_lock);
805 	spin_lock_irq(&rb->s_lock);
806 
807 	if ((rb->mem == rb->subm) && (rb->subm == rb->sync) &&
808 				(rb->sync == rb->l2p_update) &&
809 				(rb->sync_point == EMPTY_ENTRY)) {
810 		goto out;
811 	}
812 
813 	if (!rb->entries) {
814 		ret = 1;
815 		goto out;
816 	}
817 
818 	for (i = 0; i < rb->nr_entries; i++) {
819 		entry = &rb->entries[i];
820 
821 		if (!entry->data) {
822 			ret = 1;
823 			goto out;
824 		}
825 	}
826 
827 out:
828 	spin_unlock_irq(&rb->s_lock);
829 	spin_unlock(&rb->w_lock);
830 
831 	return ret;
832 }
833 
pblk_rb_wrap_pos(struct pblk_rb * rb,unsigned int pos)834 unsigned int pblk_rb_wrap_pos(struct pblk_rb *rb, unsigned int pos)
835 {
836 	return (pos & (rb->nr_entries - 1));
837 }
838 
pblk_rb_pos_oob(struct pblk_rb * rb,u64 pos)839 int pblk_rb_pos_oob(struct pblk_rb *rb, u64 pos)
840 {
841 	return (pos >= rb->nr_entries);
842 }
843 
pblk_rb_sysfs(struct pblk_rb * rb,char * buf)844 ssize_t pblk_rb_sysfs(struct pblk_rb *rb, char *buf)
845 {
846 	struct pblk *pblk = container_of(rb, struct pblk, rwb);
847 	struct pblk_c_ctx *c;
848 	ssize_t offset;
849 	int queued_entries = 0;
850 
851 	spin_lock_irq(&rb->s_lock);
852 	list_for_each_entry(c, &pblk->compl_list, list)
853 		queued_entries++;
854 	spin_unlock_irq(&rb->s_lock);
855 
856 	if (rb->sync_point != EMPTY_ENTRY)
857 		offset = scnprintf(buf, PAGE_SIZE,
858 			"%u\t%u\t%u\t%u\t%u\t%u\t%u - %u/%u/%u - %d\n",
859 			rb->nr_entries,
860 			rb->mem,
861 			rb->subm,
862 			rb->sync,
863 			rb->l2p_update,
864 #ifdef CONFIG_NVM_DEBUG
865 			atomic_read(&rb->inflight_sync_point),
866 #else
867 			0,
868 #endif
869 			rb->sync_point,
870 			pblk_rb_read_count(rb),
871 			pblk_rb_space(rb),
872 			pblk_rb_sync_point_count(rb),
873 			queued_entries);
874 	else
875 		offset = scnprintf(buf, PAGE_SIZE,
876 			"%u\t%u\t%u\t%u\t%u\t%u\tNULL - %u/%u/%u - %d\n",
877 			rb->nr_entries,
878 			rb->mem,
879 			rb->subm,
880 			rb->sync,
881 			rb->l2p_update,
882 #ifdef CONFIG_NVM_DEBUG
883 			atomic_read(&rb->inflight_sync_point),
884 #else
885 			0,
886 #endif
887 			pblk_rb_read_count(rb),
888 			pblk_rb_space(rb),
889 			pblk_rb_sync_point_count(rb),
890 			queued_entries);
891 
892 	return offset;
893 }
894