1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
7 * of the device.
8 *
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
13 *
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
16 *
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
20 *
21 * All configuration is done via sysfs; see Documentation/bcache.txt.
22 */
23
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38
39 #include <trace/events/bcache.h>
40
41 /*
42 * Todo:
43 * register_bcache: Return errors out to userspace correctly
44 *
45 * Writeback: don't undirty key until after a cache flush
46 *
47 * Create an iterator for key pointers
48 *
49 * On btree write error, mark bucket such that it won't be freed from the cache
50 *
51 * Journalling:
52 * Check for bad keys in replay
53 * Propagate barriers
54 * Refcount journal entries in journal_replay
55 *
56 * Garbage collection:
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
59 *
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
63 *
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
66 * from being starved
67 *
68 * Add a tracepoint or somesuch to watch for writeback starvation
69 *
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
72 * obvious.
73 *
74 * Plugging?
75 *
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
78 *
79 * Superblock needs to be fleshed out for multiple cache devices
80 *
81 * Add a sysfs tunable for the number of writeback IOs in flight
82 *
83 * Add a sysfs tunable for the number of open data buckets
84 *
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
87 *
88 * Test module load/unload
89 */
90
91 #define MAX_NEED_GC 64
92 #define MAX_SAVE_PRIO 72
93
94 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
95
96 #define PTR_HASH(c, k) \
97 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
98
99 #define insert_lock(s, b) ((b)->level <= (s)->lock)
100
101 /*
102 * These macros are for recursing down the btree - they handle the details of
103 * locking and looking up nodes in the cache for you. They're best treated as
104 * mere syntax when reading code that uses them.
105 *
106 * op->lock determines whether we take a read or a write lock at a given depth.
107 * If you've got a read lock and find that you need a write lock (i.e. you're
108 * going to have to split), set op->lock and return -EINTR; btree_root() will
109 * call you again and you'll have the correct lock.
110 */
111
112 /**
113 * btree - recurse down the btree on a specified key
114 * @fn: function to call, which will be passed the child node
115 * @key: key to recurse on
116 * @b: parent btree node
117 * @op: pointer to struct btree_op
118 */
119 #define btree(fn, key, b, op, ...) \
120 ({ \
121 int _r, l = (b)->level - 1; \
122 bool _w = l <= (op)->lock; \
123 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
124 _w, b); \
125 if (!IS_ERR(_child)) { \
126 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
127 rw_unlock(_w, _child); \
128 } else \
129 _r = PTR_ERR(_child); \
130 _r; \
131 })
132
133 /**
134 * btree_root - call a function on the root of the btree
135 * @fn: function to call, which will be passed the child node
136 * @c: cache set
137 * @op: pointer to struct btree_op
138 */
139 #define btree_root(fn, c, op, ...) \
140 ({ \
141 int _r = -EINTR; \
142 do { \
143 struct btree *_b = (c)->root; \
144 bool _w = insert_lock(op, _b); \
145 rw_lock(_w, _b, _b->level); \
146 if (_b == (c)->root && \
147 _w == insert_lock(op, _b)) { \
148 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
149 } \
150 rw_unlock(_w, _b); \
151 bch_cannibalize_unlock(c); \
152 if (_r == -EINTR) \
153 schedule(); \
154 } while (_r == -EINTR); \
155 \
156 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
157 _r; \
158 })
159
write_block(struct btree * b)160 static inline struct bset *write_block(struct btree *b)
161 {
162 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
163 }
164
bch_btree_init_next(struct btree * b)165 static void bch_btree_init_next(struct btree *b)
166 {
167 /* If not a leaf node, always sort */
168 if (b->level && b->keys.nsets)
169 bch_btree_sort(&b->keys, &b->c->sort);
170 else
171 bch_btree_sort_lazy(&b->keys, &b->c->sort);
172
173 if (b->written < btree_blocks(b))
174 bch_bset_init_next(&b->keys, write_block(b),
175 bset_magic(&b->c->sb));
176
177 }
178
179 /* Btree key manipulation */
180
bkey_put(struct cache_set * c,struct bkey * k)181 void bkey_put(struct cache_set *c, struct bkey *k)
182 {
183 unsigned i;
184
185 for (i = 0; i < KEY_PTRS(k); i++)
186 if (ptr_available(c, k, i))
187 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
188 }
189
190 /* Btree IO */
191
btree_csum_set(struct btree * b,struct bset * i)192 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
193 {
194 uint64_t crc = b->key.ptr[0];
195 void *data = (void *) i + 8, *end = bset_bkey_last(i);
196
197 crc = bch_crc64_update(crc, data, end - data);
198 return crc ^ 0xffffffffffffffffULL;
199 }
200
bch_btree_node_read_done(struct btree * b)201 void bch_btree_node_read_done(struct btree *b)
202 {
203 const char *err = "bad btree header";
204 struct bset *i = btree_bset_first(b);
205 struct btree_iter *iter;
206
207 iter = mempool_alloc(b->c->fill_iter, GFP_NOIO);
208 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
209 iter->used = 0;
210
211 #ifdef CONFIG_BCACHE_DEBUG
212 iter->b = &b->keys;
213 #endif
214
215 if (!i->seq)
216 goto err;
217
218 for (;
219 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
220 i = write_block(b)) {
221 err = "unsupported bset version";
222 if (i->version > BCACHE_BSET_VERSION)
223 goto err;
224
225 err = "bad btree header";
226 if (b->written + set_blocks(i, block_bytes(b->c)) >
227 btree_blocks(b))
228 goto err;
229
230 err = "bad magic";
231 if (i->magic != bset_magic(&b->c->sb))
232 goto err;
233
234 err = "bad checksum";
235 switch (i->version) {
236 case 0:
237 if (i->csum != csum_set(i))
238 goto err;
239 break;
240 case BCACHE_BSET_VERSION:
241 if (i->csum != btree_csum_set(b, i))
242 goto err;
243 break;
244 }
245
246 err = "empty set";
247 if (i != b->keys.set[0].data && !i->keys)
248 goto err;
249
250 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
251
252 b->written += set_blocks(i, block_bytes(b->c));
253 }
254
255 err = "corrupted btree";
256 for (i = write_block(b);
257 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
258 i = ((void *) i) + block_bytes(b->c))
259 if (i->seq == b->keys.set[0].data->seq)
260 goto err;
261
262 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
263
264 i = b->keys.set[0].data;
265 err = "short btree key";
266 if (b->keys.set[0].size &&
267 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
268 goto err;
269
270 if (b->written < btree_blocks(b))
271 bch_bset_init_next(&b->keys, write_block(b),
272 bset_magic(&b->c->sb));
273 out:
274 mempool_free(iter, b->c->fill_iter);
275 return;
276 err:
277 set_btree_node_io_error(b);
278 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
279 err, PTR_BUCKET_NR(b->c, &b->key, 0),
280 bset_block_offset(b, i), i->keys);
281 goto out;
282 }
283
btree_node_read_endio(struct bio * bio)284 static void btree_node_read_endio(struct bio *bio)
285 {
286 struct closure *cl = bio->bi_private;
287 closure_put(cl);
288 }
289
bch_btree_node_read(struct btree * b)290 static void bch_btree_node_read(struct btree *b)
291 {
292 uint64_t start_time = local_clock();
293 struct closure cl;
294 struct bio *bio;
295
296 trace_bcache_btree_read(b);
297
298 closure_init_stack(&cl);
299
300 bio = bch_bbio_alloc(b->c);
301 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
302 bio->bi_end_io = btree_node_read_endio;
303 bio->bi_private = &cl;
304 bio->bi_opf = REQ_OP_READ | REQ_META;
305
306 bch_bio_map(bio, b->keys.set[0].data);
307
308 bch_submit_bbio(bio, b->c, &b->key, 0);
309 closure_sync(&cl);
310
311 if (bio->bi_status)
312 set_btree_node_io_error(b);
313
314 bch_bbio_free(bio, b->c);
315
316 if (btree_node_io_error(b))
317 goto err;
318
319 bch_btree_node_read_done(b);
320 bch_time_stats_update(&b->c->btree_read_time, start_time);
321
322 return;
323 err:
324 bch_cache_set_error(b->c, "io error reading bucket %zu",
325 PTR_BUCKET_NR(b->c, &b->key, 0));
326 }
327
btree_complete_write(struct btree * b,struct btree_write * w)328 static void btree_complete_write(struct btree *b, struct btree_write *w)
329 {
330 if (w->prio_blocked &&
331 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
332 wake_up_allocators(b->c);
333
334 if (w->journal) {
335 atomic_dec_bug(w->journal);
336 __closure_wake_up(&b->c->journal.wait);
337 }
338
339 w->prio_blocked = 0;
340 w->journal = NULL;
341 }
342
btree_node_write_unlock(struct closure * cl)343 static void btree_node_write_unlock(struct closure *cl)
344 {
345 struct btree *b = container_of(cl, struct btree, io);
346
347 up(&b->io_mutex);
348 }
349
__btree_node_write_done(struct closure * cl)350 static void __btree_node_write_done(struct closure *cl)
351 {
352 struct btree *b = container_of(cl, struct btree, io);
353 struct btree_write *w = btree_prev_write(b);
354
355 bch_bbio_free(b->bio, b->c);
356 b->bio = NULL;
357 btree_complete_write(b, w);
358
359 if (btree_node_dirty(b))
360 schedule_delayed_work(&b->work, 30 * HZ);
361
362 closure_return_with_destructor(cl, btree_node_write_unlock);
363 }
364
btree_node_write_done(struct closure * cl)365 static void btree_node_write_done(struct closure *cl)
366 {
367 struct btree *b = container_of(cl, struct btree, io);
368
369 bio_free_pages(b->bio);
370 __btree_node_write_done(cl);
371 }
372
btree_node_write_endio(struct bio * bio)373 static void btree_node_write_endio(struct bio *bio)
374 {
375 struct closure *cl = bio->bi_private;
376 struct btree *b = container_of(cl, struct btree, io);
377
378 if (bio->bi_status)
379 set_btree_node_io_error(b);
380
381 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
382 closure_put(cl);
383 }
384
do_btree_node_write(struct btree * b)385 static void do_btree_node_write(struct btree *b)
386 {
387 struct closure *cl = &b->io;
388 struct bset *i = btree_bset_last(b);
389 BKEY_PADDED(key) k;
390
391 i->version = BCACHE_BSET_VERSION;
392 i->csum = btree_csum_set(b, i);
393
394 BUG_ON(b->bio);
395 b->bio = bch_bbio_alloc(b->c);
396
397 b->bio->bi_end_io = btree_node_write_endio;
398 b->bio->bi_private = cl;
399 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
400 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
401 bch_bio_map(b->bio, i);
402
403 /*
404 * If we're appending to a leaf node, we don't technically need FUA -
405 * this write just needs to be persisted before the next journal write,
406 * which will be marked FLUSH|FUA.
407 *
408 * Similarly if we're writing a new btree root - the pointer is going to
409 * be in the next journal entry.
410 *
411 * But if we're writing a new btree node (that isn't a root) or
412 * appending to a non leaf btree node, we need either FUA or a flush
413 * when we write the parent with the new pointer. FUA is cheaper than a
414 * flush, and writes appending to leaf nodes aren't blocking anything so
415 * just make all btree node writes FUA to keep things sane.
416 */
417
418 bkey_copy(&k.key, &b->key);
419 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
420 bset_sector_offset(&b->keys, i));
421
422 if (!bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
423 int j;
424 struct bio_vec *bv;
425 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
426
427 bio_for_each_segment_all(bv, b->bio, j)
428 memcpy(page_address(bv->bv_page),
429 base + j * PAGE_SIZE, PAGE_SIZE);
430
431 bch_submit_bbio(b->bio, b->c, &k.key, 0);
432
433 continue_at(cl, btree_node_write_done, NULL);
434 } else {
435 b->bio->bi_vcnt = 0;
436 bch_bio_map(b->bio, i);
437
438 bch_submit_bbio(b->bio, b->c, &k.key, 0);
439
440 closure_sync(cl);
441 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
442 }
443 }
444
__bch_btree_node_write(struct btree * b,struct closure * parent)445 void __bch_btree_node_write(struct btree *b, struct closure *parent)
446 {
447 struct bset *i = btree_bset_last(b);
448
449 lockdep_assert_held(&b->write_lock);
450
451 trace_bcache_btree_write(b);
452
453 BUG_ON(current->bio_list);
454 BUG_ON(b->written >= btree_blocks(b));
455 BUG_ON(b->written && !i->keys);
456 BUG_ON(btree_bset_first(b)->seq != i->seq);
457 bch_check_keys(&b->keys, "writing");
458
459 cancel_delayed_work(&b->work);
460
461 /* If caller isn't waiting for write, parent refcount is cache set */
462 down(&b->io_mutex);
463 closure_init(&b->io, parent ?: &b->c->cl);
464
465 clear_bit(BTREE_NODE_dirty, &b->flags);
466 change_bit(BTREE_NODE_write_idx, &b->flags);
467
468 do_btree_node_write(b);
469
470 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
471 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
472
473 b->written += set_blocks(i, block_bytes(b->c));
474 }
475
bch_btree_node_write(struct btree * b,struct closure * parent)476 void bch_btree_node_write(struct btree *b, struct closure *parent)
477 {
478 unsigned nsets = b->keys.nsets;
479
480 lockdep_assert_held(&b->lock);
481
482 __bch_btree_node_write(b, parent);
483
484 /*
485 * do verify if there was more than one set initially (i.e. we did a
486 * sort) and we sorted down to a single set:
487 */
488 if (nsets && !b->keys.nsets)
489 bch_btree_verify(b);
490
491 bch_btree_init_next(b);
492 }
493
bch_btree_node_write_sync(struct btree * b)494 static void bch_btree_node_write_sync(struct btree *b)
495 {
496 struct closure cl;
497
498 closure_init_stack(&cl);
499
500 mutex_lock(&b->write_lock);
501 bch_btree_node_write(b, &cl);
502 mutex_unlock(&b->write_lock);
503
504 closure_sync(&cl);
505 }
506
btree_node_write_work(struct work_struct * w)507 static void btree_node_write_work(struct work_struct *w)
508 {
509 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
510
511 mutex_lock(&b->write_lock);
512 if (btree_node_dirty(b))
513 __bch_btree_node_write(b, NULL);
514 mutex_unlock(&b->write_lock);
515 }
516
bch_btree_leaf_dirty(struct btree * b,atomic_t * journal_ref)517 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
518 {
519 struct bset *i = btree_bset_last(b);
520 struct btree_write *w = btree_current_write(b);
521
522 lockdep_assert_held(&b->write_lock);
523
524 BUG_ON(!b->written);
525 BUG_ON(!i->keys);
526
527 if (!btree_node_dirty(b))
528 schedule_delayed_work(&b->work, 30 * HZ);
529
530 set_btree_node_dirty(b);
531
532 if (journal_ref) {
533 if (w->journal &&
534 journal_pin_cmp(b->c, w->journal, journal_ref)) {
535 atomic_dec_bug(w->journal);
536 w->journal = NULL;
537 }
538
539 if (!w->journal) {
540 w->journal = journal_ref;
541 atomic_inc(w->journal);
542 }
543 }
544
545 /* Force write if set is too big */
546 if (set_bytes(i) > PAGE_SIZE - 48 &&
547 !current->bio_list)
548 bch_btree_node_write(b, NULL);
549 }
550
551 /*
552 * Btree in memory cache - allocation/freeing
553 * mca -> memory cache
554 */
555
556 #define mca_reserve(c) (((c->root && c->root->level) \
557 ? c->root->level : 1) * 8 + 16)
558 #define mca_can_free(c) \
559 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
560
mca_data_free(struct btree * b)561 static void mca_data_free(struct btree *b)
562 {
563 BUG_ON(b->io_mutex.count != 1);
564
565 bch_btree_keys_free(&b->keys);
566
567 b->c->btree_cache_used--;
568 list_move(&b->list, &b->c->btree_cache_freed);
569 }
570
mca_bucket_free(struct btree * b)571 static void mca_bucket_free(struct btree *b)
572 {
573 BUG_ON(btree_node_dirty(b));
574
575 b->key.ptr[0] = 0;
576 hlist_del_init_rcu(&b->hash);
577 list_move(&b->list, &b->c->btree_cache_freeable);
578 }
579
btree_order(struct bkey * k)580 static unsigned btree_order(struct bkey *k)
581 {
582 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
583 }
584
mca_data_alloc(struct btree * b,struct bkey * k,gfp_t gfp)585 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
586 {
587 if (!bch_btree_keys_alloc(&b->keys,
588 max_t(unsigned,
589 ilog2(b->c->btree_pages),
590 btree_order(k)),
591 gfp)) {
592 b->c->btree_cache_used++;
593 list_move(&b->list, &b->c->btree_cache);
594 } else {
595 list_move(&b->list, &b->c->btree_cache_freed);
596 }
597 }
598
mca_bucket_alloc(struct cache_set * c,struct bkey * k,gfp_t gfp)599 static struct btree *mca_bucket_alloc(struct cache_set *c,
600 struct bkey *k, gfp_t gfp)
601 {
602 struct btree *b = kzalloc(sizeof(struct btree), gfp);
603 if (!b)
604 return NULL;
605
606 init_rwsem(&b->lock);
607 lockdep_set_novalidate_class(&b->lock);
608 mutex_init(&b->write_lock);
609 lockdep_set_novalidate_class(&b->write_lock);
610 INIT_LIST_HEAD(&b->list);
611 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
612 b->c = c;
613 sema_init(&b->io_mutex, 1);
614
615 mca_data_alloc(b, k, gfp);
616 return b;
617 }
618
mca_reap(struct btree * b,unsigned min_order,bool flush)619 static int mca_reap(struct btree *b, unsigned min_order, bool flush)
620 {
621 struct closure cl;
622
623 closure_init_stack(&cl);
624 lockdep_assert_held(&b->c->bucket_lock);
625
626 if (!down_write_trylock(&b->lock))
627 return -ENOMEM;
628
629 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
630
631 if (b->keys.page_order < min_order)
632 goto out_unlock;
633
634 if (!flush) {
635 if (btree_node_dirty(b))
636 goto out_unlock;
637
638 if (down_trylock(&b->io_mutex))
639 goto out_unlock;
640 up(&b->io_mutex);
641 }
642
643 mutex_lock(&b->write_lock);
644 if (btree_node_dirty(b))
645 __bch_btree_node_write(b, &cl);
646 mutex_unlock(&b->write_lock);
647
648 closure_sync(&cl);
649
650 /* wait for any in flight btree write */
651 down(&b->io_mutex);
652 up(&b->io_mutex);
653
654 return 0;
655 out_unlock:
656 rw_unlock(true, b);
657 return -ENOMEM;
658 }
659
bch_mca_scan(struct shrinker * shrink,struct shrink_control * sc)660 static unsigned long bch_mca_scan(struct shrinker *shrink,
661 struct shrink_control *sc)
662 {
663 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
664 struct btree *b, *t;
665 unsigned long i, nr = sc->nr_to_scan;
666 unsigned long freed = 0;
667
668 if (c->shrinker_disabled)
669 return SHRINK_STOP;
670
671 if (c->btree_cache_alloc_lock)
672 return SHRINK_STOP;
673
674 /* Return -1 if we can't do anything right now */
675 if (sc->gfp_mask & __GFP_IO)
676 mutex_lock(&c->bucket_lock);
677 else if (!mutex_trylock(&c->bucket_lock))
678 return -1;
679
680 /*
681 * It's _really_ critical that we don't free too many btree nodes - we
682 * have to always leave ourselves a reserve. The reserve is how we
683 * guarantee that allocating memory for a new btree node can always
684 * succeed, so that inserting keys into the btree can always succeed and
685 * IO can always make forward progress:
686 */
687 nr /= c->btree_pages;
688 if (nr == 0)
689 nr = 1;
690 nr = min_t(unsigned long, nr, mca_can_free(c));
691
692 i = 0;
693 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
694 if (freed >= nr)
695 break;
696
697 if (++i > 3 &&
698 !mca_reap(b, 0, false)) {
699 mca_data_free(b);
700 rw_unlock(true, b);
701 freed++;
702 }
703 }
704
705 for (i = 0; (nr--) && i < c->btree_cache_used; i++) {
706 if (list_empty(&c->btree_cache))
707 goto out;
708
709 b = list_first_entry(&c->btree_cache, struct btree, list);
710 list_rotate_left(&c->btree_cache);
711
712 if (!b->accessed &&
713 !mca_reap(b, 0, false)) {
714 mca_bucket_free(b);
715 mca_data_free(b);
716 rw_unlock(true, b);
717 freed++;
718 } else
719 b->accessed = 0;
720 }
721 out:
722 mutex_unlock(&c->bucket_lock);
723 return freed;
724 }
725
bch_mca_count(struct shrinker * shrink,struct shrink_control * sc)726 static unsigned long bch_mca_count(struct shrinker *shrink,
727 struct shrink_control *sc)
728 {
729 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
730
731 if (c->shrinker_disabled)
732 return 0;
733
734 if (c->btree_cache_alloc_lock)
735 return 0;
736
737 return mca_can_free(c) * c->btree_pages;
738 }
739
bch_btree_cache_free(struct cache_set * c)740 void bch_btree_cache_free(struct cache_set *c)
741 {
742 struct btree *b;
743 struct closure cl;
744 closure_init_stack(&cl);
745
746 if (c->shrink.list.next)
747 unregister_shrinker(&c->shrink);
748
749 mutex_lock(&c->bucket_lock);
750
751 #ifdef CONFIG_BCACHE_DEBUG
752 if (c->verify_data)
753 list_move(&c->verify_data->list, &c->btree_cache);
754
755 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
756 #endif
757
758 list_splice(&c->btree_cache_freeable,
759 &c->btree_cache);
760
761 while (!list_empty(&c->btree_cache)) {
762 b = list_first_entry(&c->btree_cache, struct btree, list);
763
764 if (btree_node_dirty(b))
765 btree_complete_write(b, btree_current_write(b));
766 clear_bit(BTREE_NODE_dirty, &b->flags);
767
768 mca_data_free(b);
769 }
770
771 while (!list_empty(&c->btree_cache_freed)) {
772 b = list_first_entry(&c->btree_cache_freed,
773 struct btree, list);
774 list_del(&b->list);
775 cancel_delayed_work_sync(&b->work);
776 kfree(b);
777 }
778
779 mutex_unlock(&c->bucket_lock);
780 }
781
bch_btree_cache_alloc(struct cache_set * c)782 int bch_btree_cache_alloc(struct cache_set *c)
783 {
784 unsigned i;
785
786 for (i = 0; i < mca_reserve(c); i++)
787 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
788 return -ENOMEM;
789
790 list_splice_init(&c->btree_cache,
791 &c->btree_cache_freeable);
792
793 #ifdef CONFIG_BCACHE_DEBUG
794 mutex_init(&c->verify_lock);
795
796 c->verify_ondisk = (void *)
797 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
798
799 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
800
801 if (c->verify_data &&
802 c->verify_data->keys.set->data)
803 list_del_init(&c->verify_data->list);
804 else
805 c->verify_data = NULL;
806 #endif
807
808 c->shrink.count_objects = bch_mca_count;
809 c->shrink.scan_objects = bch_mca_scan;
810 c->shrink.seeks = 4;
811 c->shrink.batch = c->btree_pages * 2;
812
813 if (register_shrinker(&c->shrink))
814 pr_warn("bcache: %s: could not register shrinker",
815 __func__);
816
817 return 0;
818 }
819
820 /* Btree in memory cache - hash table */
821
mca_hash(struct cache_set * c,struct bkey * k)822 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
823 {
824 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
825 }
826
mca_find(struct cache_set * c,struct bkey * k)827 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
828 {
829 struct btree *b;
830
831 rcu_read_lock();
832 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
833 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
834 goto out;
835 b = NULL;
836 out:
837 rcu_read_unlock();
838 return b;
839 }
840
mca_cannibalize_lock(struct cache_set * c,struct btree_op * op)841 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
842 {
843 struct task_struct *old;
844
845 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
846 if (old && old != current) {
847 if (op)
848 prepare_to_wait(&c->btree_cache_wait, &op->wait,
849 TASK_UNINTERRUPTIBLE);
850 return -EINTR;
851 }
852
853 return 0;
854 }
855
mca_cannibalize(struct cache_set * c,struct btree_op * op,struct bkey * k)856 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
857 struct bkey *k)
858 {
859 struct btree *b;
860
861 trace_bcache_btree_cache_cannibalize(c);
862
863 if (mca_cannibalize_lock(c, op))
864 return ERR_PTR(-EINTR);
865
866 list_for_each_entry_reverse(b, &c->btree_cache, list)
867 if (!mca_reap(b, btree_order(k), false))
868 return b;
869
870 list_for_each_entry_reverse(b, &c->btree_cache, list)
871 if (!mca_reap(b, btree_order(k), true))
872 return b;
873
874 WARN(1, "btree cache cannibalize failed\n");
875 return ERR_PTR(-ENOMEM);
876 }
877
878 /*
879 * We can only have one thread cannibalizing other cached btree nodes at a time,
880 * or we'll deadlock. We use an open coded mutex to ensure that, which a
881 * cannibalize_bucket() will take. This means every time we unlock the root of
882 * the btree, we need to release this lock if we have it held.
883 */
bch_cannibalize_unlock(struct cache_set * c)884 static void bch_cannibalize_unlock(struct cache_set *c)
885 {
886 if (c->btree_cache_alloc_lock == current) {
887 c->btree_cache_alloc_lock = NULL;
888 wake_up(&c->btree_cache_wait);
889 }
890 }
891
mca_alloc(struct cache_set * c,struct btree_op * op,struct bkey * k,int level)892 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
893 struct bkey *k, int level)
894 {
895 struct btree *b;
896
897 BUG_ON(current->bio_list);
898
899 lockdep_assert_held(&c->bucket_lock);
900
901 if (mca_find(c, k))
902 return NULL;
903
904 /* btree_free() doesn't free memory; it sticks the node on the end of
905 * the list. Check if there's any freed nodes there:
906 */
907 list_for_each_entry(b, &c->btree_cache_freeable, list)
908 if (!mca_reap(b, btree_order(k), false))
909 goto out;
910
911 /* We never free struct btree itself, just the memory that holds the on
912 * disk node. Check the freed list before allocating a new one:
913 */
914 list_for_each_entry(b, &c->btree_cache_freed, list)
915 if (!mca_reap(b, 0, false)) {
916 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
917 if (!b->keys.set[0].data)
918 goto err;
919 else
920 goto out;
921 }
922
923 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
924 if (!b)
925 goto err;
926
927 BUG_ON(!down_write_trylock(&b->lock));
928 if (!b->keys.set->data)
929 goto err;
930 out:
931 BUG_ON(b->io_mutex.count != 1);
932
933 bkey_copy(&b->key, k);
934 list_move(&b->list, &c->btree_cache);
935 hlist_del_init_rcu(&b->hash);
936 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
937
938 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
939 b->parent = (void *) ~0UL;
940 b->flags = 0;
941 b->written = 0;
942 b->level = level;
943
944 if (!b->level)
945 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
946 &b->c->expensive_debug_checks);
947 else
948 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
949 &b->c->expensive_debug_checks);
950
951 return b;
952 err:
953 if (b)
954 rw_unlock(true, b);
955
956 b = mca_cannibalize(c, op, k);
957 if (!IS_ERR(b))
958 goto out;
959
960 return b;
961 }
962
963 /**
964 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
965 * in from disk if necessary.
966 *
967 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
968 *
969 * The btree node will have either a read or a write lock held, depending on
970 * level and op->lock.
971 */
bch_btree_node_get(struct cache_set * c,struct btree_op * op,struct bkey * k,int level,bool write,struct btree * parent)972 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
973 struct bkey *k, int level, bool write,
974 struct btree *parent)
975 {
976 int i = 0;
977 struct btree *b;
978
979 BUG_ON(level < 0);
980 retry:
981 b = mca_find(c, k);
982
983 if (!b) {
984 if (current->bio_list)
985 return ERR_PTR(-EAGAIN);
986
987 mutex_lock(&c->bucket_lock);
988 b = mca_alloc(c, op, k, level);
989 mutex_unlock(&c->bucket_lock);
990
991 if (!b)
992 goto retry;
993 if (IS_ERR(b))
994 return b;
995
996 bch_btree_node_read(b);
997
998 if (!write)
999 downgrade_write(&b->lock);
1000 } else {
1001 rw_lock(write, b, level);
1002 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1003 rw_unlock(write, b);
1004 goto retry;
1005 }
1006 BUG_ON(b->level != level);
1007 }
1008
1009 b->parent = parent;
1010 b->accessed = 1;
1011
1012 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1013 prefetch(b->keys.set[i].tree);
1014 prefetch(b->keys.set[i].data);
1015 }
1016
1017 for (; i <= b->keys.nsets; i++)
1018 prefetch(b->keys.set[i].data);
1019
1020 if (btree_node_io_error(b)) {
1021 rw_unlock(write, b);
1022 return ERR_PTR(-EIO);
1023 }
1024
1025 BUG_ON(!b->written);
1026
1027 return b;
1028 }
1029
btree_node_prefetch(struct btree * parent,struct bkey * k)1030 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1031 {
1032 struct btree *b;
1033
1034 mutex_lock(&parent->c->bucket_lock);
1035 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1036 mutex_unlock(&parent->c->bucket_lock);
1037
1038 if (!IS_ERR_OR_NULL(b)) {
1039 b->parent = parent;
1040 bch_btree_node_read(b);
1041 rw_unlock(true, b);
1042 }
1043 }
1044
1045 /* Btree alloc */
1046
btree_node_free(struct btree * b)1047 static void btree_node_free(struct btree *b)
1048 {
1049 trace_bcache_btree_node_free(b);
1050
1051 BUG_ON(b == b->c->root);
1052
1053 mutex_lock(&b->write_lock);
1054
1055 if (btree_node_dirty(b))
1056 btree_complete_write(b, btree_current_write(b));
1057 clear_bit(BTREE_NODE_dirty, &b->flags);
1058
1059 mutex_unlock(&b->write_lock);
1060
1061 cancel_delayed_work(&b->work);
1062
1063 mutex_lock(&b->c->bucket_lock);
1064 bch_bucket_free(b->c, &b->key);
1065 mca_bucket_free(b);
1066 mutex_unlock(&b->c->bucket_lock);
1067 }
1068
__bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,bool wait,struct btree * parent)1069 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1070 int level, bool wait,
1071 struct btree *parent)
1072 {
1073 BKEY_PADDED(key) k;
1074 struct btree *b = ERR_PTR(-EAGAIN);
1075
1076 mutex_lock(&c->bucket_lock);
1077 retry:
1078 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1079 goto err;
1080
1081 bkey_put(c, &k.key);
1082 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1083
1084 b = mca_alloc(c, op, &k.key, level);
1085 if (IS_ERR(b))
1086 goto err_free;
1087
1088 if (!b) {
1089 cache_bug(c,
1090 "Tried to allocate bucket that was in btree cache");
1091 goto retry;
1092 }
1093
1094 b->accessed = 1;
1095 b->parent = parent;
1096 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1097
1098 mutex_unlock(&c->bucket_lock);
1099
1100 trace_bcache_btree_node_alloc(b);
1101 return b;
1102 err_free:
1103 bch_bucket_free(c, &k.key);
1104 err:
1105 mutex_unlock(&c->bucket_lock);
1106
1107 trace_bcache_btree_node_alloc_fail(c);
1108 return b;
1109 }
1110
bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,struct btree * parent)1111 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1112 struct btree_op *op, int level,
1113 struct btree *parent)
1114 {
1115 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1116 }
1117
btree_node_alloc_replacement(struct btree * b,struct btree_op * op)1118 static struct btree *btree_node_alloc_replacement(struct btree *b,
1119 struct btree_op *op)
1120 {
1121 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1122 if (!IS_ERR_OR_NULL(n)) {
1123 mutex_lock(&n->write_lock);
1124 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1125 bkey_copy_key(&n->key, &b->key);
1126 mutex_unlock(&n->write_lock);
1127 }
1128
1129 return n;
1130 }
1131
make_btree_freeing_key(struct btree * b,struct bkey * k)1132 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1133 {
1134 unsigned i;
1135
1136 mutex_lock(&b->c->bucket_lock);
1137
1138 atomic_inc(&b->c->prio_blocked);
1139
1140 bkey_copy(k, &b->key);
1141 bkey_copy_key(k, &ZERO_KEY);
1142
1143 for (i = 0; i < KEY_PTRS(k); i++)
1144 SET_PTR_GEN(k, i,
1145 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1146 PTR_BUCKET(b->c, &b->key, i)));
1147
1148 mutex_unlock(&b->c->bucket_lock);
1149 }
1150
btree_check_reserve(struct btree * b,struct btree_op * op)1151 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1152 {
1153 struct cache_set *c = b->c;
1154 struct cache *ca;
1155 unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
1156
1157 mutex_lock(&c->bucket_lock);
1158
1159 for_each_cache(ca, c, i)
1160 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1161 if (op)
1162 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1163 TASK_UNINTERRUPTIBLE);
1164 mutex_unlock(&c->bucket_lock);
1165 return -EINTR;
1166 }
1167
1168 mutex_unlock(&c->bucket_lock);
1169
1170 return mca_cannibalize_lock(b->c, op);
1171 }
1172
1173 /* Garbage collection */
1174
__bch_btree_mark_key(struct cache_set * c,int level,struct bkey * k)1175 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1176 struct bkey *k)
1177 {
1178 uint8_t stale = 0;
1179 unsigned i;
1180 struct bucket *g;
1181
1182 /*
1183 * ptr_invalid() can't return true for the keys that mark btree nodes as
1184 * freed, but since ptr_bad() returns true we'll never actually use them
1185 * for anything and thus we don't want mark their pointers here
1186 */
1187 if (!bkey_cmp(k, &ZERO_KEY))
1188 return stale;
1189
1190 for (i = 0; i < KEY_PTRS(k); i++) {
1191 if (!ptr_available(c, k, i))
1192 continue;
1193
1194 g = PTR_BUCKET(c, k, i);
1195
1196 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1197 g->last_gc = PTR_GEN(k, i);
1198
1199 if (ptr_stale(c, k, i)) {
1200 stale = max(stale, ptr_stale(c, k, i));
1201 continue;
1202 }
1203
1204 cache_bug_on(GC_MARK(g) &&
1205 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1206 c, "inconsistent ptrs: mark = %llu, level = %i",
1207 GC_MARK(g), level);
1208
1209 if (level)
1210 SET_GC_MARK(g, GC_MARK_METADATA);
1211 else if (KEY_DIRTY(k))
1212 SET_GC_MARK(g, GC_MARK_DIRTY);
1213 else if (!GC_MARK(g))
1214 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1215
1216 /* guard against overflow */
1217 SET_GC_SECTORS_USED(g, min_t(unsigned,
1218 GC_SECTORS_USED(g) + KEY_SIZE(k),
1219 MAX_GC_SECTORS_USED));
1220
1221 BUG_ON(!GC_SECTORS_USED(g));
1222 }
1223
1224 return stale;
1225 }
1226
1227 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1228
bch_initial_mark_key(struct cache_set * c,int level,struct bkey * k)1229 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1230 {
1231 unsigned i;
1232
1233 for (i = 0; i < KEY_PTRS(k); i++)
1234 if (ptr_available(c, k, i) &&
1235 !ptr_stale(c, k, i)) {
1236 struct bucket *b = PTR_BUCKET(c, k, i);
1237
1238 b->gen = PTR_GEN(k, i);
1239
1240 if (level && bkey_cmp(k, &ZERO_KEY))
1241 b->prio = BTREE_PRIO;
1242 else if (!level && b->prio == BTREE_PRIO)
1243 b->prio = INITIAL_PRIO;
1244 }
1245
1246 __bch_btree_mark_key(c, level, k);
1247 }
1248
btree_gc_mark_node(struct btree * b,struct gc_stat * gc)1249 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1250 {
1251 uint8_t stale = 0;
1252 unsigned keys = 0, good_keys = 0;
1253 struct bkey *k;
1254 struct btree_iter iter;
1255 struct bset_tree *t;
1256
1257 gc->nodes++;
1258
1259 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1260 stale = max(stale, btree_mark_key(b, k));
1261 keys++;
1262
1263 if (bch_ptr_bad(&b->keys, k))
1264 continue;
1265
1266 gc->key_bytes += bkey_u64s(k);
1267 gc->nkeys++;
1268 good_keys++;
1269
1270 gc->data += KEY_SIZE(k);
1271 }
1272
1273 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1274 btree_bug_on(t->size &&
1275 bset_written(&b->keys, t) &&
1276 bkey_cmp(&b->key, &t->end) < 0,
1277 b, "found short btree key in gc");
1278
1279 if (b->c->gc_always_rewrite)
1280 return true;
1281
1282 if (stale > 10)
1283 return true;
1284
1285 if ((keys - good_keys) * 2 > keys)
1286 return true;
1287
1288 return false;
1289 }
1290
1291 #define GC_MERGE_NODES 4U
1292
1293 struct gc_merge_info {
1294 struct btree *b;
1295 unsigned keys;
1296 };
1297
1298 static int bch_btree_insert_node(struct btree *, struct btree_op *,
1299 struct keylist *, atomic_t *, struct bkey *);
1300
btree_gc_coalesce(struct btree * b,struct btree_op * op,struct gc_stat * gc,struct gc_merge_info * r)1301 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1302 struct gc_stat *gc, struct gc_merge_info *r)
1303 {
1304 unsigned i, nodes = 0, keys = 0, blocks;
1305 struct btree *new_nodes[GC_MERGE_NODES];
1306 struct keylist keylist;
1307 struct closure cl;
1308 struct bkey *k;
1309
1310 bch_keylist_init(&keylist);
1311
1312 if (btree_check_reserve(b, NULL))
1313 return 0;
1314
1315 memset(new_nodes, 0, sizeof(new_nodes));
1316 closure_init_stack(&cl);
1317
1318 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1319 keys += r[nodes++].keys;
1320
1321 blocks = btree_default_blocks(b->c) * 2 / 3;
1322
1323 if (nodes < 2 ||
1324 __set_blocks(b->keys.set[0].data, keys,
1325 block_bytes(b->c)) > blocks * (nodes - 1))
1326 return 0;
1327
1328 for (i = 0; i < nodes; i++) {
1329 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1330 if (IS_ERR_OR_NULL(new_nodes[i]))
1331 goto out_nocoalesce;
1332 }
1333
1334 /*
1335 * We have to check the reserve here, after we've allocated our new
1336 * nodes, to make sure the insert below will succeed - we also check
1337 * before as an optimization to potentially avoid a bunch of expensive
1338 * allocs/sorts
1339 */
1340 if (btree_check_reserve(b, NULL))
1341 goto out_nocoalesce;
1342
1343 for (i = 0; i < nodes; i++)
1344 mutex_lock(&new_nodes[i]->write_lock);
1345
1346 for (i = nodes - 1; i > 0; --i) {
1347 struct bset *n1 = btree_bset_first(new_nodes[i]);
1348 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1349 struct bkey *k, *last = NULL;
1350
1351 keys = 0;
1352
1353 if (i > 1) {
1354 for (k = n2->start;
1355 k < bset_bkey_last(n2);
1356 k = bkey_next(k)) {
1357 if (__set_blocks(n1, n1->keys + keys +
1358 bkey_u64s(k),
1359 block_bytes(b->c)) > blocks)
1360 break;
1361
1362 last = k;
1363 keys += bkey_u64s(k);
1364 }
1365 } else {
1366 /*
1367 * Last node we're not getting rid of - we're getting
1368 * rid of the node at r[0]. Have to try and fit all of
1369 * the remaining keys into this node; we can't ensure
1370 * they will always fit due to rounding and variable
1371 * length keys (shouldn't be possible in practice,
1372 * though)
1373 */
1374 if (__set_blocks(n1, n1->keys + n2->keys,
1375 block_bytes(b->c)) >
1376 btree_blocks(new_nodes[i]))
1377 goto out_nocoalesce;
1378
1379 keys = n2->keys;
1380 /* Take the key of the node we're getting rid of */
1381 last = &r->b->key;
1382 }
1383
1384 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1385 btree_blocks(new_nodes[i]));
1386
1387 if (last)
1388 bkey_copy_key(&new_nodes[i]->key, last);
1389
1390 memcpy(bset_bkey_last(n1),
1391 n2->start,
1392 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1393
1394 n1->keys += keys;
1395 r[i].keys = n1->keys;
1396
1397 memmove(n2->start,
1398 bset_bkey_idx(n2, keys),
1399 (void *) bset_bkey_last(n2) -
1400 (void *) bset_bkey_idx(n2, keys));
1401
1402 n2->keys -= keys;
1403
1404 if (__bch_keylist_realloc(&keylist,
1405 bkey_u64s(&new_nodes[i]->key)))
1406 goto out_nocoalesce;
1407
1408 bch_btree_node_write(new_nodes[i], &cl);
1409 bch_keylist_add(&keylist, &new_nodes[i]->key);
1410 }
1411
1412 for (i = 0; i < nodes; i++)
1413 mutex_unlock(&new_nodes[i]->write_lock);
1414
1415 closure_sync(&cl);
1416
1417 /* We emptied out this node */
1418 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1419 btree_node_free(new_nodes[0]);
1420 rw_unlock(true, new_nodes[0]);
1421 new_nodes[0] = NULL;
1422
1423 for (i = 0; i < nodes; i++) {
1424 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1425 goto out_nocoalesce;
1426
1427 make_btree_freeing_key(r[i].b, keylist.top);
1428 bch_keylist_push(&keylist);
1429 }
1430
1431 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1432 BUG_ON(!bch_keylist_empty(&keylist));
1433
1434 for (i = 0; i < nodes; i++) {
1435 btree_node_free(r[i].b);
1436 rw_unlock(true, r[i].b);
1437
1438 r[i].b = new_nodes[i];
1439 }
1440
1441 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1442 r[nodes - 1].b = ERR_PTR(-EINTR);
1443
1444 trace_bcache_btree_gc_coalesce(nodes);
1445 gc->nodes--;
1446
1447 bch_keylist_free(&keylist);
1448
1449 /* Invalidated our iterator */
1450 return -EINTR;
1451
1452 out_nocoalesce:
1453 closure_sync(&cl);
1454 bch_keylist_free(&keylist);
1455
1456 while ((k = bch_keylist_pop(&keylist)))
1457 if (!bkey_cmp(k, &ZERO_KEY))
1458 atomic_dec(&b->c->prio_blocked);
1459
1460 for (i = 0; i < nodes; i++)
1461 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1462 btree_node_free(new_nodes[i]);
1463 rw_unlock(true, new_nodes[i]);
1464 }
1465 return 0;
1466 }
1467
btree_gc_rewrite_node(struct btree * b,struct btree_op * op,struct btree * replace)1468 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1469 struct btree *replace)
1470 {
1471 struct keylist keys;
1472 struct btree *n;
1473
1474 if (btree_check_reserve(b, NULL))
1475 return 0;
1476
1477 n = btree_node_alloc_replacement(replace, NULL);
1478
1479 /* recheck reserve after allocating replacement node */
1480 if (btree_check_reserve(b, NULL)) {
1481 btree_node_free(n);
1482 rw_unlock(true, n);
1483 return 0;
1484 }
1485
1486 bch_btree_node_write_sync(n);
1487
1488 bch_keylist_init(&keys);
1489 bch_keylist_add(&keys, &n->key);
1490
1491 make_btree_freeing_key(replace, keys.top);
1492 bch_keylist_push(&keys);
1493
1494 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1495 BUG_ON(!bch_keylist_empty(&keys));
1496
1497 btree_node_free(replace);
1498 rw_unlock(true, n);
1499
1500 /* Invalidated our iterator */
1501 return -EINTR;
1502 }
1503
btree_gc_count_keys(struct btree * b)1504 static unsigned btree_gc_count_keys(struct btree *b)
1505 {
1506 struct bkey *k;
1507 struct btree_iter iter;
1508 unsigned ret = 0;
1509
1510 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1511 ret += bkey_u64s(k);
1512
1513 return ret;
1514 }
1515
btree_gc_recurse(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1516 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1517 struct closure *writes, struct gc_stat *gc)
1518 {
1519 int ret = 0;
1520 bool should_rewrite;
1521 struct bkey *k;
1522 struct btree_iter iter;
1523 struct gc_merge_info r[GC_MERGE_NODES];
1524 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1525
1526 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1527
1528 for (i = r; i < r + ARRAY_SIZE(r); i++)
1529 i->b = ERR_PTR(-EINTR);
1530
1531 while (1) {
1532 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1533 if (k) {
1534 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1535 true, b);
1536 if (IS_ERR(r->b)) {
1537 ret = PTR_ERR(r->b);
1538 break;
1539 }
1540
1541 r->keys = btree_gc_count_keys(r->b);
1542
1543 ret = btree_gc_coalesce(b, op, gc, r);
1544 if (ret)
1545 break;
1546 }
1547
1548 if (!last->b)
1549 break;
1550
1551 if (!IS_ERR(last->b)) {
1552 should_rewrite = btree_gc_mark_node(last->b, gc);
1553 if (should_rewrite) {
1554 ret = btree_gc_rewrite_node(b, op, last->b);
1555 if (ret)
1556 break;
1557 }
1558
1559 if (last->b->level) {
1560 ret = btree_gc_recurse(last->b, op, writes, gc);
1561 if (ret)
1562 break;
1563 }
1564
1565 bkey_copy_key(&b->c->gc_done, &last->b->key);
1566
1567 /*
1568 * Must flush leaf nodes before gc ends, since replace
1569 * operations aren't journalled
1570 */
1571 mutex_lock(&last->b->write_lock);
1572 if (btree_node_dirty(last->b))
1573 bch_btree_node_write(last->b, writes);
1574 mutex_unlock(&last->b->write_lock);
1575 rw_unlock(true, last->b);
1576 }
1577
1578 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1579 r->b = NULL;
1580
1581 if (need_resched()) {
1582 ret = -EAGAIN;
1583 break;
1584 }
1585 }
1586
1587 for (i = r; i < r + ARRAY_SIZE(r); i++)
1588 if (!IS_ERR_OR_NULL(i->b)) {
1589 mutex_lock(&i->b->write_lock);
1590 if (btree_node_dirty(i->b))
1591 bch_btree_node_write(i->b, writes);
1592 mutex_unlock(&i->b->write_lock);
1593 rw_unlock(true, i->b);
1594 }
1595
1596 return ret;
1597 }
1598
bch_btree_gc_root(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1599 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1600 struct closure *writes, struct gc_stat *gc)
1601 {
1602 struct btree *n = NULL;
1603 int ret = 0;
1604 bool should_rewrite;
1605
1606 should_rewrite = btree_gc_mark_node(b, gc);
1607 if (should_rewrite) {
1608 n = btree_node_alloc_replacement(b, NULL);
1609
1610 if (!IS_ERR_OR_NULL(n)) {
1611 bch_btree_node_write_sync(n);
1612
1613 bch_btree_set_root(n);
1614 btree_node_free(b);
1615 rw_unlock(true, n);
1616
1617 return -EINTR;
1618 }
1619 }
1620
1621 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1622
1623 if (b->level) {
1624 ret = btree_gc_recurse(b, op, writes, gc);
1625 if (ret)
1626 return ret;
1627 }
1628
1629 bkey_copy_key(&b->c->gc_done, &b->key);
1630
1631 return ret;
1632 }
1633
btree_gc_start(struct cache_set * c)1634 static void btree_gc_start(struct cache_set *c)
1635 {
1636 struct cache *ca;
1637 struct bucket *b;
1638 unsigned i;
1639
1640 if (!c->gc_mark_valid)
1641 return;
1642
1643 mutex_lock(&c->bucket_lock);
1644
1645 c->gc_mark_valid = 0;
1646 c->gc_done = ZERO_KEY;
1647
1648 for_each_cache(ca, c, i)
1649 for_each_bucket(b, ca) {
1650 b->last_gc = b->gen;
1651 if (!atomic_read(&b->pin)) {
1652 SET_GC_MARK(b, 0);
1653 SET_GC_SECTORS_USED(b, 0);
1654 }
1655 }
1656
1657 mutex_unlock(&c->bucket_lock);
1658 }
1659
bch_btree_gc_finish(struct cache_set * c)1660 static size_t bch_btree_gc_finish(struct cache_set *c)
1661 {
1662 size_t available = 0;
1663 struct bucket *b;
1664 struct cache *ca;
1665 unsigned i;
1666
1667 mutex_lock(&c->bucket_lock);
1668
1669 set_gc_sectors(c);
1670 c->gc_mark_valid = 1;
1671 c->need_gc = 0;
1672
1673 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1674 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1675 GC_MARK_METADATA);
1676
1677 /* don't reclaim buckets to which writeback keys point */
1678 rcu_read_lock();
1679 for (i = 0; i < c->nr_uuids; i++) {
1680 struct bcache_device *d = c->devices[i];
1681 struct cached_dev *dc;
1682 struct keybuf_key *w, *n;
1683 unsigned j;
1684
1685 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1686 continue;
1687 dc = container_of(d, struct cached_dev, disk);
1688
1689 spin_lock(&dc->writeback_keys.lock);
1690 rbtree_postorder_for_each_entry_safe(w, n,
1691 &dc->writeback_keys.keys, node)
1692 for (j = 0; j < KEY_PTRS(&w->key); j++)
1693 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1694 GC_MARK_DIRTY);
1695 spin_unlock(&dc->writeback_keys.lock);
1696 }
1697 rcu_read_unlock();
1698
1699 for_each_cache(ca, c, i) {
1700 uint64_t *i;
1701
1702 ca->invalidate_needs_gc = 0;
1703
1704 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1705 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1706
1707 for (i = ca->prio_buckets;
1708 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1709 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1710
1711 for_each_bucket(b, ca) {
1712 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1713
1714 if (atomic_read(&b->pin))
1715 continue;
1716
1717 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1718
1719 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1720 available++;
1721 }
1722 }
1723
1724 mutex_unlock(&c->bucket_lock);
1725 return available;
1726 }
1727
bch_btree_gc(struct cache_set * c)1728 static void bch_btree_gc(struct cache_set *c)
1729 {
1730 int ret;
1731 unsigned long available;
1732 struct gc_stat stats;
1733 struct closure writes;
1734 struct btree_op op;
1735 uint64_t start_time = local_clock();
1736
1737 trace_bcache_gc_start(c);
1738
1739 memset(&stats, 0, sizeof(struct gc_stat));
1740 closure_init_stack(&writes);
1741 bch_btree_op_init(&op, SHRT_MAX);
1742
1743 btree_gc_start(c);
1744
1745 do {
1746 ret = btree_root(gc_root, c, &op, &writes, &stats);
1747 closure_sync(&writes);
1748 cond_resched();
1749
1750 if (ret && ret != -EAGAIN)
1751 pr_warn("gc failed!");
1752 } while (ret);
1753
1754 available = bch_btree_gc_finish(c);
1755 wake_up_allocators(c);
1756
1757 bch_time_stats_update(&c->btree_gc_time, start_time);
1758
1759 stats.key_bytes *= sizeof(uint64_t);
1760 stats.data <<= 9;
1761 stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
1762 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1763
1764 trace_bcache_gc_end(c);
1765
1766 bch_moving_gc(c);
1767 }
1768
gc_should_run(struct cache_set * c)1769 static bool gc_should_run(struct cache_set *c)
1770 {
1771 struct cache *ca;
1772 unsigned i;
1773
1774 for_each_cache(ca, c, i)
1775 if (ca->invalidate_needs_gc)
1776 return true;
1777
1778 if (atomic_read(&c->sectors_to_gc) < 0)
1779 return true;
1780
1781 return false;
1782 }
1783
bch_gc_thread(void * arg)1784 static int bch_gc_thread(void *arg)
1785 {
1786 struct cache_set *c = arg;
1787
1788 while (1) {
1789 wait_event_interruptible(c->gc_wait,
1790 kthread_should_stop() || gc_should_run(c));
1791
1792 if (kthread_should_stop())
1793 break;
1794
1795 set_gc_sectors(c);
1796 bch_btree_gc(c);
1797 }
1798
1799 return 0;
1800 }
1801
bch_gc_thread_start(struct cache_set * c)1802 int bch_gc_thread_start(struct cache_set *c)
1803 {
1804 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1805 if (IS_ERR(c->gc_thread))
1806 return PTR_ERR(c->gc_thread);
1807
1808 return 0;
1809 }
1810
1811 /* Initial partial gc */
1812
bch_btree_check_recurse(struct btree * b,struct btree_op * op)1813 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1814 {
1815 int ret = 0;
1816 struct bkey *k, *p = NULL;
1817 struct btree_iter iter;
1818
1819 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1820 bch_initial_mark_key(b->c, b->level, k);
1821
1822 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1823
1824 if (b->level) {
1825 bch_btree_iter_init(&b->keys, &iter, NULL);
1826
1827 do {
1828 k = bch_btree_iter_next_filter(&iter, &b->keys,
1829 bch_ptr_bad);
1830 if (k)
1831 btree_node_prefetch(b, k);
1832
1833 if (p)
1834 ret = btree(check_recurse, p, b, op);
1835
1836 p = k;
1837 } while (p && !ret);
1838 }
1839
1840 return ret;
1841 }
1842
bch_btree_check(struct cache_set * c)1843 int bch_btree_check(struct cache_set *c)
1844 {
1845 struct btree_op op;
1846
1847 bch_btree_op_init(&op, SHRT_MAX);
1848
1849 return btree_root(check_recurse, c, &op);
1850 }
1851
bch_initial_gc_finish(struct cache_set * c)1852 void bch_initial_gc_finish(struct cache_set *c)
1853 {
1854 struct cache *ca;
1855 struct bucket *b;
1856 unsigned i;
1857
1858 bch_btree_gc_finish(c);
1859
1860 mutex_lock(&c->bucket_lock);
1861
1862 /*
1863 * We need to put some unused buckets directly on the prio freelist in
1864 * order to get the allocator thread started - it needs freed buckets in
1865 * order to rewrite the prios and gens, and it needs to rewrite prios
1866 * and gens in order to free buckets.
1867 *
1868 * This is only safe for buckets that have no live data in them, which
1869 * there should always be some of.
1870 */
1871 for_each_cache(ca, c, i) {
1872 for_each_bucket(b, ca) {
1873 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1874 fifo_full(&ca->free[RESERVE_BTREE]))
1875 break;
1876
1877 if (bch_can_invalidate_bucket(ca, b) &&
1878 !GC_MARK(b)) {
1879 __bch_invalidate_one_bucket(ca, b);
1880 if (!fifo_push(&ca->free[RESERVE_PRIO],
1881 b - ca->buckets))
1882 fifo_push(&ca->free[RESERVE_BTREE],
1883 b - ca->buckets);
1884 }
1885 }
1886 }
1887
1888 mutex_unlock(&c->bucket_lock);
1889 }
1890
1891 /* Btree insertion */
1892
btree_insert_key(struct btree * b,struct bkey * k,struct bkey * replace_key)1893 static bool btree_insert_key(struct btree *b, struct bkey *k,
1894 struct bkey *replace_key)
1895 {
1896 unsigned status;
1897
1898 BUG_ON(bkey_cmp(k, &b->key) > 0);
1899
1900 status = bch_btree_insert_key(&b->keys, k, replace_key);
1901 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1902 bch_check_keys(&b->keys, "%u for %s", status,
1903 replace_key ? "replace" : "insert");
1904
1905 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1906 status);
1907 return true;
1908 } else
1909 return false;
1910 }
1911
insert_u64s_remaining(struct btree * b)1912 static size_t insert_u64s_remaining(struct btree *b)
1913 {
1914 long ret = bch_btree_keys_u64s_remaining(&b->keys);
1915
1916 /*
1917 * Might land in the middle of an existing extent and have to split it
1918 */
1919 if (b->keys.ops->is_extents)
1920 ret -= KEY_MAX_U64S;
1921
1922 return max(ret, 0L);
1923 }
1924
bch_btree_insert_keys(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)1925 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1926 struct keylist *insert_keys,
1927 struct bkey *replace_key)
1928 {
1929 bool ret = false;
1930 int oldsize = bch_count_data(&b->keys);
1931
1932 while (!bch_keylist_empty(insert_keys)) {
1933 struct bkey *k = insert_keys->keys;
1934
1935 if (bkey_u64s(k) > insert_u64s_remaining(b))
1936 break;
1937
1938 if (bkey_cmp(k, &b->key) <= 0) {
1939 if (!b->level)
1940 bkey_put(b->c, k);
1941
1942 ret |= btree_insert_key(b, k, replace_key);
1943 bch_keylist_pop_front(insert_keys);
1944 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
1945 BKEY_PADDED(key) temp;
1946 bkey_copy(&temp.key, insert_keys->keys);
1947
1948 bch_cut_back(&b->key, &temp.key);
1949 bch_cut_front(&b->key, insert_keys->keys);
1950
1951 ret |= btree_insert_key(b, &temp.key, replace_key);
1952 break;
1953 } else {
1954 break;
1955 }
1956 }
1957
1958 if (!ret)
1959 op->insert_collision = true;
1960
1961 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
1962
1963 BUG_ON(bch_count_data(&b->keys) < oldsize);
1964 return ret;
1965 }
1966
btree_split(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)1967 static int btree_split(struct btree *b, struct btree_op *op,
1968 struct keylist *insert_keys,
1969 struct bkey *replace_key)
1970 {
1971 bool split;
1972 struct btree *n1, *n2 = NULL, *n3 = NULL;
1973 uint64_t start_time = local_clock();
1974 struct closure cl;
1975 struct keylist parent_keys;
1976
1977 closure_init_stack(&cl);
1978 bch_keylist_init(&parent_keys);
1979
1980 if (btree_check_reserve(b, op)) {
1981 if (!b->level)
1982 return -EINTR;
1983 else
1984 WARN(1, "insufficient reserve for split\n");
1985 }
1986
1987 n1 = btree_node_alloc_replacement(b, op);
1988 if (IS_ERR(n1))
1989 goto err;
1990
1991 split = set_blocks(btree_bset_first(n1),
1992 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
1993
1994 if (split) {
1995 unsigned keys = 0;
1996
1997 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
1998
1999 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2000 if (IS_ERR(n2))
2001 goto err_free1;
2002
2003 if (!b->parent) {
2004 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2005 if (IS_ERR(n3))
2006 goto err_free2;
2007 }
2008
2009 mutex_lock(&n1->write_lock);
2010 mutex_lock(&n2->write_lock);
2011
2012 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2013
2014 /*
2015 * Has to be a linear search because we don't have an auxiliary
2016 * search tree yet
2017 */
2018
2019 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2020 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2021 keys));
2022
2023 bkey_copy_key(&n1->key,
2024 bset_bkey_idx(btree_bset_first(n1), keys));
2025 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2026
2027 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2028 btree_bset_first(n1)->keys = keys;
2029
2030 memcpy(btree_bset_first(n2)->start,
2031 bset_bkey_last(btree_bset_first(n1)),
2032 btree_bset_first(n2)->keys * sizeof(uint64_t));
2033
2034 bkey_copy_key(&n2->key, &b->key);
2035
2036 bch_keylist_add(&parent_keys, &n2->key);
2037 bch_btree_node_write(n2, &cl);
2038 mutex_unlock(&n2->write_lock);
2039 rw_unlock(true, n2);
2040 } else {
2041 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2042
2043 mutex_lock(&n1->write_lock);
2044 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2045 }
2046
2047 bch_keylist_add(&parent_keys, &n1->key);
2048 bch_btree_node_write(n1, &cl);
2049 mutex_unlock(&n1->write_lock);
2050
2051 if (n3) {
2052 /* Depth increases, make a new root */
2053 mutex_lock(&n3->write_lock);
2054 bkey_copy_key(&n3->key, &MAX_KEY);
2055 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2056 bch_btree_node_write(n3, &cl);
2057 mutex_unlock(&n3->write_lock);
2058
2059 closure_sync(&cl);
2060 bch_btree_set_root(n3);
2061 rw_unlock(true, n3);
2062 } else if (!b->parent) {
2063 /* Root filled up but didn't need to be split */
2064 closure_sync(&cl);
2065 bch_btree_set_root(n1);
2066 } else {
2067 /* Split a non root node */
2068 closure_sync(&cl);
2069 make_btree_freeing_key(b, parent_keys.top);
2070 bch_keylist_push(&parent_keys);
2071
2072 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2073 BUG_ON(!bch_keylist_empty(&parent_keys));
2074 }
2075
2076 btree_node_free(b);
2077 rw_unlock(true, n1);
2078
2079 bch_time_stats_update(&b->c->btree_split_time, start_time);
2080
2081 return 0;
2082 err_free2:
2083 bkey_put(b->c, &n2->key);
2084 btree_node_free(n2);
2085 rw_unlock(true, n2);
2086 err_free1:
2087 bkey_put(b->c, &n1->key);
2088 btree_node_free(n1);
2089 rw_unlock(true, n1);
2090 err:
2091 WARN(1, "bcache: btree split failed (level %u)", b->level);
2092
2093 if (n3 == ERR_PTR(-EAGAIN) ||
2094 n2 == ERR_PTR(-EAGAIN) ||
2095 n1 == ERR_PTR(-EAGAIN))
2096 return -EAGAIN;
2097
2098 return -ENOMEM;
2099 }
2100
bch_btree_insert_node(struct btree * b,struct btree_op * op,struct keylist * insert_keys,atomic_t * journal_ref,struct bkey * replace_key)2101 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2102 struct keylist *insert_keys,
2103 atomic_t *journal_ref,
2104 struct bkey *replace_key)
2105 {
2106 struct closure cl;
2107
2108 BUG_ON(b->level && replace_key);
2109
2110 closure_init_stack(&cl);
2111
2112 mutex_lock(&b->write_lock);
2113
2114 if (write_block(b) != btree_bset_last(b) &&
2115 b->keys.last_set_unwritten)
2116 bch_btree_init_next(b); /* just wrote a set */
2117
2118 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2119 mutex_unlock(&b->write_lock);
2120 goto split;
2121 }
2122
2123 BUG_ON(write_block(b) != btree_bset_last(b));
2124
2125 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2126 if (!b->level)
2127 bch_btree_leaf_dirty(b, journal_ref);
2128 else
2129 bch_btree_node_write(b, &cl);
2130 }
2131
2132 mutex_unlock(&b->write_lock);
2133
2134 /* wait for btree node write if necessary, after unlock */
2135 closure_sync(&cl);
2136
2137 return 0;
2138 split:
2139 if (current->bio_list) {
2140 op->lock = b->c->root->level + 1;
2141 return -EAGAIN;
2142 } else if (op->lock <= b->c->root->level) {
2143 op->lock = b->c->root->level + 1;
2144 return -EINTR;
2145 } else {
2146 /* Invalidated all iterators */
2147 int ret = btree_split(b, op, insert_keys, replace_key);
2148
2149 if (bch_keylist_empty(insert_keys))
2150 return 0;
2151 else if (!ret)
2152 return -EINTR;
2153 return ret;
2154 }
2155 }
2156
bch_btree_insert_check_key(struct btree * b,struct btree_op * op,struct bkey * check_key)2157 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2158 struct bkey *check_key)
2159 {
2160 int ret = -EINTR;
2161 uint64_t btree_ptr = b->key.ptr[0];
2162 unsigned long seq = b->seq;
2163 struct keylist insert;
2164 bool upgrade = op->lock == -1;
2165
2166 bch_keylist_init(&insert);
2167
2168 if (upgrade) {
2169 rw_unlock(false, b);
2170 rw_lock(true, b, b->level);
2171
2172 if (b->key.ptr[0] != btree_ptr ||
2173 b->seq != seq + 1) {
2174 op->lock = b->level;
2175 goto out;
2176 }
2177 }
2178
2179 SET_KEY_PTRS(check_key, 1);
2180 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2181
2182 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2183
2184 bch_keylist_add(&insert, check_key);
2185
2186 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2187
2188 BUG_ON(!ret && !bch_keylist_empty(&insert));
2189 out:
2190 if (upgrade)
2191 downgrade_write(&b->lock);
2192 return ret;
2193 }
2194
2195 struct btree_insert_op {
2196 struct btree_op op;
2197 struct keylist *keys;
2198 atomic_t *journal_ref;
2199 struct bkey *replace_key;
2200 };
2201
btree_insert_fn(struct btree_op * b_op,struct btree * b)2202 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2203 {
2204 struct btree_insert_op *op = container_of(b_op,
2205 struct btree_insert_op, op);
2206
2207 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2208 op->journal_ref, op->replace_key);
2209 if (ret && !bch_keylist_empty(op->keys))
2210 return ret;
2211 else
2212 return MAP_DONE;
2213 }
2214
bch_btree_insert(struct cache_set * c,struct keylist * keys,atomic_t * journal_ref,struct bkey * replace_key)2215 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2216 atomic_t *journal_ref, struct bkey *replace_key)
2217 {
2218 struct btree_insert_op op;
2219 int ret = 0;
2220
2221 BUG_ON(current->bio_list);
2222 BUG_ON(bch_keylist_empty(keys));
2223
2224 bch_btree_op_init(&op.op, 0);
2225 op.keys = keys;
2226 op.journal_ref = journal_ref;
2227 op.replace_key = replace_key;
2228
2229 while (!ret && !bch_keylist_empty(keys)) {
2230 op.op.lock = 0;
2231 ret = bch_btree_map_leaf_nodes(&op.op, c,
2232 &START_KEY(keys->keys),
2233 btree_insert_fn);
2234 }
2235
2236 if (ret) {
2237 struct bkey *k;
2238
2239 pr_err("error %i", ret);
2240
2241 while ((k = bch_keylist_pop(keys)))
2242 bkey_put(c, k);
2243 } else if (op.op.insert_collision)
2244 ret = -ESRCH;
2245
2246 return ret;
2247 }
2248
bch_btree_set_root(struct btree * b)2249 void bch_btree_set_root(struct btree *b)
2250 {
2251 unsigned i;
2252 struct closure cl;
2253
2254 closure_init_stack(&cl);
2255
2256 trace_bcache_btree_set_root(b);
2257
2258 BUG_ON(!b->written);
2259
2260 for (i = 0; i < KEY_PTRS(&b->key); i++)
2261 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2262
2263 mutex_lock(&b->c->bucket_lock);
2264 list_del_init(&b->list);
2265 mutex_unlock(&b->c->bucket_lock);
2266
2267 b->c->root = b;
2268
2269 bch_journal_meta(b->c, &cl);
2270 closure_sync(&cl);
2271 }
2272
2273 /* Map across nodes or keys */
2274
bch_btree_map_nodes_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_nodes_fn * fn,int flags)2275 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2276 struct bkey *from,
2277 btree_map_nodes_fn *fn, int flags)
2278 {
2279 int ret = MAP_CONTINUE;
2280
2281 if (b->level) {
2282 struct bkey *k;
2283 struct btree_iter iter;
2284
2285 bch_btree_iter_init(&b->keys, &iter, from);
2286
2287 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2288 bch_ptr_bad))) {
2289 ret = btree(map_nodes_recurse, k, b,
2290 op, from, fn, flags);
2291 from = NULL;
2292
2293 if (ret != MAP_CONTINUE)
2294 return ret;
2295 }
2296 }
2297
2298 if (!b->level || flags == MAP_ALL_NODES)
2299 ret = fn(op, b);
2300
2301 return ret;
2302 }
2303
__bch_btree_map_nodes(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_nodes_fn * fn,int flags)2304 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2305 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2306 {
2307 return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2308 }
2309
bch_btree_map_keys_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_keys_fn * fn,int flags)2310 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2311 struct bkey *from, btree_map_keys_fn *fn,
2312 int flags)
2313 {
2314 int ret = MAP_CONTINUE;
2315 struct bkey *k;
2316 struct btree_iter iter;
2317
2318 bch_btree_iter_init(&b->keys, &iter, from);
2319
2320 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2321 ret = !b->level
2322 ? fn(op, b, k)
2323 : btree(map_keys_recurse, k, b, op, from, fn, flags);
2324 from = NULL;
2325
2326 if (ret != MAP_CONTINUE)
2327 return ret;
2328 }
2329
2330 if (!b->level && (flags & MAP_END_KEY))
2331 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2332 KEY_OFFSET(&b->key), 0));
2333
2334 return ret;
2335 }
2336
bch_btree_map_keys(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_keys_fn * fn,int flags)2337 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2338 struct bkey *from, btree_map_keys_fn *fn, int flags)
2339 {
2340 return btree_root(map_keys_recurse, c, op, from, fn, flags);
2341 }
2342
2343 /* Keybuf code */
2344
keybuf_cmp(struct keybuf_key * l,struct keybuf_key * r)2345 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2346 {
2347 /* Overlapping keys compare equal */
2348 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2349 return -1;
2350 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2351 return 1;
2352 return 0;
2353 }
2354
keybuf_nonoverlapping_cmp(struct keybuf_key * l,struct keybuf_key * r)2355 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2356 struct keybuf_key *r)
2357 {
2358 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2359 }
2360
2361 struct refill {
2362 struct btree_op op;
2363 unsigned nr_found;
2364 struct keybuf *buf;
2365 struct bkey *end;
2366 keybuf_pred_fn *pred;
2367 };
2368
refill_keybuf_fn(struct btree_op * op,struct btree * b,struct bkey * k)2369 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2370 struct bkey *k)
2371 {
2372 struct refill *refill = container_of(op, struct refill, op);
2373 struct keybuf *buf = refill->buf;
2374 int ret = MAP_CONTINUE;
2375
2376 if (bkey_cmp(k, refill->end) > 0) {
2377 ret = MAP_DONE;
2378 goto out;
2379 }
2380
2381 if (!KEY_SIZE(k)) /* end key */
2382 goto out;
2383
2384 if (refill->pred(buf, k)) {
2385 struct keybuf_key *w;
2386
2387 spin_lock(&buf->lock);
2388
2389 w = array_alloc(&buf->freelist);
2390 if (!w) {
2391 spin_unlock(&buf->lock);
2392 return MAP_DONE;
2393 }
2394
2395 w->private = NULL;
2396 bkey_copy(&w->key, k);
2397
2398 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2399 array_free(&buf->freelist, w);
2400 else
2401 refill->nr_found++;
2402
2403 if (array_freelist_empty(&buf->freelist))
2404 ret = MAP_DONE;
2405
2406 spin_unlock(&buf->lock);
2407 }
2408 out:
2409 buf->last_scanned = *k;
2410 return ret;
2411 }
2412
bch_refill_keybuf(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2413 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2414 struct bkey *end, keybuf_pred_fn *pred)
2415 {
2416 struct bkey start = buf->last_scanned;
2417 struct refill refill;
2418
2419 cond_resched();
2420
2421 bch_btree_op_init(&refill.op, -1);
2422 refill.nr_found = 0;
2423 refill.buf = buf;
2424 refill.end = end;
2425 refill.pred = pred;
2426
2427 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2428 refill_keybuf_fn, MAP_END_KEY);
2429
2430 trace_bcache_keyscan(refill.nr_found,
2431 KEY_INODE(&start), KEY_OFFSET(&start),
2432 KEY_INODE(&buf->last_scanned),
2433 KEY_OFFSET(&buf->last_scanned));
2434
2435 spin_lock(&buf->lock);
2436
2437 if (!RB_EMPTY_ROOT(&buf->keys)) {
2438 struct keybuf_key *w;
2439 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2440 buf->start = START_KEY(&w->key);
2441
2442 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2443 buf->end = w->key;
2444 } else {
2445 buf->start = MAX_KEY;
2446 buf->end = MAX_KEY;
2447 }
2448
2449 spin_unlock(&buf->lock);
2450 }
2451
__bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2452 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2453 {
2454 rb_erase(&w->node, &buf->keys);
2455 array_free(&buf->freelist, w);
2456 }
2457
bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2458 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2459 {
2460 spin_lock(&buf->lock);
2461 __bch_keybuf_del(buf, w);
2462 spin_unlock(&buf->lock);
2463 }
2464
bch_keybuf_check_overlapping(struct keybuf * buf,struct bkey * start,struct bkey * end)2465 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2466 struct bkey *end)
2467 {
2468 bool ret = false;
2469 struct keybuf_key *p, *w, s;
2470 s.key = *start;
2471
2472 if (bkey_cmp(end, &buf->start) <= 0 ||
2473 bkey_cmp(start, &buf->end) >= 0)
2474 return false;
2475
2476 spin_lock(&buf->lock);
2477 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2478
2479 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2480 p = w;
2481 w = RB_NEXT(w, node);
2482
2483 if (p->private)
2484 ret = true;
2485 else
2486 __bch_keybuf_del(buf, p);
2487 }
2488
2489 spin_unlock(&buf->lock);
2490 return ret;
2491 }
2492
bch_keybuf_next(struct keybuf * buf)2493 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2494 {
2495 struct keybuf_key *w;
2496 spin_lock(&buf->lock);
2497
2498 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2499
2500 while (w && w->private)
2501 w = RB_NEXT(w, node);
2502
2503 if (w)
2504 w->private = ERR_PTR(-EINTR);
2505
2506 spin_unlock(&buf->lock);
2507 return w;
2508 }
2509
bch_keybuf_next_rescan(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2510 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2511 struct keybuf *buf,
2512 struct bkey *end,
2513 keybuf_pred_fn *pred)
2514 {
2515 struct keybuf_key *ret;
2516
2517 while (1) {
2518 ret = bch_keybuf_next(buf);
2519 if (ret)
2520 break;
2521
2522 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2523 pr_debug("scan finished");
2524 break;
2525 }
2526
2527 bch_refill_keybuf(c, buf, end, pred);
2528 }
2529
2530 return ret;
2531 }
2532
bch_keybuf_init(struct keybuf * buf)2533 void bch_keybuf_init(struct keybuf *buf)
2534 {
2535 buf->last_scanned = MAX_KEY;
2536 buf->keys = RB_ROOT;
2537
2538 spin_lock_init(&buf->lock);
2539 array_allocator_init(&buf->freelist);
2540 }
2541