1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * bcache journalling code, for btree insertions
4 *
5 * Copyright 2012 Google, Inc.
6 */
7
8 #include "bcache.h"
9 #include "btree.h"
10 #include "debug.h"
11 #include "extents.h"
12
13 #include <trace/events/bcache.h>
14
15 /*
16 * Journal replay/recovery:
17 *
18 * This code is all driven from run_cache_set(); we first read the journal
19 * entries, do some other stuff, then we mark all the keys in the journal
20 * entries (same as garbage collection would), then we replay them - reinserting
21 * them into the cache in precisely the same order as they appear in the
22 * journal.
23 *
24 * We only journal keys that go in leaf nodes, which simplifies things quite a
25 * bit.
26 */
27
journal_read_endio(struct bio * bio)28 static void journal_read_endio(struct bio *bio)
29 {
30 struct closure *cl = bio->bi_private;
31 closure_put(cl);
32 }
33
journal_read_bucket(struct cache * ca,struct list_head * list,unsigned bucket_index)34 static int journal_read_bucket(struct cache *ca, struct list_head *list,
35 unsigned bucket_index)
36 {
37 struct journal_device *ja = &ca->journal;
38 struct bio *bio = &ja->bio;
39
40 struct journal_replay *i;
41 struct jset *j, *data = ca->set->journal.w[0].data;
42 struct closure cl;
43 unsigned len, left, offset = 0;
44 int ret = 0;
45 sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]);
46
47 closure_init_stack(&cl);
48
49 pr_debug("reading %u", bucket_index);
50
51 while (offset < ca->sb.bucket_size) {
52 reread: left = ca->sb.bucket_size - offset;
53 len = min_t(unsigned, left, PAGE_SECTORS << JSET_BITS);
54
55 bio_reset(bio);
56 bio->bi_iter.bi_sector = bucket + offset;
57 bio_set_dev(bio, ca->bdev);
58 bio->bi_iter.bi_size = len << 9;
59
60 bio->bi_end_io = journal_read_endio;
61 bio->bi_private = &cl;
62 bio_set_op_attrs(bio, REQ_OP_READ, 0);
63 bch_bio_map(bio, data);
64
65 closure_bio_submit(bio, &cl);
66 closure_sync(&cl);
67
68 /* This function could be simpler now since we no longer write
69 * journal entries that overlap bucket boundaries; this means
70 * the start of a bucket will always have a valid journal entry
71 * if it has any journal entries at all.
72 */
73
74 j = data;
75 while (len) {
76 struct list_head *where;
77 size_t blocks, bytes = set_bytes(j);
78
79 if (j->magic != jset_magic(&ca->sb)) {
80 pr_debug("%u: bad magic", bucket_index);
81 return ret;
82 }
83
84 if (bytes > left << 9 ||
85 bytes > PAGE_SIZE << JSET_BITS) {
86 pr_info("%u: too big, %zu bytes, offset %u",
87 bucket_index, bytes, offset);
88 return ret;
89 }
90
91 if (bytes > len << 9)
92 goto reread;
93
94 if (j->csum != csum_set(j)) {
95 pr_info("%u: bad csum, %zu bytes, offset %u",
96 bucket_index, bytes, offset);
97 return ret;
98 }
99
100 blocks = set_blocks(j, block_bytes(ca->set));
101
102 while (!list_empty(list)) {
103 i = list_first_entry(list,
104 struct journal_replay, list);
105 if (i->j.seq >= j->last_seq)
106 break;
107 list_del(&i->list);
108 kfree(i);
109 }
110
111 list_for_each_entry_reverse(i, list, list) {
112 if (j->seq == i->j.seq)
113 goto next_set;
114
115 if (j->seq < i->j.last_seq)
116 goto next_set;
117
118 if (j->seq > i->j.seq) {
119 where = &i->list;
120 goto add;
121 }
122 }
123
124 where = list;
125 add:
126 i = kmalloc(offsetof(struct journal_replay, j) +
127 bytes, GFP_KERNEL);
128 if (!i)
129 return -ENOMEM;
130 memcpy(&i->j, j, bytes);
131 list_add(&i->list, where);
132 ret = 1;
133
134 ja->seq[bucket_index] = j->seq;
135 next_set:
136 offset += blocks * ca->sb.block_size;
137 len -= blocks * ca->sb.block_size;
138 j = ((void *) j) + blocks * block_bytes(ca);
139 }
140 }
141
142 return ret;
143 }
144
bch_journal_read(struct cache_set * c,struct list_head * list)145 int bch_journal_read(struct cache_set *c, struct list_head *list)
146 {
147 #define read_bucket(b) \
148 ({ \
149 int ret = journal_read_bucket(ca, list, b); \
150 __set_bit(b, bitmap); \
151 if (ret < 0) \
152 return ret; \
153 ret; \
154 })
155
156 struct cache *ca;
157 unsigned iter;
158
159 for_each_cache(ca, c, iter) {
160 struct journal_device *ja = &ca->journal;
161 DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS);
162 unsigned i, l, r, m;
163 uint64_t seq;
164
165 bitmap_zero(bitmap, SB_JOURNAL_BUCKETS);
166 pr_debug("%u journal buckets", ca->sb.njournal_buckets);
167
168 /*
169 * Read journal buckets ordered by golden ratio hash to quickly
170 * find a sequence of buckets with valid journal entries
171 */
172 for (i = 0; i < ca->sb.njournal_buckets; i++) {
173 l = (i * 2654435769U) % ca->sb.njournal_buckets;
174
175 if (test_bit(l, bitmap))
176 break;
177
178 if (read_bucket(l))
179 goto bsearch;
180 }
181
182 /*
183 * If that fails, check all the buckets we haven't checked
184 * already
185 */
186 pr_debug("falling back to linear search");
187
188 for (l = find_first_zero_bit(bitmap, ca->sb.njournal_buckets);
189 l < ca->sb.njournal_buckets;
190 l = find_next_zero_bit(bitmap, ca->sb.njournal_buckets, l + 1))
191 if (read_bucket(l))
192 goto bsearch;
193
194 /* no journal entries on this device? */
195 if (l == ca->sb.njournal_buckets)
196 continue;
197 bsearch:
198 BUG_ON(list_empty(list));
199
200 /* Binary search */
201 m = l;
202 r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1);
203 pr_debug("starting binary search, l %u r %u", l, r);
204
205 while (l + 1 < r) {
206 seq = list_entry(list->prev, struct journal_replay,
207 list)->j.seq;
208
209 m = (l + r) >> 1;
210 read_bucket(m);
211
212 if (seq != list_entry(list->prev, struct journal_replay,
213 list)->j.seq)
214 l = m;
215 else
216 r = m;
217 }
218
219 /*
220 * Read buckets in reverse order until we stop finding more
221 * journal entries
222 */
223 pr_debug("finishing up: m %u njournal_buckets %u",
224 m, ca->sb.njournal_buckets);
225 l = m;
226
227 while (1) {
228 if (!l--)
229 l = ca->sb.njournal_buckets - 1;
230
231 if (l == m)
232 break;
233
234 if (test_bit(l, bitmap))
235 continue;
236
237 if (!read_bucket(l))
238 break;
239 }
240
241 seq = 0;
242
243 for (i = 0; i < ca->sb.njournal_buckets; i++)
244 if (ja->seq[i] > seq) {
245 seq = ja->seq[i];
246 /*
247 * When journal_reclaim() goes to allocate for
248 * the first time, it'll use the bucket after
249 * ja->cur_idx
250 */
251 ja->cur_idx = i;
252 ja->last_idx = ja->discard_idx = (i + 1) %
253 ca->sb.njournal_buckets;
254
255 }
256 }
257
258 if (!list_empty(list))
259 c->journal.seq = list_entry(list->prev,
260 struct journal_replay,
261 list)->j.seq;
262
263 return 0;
264 #undef read_bucket
265 }
266
bch_journal_mark(struct cache_set * c,struct list_head * list)267 void bch_journal_mark(struct cache_set *c, struct list_head *list)
268 {
269 atomic_t p = { 0 };
270 struct bkey *k;
271 struct journal_replay *i;
272 struct journal *j = &c->journal;
273 uint64_t last = j->seq;
274
275 /*
276 * journal.pin should never fill up - we never write a journal
277 * entry when it would fill up. But if for some reason it does, we
278 * iterate over the list in reverse order so that we can just skip that
279 * refcount instead of bugging.
280 */
281
282 list_for_each_entry_reverse(i, list, list) {
283 BUG_ON(last < i->j.seq);
284 i->pin = NULL;
285
286 while (last-- != i->j.seq)
287 if (fifo_free(&j->pin) > 1) {
288 fifo_push_front(&j->pin, p);
289 atomic_set(&fifo_front(&j->pin), 0);
290 }
291
292 if (fifo_free(&j->pin) > 1) {
293 fifo_push_front(&j->pin, p);
294 i->pin = &fifo_front(&j->pin);
295 atomic_set(i->pin, 1);
296 }
297
298 for (k = i->j.start;
299 k < bset_bkey_last(&i->j);
300 k = bkey_next(k))
301 if (!__bch_extent_invalid(c, k)) {
302 unsigned j;
303
304 for (j = 0; j < KEY_PTRS(k); j++)
305 if (ptr_available(c, k, j))
306 atomic_inc(&PTR_BUCKET(c, k, j)->pin);
307
308 bch_initial_mark_key(c, 0, k);
309 }
310 }
311 }
312
is_discard_enabled(struct cache_set * s)313 bool is_discard_enabled(struct cache_set *s)
314 {
315 struct cache *ca;
316 unsigned int i;
317
318 for_each_cache(ca, s, i)
319 if (ca->discard)
320 return true;
321
322 return false;
323 }
324
bch_journal_replay(struct cache_set * s,struct list_head * list)325 int bch_journal_replay(struct cache_set *s, struct list_head *list)
326 {
327 int ret = 0, keys = 0, entries = 0;
328 struct bkey *k;
329 struct journal_replay *i =
330 list_entry(list->prev, struct journal_replay, list);
331
332 uint64_t start = i->j.last_seq, end = i->j.seq, n = start;
333 struct keylist keylist;
334
335 list_for_each_entry(i, list, list) {
336 BUG_ON(i->pin && atomic_read(i->pin) != 1);
337
338 if (n != i->j.seq) {
339 if (n == start && is_discard_enabled(s))
340 pr_info("bcache: journal entries %llu-%llu may be discarded! (replaying %llu-%llu)",
341 n, i->j.seq - 1, start, end);
342 else {
343 pr_err("bcache: journal entries %llu-%llu missing! (replaying %llu-%llu)",
344 n, i->j.seq - 1, start, end);
345 ret = -EIO;
346 goto err;
347 }
348 }
349
350 for (k = i->j.start;
351 k < bset_bkey_last(&i->j);
352 k = bkey_next(k)) {
353 trace_bcache_journal_replay_key(k);
354
355 bch_keylist_init_single(&keylist, k);
356
357 ret = bch_btree_insert(s, &keylist, i->pin, NULL);
358 if (ret)
359 goto err;
360
361 BUG_ON(!bch_keylist_empty(&keylist));
362 keys++;
363
364 cond_resched();
365 }
366
367 if (i->pin)
368 atomic_dec(i->pin);
369 n = i->j.seq + 1;
370 entries++;
371 }
372
373 pr_info("journal replay done, %i keys in %i entries, seq %llu",
374 keys, entries, end);
375 err:
376 while (!list_empty(list)) {
377 i = list_first_entry(list, struct journal_replay, list);
378 list_del(&i->list);
379 kfree(i);
380 }
381
382 return ret;
383 }
384
385 /* Journalling */
386
btree_flush_write(struct cache_set * c)387 static void btree_flush_write(struct cache_set *c)
388 {
389 /*
390 * Try to find the btree node with that references the oldest journal
391 * entry, best is our current candidate and is locked if non NULL:
392 */
393 struct btree *b, *best;
394 unsigned i;
395 retry:
396 best = NULL;
397
398 for_each_cached_btree(b, c, i)
399 if (btree_current_write(b)->journal) {
400 if (!best)
401 best = b;
402 else if (journal_pin_cmp(c,
403 btree_current_write(best)->journal,
404 btree_current_write(b)->journal)) {
405 best = b;
406 }
407 }
408
409 b = best;
410 if (b) {
411 mutex_lock(&b->write_lock);
412 if (!btree_current_write(b)->journal) {
413 mutex_unlock(&b->write_lock);
414 /* We raced */
415 goto retry;
416 }
417
418 __bch_btree_node_write(b, NULL);
419 mutex_unlock(&b->write_lock);
420 }
421 }
422
423 #define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1)
424
journal_discard_endio(struct bio * bio)425 static void journal_discard_endio(struct bio *bio)
426 {
427 struct journal_device *ja =
428 container_of(bio, struct journal_device, discard_bio);
429 struct cache *ca = container_of(ja, struct cache, journal);
430
431 atomic_set(&ja->discard_in_flight, DISCARD_DONE);
432
433 closure_wake_up(&ca->set->journal.wait);
434 closure_put(&ca->set->cl);
435 }
436
journal_discard_work(struct work_struct * work)437 static void journal_discard_work(struct work_struct *work)
438 {
439 struct journal_device *ja =
440 container_of(work, struct journal_device, discard_work);
441
442 submit_bio(&ja->discard_bio);
443 }
444
do_journal_discard(struct cache * ca)445 static void do_journal_discard(struct cache *ca)
446 {
447 struct journal_device *ja = &ca->journal;
448 struct bio *bio = &ja->discard_bio;
449
450 if (!ca->discard) {
451 ja->discard_idx = ja->last_idx;
452 return;
453 }
454
455 switch (atomic_read(&ja->discard_in_flight)) {
456 case DISCARD_IN_FLIGHT:
457 return;
458
459 case DISCARD_DONE:
460 ja->discard_idx = (ja->discard_idx + 1) %
461 ca->sb.njournal_buckets;
462
463 atomic_set(&ja->discard_in_flight, DISCARD_READY);
464 /* fallthrough */
465
466 case DISCARD_READY:
467 if (ja->discard_idx == ja->last_idx)
468 return;
469
470 atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT);
471
472 bio_init(bio, bio->bi_inline_vecs, 1);
473 bio_set_op_attrs(bio, REQ_OP_DISCARD, 0);
474 bio->bi_iter.bi_sector = bucket_to_sector(ca->set,
475 ca->sb.d[ja->discard_idx]);
476 bio_set_dev(bio, ca->bdev);
477 bio->bi_iter.bi_size = bucket_bytes(ca);
478 bio->bi_end_io = journal_discard_endio;
479
480 closure_get(&ca->set->cl);
481 INIT_WORK(&ja->discard_work, journal_discard_work);
482 schedule_work(&ja->discard_work);
483 }
484 }
485
journal_reclaim(struct cache_set * c)486 static void journal_reclaim(struct cache_set *c)
487 {
488 struct bkey *k = &c->journal.key;
489 struct cache *ca;
490 uint64_t last_seq;
491 unsigned iter, n = 0;
492 atomic_t p;
493
494 while (!atomic_read(&fifo_front(&c->journal.pin)))
495 fifo_pop(&c->journal.pin, p);
496
497 last_seq = last_seq(&c->journal);
498
499 /* Update last_idx */
500
501 for_each_cache(ca, c, iter) {
502 struct journal_device *ja = &ca->journal;
503
504 while (ja->last_idx != ja->cur_idx &&
505 ja->seq[ja->last_idx] < last_seq)
506 ja->last_idx = (ja->last_idx + 1) %
507 ca->sb.njournal_buckets;
508 }
509
510 for_each_cache(ca, c, iter)
511 do_journal_discard(ca);
512
513 if (c->journal.blocks_free)
514 goto out;
515
516 /*
517 * Allocate:
518 * XXX: Sort by free journal space
519 */
520
521 for_each_cache(ca, c, iter) {
522 struct journal_device *ja = &ca->journal;
523 unsigned next = (ja->cur_idx + 1) % ca->sb.njournal_buckets;
524
525 /* No space available on this device */
526 if (next == ja->discard_idx)
527 continue;
528
529 ja->cur_idx = next;
530 k->ptr[n++] = MAKE_PTR(0,
531 bucket_to_sector(c, ca->sb.d[ja->cur_idx]),
532 ca->sb.nr_this_dev);
533 }
534
535 if (n) {
536 bkey_init(k);
537 SET_KEY_PTRS(k, n);
538 c->journal.blocks_free = c->sb.bucket_size >> c->block_bits;
539 }
540 out:
541 if (!journal_full(&c->journal))
542 __closure_wake_up(&c->journal.wait);
543 }
544
bch_journal_next(struct journal * j)545 void bch_journal_next(struct journal *j)
546 {
547 atomic_t p = { 1 };
548
549 j->cur = (j->cur == j->w)
550 ? &j->w[1]
551 : &j->w[0];
552
553 /*
554 * The fifo_push() needs to happen at the same time as j->seq is
555 * incremented for last_seq() to be calculated correctly
556 */
557 BUG_ON(!fifo_push(&j->pin, p));
558 atomic_set(&fifo_back(&j->pin), 1);
559
560 j->cur->data->seq = ++j->seq;
561 j->cur->dirty = false;
562 j->cur->need_write = false;
563 j->cur->data->keys = 0;
564
565 if (fifo_full(&j->pin))
566 pr_debug("journal_pin full (%zu)", fifo_used(&j->pin));
567 }
568
journal_write_endio(struct bio * bio)569 static void journal_write_endio(struct bio *bio)
570 {
571 struct journal_write *w = bio->bi_private;
572
573 cache_set_err_on(bio->bi_status, w->c, "journal io error");
574 closure_put(&w->c->journal.io);
575 }
576
577 static void journal_write(struct closure *);
578
journal_write_done(struct closure * cl)579 static void journal_write_done(struct closure *cl)
580 {
581 struct journal *j = container_of(cl, struct journal, io);
582 struct journal_write *w = (j->cur == j->w)
583 ? &j->w[1]
584 : &j->w[0];
585
586 __closure_wake_up(&w->wait);
587 continue_at_nobarrier(cl, journal_write, system_wq);
588 }
589
journal_write_unlock(struct closure * cl)590 static void journal_write_unlock(struct closure *cl)
591 {
592 struct cache_set *c = container_of(cl, struct cache_set, journal.io);
593
594 c->journal.io_in_flight = 0;
595 spin_unlock(&c->journal.lock);
596 }
597
journal_write_unlocked(struct closure * cl)598 static void journal_write_unlocked(struct closure *cl)
599 __releases(c->journal.lock)
600 {
601 struct cache_set *c = container_of(cl, struct cache_set, journal.io);
602 struct cache *ca;
603 struct journal_write *w = c->journal.cur;
604 struct bkey *k = &c->journal.key;
605 unsigned i, sectors = set_blocks(w->data, block_bytes(c)) *
606 c->sb.block_size;
607
608 struct bio *bio;
609 struct bio_list list;
610 bio_list_init(&list);
611
612 if (!w->need_write) {
613 closure_return_with_destructor(cl, journal_write_unlock);
614 return;
615 } else if (journal_full(&c->journal)) {
616 journal_reclaim(c);
617 spin_unlock(&c->journal.lock);
618
619 btree_flush_write(c);
620 continue_at(cl, journal_write, system_wq);
621 return;
622 }
623
624 c->journal.blocks_free -= set_blocks(w->data, block_bytes(c));
625
626 w->data->btree_level = c->root->level;
627
628 bkey_copy(&w->data->btree_root, &c->root->key);
629 bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket);
630
631 for_each_cache(ca, c, i)
632 w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0];
633
634 w->data->magic = jset_magic(&c->sb);
635 w->data->version = BCACHE_JSET_VERSION;
636 w->data->last_seq = last_seq(&c->journal);
637 w->data->csum = csum_set(w->data);
638
639 for (i = 0; i < KEY_PTRS(k); i++) {
640 ca = PTR_CACHE(c, k, i);
641 bio = &ca->journal.bio;
642
643 atomic_long_add(sectors, &ca->meta_sectors_written);
644
645 bio_reset(bio);
646 bio->bi_iter.bi_sector = PTR_OFFSET(k, i);
647 bio_set_dev(bio, ca->bdev);
648 bio->bi_iter.bi_size = sectors << 9;
649
650 bio->bi_end_io = journal_write_endio;
651 bio->bi_private = w;
652 bio_set_op_attrs(bio, REQ_OP_WRITE,
653 REQ_SYNC|REQ_META|REQ_PREFLUSH|REQ_FUA);
654 bch_bio_map(bio, w->data);
655
656 trace_bcache_journal_write(bio);
657 bio_list_add(&list, bio);
658
659 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors);
660
661 ca->journal.seq[ca->journal.cur_idx] = w->data->seq;
662 }
663
664 /* If KEY_PTRS(k) == 0, this jset gets lost in air */
665 BUG_ON(i == 0);
666
667 atomic_dec_bug(&fifo_back(&c->journal.pin));
668 bch_journal_next(&c->journal);
669 journal_reclaim(c);
670
671 spin_unlock(&c->journal.lock);
672
673 while ((bio = bio_list_pop(&list)))
674 closure_bio_submit(bio, cl);
675
676 continue_at(cl, journal_write_done, NULL);
677 }
678
journal_write(struct closure * cl)679 static void journal_write(struct closure *cl)
680 {
681 struct cache_set *c = container_of(cl, struct cache_set, journal.io);
682
683 spin_lock(&c->journal.lock);
684 journal_write_unlocked(cl);
685 }
686
journal_try_write(struct cache_set * c)687 static void journal_try_write(struct cache_set *c)
688 __releases(c->journal.lock)
689 {
690 struct closure *cl = &c->journal.io;
691 struct journal_write *w = c->journal.cur;
692
693 w->need_write = true;
694
695 if (!c->journal.io_in_flight) {
696 c->journal.io_in_flight = 1;
697 closure_call(cl, journal_write_unlocked, NULL, &c->cl);
698 } else {
699 spin_unlock(&c->journal.lock);
700 }
701 }
702
journal_wait_for_write(struct cache_set * c,unsigned nkeys)703 static struct journal_write *journal_wait_for_write(struct cache_set *c,
704 unsigned nkeys)
705 {
706 size_t sectors;
707 struct closure cl;
708 bool wait = false;
709
710 closure_init_stack(&cl);
711
712 spin_lock(&c->journal.lock);
713
714 while (1) {
715 struct journal_write *w = c->journal.cur;
716
717 sectors = __set_blocks(w->data, w->data->keys + nkeys,
718 block_bytes(c)) * c->sb.block_size;
719
720 if (sectors <= min_t(size_t,
721 c->journal.blocks_free * c->sb.block_size,
722 PAGE_SECTORS << JSET_BITS))
723 return w;
724
725 if (wait)
726 closure_wait(&c->journal.wait, &cl);
727
728 if (!journal_full(&c->journal)) {
729 if (wait)
730 trace_bcache_journal_entry_full(c);
731
732 /*
733 * XXX: If we were inserting so many keys that they
734 * won't fit in an _empty_ journal write, we'll
735 * deadlock. For now, handle this in
736 * bch_keylist_realloc() - but something to think about.
737 */
738 BUG_ON(!w->data->keys);
739
740 journal_try_write(c); /* unlocks */
741 } else {
742 if (wait)
743 trace_bcache_journal_full(c);
744
745 journal_reclaim(c);
746 spin_unlock(&c->journal.lock);
747
748 btree_flush_write(c);
749 }
750
751 closure_sync(&cl);
752 spin_lock(&c->journal.lock);
753 wait = true;
754 }
755 }
756
journal_write_work(struct work_struct * work)757 static void journal_write_work(struct work_struct *work)
758 {
759 struct cache_set *c = container_of(to_delayed_work(work),
760 struct cache_set,
761 journal.work);
762 spin_lock(&c->journal.lock);
763 if (c->journal.cur->dirty)
764 journal_try_write(c);
765 else
766 spin_unlock(&c->journal.lock);
767 }
768
769 /*
770 * Entry point to the journalling code - bio_insert() and btree_invalidate()
771 * pass bch_journal() a list of keys to be journalled, and then
772 * bch_journal() hands those same keys off to btree_insert_async()
773 */
774
bch_journal(struct cache_set * c,struct keylist * keys,struct closure * parent)775 atomic_t *bch_journal(struct cache_set *c,
776 struct keylist *keys,
777 struct closure *parent)
778 {
779 struct journal_write *w;
780 atomic_t *ret;
781
782 if (!CACHE_SYNC(&c->sb))
783 return NULL;
784
785 w = journal_wait_for_write(c, bch_keylist_nkeys(keys));
786
787 memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys));
788 w->data->keys += bch_keylist_nkeys(keys);
789
790 ret = &fifo_back(&c->journal.pin);
791 atomic_inc(ret);
792
793 if (parent) {
794 closure_wait(&w->wait, parent);
795 journal_try_write(c);
796 } else if (!w->dirty) {
797 w->dirty = true;
798 schedule_delayed_work(&c->journal.work,
799 msecs_to_jiffies(c->journal_delay_ms));
800 spin_unlock(&c->journal.lock);
801 } else {
802 spin_unlock(&c->journal.lock);
803 }
804
805
806 return ret;
807 }
808
bch_journal_meta(struct cache_set * c,struct closure * cl)809 void bch_journal_meta(struct cache_set *c, struct closure *cl)
810 {
811 struct keylist keys;
812 atomic_t *ref;
813
814 bch_keylist_init(&keys);
815
816 ref = bch_journal(c, &keys, cl);
817 if (ref)
818 atomic_dec_bug(ref);
819 }
820
bch_journal_free(struct cache_set * c)821 void bch_journal_free(struct cache_set *c)
822 {
823 free_pages((unsigned long) c->journal.w[1].data, JSET_BITS);
824 free_pages((unsigned long) c->journal.w[0].data, JSET_BITS);
825 free_fifo(&c->journal.pin);
826 }
827
bch_journal_alloc(struct cache_set * c)828 int bch_journal_alloc(struct cache_set *c)
829 {
830 struct journal *j = &c->journal;
831
832 spin_lock_init(&j->lock);
833 INIT_DELAYED_WORK(&j->work, journal_write_work);
834
835 c->journal_delay_ms = 100;
836
837 j->w[0].c = c;
838 j->w[1].c = c;
839
840 if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) ||
841 !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)) ||
842 !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)))
843 return -ENOMEM;
844
845 return 0;
846 }
847