1 /*
2 * bcache setup/teardown code, and some metadata io - read a superblock and
3 * figure out what to do with it.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "extents.h"
13 #include "request.h"
14 #include "writeback.h"
15
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
26
27 MODULE_LICENSE("GPL");
28 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
29
30 static const char bcache_magic[] = {
31 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33 };
34
35 static const char invalid_uuid[] = {
36 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38 };
39
40 /* Default is -1; we skip past it for struct cached_dev's cache mode */
41 const char * const bch_cache_modes[] = {
42 "default",
43 "writethrough",
44 "writeback",
45 "writearound",
46 "none",
47 NULL
48 };
49
50 static struct kobject *bcache_kobj;
51 struct mutex bch_register_lock;
52 LIST_HEAD(bch_cache_sets);
53 static LIST_HEAD(uncached_devices);
54
55 static int bcache_major;
56 static DEFINE_IDA(bcache_minor);
57 static wait_queue_head_t unregister_wait;
58 struct workqueue_struct *bcache_wq;
59
60 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
61 #define BCACHE_MINORS 16 /* partition support */
62
63 /* Superblock */
64
read_super(struct cache_sb * sb,struct block_device * bdev,struct page ** res)65 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
66 struct page **res)
67 {
68 const char *err;
69 struct cache_sb *s;
70 struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
71 unsigned i;
72
73 if (!bh)
74 return "IO error";
75
76 s = (struct cache_sb *) bh->b_data;
77
78 sb->offset = le64_to_cpu(s->offset);
79 sb->version = le64_to_cpu(s->version);
80
81 memcpy(sb->magic, s->magic, 16);
82 memcpy(sb->uuid, s->uuid, 16);
83 memcpy(sb->set_uuid, s->set_uuid, 16);
84 memcpy(sb->label, s->label, SB_LABEL_SIZE);
85
86 sb->flags = le64_to_cpu(s->flags);
87 sb->seq = le64_to_cpu(s->seq);
88 sb->last_mount = le32_to_cpu(s->last_mount);
89 sb->first_bucket = le16_to_cpu(s->first_bucket);
90 sb->keys = le16_to_cpu(s->keys);
91
92 for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
93 sb->d[i] = le64_to_cpu(s->d[i]);
94
95 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
96 sb->version, sb->flags, sb->seq, sb->keys);
97
98 err = "Not a bcache superblock";
99 if (sb->offset != SB_SECTOR)
100 goto err;
101
102 if (memcmp(sb->magic, bcache_magic, 16))
103 goto err;
104
105 err = "Too many journal buckets";
106 if (sb->keys > SB_JOURNAL_BUCKETS)
107 goto err;
108
109 err = "Bad checksum";
110 if (s->csum != csum_set(s))
111 goto err;
112
113 err = "Bad UUID";
114 if (bch_is_zero(sb->uuid, 16))
115 goto err;
116
117 sb->block_size = le16_to_cpu(s->block_size);
118
119 err = "Superblock block size smaller than device block size";
120 if (sb->block_size << 9 < bdev_logical_block_size(bdev))
121 goto err;
122
123 switch (sb->version) {
124 case BCACHE_SB_VERSION_BDEV:
125 sb->data_offset = BDEV_DATA_START_DEFAULT;
126 break;
127 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
128 sb->data_offset = le64_to_cpu(s->data_offset);
129
130 err = "Bad data offset";
131 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
132 goto err;
133
134 break;
135 case BCACHE_SB_VERSION_CDEV:
136 case BCACHE_SB_VERSION_CDEV_WITH_UUID:
137 sb->nbuckets = le64_to_cpu(s->nbuckets);
138 sb->bucket_size = le16_to_cpu(s->bucket_size);
139
140 sb->nr_in_set = le16_to_cpu(s->nr_in_set);
141 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
142
143 err = "Too many buckets";
144 if (sb->nbuckets > LONG_MAX)
145 goto err;
146
147 err = "Not enough buckets";
148 if (sb->nbuckets < 1 << 7)
149 goto err;
150
151 err = "Bad block/bucket size";
152 if (!is_power_of_2(sb->block_size) ||
153 sb->block_size > PAGE_SECTORS ||
154 !is_power_of_2(sb->bucket_size) ||
155 sb->bucket_size < PAGE_SECTORS)
156 goto err;
157
158 err = "Invalid superblock: device too small";
159 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
160 goto err;
161
162 err = "Bad UUID";
163 if (bch_is_zero(sb->set_uuid, 16))
164 goto err;
165
166 err = "Bad cache device number in set";
167 if (!sb->nr_in_set ||
168 sb->nr_in_set <= sb->nr_this_dev ||
169 sb->nr_in_set > MAX_CACHES_PER_SET)
170 goto err;
171
172 err = "Journal buckets not sequential";
173 for (i = 0; i < sb->keys; i++)
174 if (sb->d[i] != sb->first_bucket + i)
175 goto err;
176
177 err = "Too many journal buckets";
178 if (sb->first_bucket + sb->keys > sb->nbuckets)
179 goto err;
180
181 err = "Invalid superblock: first bucket comes before end of super";
182 if (sb->first_bucket * sb->bucket_size < 16)
183 goto err;
184
185 break;
186 default:
187 err = "Unsupported superblock version";
188 goto err;
189 }
190
191 sb->last_mount = get_seconds();
192 err = NULL;
193
194 get_page(bh->b_page);
195 *res = bh->b_page;
196 err:
197 put_bh(bh);
198 return err;
199 }
200
write_bdev_super_endio(struct bio * bio)201 static void write_bdev_super_endio(struct bio *bio)
202 {
203 struct cached_dev *dc = bio->bi_private;
204 /* XXX: error checking */
205
206 closure_put(&dc->sb_write);
207 }
208
__write_super(struct cache_sb * sb,struct bio * bio)209 static void __write_super(struct cache_sb *sb, struct bio *bio)
210 {
211 struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
212 unsigned i;
213
214 bio->bi_iter.bi_sector = SB_SECTOR;
215 bio->bi_iter.bi_size = SB_SIZE;
216 bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
217 bch_bio_map(bio, NULL);
218
219 out->offset = cpu_to_le64(sb->offset);
220 out->version = cpu_to_le64(sb->version);
221
222 memcpy(out->uuid, sb->uuid, 16);
223 memcpy(out->set_uuid, sb->set_uuid, 16);
224 memcpy(out->label, sb->label, SB_LABEL_SIZE);
225
226 out->flags = cpu_to_le64(sb->flags);
227 out->seq = cpu_to_le64(sb->seq);
228
229 out->last_mount = cpu_to_le32(sb->last_mount);
230 out->first_bucket = cpu_to_le16(sb->first_bucket);
231 out->keys = cpu_to_le16(sb->keys);
232
233 for (i = 0; i < sb->keys; i++)
234 out->d[i] = cpu_to_le64(sb->d[i]);
235
236 out->csum = csum_set(out);
237
238 pr_debug("ver %llu, flags %llu, seq %llu",
239 sb->version, sb->flags, sb->seq);
240
241 submit_bio(bio);
242 }
243
bch_write_bdev_super_unlock(struct closure * cl)244 static void bch_write_bdev_super_unlock(struct closure *cl)
245 {
246 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
247
248 up(&dc->sb_write_mutex);
249 }
250
bch_write_bdev_super(struct cached_dev * dc,struct closure * parent)251 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
252 {
253 struct closure *cl = &dc->sb_write;
254 struct bio *bio = &dc->sb_bio;
255
256 down(&dc->sb_write_mutex);
257 closure_init(cl, parent);
258
259 bio_reset(bio);
260 bio_set_dev(bio, dc->bdev);
261 bio->bi_end_io = write_bdev_super_endio;
262 bio->bi_private = dc;
263
264 closure_get(cl);
265 __write_super(&dc->sb, bio);
266
267 closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
268 }
269
write_super_endio(struct bio * bio)270 static void write_super_endio(struct bio *bio)
271 {
272 struct cache *ca = bio->bi_private;
273
274 bch_count_io_errors(ca, bio->bi_status, "writing superblock");
275 closure_put(&ca->set->sb_write);
276 }
277
bcache_write_super_unlock(struct closure * cl)278 static void bcache_write_super_unlock(struct closure *cl)
279 {
280 struct cache_set *c = container_of(cl, struct cache_set, sb_write);
281
282 up(&c->sb_write_mutex);
283 }
284
bcache_write_super(struct cache_set * c)285 void bcache_write_super(struct cache_set *c)
286 {
287 struct closure *cl = &c->sb_write;
288 struct cache *ca;
289 unsigned i;
290
291 down(&c->sb_write_mutex);
292 closure_init(cl, &c->cl);
293
294 c->sb.seq++;
295
296 for_each_cache(ca, c, i) {
297 struct bio *bio = &ca->sb_bio;
298
299 ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
300 ca->sb.seq = c->sb.seq;
301 ca->sb.last_mount = c->sb.last_mount;
302
303 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
304
305 bio_reset(bio);
306 bio_set_dev(bio, ca->bdev);
307 bio->bi_end_io = write_super_endio;
308 bio->bi_private = ca;
309
310 closure_get(cl);
311 __write_super(&ca->sb, bio);
312 }
313
314 closure_return_with_destructor(cl, bcache_write_super_unlock);
315 }
316
317 /* UUID io */
318
uuid_endio(struct bio * bio)319 static void uuid_endio(struct bio *bio)
320 {
321 struct closure *cl = bio->bi_private;
322 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
323
324 cache_set_err_on(bio->bi_status, c, "accessing uuids");
325 bch_bbio_free(bio, c);
326 closure_put(cl);
327 }
328
uuid_io_unlock(struct closure * cl)329 static void uuid_io_unlock(struct closure *cl)
330 {
331 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
332
333 up(&c->uuid_write_mutex);
334 }
335
uuid_io(struct cache_set * c,int op,unsigned long op_flags,struct bkey * k,struct closure * parent)336 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
337 struct bkey *k, struct closure *parent)
338 {
339 struct closure *cl = &c->uuid_write;
340 struct uuid_entry *u;
341 unsigned i;
342 char buf[80];
343
344 BUG_ON(!parent);
345 down(&c->uuid_write_mutex);
346 closure_init(cl, parent);
347
348 for (i = 0; i < KEY_PTRS(k); i++) {
349 struct bio *bio = bch_bbio_alloc(c);
350
351 bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
352 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
353
354 bio->bi_end_io = uuid_endio;
355 bio->bi_private = cl;
356 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
357 bch_bio_map(bio, c->uuids);
358
359 bch_submit_bbio(bio, c, k, i);
360
361 if (op != REQ_OP_WRITE)
362 break;
363 }
364
365 bch_extent_to_text(buf, sizeof(buf), k);
366 pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
367
368 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
369 if (!bch_is_zero(u->uuid, 16))
370 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
371 u - c->uuids, u->uuid, u->label,
372 u->first_reg, u->last_reg, u->invalidated);
373
374 closure_return_with_destructor(cl, uuid_io_unlock);
375 }
376
uuid_read(struct cache_set * c,struct jset * j,struct closure * cl)377 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
378 {
379 struct bkey *k = &j->uuid_bucket;
380
381 if (__bch_btree_ptr_invalid(c, k))
382 return "bad uuid pointer";
383
384 bkey_copy(&c->uuid_bucket, k);
385 uuid_io(c, REQ_OP_READ, 0, k, cl);
386
387 if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
388 struct uuid_entry_v0 *u0 = (void *) c->uuids;
389 struct uuid_entry *u1 = (void *) c->uuids;
390 int i;
391
392 closure_sync(cl);
393
394 /*
395 * Since the new uuid entry is bigger than the old, we have to
396 * convert starting at the highest memory address and work down
397 * in order to do it in place
398 */
399
400 for (i = c->nr_uuids - 1;
401 i >= 0;
402 --i) {
403 memcpy(u1[i].uuid, u0[i].uuid, 16);
404 memcpy(u1[i].label, u0[i].label, 32);
405
406 u1[i].first_reg = u0[i].first_reg;
407 u1[i].last_reg = u0[i].last_reg;
408 u1[i].invalidated = u0[i].invalidated;
409
410 u1[i].flags = 0;
411 u1[i].sectors = 0;
412 }
413 }
414
415 return NULL;
416 }
417
__uuid_write(struct cache_set * c)418 static int __uuid_write(struct cache_set *c)
419 {
420 BKEY_PADDED(key) k;
421 struct closure cl;
422 closure_init_stack(&cl);
423
424 lockdep_assert_held(&bch_register_lock);
425
426 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
427 return 1;
428
429 SET_KEY_SIZE(&k.key, c->sb.bucket_size);
430 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
431 closure_sync(&cl);
432
433 bkey_copy(&c->uuid_bucket, &k.key);
434 bkey_put(c, &k.key);
435 return 0;
436 }
437
bch_uuid_write(struct cache_set * c)438 int bch_uuid_write(struct cache_set *c)
439 {
440 int ret = __uuid_write(c);
441
442 if (!ret)
443 bch_journal_meta(c, NULL);
444
445 return ret;
446 }
447
uuid_find(struct cache_set * c,const char * uuid)448 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
449 {
450 struct uuid_entry *u;
451
452 for (u = c->uuids;
453 u < c->uuids + c->nr_uuids; u++)
454 if (!memcmp(u->uuid, uuid, 16))
455 return u;
456
457 return NULL;
458 }
459
uuid_find_empty(struct cache_set * c)460 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
461 {
462 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
463 return uuid_find(c, zero_uuid);
464 }
465
466 /*
467 * Bucket priorities/gens:
468 *
469 * For each bucket, we store on disk its
470 * 8 bit gen
471 * 16 bit priority
472 *
473 * See alloc.c for an explanation of the gen. The priority is used to implement
474 * lru (and in the future other) cache replacement policies; for most purposes
475 * it's just an opaque integer.
476 *
477 * The gens and the priorities don't have a whole lot to do with each other, and
478 * it's actually the gens that must be written out at specific times - it's no
479 * big deal if the priorities don't get written, if we lose them we just reuse
480 * buckets in suboptimal order.
481 *
482 * On disk they're stored in a packed array, and in as many buckets are required
483 * to fit them all. The buckets we use to store them form a list; the journal
484 * header points to the first bucket, the first bucket points to the second
485 * bucket, et cetera.
486 *
487 * This code is used by the allocation code; periodically (whenever it runs out
488 * of buckets to allocate from) the allocation code will invalidate some
489 * buckets, but it can't use those buckets until their new gens are safely on
490 * disk.
491 */
492
prio_endio(struct bio * bio)493 static void prio_endio(struct bio *bio)
494 {
495 struct cache *ca = bio->bi_private;
496
497 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
498 bch_bbio_free(bio, ca->set);
499 closure_put(&ca->prio);
500 }
501
prio_io(struct cache * ca,uint64_t bucket,int op,unsigned long op_flags)502 static void prio_io(struct cache *ca, uint64_t bucket, int op,
503 unsigned long op_flags)
504 {
505 struct closure *cl = &ca->prio;
506 struct bio *bio = bch_bbio_alloc(ca->set);
507
508 closure_init_stack(cl);
509
510 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size;
511 bio_set_dev(bio, ca->bdev);
512 bio->bi_iter.bi_size = bucket_bytes(ca);
513
514 bio->bi_end_io = prio_endio;
515 bio->bi_private = ca;
516 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
517 bch_bio_map(bio, ca->disk_buckets);
518
519 closure_bio_submit(bio, &ca->prio);
520 closure_sync(cl);
521 }
522
bch_prio_write(struct cache * ca)523 void bch_prio_write(struct cache *ca)
524 {
525 int i;
526 struct bucket *b;
527 struct closure cl;
528
529 closure_init_stack(&cl);
530
531 lockdep_assert_held(&ca->set->bucket_lock);
532
533 ca->disk_buckets->seq++;
534
535 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
536 &ca->meta_sectors_written);
537
538 //pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
539 // fifo_used(&ca->free_inc), fifo_used(&ca->unused));
540
541 for (i = prio_buckets(ca) - 1; i >= 0; --i) {
542 long bucket;
543 struct prio_set *p = ca->disk_buckets;
544 struct bucket_disk *d = p->data;
545 struct bucket_disk *end = d + prios_per_bucket(ca);
546
547 for (b = ca->buckets + i * prios_per_bucket(ca);
548 b < ca->buckets + ca->sb.nbuckets && d < end;
549 b++, d++) {
550 d->prio = cpu_to_le16(b->prio);
551 d->gen = b->gen;
552 }
553
554 p->next_bucket = ca->prio_buckets[i + 1];
555 p->magic = pset_magic(&ca->sb);
556 p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
557
558 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
559 BUG_ON(bucket == -1);
560
561 mutex_unlock(&ca->set->bucket_lock);
562 prio_io(ca, bucket, REQ_OP_WRITE, 0);
563 mutex_lock(&ca->set->bucket_lock);
564
565 ca->prio_buckets[i] = bucket;
566 atomic_dec_bug(&ca->buckets[bucket].pin);
567 }
568
569 mutex_unlock(&ca->set->bucket_lock);
570
571 bch_journal_meta(ca->set, &cl);
572 closure_sync(&cl);
573
574 mutex_lock(&ca->set->bucket_lock);
575
576 /*
577 * Don't want the old priorities to get garbage collected until after we
578 * finish writing the new ones, and they're journalled
579 */
580 for (i = 0; i < prio_buckets(ca); i++) {
581 if (ca->prio_last_buckets[i])
582 __bch_bucket_free(ca,
583 &ca->buckets[ca->prio_last_buckets[i]]);
584
585 ca->prio_last_buckets[i] = ca->prio_buckets[i];
586 }
587 }
588
prio_read(struct cache * ca,uint64_t bucket)589 static void prio_read(struct cache *ca, uint64_t bucket)
590 {
591 struct prio_set *p = ca->disk_buckets;
592 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
593 struct bucket *b;
594 unsigned bucket_nr = 0;
595
596 for (b = ca->buckets;
597 b < ca->buckets + ca->sb.nbuckets;
598 b++, d++) {
599 if (d == end) {
600 ca->prio_buckets[bucket_nr] = bucket;
601 ca->prio_last_buckets[bucket_nr] = bucket;
602 bucket_nr++;
603
604 prio_io(ca, bucket, REQ_OP_READ, 0);
605
606 if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
607 pr_warn("bad csum reading priorities");
608
609 if (p->magic != pset_magic(&ca->sb))
610 pr_warn("bad magic reading priorities");
611
612 bucket = p->next_bucket;
613 d = p->data;
614 }
615
616 b->prio = le16_to_cpu(d->prio);
617 b->gen = b->last_gc = d->gen;
618 }
619 }
620
621 /* Bcache device */
622
open_dev(struct block_device * b,fmode_t mode)623 static int open_dev(struct block_device *b, fmode_t mode)
624 {
625 struct bcache_device *d = b->bd_disk->private_data;
626 if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
627 return -ENXIO;
628
629 closure_get(&d->cl);
630 return 0;
631 }
632
release_dev(struct gendisk * b,fmode_t mode)633 static void release_dev(struct gendisk *b, fmode_t mode)
634 {
635 struct bcache_device *d = b->private_data;
636 closure_put(&d->cl);
637 }
638
ioctl_dev(struct block_device * b,fmode_t mode,unsigned int cmd,unsigned long arg)639 static int ioctl_dev(struct block_device *b, fmode_t mode,
640 unsigned int cmd, unsigned long arg)
641 {
642 struct bcache_device *d = b->bd_disk->private_data;
643 return d->ioctl(d, mode, cmd, arg);
644 }
645
646 static const struct block_device_operations bcache_ops = {
647 .open = open_dev,
648 .release = release_dev,
649 .ioctl = ioctl_dev,
650 .owner = THIS_MODULE,
651 };
652
bcache_device_stop(struct bcache_device * d)653 void bcache_device_stop(struct bcache_device *d)
654 {
655 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
656 closure_queue(&d->cl);
657 }
658
bcache_device_unlink(struct bcache_device * d)659 static void bcache_device_unlink(struct bcache_device *d)
660 {
661 lockdep_assert_held(&bch_register_lock);
662
663 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
664 unsigned i;
665 struct cache *ca;
666
667 sysfs_remove_link(&d->c->kobj, d->name);
668 sysfs_remove_link(&d->kobj, "cache");
669
670 for_each_cache(ca, d->c, i)
671 bd_unlink_disk_holder(ca->bdev, d->disk);
672 }
673 }
674
bcache_device_link(struct bcache_device * d,struct cache_set * c,const char * name)675 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
676 const char *name)
677 {
678 unsigned i;
679 struct cache *ca;
680
681 for_each_cache(ca, d->c, i)
682 bd_link_disk_holder(ca->bdev, d->disk);
683
684 snprintf(d->name, BCACHEDEVNAME_SIZE,
685 "%s%u", name, d->id);
686
687 WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
688 sysfs_create_link(&c->kobj, &d->kobj, d->name),
689 "Couldn't create device <-> cache set symlinks");
690
691 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
692 }
693
bcache_device_detach(struct bcache_device * d)694 static void bcache_device_detach(struct bcache_device *d)
695 {
696 lockdep_assert_held(&bch_register_lock);
697
698 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
699 struct uuid_entry *u = d->c->uuids + d->id;
700
701 SET_UUID_FLASH_ONLY(u, 0);
702 memcpy(u->uuid, invalid_uuid, 16);
703 u->invalidated = cpu_to_le32(get_seconds());
704 bch_uuid_write(d->c);
705 }
706
707 bcache_device_unlink(d);
708
709 d->c->devices[d->id] = NULL;
710 closure_put(&d->c->caching);
711 d->c = NULL;
712 }
713
bcache_device_attach(struct bcache_device * d,struct cache_set * c,unsigned id)714 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
715 unsigned id)
716 {
717 d->id = id;
718 d->c = c;
719 c->devices[id] = d;
720
721 closure_get(&c->caching);
722 }
723
bcache_device_free(struct bcache_device * d)724 static void bcache_device_free(struct bcache_device *d)
725 {
726 lockdep_assert_held(&bch_register_lock);
727
728 pr_info("%s stopped", d->disk->disk_name);
729
730 if (d->c)
731 bcache_device_detach(d);
732 if (d->disk && d->disk->flags & GENHD_FL_UP)
733 del_gendisk(d->disk);
734 if (d->disk && d->disk->queue)
735 blk_cleanup_queue(d->disk->queue);
736 if (d->disk) {
737 ida_simple_remove(&bcache_minor, d->disk->first_minor);
738 put_disk(d->disk);
739 }
740
741 if (d->bio_split)
742 bioset_free(d->bio_split);
743 kvfree(d->full_dirty_stripes);
744 kvfree(d->stripe_sectors_dirty);
745
746 closure_debug_destroy(&d->cl);
747 }
748
bcache_device_init(struct bcache_device * d,unsigned block_size,sector_t sectors)749 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
750 sector_t sectors)
751 {
752 struct request_queue *q;
753 size_t n;
754 int minor;
755
756 if (!d->stripe_size)
757 d->stripe_size = 1 << 31;
758
759 d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
760
761 if (!d->nr_stripes ||
762 d->nr_stripes > INT_MAX ||
763 d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
764 pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
765 (unsigned)d->nr_stripes);
766 return -ENOMEM;
767 }
768
769 n = d->nr_stripes * sizeof(atomic_t);
770 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
771 if (!d->stripe_sectors_dirty)
772 return -ENOMEM;
773
774 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
775 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
776 if (!d->full_dirty_stripes)
777 return -ENOMEM;
778
779 minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
780 if (minor < 0)
781 return minor;
782
783 minor *= BCACHE_MINORS;
784
785 if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio),
786 BIOSET_NEED_BVECS |
787 BIOSET_NEED_RESCUER)) ||
788 !(d->disk = alloc_disk(BCACHE_MINORS))) {
789 ida_simple_remove(&bcache_minor, minor);
790 return -ENOMEM;
791 }
792
793 set_capacity(d->disk, sectors);
794 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
795
796 d->disk->major = bcache_major;
797 d->disk->first_minor = minor;
798 d->disk->fops = &bcache_ops;
799 d->disk->private_data = d;
800
801 q = blk_alloc_queue(GFP_KERNEL);
802 if (!q)
803 return -ENOMEM;
804
805 blk_queue_make_request(q, NULL);
806 d->disk->queue = q;
807 q->queuedata = d;
808 q->backing_dev_info->congested_data = d;
809 q->limits.max_hw_sectors = UINT_MAX;
810 q->limits.max_sectors = UINT_MAX;
811 q->limits.max_segment_size = UINT_MAX;
812 q->limits.max_segments = BIO_MAX_PAGES;
813 blk_queue_max_discard_sectors(q, UINT_MAX);
814 q->limits.discard_granularity = 512;
815 q->limits.io_min = block_size;
816 q->limits.logical_block_size = block_size;
817 q->limits.physical_block_size = block_size;
818 set_bit(QUEUE_FLAG_NONROT, &d->disk->queue->queue_flags);
819 clear_bit(QUEUE_FLAG_ADD_RANDOM, &d->disk->queue->queue_flags);
820 set_bit(QUEUE_FLAG_DISCARD, &d->disk->queue->queue_flags);
821
822 blk_queue_write_cache(q, true, true);
823
824 return 0;
825 }
826
827 /* Cached device */
828
calc_cached_dev_sectors(struct cache_set * c)829 static void calc_cached_dev_sectors(struct cache_set *c)
830 {
831 uint64_t sectors = 0;
832 struct cached_dev *dc;
833
834 list_for_each_entry(dc, &c->cached_devs, list)
835 sectors += bdev_sectors(dc->bdev);
836
837 c->cached_dev_sectors = sectors;
838 }
839
bch_cached_dev_run(struct cached_dev * dc)840 void bch_cached_dev_run(struct cached_dev *dc)
841 {
842 struct bcache_device *d = &dc->disk;
843 char buf[SB_LABEL_SIZE + 1];
844 char *env[] = {
845 "DRIVER=bcache",
846 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
847 NULL,
848 NULL,
849 };
850
851 memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
852 buf[SB_LABEL_SIZE] = '\0';
853 env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
854
855 if (atomic_xchg(&dc->running, 1)) {
856 kfree(env[1]);
857 kfree(env[2]);
858 return;
859 }
860
861 if (!d->c &&
862 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
863 struct closure cl;
864 closure_init_stack(&cl);
865
866 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
867 bch_write_bdev_super(dc, &cl);
868 closure_sync(&cl);
869 }
870
871 add_disk(d->disk);
872 bd_link_disk_holder(dc->bdev, dc->disk.disk);
873 /* won't show up in the uevent file, use udevadm monitor -e instead
874 * only class / kset properties are persistent */
875 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
876 kfree(env[1]);
877 kfree(env[2]);
878
879 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
880 sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
881 pr_debug("error creating sysfs link");
882 }
883
cached_dev_detach_finish(struct work_struct * w)884 static void cached_dev_detach_finish(struct work_struct *w)
885 {
886 struct cached_dev *dc = container_of(w, struct cached_dev, detach);
887 char buf[BDEVNAME_SIZE];
888 struct closure cl;
889 closure_init_stack(&cl);
890
891 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
892 BUG_ON(atomic_read(&dc->count));
893
894 mutex_lock(&bch_register_lock);
895
896 cancel_delayed_work_sync(&dc->writeback_rate_update);
897 if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
898 kthread_stop(dc->writeback_thread);
899 dc->writeback_thread = NULL;
900 }
901
902 memset(&dc->sb.set_uuid, 0, 16);
903 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
904
905 bch_write_bdev_super(dc, &cl);
906 closure_sync(&cl);
907
908 calc_cached_dev_sectors(dc->disk.c);
909 bcache_device_detach(&dc->disk);
910 list_move(&dc->list, &uncached_devices);
911
912 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
913 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
914
915 mutex_unlock(&bch_register_lock);
916
917 pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
918
919 /* Drop ref we took in cached_dev_detach() */
920 closure_put(&dc->disk.cl);
921 }
922
bch_cached_dev_detach(struct cached_dev * dc)923 void bch_cached_dev_detach(struct cached_dev *dc)
924 {
925 lockdep_assert_held(&bch_register_lock);
926
927 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
928 return;
929
930 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
931 return;
932
933 /*
934 * Block the device from being closed and freed until we're finished
935 * detaching
936 */
937 closure_get(&dc->disk.cl);
938
939 bch_writeback_queue(dc);
940 cached_dev_put(dc);
941 }
942
bch_cached_dev_attach(struct cached_dev * dc,struct cache_set * c,uint8_t * set_uuid)943 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
944 uint8_t *set_uuid)
945 {
946 uint32_t rtime = cpu_to_le32(get_seconds());
947 struct uuid_entry *u;
948 char buf[BDEVNAME_SIZE];
949 struct cached_dev *exist_dc, *t;
950
951 bdevname(dc->bdev, buf);
952
953 if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
954 (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
955 return -ENOENT;
956
957 if (dc->disk.c) {
958 pr_err("Can't attach %s: already attached", buf);
959 return -EINVAL;
960 }
961
962 if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
963 pr_err("Can't attach %s: shutting down", buf);
964 return -EINVAL;
965 }
966
967 if (dc->sb.block_size < c->sb.block_size) {
968 /* Will die */
969 pr_err("Couldn't attach %s: block size less than set's block size",
970 buf);
971 return -EINVAL;
972 }
973
974 /* Check whether already attached */
975 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
976 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
977 pr_err("Tried to attach %s but duplicate UUID already attached",
978 buf);
979
980 return -EINVAL;
981 }
982 }
983
984 u = uuid_find(c, dc->sb.uuid);
985
986 if (u &&
987 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
988 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
989 memcpy(u->uuid, invalid_uuid, 16);
990 u->invalidated = cpu_to_le32(get_seconds());
991 u = NULL;
992 }
993
994 if (!u) {
995 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
996 pr_err("Couldn't find uuid for %s in set", buf);
997 return -ENOENT;
998 }
999
1000 u = uuid_find_empty(c);
1001 if (!u) {
1002 pr_err("Not caching %s, no room for UUID", buf);
1003 return -EINVAL;
1004 }
1005 }
1006
1007 /* Deadlocks since we're called via sysfs...
1008 sysfs_remove_file(&dc->kobj, &sysfs_attach);
1009 */
1010
1011 if (bch_is_zero(u->uuid, 16)) {
1012 struct closure cl;
1013 closure_init_stack(&cl);
1014
1015 memcpy(u->uuid, dc->sb.uuid, 16);
1016 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1017 u->first_reg = u->last_reg = rtime;
1018 bch_uuid_write(c);
1019
1020 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1021 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1022
1023 bch_write_bdev_super(dc, &cl);
1024 closure_sync(&cl);
1025 } else {
1026 u->last_reg = rtime;
1027 bch_uuid_write(c);
1028 }
1029
1030 bcache_device_attach(&dc->disk, c, u - c->uuids);
1031 list_move(&dc->list, &c->cached_devs);
1032 calc_cached_dev_sectors(c);
1033
1034 smp_wmb();
1035 /*
1036 * dc->c must be set before dc->count != 0 - paired with the mb in
1037 * cached_dev_get()
1038 */
1039 atomic_set(&dc->count, 1);
1040
1041 /* Block writeback thread, but spawn it */
1042 down_write(&dc->writeback_lock);
1043 if (bch_cached_dev_writeback_start(dc)) {
1044 up_write(&dc->writeback_lock);
1045 return -ENOMEM;
1046 }
1047
1048 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1049 atomic_set(&dc->has_dirty, 1);
1050 atomic_inc(&dc->count);
1051 bch_writeback_queue(dc);
1052 }
1053
1054 bch_sectors_dirty_init(&dc->disk);
1055
1056 bch_cached_dev_run(dc);
1057 bcache_device_link(&dc->disk, c, "bdev");
1058
1059 /* Allow the writeback thread to proceed */
1060 up_write(&dc->writeback_lock);
1061
1062 pr_info("Caching %s as %s on set %pU",
1063 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1064 dc->disk.c->sb.set_uuid);
1065 return 0;
1066 }
1067
bch_cached_dev_release(struct kobject * kobj)1068 void bch_cached_dev_release(struct kobject *kobj)
1069 {
1070 struct cached_dev *dc = container_of(kobj, struct cached_dev,
1071 disk.kobj);
1072 kfree(dc);
1073 module_put(THIS_MODULE);
1074 }
1075
cached_dev_free(struct closure * cl)1076 static void cached_dev_free(struct closure *cl)
1077 {
1078 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1079
1080 cancel_delayed_work_sync(&dc->writeback_rate_update);
1081 if (!IS_ERR_OR_NULL(dc->writeback_thread))
1082 kthread_stop(dc->writeback_thread);
1083 if (dc->writeback_write_wq)
1084 destroy_workqueue(dc->writeback_write_wq);
1085
1086 mutex_lock(&bch_register_lock);
1087
1088 if (atomic_read(&dc->running))
1089 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1090 bcache_device_free(&dc->disk);
1091 list_del(&dc->list);
1092
1093 mutex_unlock(&bch_register_lock);
1094
1095 if (!IS_ERR_OR_NULL(dc->bdev))
1096 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1097
1098 wake_up(&unregister_wait);
1099
1100 kobject_put(&dc->disk.kobj);
1101 }
1102
cached_dev_flush(struct closure * cl)1103 static void cached_dev_flush(struct closure *cl)
1104 {
1105 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1106 struct bcache_device *d = &dc->disk;
1107
1108 mutex_lock(&bch_register_lock);
1109 bcache_device_unlink(d);
1110 mutex_unlock(&bch_register_lock);
1111
1112 bch_cache_accounting_destroy(&dc->accounting);
1113 kobject_del(&d->kobj);
1114
1115 continue_at(cl, cached_dev_free, system_wq);
1116 }
1117
cached_dev_init(struct cached_dev * dc,unsigned block_size)1118 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1119 {
1120 int ret;
1121 struct io *io;
1122 struct request_queue *q = bdev_get_queue(dc->bdev);
1123
1124 __module_get(THIS_MODULE);
1125 INIT_LIST_HEAD(&dc->list);
1126 closure_init(&dc->disk.cl, NULL);
1127 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1128 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1129 INIT_WORK(&dc->detach, cached_dev_detach_finish);
1130 sema_init(&dc->sb_write_mutex, 1);
1131 INIT_LIST_HEAD(&dc->io_lru);
1132 spin_lock_init(&dc->io_lock);
1133 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1134
1135 dc->sequential_cutoff = 4 << 20;
1136
1137 for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1138 list_add(&io->lru, &dc->io_lru);
1139 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1140 }
1141
1142 dc->disk.stripe_size = q->limits.io_opt >> 9;
1143
1144 if (dc->disk.stripe_size)
1145 dc->partial_stripes_expensive =
1146 q->limits.raid_partial_stripes_expensive;
1147
1148 ret = bcache_device_init(&dc->disk, block_size,
1149 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1150 if (ret)
1151 return ret;
1152
1153 set_capacity(dc->disk.disk,
1154 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1155
1156 dc->disk.disk->queue->backing_dev_info->ra_pages =
1157 max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1158 q->backing_dev_info->ra_pages);
1159
1160 bch_cached_dev_request_init(dc);
1161 bch_cached_dev_writeback_init(dc);
1162 return 0;
1163 }
1164
1165 /* Cached device - bcache superblock */
1166
register_bdev(struct cache_sb * sb,struct page * sb_page,struct block_device * bdev,struct cached_dev * dc)1167 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1168 struct block_device *bdev,
1169 struct cached_dev *dc)
1170 {
1171 char name[BDEVNAME_SIZE];
1172 const char *err = "cannot allocate memory";
1173 struct cache_set *c;
1174
1175 memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1176 dc->bdev = bdev;
1177 dc->bdev->bd_holder = dc;
1178
1179 bio_init(&dc->sb_bio, dc->sb_bio.bi_inline_vecs, 1);
1180 dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1181 get_page(sb_page);
1182
1183 if (cached_dev_init(dc, sb->block_size << 9))
1184 goto err;
1185
1186 err = "error creating kobject";
1187 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1188 "bcache"))
1189 goto err;
1190 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1191 goto err;
1192
1193 pr_info("registered backing device %s", bdevname(bdev, name));
1194
1195 list_add(&dc->list, &uncached_devices);
1196 list_for_each_entry(c, &bch_cache_sets, list)
1197 bch_cached_dev_attach(dc, c, NULL);
1198
1199 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1200 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1201 bch_cached_dev_run(dc);
1202
1203 return;
1204 err:
1205 pr_notice("error %s: %s", bdevname(bdev, name), err);
1206 bcache_device_stop(&dc->disk);
1207 }
1208
1209 /* Flash only volumes */
1210
bch_flash_dev_release(struct kobject * kobj)1211 void bch_flash_dev_release(struct kobject *kobj)
1212 {
1213 struct bcache_device *d = container_of(kobj, struct bcache_device,
1214 kobj);
1215 kfree(d);
1216 }
1217
flash_dev_free(struct closure * cl)1218 static void flash_dev_free(struct closure *cl)
1219 {
1220 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1221 mutex_lock(&bch_register_lock);
1222 bcache_device_free(d);
1223 mutex_unlock(&bch_register_lock);
1224 kobject_put(&d->kobj);
1225 }
1226
flash_dev_flush(struct closure * cl)1227 static void flash_dev_flush(struct closure *cl)
1228 {
1229 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1230
1231 mutex_lock(&bch_register_lock);
1232 bcache_device_unlink(d);
1233 mutex_unlock(&bch_register_lock);
1234 kobject_del(&d->kobj);
1235 continue_at(cl, flash_dev_free, system_wq);
1236 }
1237
flash_dev_run(struct cache_set * c,struct uuid_entry * u)1238 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1239 {
1240 struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1241 GFP_KERNEL);
1242 if (!d)
1243 return -ENOMEM;
1244
1245 closure_init(&d->cl, NULL);
1246 set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1247
1248 kobject_init(&d->kobj, &bch_flash_dev_ktype);
1249
1250 if (bcache_device_init(d, block_bytes(c), u->sectors))
1251 goto err;
1252
1253 bcache_device_attach(d, c, u - c->uuids);
1254 bch_sectors_dirty_init(d);
1255 bch_flash_dev_request_init(d);
1256 add_disk(d->disk);
1257
1258 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1259 goto err;
1260
1261 bcache_device_link(d, c, "volume");
1262
1263 return 0;
1264 err:
1265 kobject_put(&d->kobj);
1266 return -ENOMEM;
1267 }
1268
flash_devs_run(struct cache_set * c)1269 static int flash_devs_run(struct cache_set *c)
1270 {
1271 int ret = 0;
1272 struct uuid_entry *u;
1273
1274 for (u = c->uuids;
1275 u < c->uuids + c->nr_uuids && !ret;
1276 u++)
1277 if (UUID_FLASH_ONLY(u))
1278 ret = flash_dev_run(c, u);
1279
1280 return ret;
1281 }
1282
bch_flash_dev_create(struct cache_set * c,uint64_t size)1283 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1284 {
1285 struct uuid_entry *u;
1286
1287 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1288 return -EINTR;
1289
1290 if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1291 return -EPERM;
1292
1293 u = uuid_find_empty(c);
1294 if (!u) {
1295 pr_err("Can't create volume, no room for UUID");
1296 return -EINVAL;
1297 }
1298
1299 get_random_bytes(u->uuid, 16);
1300 memset(u->label, 0, 32);
1301 u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1302
1303 SET_UUID_FLASH_ONLY(u, 1);
1304 u->sectors = size >> 9;
1305
1306 bch_uuid_write(c);
1307
1308 return flash_dev_run(c, u);
1309 }
1310
1311 /* Cache set */
1312
1313 __printf(2, 3)
bch_cache_set_error(struct cache_set * c,const char * fmt,...)1314 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1315 {
1316 va_list args;
1317
1318 if (c->on_error != ON_ERROR_PANIC &&
1319 test_bit(CACHE_SET_STOPPING, &c->flags))
1320 return false;
1321
1322 /* XXX: we can be called from atomic context
1323 acquire_console_sem();
1324 */
1325
1326 printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1327
1328 va_start(args, fmt);
1329 vprintk(fmt, args);
1330 va_end(args);
1331
1332 printk(", disabling caching\n");
1333
1334 if (c->on_error == ON_ERROR_PANIC)
1335 panic("panic forced after error\n");
1336
1337 bch_cache_set_unregister(c);
1338 return true;
1339 }
1340
bch_cache_set_release(struct kobject * kobj)1341 void bch_cache_set_release(struct kobject *kobj)
1342 {
1343 struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1344 kfree(c);
1345 module_put(THIS_MODULE);
1346 }
1347
cache_set_free(struct closure * cl)1348 static void cache_set_free(struct closure *cl)
1349 {
1350 struct cache_set *c = container_of(cl, struct cache_set, cl);
1351 struct cache *ca;
1352 unsigned i;
1353
1354 if (!IS_ERR_OR_NULL(c->debug))
1355 debugfs_remove(c->debug);
1356
1357 bch_open_buckets_free(c);
1358 bch_btree_cache_free(c);
1359 bch_journal_free(c);
1360
1361 mutex_lock(&bch_register_lock);
1362 for_each_cache(ca, c, i)
1363 if (ca) {
1364 ca->set = NULL;
1365 c->cache[ca->sb.nr_this_dev] = NULL;
1366 kobject_put(&ca->kobj);
1367 }
1368
1369 bch_bset_sort_state_free(&c->sort);
1370 free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1371
1372 if (c->moving_gc_wq)
1373 destroy_workqueue(c->moving_gc_wq);
1374 if (c->bio_split)
1375 bioset_free(c->bio_split);
1376 if (c->fill_iter)
1377 mempool_destroy(c->fill_iter);
1378 if (c->bio_meta)
1379 mempool_destroy(c->bio_meta);
1380 if (c->search)
1381 mempool_destroy(c->search);
1382 kfree(c->devices);
1383
1384 list_del(&c->list);
1385 mutex_unlock(&bch_register_lock);
1386
1387 pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1388 wake_up(&unregister_wait);
1389
1390 closure_debug_destroy(&c->cl);
1391 kobject_put(&c->kobj);
1392 }
1393
cache_set_flush(struct closure * cl)1394 static void cache_set_flush(struct closure *cl)
1395 {
1396 struct cache_set *c = container_of(cl, struct cache_set, caching);
1397 struct cache *ca;
1398 struct btree *b;
1399 unsigned i;
1400
1401 bch_cache_accounting_destroy(&c->accounting);
1402
1403 kobject_put(&c->internal);
1404 kobject_del(&c->kobj);
1405
1406 if (!IS_ERR_OR_NULL(c->gc_thread))
1407 kthread_stop(c->gc_thread);
1408
1409 if (!IS_ERR_OR_NULL(c->root))
1410 list_add(&c->root->list, &c->btree_cache);
1411
1412 /* Should skip this if we're unregistering because of an error */
1413 list_for_each_entry(b, &c->btree_cache, list) {
1414 mutex_lock(&b->write_lock);
1415 if (btree_node_dirty(b))
1416 __bch_btree_node_write(b, NULL);
1417 mutex_unlock(&b->write_lock);
1418 }
1419
1420 for_each_cache(ca, c, i)
1421 if (ca->alloc_thread)
1422 kthread_stop(ca->alloc_thread);
1423
1424 if (c->journal.cur) {
1425 cancel_delayed_work_sync(&c->journal.work);
1426 /* flush last journal entry if needed */
1427 c->journal.work.work.func(&c->journal.work.work);
1428 }
1429
1430 closure_return(cl);
1431 }
1432
__cache_set_unregister(struct closure * cl)1433 static void __cache_set_unregister(struct closure *cl)
1434 {
1435 struct cache_set *c = container_of(cl, struct cache_set, caching);
1436 struct cached_dev *dc;
1437 size_t i;
1438
1439 mutex_lock(&bch_register_lock);
1440
1441 for (i = 0; i < c->nr_uuids; i++)
1442 if (c->devices[i]) {
1443 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1444 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1445 dc = container_of(c->devices[i],
1446 struct cached_dev, disk);
1447 bch_cached_dev_detach(dc);
1448 } else {
1449 bcache_device_stop(c->devices[i]);
1450 }
1451 }
1452
1453 mutex_unlock(&bch_register_lock);
1454
1455 continue_at(cl, cache_set_flush, system_wq);
1456 }
1457
bch_cache_set_stop(struct cache_set * c)1458 void bch_cache_set_stop(struct cache_set *c)
1459 {
1460 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1461 closure_queue(&c->caching);
1462 }
1463
bch_cache_set_unregister(struct cache_set * c)1464 void bch_cache_set_unregister(struct cache_set *c)
1465 {
1466 set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1467 bch_cache_set_stop(c);
1468 }
1469
1470 #define alloc_bucket_pages(gfp, c) \
1471 ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1472
bch_cache_set_alloc(struct cache_sb * sb)1473 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1474 {
1475 int iter_size;
1476 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1477 if (!c)
1478 return NULL;
1479
1480 __module_get(THIS_MODULE);
1481 closure_init(&c->cl, NULL);
1482 set_closure_fn(&c->cl, cache_set_free, system_wq);
1483
1484 closure_init(&c->caching, &c->cl);
1485 set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1486
1487 /* Maybe create continue_at_noreturn() and use it here? */
1488 closure_set_stopped(&c->cl);
1489 closure_put(&c->cl);
1490
1491 kobject_init(&c->kobj, &bch_cache_set_ktype);
1492 kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1493
1494 bch_cache_accounting_init(&c->accounting, &c->cl);
1495
1496 memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1497 c->sb.block_size = sb->block_size;
1498 c->sb.bucket_size = sb->bucket_size;
1499 c->sb.nr_in_set = sb->nr_in_set;
1500 c->sb.last_mount = sb->last_mount;
1501 c->bucket_bits = ilog2(sb->bucket_size);
1502 c->block_bits = ilog2(sb->block_size);
1503 c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry);
1504
1505 c->btree_pages = bucket_pages(c);
1506 if (c->btree_pages > BTREE_MAX_PAGES)
1507 c->btree_pages = max_t(int, c->btree_pages / 4,
1508 BTREE_MAX_PAGES);
1509
1510 sema_init(&c->sb_write_mutex, 1);
1511 mutex_init(&c->bucket_lock);
1512 init_waitqueue_head(&c->btree_cache_wait);
1513 init_waitqueue_head(&c->bucket_wait);
1514 init_waitqueue_head(&c->gc_wait);
1515 sema_init(&c->uuid_write_mutex, 1);
1516
1517 spin_lock_init(&c->btree_gc_time.lock);
1518 spin_lock_init(&c->btree_split_time.lock);
1519 spin_lock_init(&c->btree_read_time.lock);
1520
1521 bch_moving_init_cache_set(c);
1522
1523 INIT_LIST_HEAD(&c->list);
1524 INIT_LIST_HEAD(&c->cached_devs);
1525 INIT_LIST_HEAD(&c->btree_cache);
1526 INIT_LIST_HEAD(&c->btree_cache_freeable);
1527 INIT_LIST_HEAD(&c->btree_cache_freed);
1528 INIT_LIST_HEAD(&c->data_buckets);
1529
1530 c->search = mempool_create_slab_pool(32, bch_search_cache);
1531 if (!c->search)
1532 goto err;
1533
1534 iter_size = (sb->bucket_size / sb->block_size + 1) *
1535 sizeof(struct btree_iter_set);
1536
1537 if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1538 !(c->bio_meta = mempool_create_kmalloc_pool(2,
1539 sizeof(struct bbio) + sizeof(struct bio_vec) *
1540 bucket_pages(c))) ||
1541 !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1542 !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio),
1543 BIOSET_NEED_BVECS |
1544 BIOSET_NEED_RESCUER)) ||
1545 !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1546 !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1547 WQ_MEM_RECLAIM, 0)) ||
1548 bch_journal_alloc(c) ||
1549 bch_btree_cache_alloc(c) ||
1550 bch_open_buckets_alloc(c) ||
1551 bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1552 goto err;
1553
1554 c->congested_read_threshold_us = 2000;
1555 c->congested_write_threshold_us = 20000;
1556 c->error_limit = 8 << IO_ERROR_SHIFT;
1557
1558 return c;
1559 err:
1560 bch_cache_set_unregister(c);
1561 return NULL;
1562 }
1563
run_cache_set(struct cache_set * c)1564 static int run_cache_set(struct cache_set *c)
1565 {
1566 const char *err = "cannot allocate memory";
1567 struct cached_dev *dc, *t;
1568 struct cache *ca;
1569 struct closure cl;
1570 unsigned i;
1571
1572 closure_init_stack(&cl);
1573
1574 for_each_cache(ca, c, i)
1575 c->nbuckets += ca->sb.nbuckets;
1576 set_gc_sectors(c);
1577
1578 if (CACHE_SYNC(&c->sb)) {
1579 LIST_HEAD(journal);
1580 struct bkey *k;
1581 struct jset *j;
1582
1583 err = "cannot allocate memory for journal";
1584 if (bch_journal_read(c, &journal))
1585 goto err;
1586
1587 pr_debug("btree_journal_read() done");
1588
1589 err = "no journal entries found";
1590 if (list_empty(&journal))
1591 goto err;
1592
1593 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1594
1595 err = "IO error reading priorities";
1596 for_each_cache(ca, c, i)
1597 prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1598
1599 /*
1600 * If prio_read() fails it'll call cache_set_error and we'll
1601 * tear everything down right away, but if we perhaps checked
1602 * sooner we could avoid journal replay.
1603 */
1604
1605 k = &j->btree_root;
1606
1607 err = "bad btree root";
1608 if (__bch_btree_ptr_invalid(c, k))
1609 goto err;
1610
1611 err = "error reading btree root";
1612 c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1613 if (IS_ERR_OR_NULL(c->root))
1614 goto err;
1615
1616 list_del_init(&c->root->list);
1617 rw_unlock(true, c->root);
1618
1619 err = uuid_read(c, j, &cl);
1620 if (err)
1621 goto err;
1622
1623 err = "error in recovery";
1624 if (bch_btree_check(c))
1625 goto err;
1626
1627 bch_journal_mark(c, &journal);
1628 bch_initial_gc_finish(c);
1629 pr_debug("btree_check() done");
1630
1631 /*
1632 * bcache_journal_next() can't happen sooner, or
1633 * btree_gc_finish() will give spurious errors about last_gc >
1634 * gc_gen - this is a hack but oh well.
1635 */
1636 bch_journal_next(&c->journal);
1637
1638 err = "error starting allocator thread";
1639 for_each_cache(ca, c, i)
1640 if (bch_cache_allocator_start(ca))
1641 goto err;
1642
1643 /*
1644 * First place it's safe to allocate: btree_check() and
1645 * btree_gc_finish() have to run before we have buckets to
1646 * allocate, and bch_bucket_alloc_set() might cause a journal
1647 * entry to be written so bcache_journal_next() has to be called
1648 * first.
1649 *
1650 * If the uuids were in the old format we have to rewrite them
1651 * before the next journal entry is written:
1652 */
1653 if (j->version < BCACHE_JSET_VERSION_UUID)
1654 __uuid_write(c);
1655
1656 err = "bcache: replay journal failed";
1657 if (bch_journal_replay(c, &journal))
1658 goto err;
1659 } else {
1660 pr_notice("invalidating existing data");
1661
1662 for_each_cache(ca, c, i) {
1663 unsigned j;
1664
1665 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1666 2, SB_JOURNAL_BUCKETS);
1667
1668 for (j = 0; j < ca->sb.keys; j++)
1669 ca->sb.d[j] = ca->sb.first_bucket + j;
1670 }
1671
1672 bch_initial_gc_finish(c);
1673
1674 err = "error starting allocator thread";
1675 for_each_cache(ca, c, i)
1676 if (bch_cache_allocator_start(ca))
1677 goto err;
1678
1679 mutex_lock(&c->bucket_lock);
1680 for_each_cache(ca, c, i)
1681 bch_prio_write(ca);
1682 mutex_unlock(&c->bucket_lock);
1683
1684 err = "cannot allocate new UUID bucket";
1685 if (__uuid_write(c))
1686 goto err;
1687
1688 err = "cannot allocate new btree root";
1689 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1690 if (IS_ERR_OR_NULL(c->root))
1691 goto err;
1692
1693 mutex_lock(&c->root->write_lock);
1694 bkey_copy_key(&c->root->key, &MAX_KEY);
1695 bch_btree_node_write(c->root, &cl);
1696 mutex_unlock(&c->root->write_lock);
1697
1698 bch_btree_set_root(c->root);
1699 rw_unlock(true, c->root);
1700
1701 /*
1702 * We don't want to write the first journal entry until
1703 * everything is set up - fortunately journal entries won't be
1704 * written until the SET_CACHE_SYNC() here:
1705 */
1706 SET_CACHE_SYNC(&c->sb, true);
1707
1708 bch_journal_next(&c->journal);
1709 bch_journal_meta(c, &cl);
1710 }
1711
1712 err = "error starting gc thread";
1713 if (bch_gc_thread_start(c))
1714 goto err;
1715
1716 closure_sync(&cl);
1717 c->sb.last_mount = get_seconds();
1718 bcache_write_super(c);
1719
1720 list_for_each_entry_safe(dc, t, &uncached_devices, list)
1721 bch_cached_dev_attach(dc, c, NULL);
1722
1723 flash_devs_run(c);
1724
1725 set_bit(CACHE_SET_RUNNING, &c->flags);
1726 return 0;
1727 err:
1728 closure_sync(&cl);
1729 /* XXX: test this, it's broken */
1730 bch_cache_set_error(c, "%s", err);
1731
1732 return -EIO;
1733 }
1734
can_attach_cache(struct cache * ca,struct cache_set * c)1735 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1736 {
1737 return ca->sb.block_size == c->sb.block_size &&
1738 ca->sb.bucket_size == c->sb.bucket_size &&
1739 ca->sb.nr_in_set == c->sb.nr_in_set;
1740 }
1741
register_cache_set(struct cache * ca)1742 static const char *register_cache_set(struct cache *ca)
1743 {
1744 char buf[12];
1745 const char *err = "cannot allocate memory";
1746 struct cache_set *c;
1747
1748 list_for_each_entry(c, &bch_cache_sets, list)
1749 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1750 if (c->cache[ca->sb.nr_this_dev])
1751 return "duplicate cache set member";
1752
1753 if (!can_attach_cache(ca, c))
1754 return "cache sb does not match set";
1755
1756 if (!CACHE_SYNC(&ca->sb))
1757 SET_CACHE_SYNC(&c->sb, false);
1758
1759 goto found;
1760 }
1761
1762 c = bch_cache_set_alloc(&ca->sb);
1763 if (!c)
1764 return err;
1765
1766 err = "error creating kobject";
1767 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1768 kobject_add(&c->internal, &c->kobj, "internal"))
1769 goto err;
1770
1771 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1772 goto err;
1773
1774 bch_debug_init_cache_set(c);
1775
1776 list_add(&c->list, &bch_cache_sets);
1777 found:
1778 sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1779 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1780 sysfs_create_link(&c->kobj, &ca->kobj, buf))
1781 goto err;
1782
1783 if (ca->sb.seq > c->sb.seq) {
1784 c->sb.version = ca->sb.version;
1785 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1786 c->sb.flags = ca->sb.flags;
1787 c->sb.seq = ca->sb.seq;
1788 pr_debug("set version = %llu", c->sb.version);
1789 }
1790
1791 kobject_get(&ca->kobj);
1792 ca->set = c;
1793 ca->set->cache[ca->sb.nr_this_dev] = ca;
1794 c->cache_by_alloc[c->caches_loaded++] = ca;
1795
1796 if (c->caches_loaded == c->sb.nr_in_set) {
1797 err = "failed to run cache set";
1798 if (run_cache_set(c) < 0)
1799 goto err;
1800 }
1801
1802 return NULL;
1803 err:
1804 bch_cache_set_unregister(c);
1805 return err;
1806 }
1807
1808 /* Cache device */
1809
bch_cache_release(struct kobject * kobj)1810 void bch_cache_release(struct kobject *kobj)
1811 {
1812 struct cache *ca = container_of(kobj, struct cache, kobj);
1813 unsigned i;
1814
1815 if (ca->set) {
1816 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1817 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1818 }
1819
1820 free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1821 kfree(ca->prio_buckets);
1822 vfree(ca->buckets);
1823
1824 free_heap(&ca->heap);
1825 free_fifo(&ca->free_inc);
1826
1827 for (i = 0; i < RESERVE_NR; i++)
1828 free_fifo(&ca->free[i]);
1829
1830 if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1831 put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1832
1833 if (!IS_ERR_OR_NULL(ca->bdev))
1834 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1835
1836 kfree(ca);
1837 module_put(THIS_MODULE);
1838 }
1839
cache_alloc(struct cache * ca)1840 static int cache_alloc(struct cache *ca)
1841 {
1842 size_t free;
1843 size_t btree_buckets;
1844 struct bucket *b;
1845
1846 __module_get(THIS_MODULE);
1847 kobject_init(&ca->kobj, &bch_cache_ktype);
1848
1849 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
1850
1851 /*
1852 * when ca->sb.njournal_buckets is not zero, journal exists,
1853 * and in bch_journal_replay(), tree node may split,
1854 * so bucket of RESERVE_BTREE type is needed,
1855 * the worst situation is all journal buckets are valid journal,
1856 * and all the keys need to replay,
1857 * so the number of RESERVE_BTREE type buckets should be as much
1858 * as journal buckets
1859 */
1860 btree_buckets = ca->sb.njournal_buckets ?: 8;
1861 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1862
1863 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, GFP_KERNEL) ||
1864 !init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1865 !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1866 !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1867 !init_fifo(&ca->free_inc, free << 2, GFP_KERNEL) ||
1868 !init_heap(&ca->heap, free << 3, GFP_KERNEL) ||
1869 !(ca->buckets = vzalloc(sizeof(struct bucket) *
1870 ca->sb.nbuckets)) ||
1871 !(ca->prio_buckets = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1872 2, GFP_KERNEL)) ||
1873 !(ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca)))
1874 return -ENOMEM;
1875
1876 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1877
1878 for_each_bucket(b, ca)
1879 atomic_set(&b->pin, 0);
1880
1881 return 0;
1882 }
1883
register_cache(struct cache_sb * sb,struct page * sb_page,struct block_device * bdev,struct cache * ca)1884 static int register_cache(struct cache_sb *sb, struct page *sb_page,
1885 struct block_device *bdev, struct cache *ca)
1886 {
1887 char name[BDEVNAME_SIZE];
1888 const char *err = NULL; /* must be set for any error case */
1889 int ret = 0;
1890
1891 bdevname(bdev, name);
1892
1893 memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1894 ca->bdev = bdev;
1895 ca->bdev->bd_holder = ca;
1896
1897 bio_init(&ca->sb_bio, ca->sb_bio.bi_inline_vecs, 1);
1898 ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1899 get_page(sb_page);
1900
1901 if (blk_queue_discard(bdev_get_queue(bdev)))
1902 ca->discard = CACHE_DISCARD(&ca->sb);
1903
1904 ret = cache_alloc(ca);
1905 if (ret != 0) {
1906 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1907 if (ret == -ENOMEM)
1908 err = "cache_alloc(): -ENOMEM";
1909 else
1910 err = "cache_alloc(): unknown error";
1911 goto err;
1912 }
1913
1914 if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache")) {
1915 err = "error calling kobject_add";
1916 ret = -ENOMEM;
1917 goto out;
1918 }
1919
1920 mutex_lock(&bch_register_lock);
1921 err = register_cache_set(ca);
1922 mutex_unlock(&bch_register_lock);
1923
1924 if (err) {
1925 ret = -ENODEV;
1926 goto out;
1927 }
1928
1929 pr_info("registered cache device %s", name);
1930
1931 out:
1932 kobject_put(&ca->kobj);
1933
1934 err:
1935 if (err)
1936 pr_notice("error %s: %s", name, err);
1937
1938 return ret;
1939 }
1940
1941 /* Global interfaces/init */
1942
1943 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1944 const char *, size_t);
1945
1946 kobj_attribute_write(register, register_bcache);
1947 kobj_attribute_write(register_quiet, register_bcache);
1948
bch_is_open_backing(struct block_device * bdev)1949 static bool bch_is_open_backing(struct block_device *bdev) {
1950 struct cache_set *c, *tc;
1951 struct cached_dev *dc, *t;
1952
1953 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1954 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1955 if (dc->bdev == bdev)
1956 return true;
1957 list_for_each_entry_safe(dc, t, &uncached_devices, list)
1958 if (dc->bdev == bdev)
1959 return true;
1960 return false;
1961 }
1962
bch_is_open_cache(struct block_device * bdev)1963 static bool bch_is_open_cache(struct block_device *bdev) {
1964 struct cache_set *c, *tc;
1965 struct cache *ca;
1966 unsigned i;
1967
1968 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1969 for_each_cache(ca, c, i)
1970 if (ca->bdev == bdev)
1971 return true;
1972 return false;
1973 }
1974
bch_is_open(struct block_device * bdev)1975 static bool bch_is_open(struct block_device *bdev) {
1976 return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1977 }
1978
register_bcache(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)1979 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1980 const char *buffer, size_t size)
1981 {
1982 ssize_t ret = size;
1983 const char *err = "cannot allocate memory";
1984 char *path = NULL;
1985 struct cache_sb *sb = NULL;
1986 struct block_device *bdev = NULL;
1987 struct page *sb_page = NULL;
1988
1989 if (!try_module_get(THIS_MODULE))
1990 return -EBUSY;
1991
1992 if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1993 !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1994 goto err;
1995
1996 err = "failed to open device";
1997 bdev = blkdev_get_by_path(strim(path),
1998 FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1999 sb);
2000 if (IS_ERR(bdev)) {
2001 if (bdev == ERR_PTR(-EBUSY)) {
2002 bdev = lookup_bdev(strim(path));
2003 mutex_lock(&bch_register_lock);
2004 if (!IS_ERR(bdev) && bch_is_open(bdev))
2005 err = "device already registered";
2006 else
2007 err = "device busy";
2008 mutex_unlock(&bch_register_lock);
2009 if (!IS_ERR(bdev))
2010 bdput(bdev);
2011 if (attr == &ksysfs_register_quiet)
2012 goto out;
2013 }
2014 goto err;
2015 }
2016
2017 err = "failed to set blocksize";
2018 if (set_blocksize(bdev, 4096))
2019 goto err_close;
2020
2021 err = read_super(sb, bdev, &sb_page);
2022 if (err)
2023 goto err_close;
2024
2025 err = "failed to register device";
2026 if (SB_IS_BDEV(sb)) {
2027 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2028 if (!dc)
2029 goto err_close;
2030
2031 mutex_lock(&bch_register_lock);
2032 register_bdev(sb, sb_page, bdev, dc);
2033 mutex_unlock(&bch_register_lock);
2034 } else {
2035 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2036 if (!ca)
2037 goto err_close;
2038
2039 if (register_cache(sb, sb_page, bdev, ca) != 0)
2040 goto err;
2041 }
2042 out:
2043 if (sb_page)
2044 put_page(sb_page);
2045 kfree(sb);
2046 kfree(path);
2047 module_put(THIS_MODULE);
2048 return ret;
2049
2050 err_close:
2051 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2052 err:
2053 pr_info("error %s: %s", path, err);
2054 ret = -EINVAL;
2055 goto out;
2056 }
2057
bcache_reboot(struct notifier_block * n,unsigned long code,void * x)2058 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2059 {
2060 if (code == SYS_DOWN ||
2061 code == SYS_HALT ||
2062 code == SYS_POWER_OFF) {
2063 DEFINE_WAIT(wait);
2064 unsigned long start = jiffies;
2065 bool stopped = false;
2066
2067 struct cache_set *c, *tc;
2068 struct cached_dev *dc, *tdc;
2069
2070 mutex_lock(&bch_register_lock);
2071
2072 if (list_empty(&bch_cache_sets) &&
2073 list_empty(&uncached_devices))
2074 goto out;
2075
2076 pr_info("Stopping all devices:");
2077
2078 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2079 bch_cache_set_stop(c);
2080
2081 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2082 bcache_device_stop(&dc->disk);
2083
2084 /* What's a condition variable? */
2085 while (1) {
2086 long timeout = start + 2 * HZ - jiffies;
2087
2088 stopped = list_empty(&bch_cache_sets) &&
2089 list_empty(&uncached_devices);
2090
2091 if (timeout < 0 || stopped)
2092 break;
2093
2094 prepare_to_wait(&unregister_wait, &wait,
2095 TASK_UNINTERRUPTIBLE);
2096
2097 mutex_unlock(&bch_register_lock);
2098 schedule_timeout(timeout);
2099 mutex_lock(&bch_register_lock);
2100 }
2101
2102 finish_wait(&unregister_wait, &wait);
2103
2104 if (stopped)
2105 pr_info("All devices stopped");
2106 else
2107 pr_notice("Timeout waiting for devices to be closed");
2108 out:
2109 mutex_unlock(&bch_register_lock);
2110 }
2111
2112 return NOTIFY_DONE;
2113 }
2114
2115 static struct notifier_block reboot = {
2116 .notifier_call = bcache_reboot,
2117 .priority = INT_MAX, /* before any real devices */
2118 };
2119
bcache_exit(void)2120 static void bcache_exit(void)
2121 {
2122 bch_debug_exit();
2123 bch_request_exit();
2124 if (bcache_kobj)
2125 kobject_put(bcache_kobj);
2126 if (bcache_wq)
2127 destroy_workqueue(bcache_wq);
2128 if (bcache_major)
2129 unregister_blkdev(bcache_major, "bcache");
2130 unregister_reboot_notifier(&reboot);
2131 mutex_destroy(&bch_register_lock);
2132 }
2133
bcache_init(void)2134 static int __init bcache_init(void)
2135 {
2136 static const struct attribute *files[] = {
2137 &ksysfs_register.attr,
2138 &ksysfs_register_quiet.attr,
2139 NULL
2140 };
2141
2142 mutex_init(&bch_register_lock);
2143 init_waitqueue_head(&unregister_wait);
2144 register_reboot_notifier(&reboot);
2145 closure_debug_init();
2146
2147 bcache_major = register_blkdev(0, "bcache");
2148 if (bcache_major < 0) {
2149 unregister_reboot_notifier(&reboot);
2150 mutex_destroy(&bch_register_lock);
2151 return bcache_major;
2152 }
2153
2154 if (!(bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0)) ||
2155 !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2156 bch_request_init() ||
2157 bch_debug_init(bcache_kobj) ||
2158 sysfs_create_files(bcache_kobj, files))
2159 goto err;
2160
2161 return 0;
2162 err:
2163 bcache_exit();
2164 return -ENOMEM;
2165 }
2166
2167 module_exit(bcache_exit);
2168 module_init(bcache_init);
2169