• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "extents.h"
13 #include "request.h"
14 #include "writeback.h"
15 
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
26 
27 MODULE_LICENSE("GPL");
28 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
29 
30 static const char bcache_magic[] = {
31 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33 };
34 
35 static const char invalid_uuid[] = {
36 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38 };
39 
40 /* Default is -1; we skip past it for struct cached_dev's cache mode */
41 const char * const bch_cache_modes[] = {
42 	"default",
43 	"writethrough",
44 	"writeback",
45 	"writearound",
46 	"none",
47 	NULL
48 };
49 
50 static struct kobject *bcache_kobj;
51 struct mutex bch_register_lock;
52 LIST_HEAD(bch_cache_sets);
53 static LIST_HEAD(uncached_devices);
54 
55 static int bcache_major;
56 static DEFINE_IDA(bcache_minor);
57 static wait_queue_head_t unregister_wait;
58 struct workqueue_struct *bcache_wq;
59 
60 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
61 #define BCACHE_MINORS		16 /* partition support */
62 
63 /* Superblock */
64 
read_super(struct cache_sb * sb,struct block_device * bdev,struct page ** res)65 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
66 			      struct page **res)
67 {
68 	const char *err;
69 	struct cache_sb *s;
70 	struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
71 	unsigned i;
72 
73 	if (!bh)
74 		return "IO error";
75 
76 	s = (struct cache_sb *) bh->b_data;
77 
78 	sb->offset		= le64_to_cpu(s->offset);
79 	sb->version		= le64_to_cpu(s->version);
80 
81 	memcpy(sb->magic,	s->magic, 16);
82 	memcpy(sb->uuid,	s->uuid, 16);
83 	memcpy(sb->set_uuid,	s->set_uuid, 16);
84 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
85 
86 	sb->flags		= le64_to_cpu(s->flags);
87 	sb->seq			= le64_to_cpu(s->seq);
88 	sb->last_mount		= le32_to_cpu(s->last_mount);
89 	sb->first_bucket	= le16_to_cpu(s->first_bucket);
90 	sb->keys		= le16_to_cpu(s->keys);
91 
92 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
93 		sb->d[i] = le64_to_cpu(s->d[i]);
94 
95 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
96 		 sb->version, sb->flags, sb->seq, sb->keys);
97 
98 	err = "Not a bcache superblock";
99 	if (sb->offset != SB_SECTOR)
100 		goto err;
101 
102 	if (memcmp(sb->magic, bcache_magic, 16))
103 		goto err;
104 
105 	err = "Too many journal buckets";
106 	if (sb->keys > SB_JOURNAL_BUCKETS)
107 		goto err;
108 
109 	err = "Bad checksum";
110 	if (s->csum != csum_set(s))
111 		goto err;
112 
113 	err = "Bad UUID";
114 	if (bch_is_zero(sb->uuid, 16))
115 		goto err;
116 
117 	sb->block_size	= le16_to_cpu(s->block_size);
118 
119 	err = "Superblock block size smaller than device block size";
120 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
121 		goto err;
122 
123 	switch (sb->version) {
124 	case BCACHE_SB_VERSION_BDEV:
125 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
126 		break;
127 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
128 		sb->data_offset	= le64_to_cpu(s->data_offset);
129 
130 		err = "Bad data offset";
131 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
132 			goto err;
133 
134 		break;
135 	case BCACHE_SB_VERSION_CDEV:
136 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
137 		sb->nbuckets	= le64_to_cpu(s->nbuckets);
138 		sb->bucket_size	= le16_to_cpu(s->bucket_size);
139 
140 		sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
141 		sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
142 
143 		err = "Too many buckets";
144 		if (sb->nbuckets > LONG_MAX)
145 			goto err;
146 
147 		err = "Not enough buckets";
148 		if (sb->nbuckets < 1 << 7)
149 			goto err;
150 
151 		err = "Bad block/bucket size";
152 		if (!is_power_of_2(sb->block_size) ||
153 		    sb->block_size > PAGE_SECTORS ||
154 		    !is_power_of_2(sb->bucket_size) ||
155 		    sb->bucket_size < PAGE_SECTORS)
156 			goto err;
157 
158 		err = "Invalid superblock: device too small";
159 		if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
160 			goto err;
161 
162 		err = "Bad UUID";
163 		if (bch_is_zero(sb->set_uuid, 16))
164 			goto err;
165 
166 		err = "Bad cache device number in set";
167 		if (!sb->nr_in_set ||
168 		    sb->nr_in_set <= sb->nr_this_dev ||
169 		    sb->nr_in_set > MAX_CACHES_PER_SET)
170 			goto err;
171 
172 		err = "Journal buckets not sequential";
173 		for (i = 0; i < sb->keys; i++)
174 			if (sb->d[i] != sb->first_bucket + i)
175 				goto err;
176 
177 		err = "Too many journal buckets";
178 		if (sb->first_bucket + sb->keys > sb->nbuckets)
179 			goto err;
180 
181 		err = "Invalid superblock: first bucket comes before end of super";
182 		if (sb->first_bucket * sb->bucket_size < 16)
183 			goto err;
184 
185 		break;
186 	default:
187 		err = "Unsupported superblock version";
188 		goto err;
189 	}
190 
191 	sb->last_mount = get_seconds();
192 	err = NULL;
193 
194 	get_page(bh->b_page);
195 	*res = bh->b_page;
196 err:
197 	put_bh(bh);
198 	return err;
199 }
200 
write_bdev_super_endio(struct bio * bio)201 static void write_bdev_super_endio(struct bio *bio)
202 {
203 	struct cached_dev *dc = bio->bi_private;
204 	/* XXX: error checking */
205 
206 	closure_put(&dc->sb_write);
207 }
208 
__write_super(struct cache_sb * sb,struct bio * bio)209 static void __write_super(struct cache_sb *sb, struct bio *bio)
210 {
211 	struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
212 	unsigned i;
213 
214 	bio->bi_iter.bi_sector	= SB_SECTOR;
215 	bio->bi_iter.bi_size	= SB_SIZE;
216 	bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
217 	bch_bio_map(bio, NULL);
218 
219 	out->offset		= cpu_to_le64(sb->offset);
220 	out->version		= cpu_to_le64(sb->version);
221 
222 	memcpy(out->uuid,	sb->uuid, 16);
223 	memcpy(out->set_uuid,	sb->set_uuid, 16);
224 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
225 
226 	out->flags		= cpu_to_le64(sb->flags);
227 	out->seq		= cpu_to_le64(sb->seq);
228 
229 	out->last_mount		= cpu_to_le32(sb->last_mount);
230 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
231 	out->keys		= cpu_to_le16(sb->keys);
232 
233 	for (i = 0; i < sb->keys; i++)
234 		out->d[i] = cpu_to_le64(sb->d[i]);
235 
236 	out->csum = csum_set(out);
237 
238 	pr_debug("ver %llu, flags %llu, seq %llu",
239 		 sb->version, sb->flags, sb->seq);
240 
241 	submit_bio(bio);
242 }
243 
bch_write_bdev_super_unlock(struct closure * cl)244 static void bch_write_bdev_super_unlock(struct closure *cl)
245 {
246 	struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
247 
248 	up(&dc->sb_write_mutex);
249 }
250 
bch_write_bdev_super(struct cached_dev * dc,struct closure * parent)251 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
252 {
253 	struct closure *cl = &dc->sb_write;
254 	struct bio *bio = &dc->sb_bio;
255 
256 	down(&dc->sb_write_mutex);
257 	closure_init(cl, parent);
258 
259 	bio_reset(bio);
260 	bio_set_dev(bio, dc->bdev);
261 	bio->bi_end_io	= write_bdev_super_endio;
262 	bio->bi_private = dc;
263 
264 	closure_get(cl);
265 	__write_super(&dc->sb, bio);
266 
267 	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
268 }
269 
write_super_endio(struct bio * bio)270 static void write_super_endio(struct bio *bio)
271 {
272 	struct cache *ca = bio->bi_private;
273 
274 	bch_count_io_errors(ca, bio->bi_status, "writing superblock");
275 	closure_put(&ca->set->sb_write);
276 }
277 
bcache_write_super_unlock(struct closure * cl)278 static void bcache_write_super_unlock(struct closure *cl)
279 {
280 	struct cache_set *c = container_of(cl, struct cache_set, sb_write);
281 
282 	up(&c->sb_write_mutex);
283 }
284 
bcache_write_super(struct cache_set * c)285 void bcache_write_super(struct cache_set *c)
286 {
287 	struct closure *cl = &c->sb_write;
288 	struct cache *ca;
289 	unsigned i;
290 
291 	down(&c->sb_write_mutex);
292 	closure_init(cl, &c->cl);
293 
294 	c->sb.seq++;
295 
296 	for_each_cache(ca, c, i) {
297 		struct bio *bio = &ca->sb_bio;
298 
299 		ca->sb.version		= BCACHE_SB_VERSION_CDEV_WITH_UUID;
300 		ca->sb.seq		= c->sb.seq;
301 		ca->sb.last_mount	= c->sb.last_mount;
302 
303 		SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
304 
305 		bio_reset(bio);
306 		bio_set_dev(bio, ca->bdev);
307 		bio->bi_end_io	= write_super_endio;
308 		bio->bi_private = ca;
309 
310 		closure_get(cl);
311 		__write_super(&ca->sb, bio);
312 	}
313 
314 	closure_return_with_destructor(cl, bcache_write_super_unlock);
315 }
316 
317 /* UUID io */
318 
uuid_endio(struct bio * bio)319 static void uuid_endio(struct bio *bio)
320 {
321 	struct closure *cl = bio->bi_private;
322 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
323 
324 	cache_set_err_on(bio->bi_status, c, "accessing uuids");
325 	bch_bbio_free(bio, c);
326 	closure_put(cl);
327 }
328 
uuid_io_unlock(struct closure * cl)329 static void uuid_io_unlock(struct closure *cl)
330 {
331 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
332 
333 	up(&c->uuid_write_mutex);
334 }
335 
uuid_io(struct cache_set * c,int op,unsigned long op_flags,struct bkey * k,struct closure * parent)336 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
337 		    struct bkey *k, struct closure *parent)
338 {
339 	struct closure *cl = &c->uuid_write;
340 	struct uuid_entry *u;
341 	unsigned i;
342 	char buf[80];
343 
344 	BUG_ON(!parent);
345 	down(&c->uuid_write_mutex);
346 	closure_init(cl, parent);
347 
348 	for (i = 0; i < KEY_PTRS(k); i++) {
349 		struct bio *bio = bch_bbio_alloc(c);
350 
351 		bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
352 		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
353 
354 		bio->bi_end_io	= uuid_endio;
355 		bio->bi_private = cl;
356 		bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
357 		bch_bio_map(bio, c->uuids);
358 
359 		bch_submit_bbio(bio, c, k, i);
360 
361 		if (op != REQ_OP_WRITE)
362 			break;
363 	}
364 
365 	bch_extent_to_text(buf, sizeof(buf), k);
366 	pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
367 
368 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
369 		if (!bch_is_zero(u->uuid, 16))
370 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
371 				 u - c->uuids, u->uuid, u->label,
372 				 u->first_reg, u->last_reg, u->invalidated);
373 
374 	closure_return_with_destructor(cl, uuid_io_unlock);
375 }
376 
uuid_read(struct cache_set * c,struct jset * j,struct closure * cl)377 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
378 {
379 	struct bkey *k = &j->uuid_bucket;
380 
381 	if (__bch_btree_ptr_invalid(c, k))
382 		return "bad uuid pointer";
383 
384 	bkey_copy(&c->uuid_bucket, k);
385 	uuid_io(c, REQ_OP_READ, 0, k, cl);
386 
387 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
388 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
389 		struct uuid_entry	*u1 = (void *) c->uuids;
390 		int i;
391 
392 		closure_sync(cl);
393 
394 		/*
395 		 * Since the new uuid entry is bigger than the old, we have to
396 		 * convert starting at the highest memory address and work down
397 		 * in order to do it in place
398 		 */
399 
400 		for (i = c->nr_uuids - 1;
401 		     i >= 0;
402 		     --i) {
403 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
404 			memcpy(u1[i].label,	u0[i].label, 32);
405 
406 			u1[i].first_reg		= u0[i].first_reg;
407 			u1[i].last_reg		= u0[i].last_reg;
408 			u1[i].invalidated	= u0[i].invalidated;
409 
410 			u1[i].flags	= 0;
411 			u1[i].sectors	= 0;
412 		}
413 	}
414 
415 	return NULL;
416 }
417 
__uuid_write(struct cache_set * c)418 static int __uuid_write(struct cache_set *c)
419 {
420 	BKEY_PADDED(key) k;
421 	struct closure cl;
422 	closure_init_stack(&cl);
423 
424 	lockdep_assert_held(&bch_register_lock);
425 
426 	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
427 		return 1;
428 
429 	SET_KEY_SIZE(&k.key, c->sb.bucket_size);
430 	uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
431 	closure_sync(&cl);
432 
433 	bkey_copy(&c->uuid_bucket, &k.key);
434 	bkey_put(c, &k.key);
435 	return 0;
436 }
437 
bch_uuid_write(struct cache_set * c)438 int bch_uuid_write(struct cache_set *c)
439 {
440 	int ret = __uuid_write(c);
441 
442 	if (!ret)
443 		bch_journal_meta(c, NULL);
444 
445 	return ret;
446 }
447 
uuid_find(struct cache_set * c,const char * uuid)448 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
449 {
450 	struct uuid_entry *u;
451 
452 	for (u = c->uuids;
453 	     u < c->uuids + c->nr_uuids; u++)
454 		if (!memcmp(u->uuid, uuid, 16))
455 			return u;
456 
457 	return NULL;
458 }
459 
uuid_find_empty(struct cache_set * c)460 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
461 {
462 	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
463 	return uuid_find(c, zero_uuid);
464 }
465 
466 /*
467  * Bucket priorities/gens:
468  *
469  * For each bucket, we store on disk its
470    * 8 bit gen
471    * 16 bit priority
472  *
473  * See alloc.c for an explanation of the gen. The priority is used to implement
474  * lru (and in the future other) cache replacement policies; for most purposes
475  * it's just an opaque integer.
476  *
477  * The gens and the priorities don't have a whole lot to do with each other, and
478  * it's actually the gens that must be written out at specific times - it's no
479  * big deal if the priorities don't get written, if we lose them we just reuse
480  * buckets in suboptimal order.
481  *
482  * On disk they're stored in a packed array, and in as many buckets are required
483  * to fit them all. The buckets we use to store them form a list; the journal
484  * header points to the first bucket, the first bucket points to the second
485  * bucket, et cetera.
486  *
487  * This code is used by the allocation code; periodically (whenever it runs out
488  * of buckets to allocate from) the allocation code will invalidate some
489  * buckets, but it can't use those buckets until their new gens are safely on
490  * disk.
491  */
492 
prio_endio(struct bio * bio)493 static void prio_endio(struct bio *bio)
494 {
495 	struct cache *ca = bio->bi_private;
496 
497 	cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
498 	bch_bbio_free(bio, ca->set);
499 	closure_put(&ca->prio);
500 }
501 
prio_io(struct cache * ca,uint64_t bucket,int op,unsigned long op_flags)502 static void prio_io(struct cache *ca, uint64_t bucket, int op,
503 		    unsigned long op_flags)
504 {
505 	struct closure *cl = &ca->prio;
506 	struct bio *bio = bch_bbio_alloc(ca->set);
507 
508 	closure_init_stack(cl);
509 
510 	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
511 	bio_set_dev(bio, ca->bdev);
512 	bio->bi_iter.bi_size	= bucket_bytes(ca);
513 
514 	bio->bi_end_io	= prio_endio;
515 	bio->bi_private = ca;
516 	bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
517 	bch_bio_map(bio, ca->disk_buckets);
518 
519 	closure_bio_submit(bio, &ca->prio);
520 	closure_sync(cl);
521 }
522 
bch_prio_write(struct cache * ca)523 void bch_prio_write(struct cache *ca)
524 {
525 	int i;
526 	struct bucket *b;
527 	struct closure cl;
528 
529 	closure_init_stack(&cl);
530 
531 	lockdep_assert_held(&ca->set->bucket_lock);
532 
533 	ca->disk_buckets->seq++;
534 
535 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
536 			&ca->meta_sectors_written);
537 
538 	//pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
539 	//	 fifo_used(&ca->free_inc), fifo_used(&ca->unused));
540 
541 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
542 		long bucket;
543 		struct prio_set *p = ca->disk_buckets;
544 		struct bucket_disk *d = p->data;
545 		struct bucket_disk *end = d + prios_per_bucket(ca);
546 
547 		for (b = ca->buckets + i * prios_per_bucket(ca);
548 		     b < ca->buckets + ca->sb.nbuckets && d < end;
549 		     b++, d++) {
550 			d->prio = cpu_to_le16(b->prio);
551 			d->gen = b->gen;
552 		}
553 
554 		p->next_bucket	= ca->prio_buckets[i + 1];
555 		p->magic	= pset_magic(&ca->sb);
556 		p->csum		= bch_crc64(&p->magic, bucket_bytes(ca) - 8);
557 
558 		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
559 		BUG_ON(bucket == -1);
560 
561 		mutex_unlock(&ca->set->bucket_lock);
562 		prio_io(ca, bucket, REQ_OP_WRITE, 0);
563 		mutex_lock(&ca->set->bucket_lock);
564 
565 		ca->prio_buckets[i] = bucket;
566 		atomic_dec_bug(&ca->buckets[bucket].pin);
567 	}
568 
569 	mutex_unlock(&ca->set->bucket_lock);
570 
571 	bch_journal_meta(ca->set, &cl);
572 	closure_sync(&cl);
573 
574 	mutex_lock(&ca->set->bucket_lock);
575 
576 	/*
577 	 * Don't want the old priorities to get garbage collected until after we
578 	 * finish writing the new ones, and they're journalled
579 	 */
580 	for (i = 0; i < prio_buckets(ca); i++) {
581 		if (ca->prio_last_buckets[i])
582 			__bch_bucket_free(ca,
583 				&ca->buckets[ca->prio_last_buckets[i]]);
584 
585 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
586 	}
587 }
588 
prio_read(struct cache * ca,uint64_t bucket)589 static void prio_read(struct cache *ca, uint64_t bucket)
590 {
591 	struct prio_set *p = ca->disk_buckets;
592 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
593 	struct bucket *b;
594 	unsigned bucket_nr = 0;
595 
596 	for (b = ca->buckets;
597 	     b < ca->buckets + ca->sb.nbuckets;
598 	     b++, d++) {
599 		if (d == end) {
600 			ca->prio_buckets[bucket_nr] = bucket;
601 			ca->prio_last_buckets[bucket_nr] = bucket;
602 			bucket_nr++;
603 
604 			prio_io(ca, bucket, REQ_OP_READ, 0);
605 
606 			if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
607 				pr_warn("bad csum reading priorities");
608 
609 			if (p->magic != pset_magic(&ca->sb))
610 				pr_warn("bad magic reading priorities");
611 
612 			bucket = p->next_bucket;
613 			d = p->data;
614 		}
615 
616 		b->prio = le16_to_cpu(d->prio);
617 		b->gen = b->last_gc = d->gen;
618 	}
619 }
620 
621 /* Bcache device */
622 
open_dev(struct block_device * b,fmode_t mode)623 static int open_dev(struct block_device *b, fmode_t mode)
624 {
625 	struct bcache_device *d = b->bd_disk->private_data;
626 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
627 		return -ENXIO;
628 
629 	closure_get(&d->cl);
630 	return 0;
631 }
632 
release_dev(struct gendisk * b,fmode_t mode)633 static void release_dev(struct gendisk *b, fmode_t mode)
634 {
635 	struct bcache_device *d = b->private_data;
636 	closure_put(&d->cl);
637 }
638 
ioctl_dev(struct block_device * b,fmode_t mode,unsigned int cmd,unsigned long arg)639 static int ioctl_dev(struct block_device *b, fmode_t mode,
640 		     unsigned int cmd, unsigned long arg)
641 {
642 	struct bcache_device *d = b->bd_disk->private_data;
643 	return d->ioctl(d, mode, cmd, arg);
644 }
645 
646 static const struct block_device_operations bcache_ops = {
647 	.open		= open_dev,
648 	.release	= release_dev,
649 	.ioctl		= ioctl_dev,
650 	.owner		= THIS_MODULE,
651 };
652 
bcache_device_stop(struct bcache_device * d)653 void bcache_device_stop(struct bcache_device *d)
654 {
655 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
656 		closure_queue(&d->cl);
657 }
658 
bcache_device_unlink(struct bcache_device * d)659 static void bcache_device_unlink(struct bcache_device *d)
660 {
661 	lockdep_assert_held(&bch_register_lock);
662 
663 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
664 		unsigned i;
665 		struct cache *ca;
666 
667 		sysfs_remove_link(&d->c->kobj, d->name);
668 		sysfs_remove_link(&d->kobj, "cache");
669 
670 		for_each_cache(ca, d->c, i)
671 			bd_unlink_disk_holder(ca->bdev, d->disk);
672 	}
673 }
674 
bcache_device_link(struct bcache_device * d,struct cache_set * c,const char * name)675 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
676 			       const char *name)
677 {
678 	unsigned i;
679 	struct cache *ca;
680 
681 	for_each_cache(ca, d->c, i)
682 		bd_link_disk_holder(ca->bdev, d->disk);
683 
684 	snprintf(d->name, BCACHEDEVNAME_SIZE,
685 		 "%s%u", name, d->id);
686 
687 	WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
688 	     sysfs_create_link(&c->kobj, &d->kobj, d->name),
689 	     "Couldn't create device <-> cache set symlinks");
690 
691 	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
692 }
693 
bcache_device_detach(struct bcache_device * d)694 static void bcache_device_detach(struct bcache_device *d)
695 {
696 	lockdep_assert_held(&bch_register_lock);
697 
698 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
699 		struct uuid_entry *u = d->c->uuids + d->id;
700 
701 		SET_UUID_FLASH_ONLY(u, 0);
702 		memcpy(u->uuid, invalid_uuid, 16);
703 		u->invalidated = cpu_to_le32(get_seconds());
704 		bch_uuid_write(d->c);
705 	}
706 
707 	bcache_device_unlink(d);
708 
709 	d->c->devices[d->id] = NULL;
710 	closure_put(&d->c->caching);
711 	d->c = NULL;
712 }
713 
bcache_device_attach(struct bcache_device * d,struct cache_set * c,unsigned id)714 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
715 				 unsigned id)
716 {
717 	d->id = id;
718 	d->c = c;
719 	c->devices[id] = d;
720 
721 	closure_get(&c->caching);
722 }
723 
bcache_device_free(struct bcache_device * d)724 static void bcache_device_free(struct bcache_device *d)
725 {
726 	lockdep_assert_held(&bch_register_lock);
727 
728 	pr_info("%s stopped", d->disk->disk_name);
729 
730 	if (d->c)
731 		bcache_device_detach(d);
732 	if (d->disk && d->disk->flags & GENHD_FL_UP)
733 		del_gendisk(d->disk);
734 	if (d->disk && d->disk->queue)
735 		blk_cleanup_queue(d->disk->queue);
736 	if (d->disk) {
737 		ida_simple_remove(&bcache_minor, d->disk->first_minor);
738 		put_disk(d->disk);
739 	}
740 
741 	if (d->bio_split)
742 		bioset_free(d->bio_split);
743 	kvfree(d->full_dirty_stripes);
744 	kvfree(d->stripe_sectors_dirty);
745 
746 	closure_debug_destroy(&d->cl);
747 }
748 
bcache_device_init(struct bcache_device * d,unsigned block_size,sector_t sectors)749 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
750 			      sector_t sectors)
751 {
752 	struct request_queue *q;
753 	size_t n;
754 	int minor;
755 
756 	if (!d->stripe_size)
757 		d->stripe_size = 1 << 31;
758 
759 	d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
760 
761 	if (!d->nr_stripes ||
762 	    d->nr_stripes > INT_MAX ||
763 	    d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
764 		pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
765 			(unsigned)d->nr_stripes);
766 		return -ENOMEM;
767 	}
768 
769 	n = d->nr_stripes * sizeof(atomic_t);
770 	d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
771 	if (!d->stripe_sectors_dirty)
772 		return -ENOMEM;
773 
774 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
775 	d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
776 	if (!d->full_dirty_stripes)
777 		return -ENOMEM;
778 
779 	minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
780 	if (minor < 0)
781 		return minor;
782 
783 	minor *= BCACHE_MINORS;
784 
785 	if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio),
786 					   BIOSET_NEED_BVECS |
787 					   BIOSET_NEED_RESCUER)) ||
788 	    !(d->disk = alloc_disk(BCACHE_MINORS))) {
789 		ida_simple_remove(&bcache_minor, minor);
790 		return -ENOMEM;
791 	}
792 
793 	set_capacity(d->disk, sectors);
794 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
795 
796 	d->disk->major		= bcache_major;
797 	d->disk->first_minor	= minor;
798 	d->disk->fops		= &bcache_ops;
799 	d->disk->private_data	= d;
800 
801 	q = blk_alloc_queue(GFP_KERNEL);
802 	if (!q)
803 		return -ENOMEM;
804 
805 	blk_queue_make_request(q, NULL);
806 	d->disk->queue			= q;
807 	q->queuedata			= d;
808 	q->backing_dev_info->congested_data = d;
809 	q->limits.max_hw_sectors	= UINT_MAX;
810 	q->limits.max_sectors		= UINT_MAX;
811 	q->limits.max_segment_size	= UINT_MAX;
812 	q->limits.max_segments		= BIO_MAX_PAGES;
813 	blk_queue_max_discard_sectors(q, UINT_MAX);
814 	q->limits.discard_granularity	= 512;
815 	q->limits.io_min		= block_size;
816 	q->limits.logical_block_size	= block_size;
817 	q->limits.physical_block_size	= block_size;
818 	set_bit(QUEUE_FLAG_NONROT,	&d->disk->queue->queue_flags);
819 	clear_bit(QUEUE_FLAG_ADD_RANDOM, &d->disk->queue->queue_flags);
820 	set_bit(QUEUE_FLAG_DISCARD,	&d->disk->queue->queue_flags);
821 
822 	blk_queue_write_cache(q, true, true);
823 
824 	return 0;
825 }
826 
827 /* Cached device */
828 
calc_cached_dev_sectors(struct cache_set * c)829 static void calc_cached_dev_sectors(struct cache_set *c)
830 {
831 	uint64_t sectors = 0;
832 	struct cached_dev *dc;
833 
834 	list_for_each_entry(dc, &c->cached_devs, list)
835 		sectors += bdev_sectors(dc->bdev);
836 
837 	c->cached_dev_sectors = sectors;
838 }
839 
bch_cached_dev_run(struct cached_dev * dc)840 void bch_cached_dev_run(struct cached_dev *dc)
841 {
842 	struct bcache_device *d = &dc->disk;
843 	char buf[SB_LABEL_SIZE + 1];
844 	char *env[] = {
845 		"DRIVER=bcache",
846 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
847 		NULL,
848 		NULL,
849 	};
850 
851 	memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
852 	buf[SB_LABEL_SIZE] = '\0';
853 	env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
854 
855 	if (atomic_xchg(&dc->running, 1)) {
856 		kfree(env[1]);
857 		kfree(env[2]);
858 		return;
859 	}
860 
861 	if (!d->c &&
862 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
863 		struct closure cl;
864 		closure_init_stack(&cl);
865 
866 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
867 		bch_write_bdev_super(dc, &cl);
868 		closure_sync(&cl);
869 	}
870 
871 	add_disk(d->disk);
872 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
873 	/* won't show up in the uevent file, use udevadm monitor -e instead
874 	 * only class / kset properties are persistent */
875 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
876 	kfree(env[1]);
877 	kfree(env[2]);
878 
879 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
880 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
881 		pr_debug("error creating sysfs link");
882 }
883 
cached_dev_detach_finish(struct work_struct * w)884 static void cached_dev_detach_finish(struct work_struct *w)
885 {
886 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
887 	char buf[BDEVNAME_SIZE];
888 	struct closure cl;
889 	closure_init_stack(&cl);
890 
891 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
892 	BUG_ON(atomic_read(&dc->count));
893 
894 	mutex_lock(&bch_register_lock);
895 
896 	cancel_delayed_work_sync(&dc->writeback_rate_update);
897 	if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
898 		kthread_stop(dc->writeback_thread);
899 		dc->writeback_thread = NULL;
900 	}
901 
902 	memset(&dc->sb.set_uuid, 0, 16);
903 	SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
904 
905 	bch_write_bdev_super(dc, &cl);
906 	closure_sync(&cl);
907 
908 	calc_cached_dev_sectors(dc->disk.c);
909 	bcache_device_detach(&dc->disk);
910 	list_move(&dc->list, &uncached_devices);
911 
912 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
913 	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
914 
915 	mutex_unlock(&bch_register_lock);
916 
917 	pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
918 
919 	/* Drop ref we took in cached_dev_detach() */
920 	closure_put(&dc->disk.cl);
921 }
922 
bch_cached_dev_detach(struct cached_dev * dc)923 void bch_cached_dev_detach(struct cached_dev *dc)
924 {
925 	lockdep_assert_held(&bch_register_lock);
926 
927 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
928 		return;
929 
930 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
931 		return;
932 
933 	/*
934 	 * Block the device from being closed and freed until we're finished
935 	 * detaching
936 	 */
937 	closure_get(&dc->disk.cl);
938 
939 	bch_writeback_queue(dc);
940 	cached_dev_put(dc);
941 }
942 
bch_cached_dev_attach(struct cached_dev * dc,struct cache_set * c,uint8_t * set_uuid)943 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
944 			  uint8_t *set_uuid)
945 {
946 	uint32_t rtime = cpu_to_le32(get_seconds());
947 	struct uuid_entry *u;
948 	char buf[BDEVNAME_SIZE];
949 	struct cached_dev *exist_dc, *t;
950 
951 	bdevname(dc->bdev, buf);
952 
953 	if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
954 	    (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
955 		return -ENOENT;
956 
957 	if (dc->disk.c) {
958 		pr_err("Can't attach %s: already attached", buf);
959 		return -EINVAL;
960 	}
961 
962 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
963 		pr_err("Can't attach %s: shutting down", buf);
964 		return -EINVAL;
965 	}
966 
967 	if (dc->sb.block_size < c->sb.block_size) {
968 		/* Will die */
969 		pr_err("Couldn't attach %s: block size less than set's block size",
970 		       buf);
971 		return -EINVAL;
972 	}
973 
974 	/* Check whether already attached */
975 	list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
976 		if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
977 			pr_err("Tried to attach %s but duplicate UUID already attached",
978 				buf);
979 
980 			return -EINVAL;
981 		}
982 	}
983 
984 	u = uuid_find(c, dc->sb.uuid);
985 
986 	if (u &&
987 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
988 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
989 		memcpy(u->uuid, invalid_uuid, 16);
990 		u->invalidated = cpu_to_le32(get_seconds());
991 		u = NULL;
992 	}
993 
994 	if (!u) {
995 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
996 			pr_err("Couldn't find uuid for %s in set", buf);
997 			return -ENOENT;
998 		}
999 
1000 		u = uuid_find_empty(c);
1001 		if (!u) {
1002 			pr_err("Not caching %s, no room for UUID", buf);
1003 			return -EINVAL;
1004 		}
1005 	}
1006 
1007 	/* Deadlocks since we're called via sysfs...
1008 	sysfs_remove_file(&dc->kobj, &sysfs_attach);
1009 	 */
1010 
1011 	if (bch_is_zero(u->uuid, 16)) {
1012 		struct closure cl;
1013 		closure_init_stack(&cl);
1014 
1015 		memcpy(u->uuid, dc->sb.uuid, 16);
1016 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1017 		u->first_reg = u->last_reg = rtime;
1018 		bch_uuid_write(c);
1019 
1020 		memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1021 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1022 
1023 		bch_write_bdev_super(dc, &cl);
1024 		closure_sync(&cl);
1025 	} else {
1026 		u->last_reg = rtime;
1027 		bch_uuid_write(c);
1028 	}
1029 
1030 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1031 	list_move(&dc->list, &c->cached_devs);
1032 	calc_cached_dev_sectors(c);
1033 
1034 	smp_wmb();
1035 	/*
1036 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1037 	 * cached_dev_get()
1038 	 */
1039 	atomic_set(&dc->count, 1);
1040 
1041 	/* Block writeback thread, but spawn it */
1042 	down_write(&dc->writeback_lock);
1043 	if (bch_cached_dev_writeback_start(dc)) {
1044 		up_write(&dc->writeback_lock);
1045 		return -ENOMEM;
1046 	}
1047 
1048 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1049 		atomic_set(&dc->has_dirty, 1);
1050 		atomic_inc(&dc->count);
1051 		bch_writeback_queue(dc);
1052 	}
1053 
1054 	bch_sectors_dirty_init(&dc->disk);
1055 
1056 	bch_cached_dev_run(dc);
1057 	bcache_device_link(&dc->disk, c, "bdev");
1058 
1059 	/* Allow the writeback thread to proceed */
1060 	up_write(&dc->writeback_lock);
1061 
1062 	pr_info("Caching %s as %s on set %pU",
1063 		bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1064 		dc->disk.c->sb.set_uuid);
1065 	return 0;
1066 }
1067 
bch_cached_dev_release(struct kobject * kobj)1068 void bch_cached_dev_release(struct kobject *kobj)
1069 {
1070 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1071 					     disk.kobj);
1072 	kfree(dc);
1073 	module_put(THIS_MODULE);
1074 }
1075 
cached_dev_free(struct closure * cl)1076 static void cached_dev_free(struct closure *cl)
1077 {
1078 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1079 
1080 	cancel_delayed_work_sync(&dc->writeback_rate_update);
1081 	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1082 		kthread_stop(dc->writeback_thread);
1083 	if (dc->writeback_write_wq)
1084 		destroy_workqueue(dc->writeback_write_wq);
1085 
1086 	mutex_lock(&bch_register_lock);
1087 
1088 	if (atomic_read(&dc->running))
1089 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1090 	bcache_device_free(&dc->disk);
1091 	list_del(&dc->list);
1092 
1093 	mutex_unlock(&bch_register_lock);
1094 
1095 	if (!IS_ERR_OR_NULL(dc->bdev))
1096 		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1097 
1098 	wake_up(&unregister_wait);
1099 
1100 	kobject_put(&dc->disk.kobj);
1101 }
1102 
cached_dev_flush(struct closure * cl)1103 static void cached_dev_flush(struct closure *cl)
1104 {
1105 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1106 	struct bcache_device *d = &dc->disk;
1107 
1108 	mutex_lock(&bch_register_lock);
1109 	bcache_device_unlink(d);
1110 	mutex_unlock(&bch_register_lock);
1111 
1112 	bch_cache_accounting_destroy(&dc->accounting);
1113 	kobject_del(&d->kobj);
1114 
1115 	continue_at(cl, cached_dev_free, system_wq);
1116 }
1117 
cached_dev_init(struct cached_dev * dc,unsigned block_size)1118 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1119 {
1120 	int ret;
1121 	struct io *io;
1122 	struct request_queue *q = bdev_get_queue(dc->bdev);
1123 
1124 	__module_get(THIS_MODULE);
1125 	INIT_LIST_HEAD(&dc->list);
1126 	closure_init(&dc->disk.cl, NULL);
1127 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1128 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1129 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1130 	sema_init(&dc->sb_write_mutex, 1);
1131 	INIT_LIST_HEAD(&dc->io_lru);
1132 	spin_lock_init(&dc->io_lock);
1133 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1134 
1135 	dc->sequential_cutoff		= 4 << 20;
1136 
1137 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1138 		list_add(&io->lru, &dc->io_lru);
1139 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1140 	}
1141 
1142 	dc->disk.stripe_size = q->limits.io_opt >> 9;
1143 
1144 	if (dc->disk.stripe_size)
1145 		dc->partial_stripes_expensive =
1146 			q->limits.raid_partial_stripes_expensive;
1147 
1148 	ret = bcache_device_init(&dc->disk, block_size,
1149 			 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1150 	if (ret)
1151 		return ret;
1152 
1153 	set_capacity(dc->disk.disk,
1154 		     dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1155 
1156 	dc->disk.disk->queue->backing_dev_info->ra_pages =
1157 		max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1158 		    q->backing_dev_info->ra_pages);
1159 
1160 	bch_cached_dev_request_init(dc);
1161 	bch_cached_dev_writeback_init(dc);
1162 	return 0;
1163 }
1164 
1165 /* Cached device - bcache superblock */
1166 
register_bdev(struct cache_sb * sb,struct page * sb_page,struct block_device * bdev,struct cached_dev * dc)1167 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1168 				 struct block_device *bdev,
1169 				 struct cached_dev *dc)
1170 {
1171 	char name[BDEVNAME_SIZE];
1172 	const char *err = "cannot allocate memory";
1173 	struct cache_set *c;
1174 
1175 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1176 	dc->bdev = bdev;
1177 	dc->bdev->bd_holder = dc;
1178 
1179 	bio_init(&dc->sb_bio, dc->sb_bio.bi_inline_vecs, 1);
1180 	dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1181 	get_page(sb_page);
1182 
1183 	if (cached_dev_init(dc, sb->block_size << 9))
1184 		goto err;
1185 
1186 	err = "error creating kobject";
1187 	if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1188 			"bcache"))
1189 		goto err;
1190 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1191 		goto err;
1192 
1193 	pr_info("registered backing device %s", bdevname(bdev, name));
1194 
1195 	list_add(&dc->list, &uncached_devices);
1196 	list_for_each_entry(c, &bch_cache_sets, list)
1197 		bch_cached_dev_attach(dc, c, NULL);
1198 
1199 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1200 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1201 		bch_cached_dev_run(dc);
1202 
1203 	return;
1204 err:
1205 	pr_notice("error %s: %s", bdevname(bdev, name), err);
1206 	bcache_device_stop(&dc->disk);
1207 }
1208 
1209 /* Flash only volumes */
1210 
bch_flash_dev_release(struct kobject * kobj)1211 void bch_flash_dev_release(struct kobject *kobj)
1212 {
1213 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1214 					       kobj);
1215 	kfree(d);
1216 }
1217 
flash_dev_free(struct closure * cl)1218 static void flash_dev_free(struct closure *cl)
1219 {
1220 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1221 	mutex_lock(&bch_register_lock);
1222 	bcache_device_free(d);
1223 	mutex_unlock(&bch_register_lock);
1224 	kobject_put(&d->kobj);
1225 }
1226 
flash_dev_flush(struct closure * cl)1227 static void flash_dev_flush(struct closure *cl)
1228 {
1229 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1230 
1231 	mutex_lock(&bch_register_lock);
1232 	bcache_device_unlink(d);
1233 	mutex_unlock(&bch_register_lock);
1234 	kobject_del(&d->kobj);
1235 	continue_at(cl, flash_dev_free, system_wq);
1236 }
1237 
flash_dev_run(struct cache_set * c,struct uuid_entry * u)1238 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1239 {
1240 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1241 					  GFP_KERNEL);
1242 	if (!d)
1243 		return -ENOMEM;
1244 
1245 	closure_init(&d->cl, NULL);
1246 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1247 
1248 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1249 
1250 	if (bcache_device_init(d, block_bytes(c), u->sectors))
1251 		goto err;
1252 
1253 	bcache_device_attach(d, c, u - c->uuids);
1254 	bch_sectors_dirty_init(d);
1255 	bch_flash_dev_request_init(d);
1256 	add_disk(d->disk);
1257 
1258 	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1259 		goto err;
1260 
1261 	bcache_device_link(d, c, "volume");
1262 
1263 	return 0;
1264 err:
1265 	kobject_put(&d->kobj);
1266 	return -ENOMEM;
1267 }
1268 
flash_devs_run(struct cache_set * c)1269 static int flash_devs_run(struct cache_set *c)
1270 {
1271 	int ret = 0;
1272 	struct uuid_entry *u;
1273 
1274 	for (u = c->uuids;
1275 	     u < c->uuids + c->nr_uuids && !ret;
1276 	     u++)
1277 		if (UUID_FLASH_ONLY(u))
1278 			ret = flash_dev_run(c, u);
1279 
1280 	return ret;
1281 }
1282 
bch_flash_dev_create(struct cache_set * c,uint64_t size)1283 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1284 {
1285 	struct uuid_entry *u;
1286 
1287 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1288 		return -EINTR;
1289 
1290 	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1291 		return -EPERM;
1292 
1293 	u = uuid_find_empty(c);
1294 	if (!u) {
1295 		pr_err("Can't create volume, no room for UUID");
1296 		return -EINVAL;
1297 	}
1298 
1299 	get_random_bytes(u->uuid, 16);
1300 	memset(u->label, 0, 32);
1301 	u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1302 
1303 	SET_UUID_FLASH_ONLY(u, 1);
1304 	u->sectors = size >> 9;
1305 
1306 	bch_uuid_write(c);
1307 
1308 	return flash_dev_run(c, u);
1309 }
1310 
1311 /* Cache set */
1312 
1313 __printf(2, 3)
bch_cache_set_error(struct cache_set * c,const char * fmt,...)1314 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1315 {
1316 	va_list args;
1317 
1318 	if (c->on_error != ON_ERROR_PANIC &&
1319 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1320 		return false;
1321 
1322 	/* XXX: we can be called from atomic context
1323 	acquire_console_sem();
1324 	*/
1325 
1326 	printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1327 
1328 	va_start(args, fmt);
1329 	vprintk(fmt, args);
1330 	va_end(args);
1331 
1332 	printk(", disabling caching\n");
1333 
1334 	if (c->on_error == ON_ERROR_PANIC)
1335 		panic("panic forced after error\n");
1336 
1337 	bch_cache_set_unregister(c);
1338 	return true;
1339 }
1340 
bch_cache_set_release(struct kobject * kobj)1341 void bch_cache_set_release(struct kobject *kobj)
1342 {
1343 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1344 	kfree(c);
1345 	module_put(THIS_MODULE);
1346 }
1347 
cache_set_free(struct closure * cl)1348 static void cache_set_free(struct closure *cl)
1349 {
1350 	struct cache_set *c = container_of(cl, struct cache_set, cl);
1351 	struct cache *ca;
1352 	unsigned i;
1353 
1354 	if (!IS_ERR_OR_NULL(c->debug))
1355 		debugfs_remove(c->debug);
1356 
1357 	bch_open_buckets_free(c);
1358 	bch_btree_cache_free(c);
1359 	bch_journal_free(c);
1360 
1361 	mutex_lock(&bch_register_lock);
1362 	for_each_cache(ca, c, i)
1363 		if (ca) {
1364 			ca->set = NULL;
1365 			c->cache[ca->sb.nr_this_dev] = NULL;
1366 			kobject_put(&ca->kobj);
1367 		}
1368 
1369 	bch_bset_sort_state_free(&c->sort);
1370 	free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1371 
1372 	if (c->moving_gc_wq)
1373 		destroy_workqueue(c->moving_gc_wq);
1374 	if (c->bio_split)
1375 		bioset_free(c->bio_split);
1376 	if (c->fill_iter)
1377 		mempool_destroy(c->fill_iter);
1378 	if (c->bio_meta)
1379 		mempool_destroy(c->bio_meta);
1380 	if (c->search)
1381 		mempool_destroy(c->search);
1382 	kfree(c->devices);
1383 
1384 	list_del(&c->list);
1385 	mutex_unlock(&bch_register_lock);
1386 
1387 	pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1388 	wake_up(&unregister_wait);
1389 
1390 	closure_debug_destroy(&c->cl);
1391 	kobject_put(&c->kobj);
1392 }
1393 
cache_set_flush(struct closure * cl)1394 static void cache_set_flush(struct closure *cl)
1395 {
1396 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1397 	struct cache *ca;
1398 	struct btree *b;
1399 	unsigned i;
1400 
1401 	bch_cache_accounting_destroy(&c->accounting);
1402 
1403 	kobject_put(&c->internal);
1404 	kobject_del(&c->kobj);
1405 
1406 	if (!IS_ERR_OR_NULL(c->gc_thread))
1407 		kthread_stop(c->gc_thread);
1408 
1409 	if (!IS_ERR_OR_NULL(c->root))
1410 		list_add(&c->root->list, &c->btree_cache);
1411 
1412 	/* Should skip this if we're unregistering because of an error */
1413 	list_for_each_entry(b, &c->btree_cache, list) {
1414 		mutex_lock(&b->write_lock);
1415 		if (btree_node_dirty(b))
1416 			__bch_btree_node_write(b, NULL);
1417 		mutex_unlock(&b->write_lock);
1418 	}
1419 
1420 	for_each_cache(ca, c, i)
1421 		if (ca->alloc_thread)
1422 			kthread_stop(ca->alloc_thread);
1423 
1424 	if (c->journal.cur) {
1425 		cancel_delayed_work_sync(&c->journal.work);
1426 		/* flush last journal entry if needed */
1427 		c->journal.work.work.func(&c->journal.work.work);
1428 	}
1429 
1430 	closure_return(cl);
1431 }
1432 
__cache_set_unregister(struct closure * cl)1433 static void __cache_set_unregister(struct closure *cl)
1434 {
1435 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1436 	struct cached_dev *dc;
1437 	size_t i;
1438 
1439 	mutex_lock(&bch_register_lock);
1440 
1441 	for (i = 0; i < c->nr_uuids; i++)
1442 		if (c->devices[i]) {
1443 			if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1444 			    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1445 				dc = container_of(c->devices[i],
1446 						  struct cached_dev, disk);
1447 				bch_cached_dev_detach(dc);
1448 			} else {
1449 				bcache_device_stop(c->devices[i]);
1450 			}
1451 		}
1452 
1453 	mutex_unlock(&bch_register_lock);
1454 
1455 	continue_at(cl, cache_set_flush, system_wq);
1456 }
1457 
bch_cache_set_stop(struct cache_set * c)1458 void bch_cache_set_stop(struct cache_set *c)
1459 {
1460 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1461 		closure_queue(&c->caching);
1462 }
1463 
bch_cache_set_unregister(struct cache_set * c)1464 void bch_cache_set_unregister(struct cache_set *c)
1465 {
1466 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1467 	bch_cache_set_stop(c);
1468 }
1469 
1470 #define alloc_bucket_pages(gfp, c)			\
1471 	((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1472 
bch_cache_set_alloc(struct cache_sb * sb)1473 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1474 {
1475 	int iter_size;
1476 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1477 	if (!c)
1478 		return NULL;
1479 
1480 	__module_get(THIS_MODULE);
1481 	closure_init(&c->cl, NULL);
1482 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1483 
1484 	closure_init(&c->caching, &c->cl);
1485 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1486 
1487 	/* Maybe create continue_at_noreturn() and use it here? */
1488 	closure_set_stopped(&c->cl);
1489 	closure_put(&c->cl);
1490 
1491 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1492 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1493 
1494 	bch_cache_accounting_init(&c->accounting, &c->cl);
1495 
1496 	memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1497 	c->sb.block_size	= sb->block_size;
1498 	c->sb.bucket_size	= sb->bucket_size;
1499 	c->sb.nr_in_set		= sb->nr_in_set;
1500 	c->sb.last_mount	= sb->last_mount;
1501 	c->bucket_bits		= ilog2(sb->bucket_size);
1502 	c->block_bits		= ilog2(sb->block_size);
1503 	c->nr_uuids		= bucket_bytes(c) / sizeof(struct uuid_entry);
1504 
1505 	c->btree_pages		= bucket_pages(c);
1506 	if (c->btree_pages > BTREE_MAX_PAGES)
1507 		c->btree_pages = max_t(int, c->btree_pages / 4,
1508 				       BTREE_MAX_PAGES);
1509 
1510 	sema_init(&c->sb_write_mutex, 1);
1511 	mutex_init(&c->bucket_lock);
1512 	init_waitqueue_head(&c->btree_cache_wait);
1513 	init_waitqueue_head(&c->bucket_wait);
1514 	init_waitqueue_head(&c->gc_wait);
1515 	sema_init(&c->uuid_write_mutex, 1);
1516 
1517 	spin_lock_init(&c->btree_gc_time.lock);
1518 	spin_lock_init(&c->btree_split_time.lock);
1519 	spin_lock_init(&c->btree_read_time.lock);
1520 
1521 	bch_moving_init_cache_set(c);
1522 
1523 	INIT_LIST_HEAD(&c->list);
1524 	INIT_LIST_HEAD(&c->cached_devs);
1525 	INIT_LIST_HEAD(&c->btree_cache);
1526 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1527 	INIT_LIST_HEAD(&c->btree_cache_freed);
1528 	INIT_LIST_HEAD(&c->data_buckets);
1529 
1530 	c->search = mempool_create_slab_pool(32, bch_search_cache);
1531 	if (!c->search)
1532 		goto err;
1533 
1534 	iter_size = (sb->bucket_size / sb->block_size + 1) *
1535 		sizeof(struct btree_iter_set);
1536 
1537 	if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1538 	    !(c->bio_meta = mempool_create_kmalloc_pool(2,
1539 				sizeof(struct bbio) + sizeof(struct bio_vec) *
1540 				bucket_pages(c))) ||
1541 	    !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1542 	    !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio),
1543 					   BIOSET_NEED_BVECS |
1544 					   BIOSET_NEED_RESCUER)) ||
1545 	    !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1546 	    !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1547 						WQ_MEM_RECLAIM, 0)) ||
1548 	    bch_journal_alloc(c) ||
1549 	    bch_btree_cache_alloc(c) ||
1550 	    bch_open_buckets_alloc(c) ||
1551 	    bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1552 		goto err;
1553 
1554 	c->congested_read_threshold_us	= 2000;
1555 	c->congested_write_threshold_us	= 20000;
1556 	c->error_limit	= 8 << IO_ERROR_SHIFT;
1557 
1558 	return c;
1559 err:
1560 	bch_cache_set_unregister(c);
1561 	return NULL;
1562 }
1563 
run_cache_set(struct cache_set * c)1564 static int run_cache_set(struct cache_set *c)
1565 {
1566 	const char *err = "cannot allocate memory";
1567 	struct cached_dev *dc, *t;
1568 	struct cache *ca;
1569 	struct closure cl;
1570 	unsigned i;
1571 
1572 	closure_init_stack(&cl);
1573 
1574 	for_each_cache(ca, c, i)
1575 		c->nbuckets += ca->sb.nbuckets;
1576 	set_gc_sectors(c);
1577 
1578 	if (CACHE_SYNC(&c->sb)) {
1579 		LIST_HEAD(journal);
1580 		struct bkey *k;
1581 		struct jset *j;
1582 
1583 		err = "cannot allocate memory for journal";
1584 		if (bch_journal_read(c, &journal))
1585 			goto err;
1586 
1587 		pr_debug("btree_journal_read() done");
1588 
1589 		err = "no journal entries found";
1590 		if (list_empty(&journal))
1591 			goto err;
1592 
1593 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
1594 
1595 		err = "IO error reading priorities";
1596 		for_each_cache(ca, c, i)
1597 			prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1598 
1599 		/*
1600 		 * If prio_read() fails it'll call cache_set_error and we'll
1601 		 * tear everything down right away, but if we perhaps checked
1602 		 * sooner we could avoid journal replay.
1603 		 */
1604 
1605 		k = &j->btree_root;
1606 
1607 		err = "bad btree root";
1608 		if (__bch_btree_ptr_invalid(c, k))
1609 			goto err;
1610 
1611 		err = "error reading btree root";
1612 		c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1613 		if (IS_ERR_OR_NULL(c->root))
1614 			goto err;
1615 
1616 		list_del_init(&c->root->list);
1617 		rw_unlock(true, c->root);
1618 
1619 		err = uuid_read(c, j, &cl);
1620 		if (err)
1621 			goto err;
1622 
1623 		err = "error in recovery";
1624 		if (bch_btree_check(c))
1625 			goto err;
1626 
1627 		bch_journal_mark(c, &journal);
1628 		bch_initial_gc_finish(c);
1629 		pr_debug("btree_check() done");
1630 
1631 		/*
1632 		 * bcache_journal_next() can't happen sooner, or
1633 		 * btree_gc_finish() will give spurious errors about last_gc >
1634 		 * gc_gen - this is a hack but oh well.
1635 		 */
1636 		bch_journal_next(&c->journal);
1637 
1638 		err = "error starting allocator thread";
1639 		for_each_cache(ca, c, i)
1640 			if (bch_cache_allocator_start(ca))
1641 				goto err;
1642 
1643 		/*
1644 		 * First place it's safe to allocate: btree_check() and
1645 		 * btree_gc_finish() have to run before we have buckets to
1646 		 * allocate, and bch_bucket_alloc_set() might cause a journal
1647 		 * entry to be written so bcache_journal_next() has to be called
1648 		 * first.
1649 		 *
1650 		 * If the uuids were in the old format we have to rewrite them
1651 		 * before the next journal entry is written:
1652 		 */
1653 		if (j->version < BCACHE_JSET_VERSION_UUID)
1654 			__uuid_write(c);
1655 
1656 		err = "bcache: replay journal failed";
1657 		if (bch_journal_replay(c, &journal))
1658 			goto err;
1659 	} else {
1660 		pr_notice("invalidating existing data");
1661 
1662 		for_each_cache(ca, c, i) {
1663 			unsigned j;
1664 
1665 			ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1666 					      2, SB_JOURNAL_BUCKETS);
1667 
1668 			for (j = 0; j < ca->sb.keys; j++)
1669 				ca->sb.d[j] = ca->sb.first_bucket + j;
1670 		}
1671 
1672 		bch_initial_gc_finish(c);
1673 
1674 		err = "error starting allocator thread";
1675 		for_each_cache(ca, c, i)
1676 			if (bch_cache_allocator_start(ca))
1677 				goto err;
1678 
1679 		mutex_lock(&c->bucket_lock);
1680 		for_each_cache(ca, c, i)
1681 			bch_prio_write(ca);
1682 		mutex_unlock(&c->bucket_lock);
1683 
1684 		err = "cannot allocate new UUID bucket";
1685 		if (__uuid_write(c))
1686 			goto err;
1687 
1688 		err = "cannot allocate new btree root";
1689 		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1690 		if (IS_ERR_OR_NULL(c->root))
1691 			goto err;
1692 
1693 		mutex_lock(&c->root->write_lock);
1694 		bkey_copy_key(&c->root->key, &MAX_KEY);
1695 		bch_btree_node_write(c->root, &cl);
1696 		mutex_unlock(&c->root->write_lock);
1697 
1698 		bch_btree_set_root(c->root);
1699 		rw_unlock(true, c->root);
1700 
1701 		/*
1702 		 * We don't want to write the first journal entry until
1703 		 * everything is set up - fortunately journal entries won't be
1704 		 * written until the SET_CACHE_SYNC() here:
1705 		 */
1706 		SET_CACHE_SYNC(&c->sb, true);
1707 
1708 		bch_journal_next(&c->journal);
1709 		bch_journal_meta(c, &cl);
1710 	}
1711 
1712 	err = "error starting gc thread";
1713 	if (bch_gc_thread_start(c))
1714 		goto err;
1715 
1716 	closure_sync(&cl);
1717 	c->sb.last_mount = get_seconds();
1718 	bcache_write_super(c);
1719 
1720 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1721 		bch_cached_dev_attach(dc, c, NULL);
1722 
1723 	flash_devs_run(c);
1724 
1725 	set_bit(CACHE_SET_RUNNING, &c->flags);
1726 	return 0;
1727 err:
1728 	closure_sync(&cl);
1729 	/* XXX: test this, it's broken */
1730 	bch_cache_set_error(c, "%s", err);
1731 
1732 	return -EIO;
1733 }
1734 
can_attach_cache(struct cache * ca,struct cache_set * c)1735 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1736 {
1737 	return ca->sb.block_size	== c->sb.block_size &&
1738 		ca->sb.bucket_size	== c->sb.bucket_size &&
1739 		ca->sb.nr_in_set	== c->sb.nr_in_set;
1740 }
1741 
register_cache_set(struct cache * ca)1742 static const char *register_cache_set(struct cache *ca)
1743 {
1744 	char buf[12];
1745 	const char *err = "cannot allocate memory";
1746 	struct cache_set *c;
1747 
1748 	list_for_each_entry(c, &bch_cache_sets, list)
1749 		if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1750 			if (c->cache[ca->sb.nr_this_dev])
1751 				return "duplicate cache set member";
1752 
1753 			if (!can_attach_cache(ca, c))
1754 				return "cache sb does not match set";
1755 
1756 			if (!CACHE_SYNC(&ca->sb))
1757 				SET_CACHE_SYNC(&c->sb, false);
1758 
1759 			goto found;
1760 		}
1761 
1762 	c = bch_cache_set_alloc(&ca->sb);
1763 	if (!c)
1764 		return err;
1765 
1766 	err = "error creating kobject";
1767 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1768 	    kobject_add(&c->internal, &c->kobj, "internal"))
1769 		goto err;
1770 
1771 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1772 		goto err;
1773 
1774 	bch_debug_init_cache_set(c);
1775 
1776 	list_add(&c->list, &bch_cache_sets);
1777 found:
1778 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1779 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1780 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
1781 		goto err;
1782 
1783 	if (ca->sb.seq > c->sb.seq) {
1784 		c->sb.version		= ca->sb.version;
1785 		memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1786 		c->sb.flags             = ca->sb.flags;
1787 		c->sb.seq		= ca->sb.seq;
1788 		pr_debug("set version = %llu", c->sb.version);
1789 	}
1790 
1791 	kobject_get(&ca->kobj);
1792 	ca->set = c;
1793 	ca->set->cache[ca->sb.nr_this_dev] = ca;
1794 	c->cache_by_alloc[c->caches_loaded++] = ca;
1795 
1796 	if (c->caches_loaded == c->sb.nr_in_set) {
1797 		err = "failed to run cache set";
1798 		if (run_cache_set(c) < 0)
1799 			goto err;
1800 	}
1801 
1802 	return NULL;
1803 err:
1804 	bch_cache_set_unregister(c);
1805 	return err;
1806 }
1807 
1808 /* Cache device */
1809 
bch_cache_release(struct kobject * kobj)1810 void bch_cache_release(struct kobject *kobj)
1811 {
1812 	struct cache *ca = container_of(kobj, struct cache, kobj);
1813 	unsigned i;
1814 
1815 	if (ca->set) {
1816 		BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1817 		ca->set->cache[ca->sb.nr_this_dev] = NULL;
1818 	}
1819 
1820 	free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1821 	kfree(ca->prio_buckets);
1822 	vfree(ca->buckets);
1823 
1824 	free_heap(&ca->heap);
1825 	free_fifo(&ca->free_inc);
1826 
1827 	for (i = 0; i < RESERVE_NR; i++)
1828 		free_fifo(&ca->free[i]);
1829 
1830 	if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1831 		put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1832 
1833 	if (!IS_ERR_OR_NULL(ca->bdev))
1834 		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1835 
1836 	kfree(ca);
1837 	module_put(THIS_MODULE);
1838 }
1839 
cache_alloc(struct cache * ca)1840 static int cache_alloc(struct cache *ca)
1841 {
1842 	size_t free;
1843 	size_t btree_buckets;
1844 	struct bucket *b;
1845 
1846 	__module_get(THIS_MODULE);
1847 	kobject_init(&ca->kobj, &bch_cache_ktype);
1848 
1849 	bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
1850 
1851 	/*
1852 	 * when ca->sb.njournal_buckets is not zero, journal exists,
1853 	 * and in bch_journal_replay(), tree node may split,
1854 	 * so bucket of RESERVE_BTREE type is needed,
1855 	 * the worst situation is all journal buckets are valid journal,
1856 	 * and all the keys need to replay,
1857 	 * so the number of  RESERVE_BTREE type buckets should be as much
1858 	 * as journal buckets
1859 	 */
1860 	btree_buckets = ca->sb.njournal_buckets ?: 8;
1861 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1862 
1863 	if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, GFP_KERNEL) ||
1864 	    !init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1865 	    !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1866 	    !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1867 	    !init_fifo(&ca->free_inc,	free << 2, GFP_KERNEL) ||
1868 	    !init_heap(&ca->heap,	free << 3, GFP_KERNEL) ||
1869 	    !(ca->buckets	= vzalloc(sizeof(struct bucket) *
1870 					  ca->sb.nbuckets)) ||
1871 	    !(ca->prio_buckets	= kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1872 					  2, GFP_KERNEL)) ||
1873 	    !(ca->disk_buckets	= alloc_bucket_pages(GFP_KERNEL, ca)))
1874 		return -ENOMEM;
1875 
1876 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1877 
1878 	for_each_bucket(b, ca)
1879 		atomic_set(&b->pin, 0);
1880 
1881 	return 0;
1882 }
1883 
register_cache(struct cache_sb * sb,struct page * sb_page,struct block_device * bdev,struct cache * ca)1884 static int register_cache(struct cache_sb *sb, struct page *sb_page,
1885 				struct block_device *bdev, struct cache *ca)
1886 {
1887 	char name[BDEVNAME_SIZE];
1888 	const char *err = NULL; /* must be set for any error case */
1889 	int ret = 0;
1890 
1891 	bdevname(bdev, name);
1892 
1893 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1894 	ca->bdev = bdev;
1895 	ca->bdev->bd_holder = ca;
1896 
1897 	bio_init(&ca->sb_bio, ca->sb_bio.bi_inline_vecs, 1);
1898 	ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1899 	get_page(sb_page);
1900 
1901 	if (blk_queue_discard(bdev_get_queue(bdev)))
1902 		ca->discard = CACHE_DISCARD(&ca->sb);
1903 
1904 	ret = cache_alloc(ca);
1905 	if (ret != 0) {
1906 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1907 		if (ret == -ENOMEM)
1908 			err = "cache_alloc(): -ENOMEM";
1909 		else
1910 			err = "cache_alloc(): unknown error";
1911 		goto err;
1912 	}
1913 
1914 	if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache")) {
1915 		err = "error calling kobject_add";
1916 		ret = -ENOMEM;
1917 		goto out;
1918 	}
1919 
1920 	mutex_lock(&bch_register_lock);
1921 	err = register_cache_set(ca);
1922 	mutex_unlock(&bch_register_lock);
1923 
1924 	if (err) {
1925 		ret = -ENODEV;
1926 		goto out;
1927 	}
1928 
1929 	pr_info("registered cache device %s", name);
1930 
1931 out:
1932 	kobject_put(&ca->kobj);
1933 
1934 err:
1935 	if (err)
1936 		pr_notice("error %s: %s", name, err);
1937 
1938 	return ret;
1939 }
1940 
1941 /* Global interfaces/init */
1942 
1943 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1944 			       const char *, size_t);
1945 
1946 kobj_attribute_write(register,		register_bcache);
1947 kobj_attribute_write(register_quiet,	register_bcache);
1948 
bch_is_open_backing(struct block_device * bdev)1949 static bool bch_is_open_backing(struct block_device *bdev) {
1950 	struct cache_set *c, *tc;
1951 	struct cached_dev *dc, *t;
1952 
1953 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1954 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1955 			if (dc->bdev == bdev)
1956 				return true;
1957 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1958 		if (dc->bdev == bdev)
1959 			return true;
1960 	return false;
1961 }
1962 
bch_is_open_cache(struct block_device * bdev)1963 static bool bch_is_open_cache(struct block_device *bdev) {
1964 	struct cache_set *c, *tc;
1965 	struct cache *ca;
1966 	unsigned i;
1967 
1968 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1969 		for_each_cache(ca, c, i)
1970 			if (ca->bdev == bdev)
1971 				return true;
1972 	return false;
1973 }
1974 
bch_is_open(struct block_device * bdev)1975 static bool bch_is_open(struct block_device *bdev) {
1976 	return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1977 }
1978 
register_bcache(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)1979 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1980 			       const char *buffer, size_t size)
1981 {
1982 	ssize_t ret = size;
1983 	const char *err = "cannot allocate memory";
1984 	char *path = NULL;
1985 	struct cache_sb *sb = NULL;
1986 	struct block_device *bdev = NULL;
1987 	struct page *sb_page = NULL;
1988 
1989 	if (!try_module_get(THIS_MODULE))
1990 		return -EBUSY;
1991 
1992 	if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1993 	    !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1994 		goto err;
1995 
1996 	err = "failed to open device";
1997 	bdev = blkdev_get_by_path(strim(path),
1998 				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1999 				  sb);
2000 	if (IS_ERR(bdev)) {
2001 		if (bdev == ERR_PTR(-EBUSY)) {
2002 			bdev = lookup_bdev(strim(path));
2003 			mutex_lock(&bch_register_lock);
2004 			if (!IS_ERR(bdev) && bch_is_open(bdev))
2005 				err = "device already registered";
2006 			else
2007 				err = "device busy";
2008 			mutex_unlock(&bch_register_lock);
2009 			if (!IS_ERR(bdev))
2010 				bdput(bdev);
2011 			if (attr == &ksysfs_register_quiet)
2012 				goto out;
2013 		}
2014 		goto err;
2015 	}
2016 
2017 	err = "failed to set blocksize";
2018 	if (set_blocksize(bdev, 4096))
2019 		goto err_close;
2020 
2021 	err = read_super(sb, bdev, &sb_page);
2022 	if (err)
2023 		goto err_close;
2024 
2025 	err = "failed to register device";
2026 	if (SB_IS_BDEV(sb)) {
2027 		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2028 		if (!dc)
2029 			goto err_close;
2030 
2031 		mutex_lock(&bch_register_lock);
2032 		register_bdev(sb, sb_page, bdev, dc);
2033 		mutex_unlock(&bch_register_lock);
2034 	} else {
2035 		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2036 		if (!ca)
2037 			goto err_close;
2038 
2039 		if (register_cache(sb, sb_page, bdev, ca) != 0)
2040 			goto err;
2041 	}
2042 out:
2043 	if (sb_page)
2044 		put_page(sb_page);
2045 	kfree(sb);
2046 	kfree(path);
2047 	module_put(THIS_MODULE);
2048 	return ret;
2049 
2050 err_close:
2051 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2052 err:
2053 	pr_info("error %s: %s", path, err);
2054 	ret = -EINVAL;
2055 	goto out;
2056 }
2057 
bcache_reboot(struct notifier_block * n,unsigned long code,void * x)2058 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2059 {
2060 	if (code == SYS_DOWN ||
2061 	    code == SYS_HALT ||
2062 	    code == SYS_POWER_OFF) {
2063 		DEFINE_WAIT(wait);
2064 		unsigned long start = jiffies;
2065 		bool stopped = false;
2066 
2067 		struct cache_set *c, *tc;
2068 		struct cached_dev *dc, *tdc;
2069 
2070 		mutex_lock(&bch_register_lock);
2071 
2072 		if (list_empty(&bch_cache_sets) &&
2073 		    list_empty(&uncached_devices))
2074 			goto out;
2075 
2076 		pr_info("Stopping all devices:");
2077 
2078 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2079 			bch_cache_set_stop(c);
2080 
2081 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2082 			bcache_device_stop(&dc->disk);
2083 
2084 		/* What's a condition variable? */
2085 		while (1) {
2086 			long timeout = start + 2 * HZ - jiffies;
2087 
2088 			stopped = list_empty(&bch_cache_sets) &&
2089 				list_empty(&uncached_devices);
2090 
2091 			if (timeout < 0 || stopped)
2092 				break;
2093 
2094 			prepare_to_wait(&unregister_wait, &wait,
2095 					TASK_UNINTERRUPTIBLE);
2096 
2097 			mutex_unlock(&bch_register_lock);
2098 			schedule_timeout(timeout);
2099 			mutex_lock(&bch_register_lock);
2100 		}
2101 
2102 		finish_wait(&unregister_wait, &wait);
2103 
2104 		if (stopped)
2105 			pr_info("All devices stopped");
2106 		else
2107 			pr_notice("Timeout waiting for devices to be closed");
2108 out:
2109 		mutex_unlock(&bch_register_lock);
2110 	}
2111 
2112 	return NOTIFY_DONE;
2113 }
2114 
2115 static struct notifier_block reboot = {
2116 	.notifier_call	= bcache_reboot,
2117 	.priority	= INT_MAX, /* before any real devices */
2118 };
2119 
bcache_exit(void)2120 static void bcache_exit(void)
2121 {
2122 	bch_debug_exit();
2123 	bch_request_exit();
2124 	if (bcache_kobj)
2125 		kobject_put(bcache_kobj);
2126 	if (bcache_wq)
2127 		destroy_workqueue(bcache_wq);
2128 	if (bcache_major)
2129 		unregister_blkdev(bcache_major, "bcache");
2130 	unregister_reboot_notifier(&reboot);
2131 	mutex_destroy(&bch_register_lock);
2132 }
2133 
bcache_init(void)2134 static int __init bcache_init(void)
2135 {
2136 	static const struct attribute *files[] = {
2137 		&ksysfs_register.attr,
2138 		&ksysfs_register_quiet.attr,
2139 		NULL
2140 	};
2141 
2142 	mutex_init(&bch_register_lock);
2143 	init_waitqueue_head(&unregister_wait);
2144 	register_reboot_notifier(&reboot);
2145 	closure_debug_init();
2146 
2147 	bcache_major = register_blkdev(0, "bcache");
2148 	if (bcache_major < 0) {
2149 		unregister_reboot_notifier(&reboot);
2150 		mutex_destroy(&bch_register_lock);
2151 		return bcache_major;
2152 	}
2153 
2154 	if (!(bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0)) ||
2155 	    !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2156 	    bch_request_init() ||
2157 	    bch_debug_init(bcache_kobj) ||
2158 	    sysfs_create_files(bcache_kobj, files))
2159 		goto err;
2160 
2161 	return 0;
2162 err:
2163 	bcache_exit();
2164 	return -ENOMEM;
2165 }
2166 
2167 module_exit(bcache_exit);
2168 module_init(bcache_init);
2169