1 /*
2 * Copyright (C) 2012 Red Hat, Inc.
3 *
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
5 *
6 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
7 *
8 * This file is released under the GPLv2.
9 *
10 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
11 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
12 * hash device. Setting this greatly improves performance when data and hash
13 * are on the same disk on different partitions on devices with poor random
14 * access behavior.
15 */
16
17 #include "dm-verity.h"
18 #include "dm-verity-fec.h"
19
20 #include <linux/module.h>
21 #include <linux/reboot.h>
22
23 #define DM_MSG_PREFIX "verity"
24
25 #define DM_VERITY_ENV_LENGTH 42
26 #define DM_VERITY_ENV_VAR_NAME "DM_VERITY_ERR_BLOCK_NR"
27
28 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
29
30 #define DM_VERITY_MAX_CORRUPTED_ERRS 100
31
32 #define DM_VERITY_OPT_LOGGING "ignore_corruption"
33 #define DM_VERITY_OPT_RESTART "restart_on_corruption"
34 #define DM_VERITY_OPT_IGN_ZEROES "ignore_zero_blocks"
35 #define DM_VERITY_OPT_AT_MOST_ONCE "check_at_most_once"
36
37 #define DM_VERITY_OPTS_MAX (2 + DM_VERITY_OPTS_FEC)
38
39 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
40
41 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
42
43 struct dm_verity_prefetch_work {
44 struct work_struct work;
45 struct dm_verity *v;
46 sector_t block;
47 unsigned n_blocks;
48 };
49
50 /*
51 * Auxiliary structure appended to each dm-bufio buffer. If the value
52 * hash_verified is nonzero, hash of the block has been verified.
53 *
54 * The variable hash_verified is set to 0 when allocating the buffer, then
55 * it can be changed to 1 and it is never reset to 0 again.
56 *
57 * There is no lock around this value, a race condition can at worst cause
58 * that multiple processes verify the hash of the same buffer simultaneously
59 * and write 1 to hash_verified simultaneously.
60 * This condition is harmless, so we don't need locking.
61 */
62 struct buffer_aux {
63 int hash_verified;
64 };
65
66 /*
67 * Initialize struct buffer_aux for a freshly created buffer.
68 */
dm_bufio_alloc_callback(struct dm_buffer * buf)69 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
70 {
71 struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
72
73 aux->hash_verified = 0;
74 }
75
76 /*
77 * Translate input sector number to the sector number on the target device.
78 */
verity_map_sector(struct dm_verity * v,sector_t bi_sector)79 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
80 {
81 return v->data_start + dm_target_offset(v->ti, bi_sector);
82 }
83
84 /*
85 * Return hash position of a specified block at a specified tree level
86 * (0 is the lowest level).
87 * The lowest "hash_per_block_bits"-bits of the result denote hash position
88 * inside a hash block. The remaining bits denote location of the hash block.
89 */
verity_position_at_level(struct dm_verity * v,sector_t block,int level)90 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
91 int level)
92 {
93 return block >> (level * v->hash_per_block_bits);
94 }
95
96 /*
97 * Callback function for asynchrnous crypto API completion notification
98 */
verity_op_done(struct crypto_async_request * base,int err)99 static void verity_op_done(struct crypto_async_request *base, int err)
100 {
101 struct verity_result *res = (struct verity_result *)base->data;
102
103 if (err == -EINPROGRESS)
104 return;
105
106 res->err = err;
107 complete(&res->completion);
108 }
109
110 /*
111 * Wait for async crypto API callback
112 */
verity_complete_op(struct verity_result * res,int ret)113 static inline int verity_complete_op(struct verity_result *res, int ret)
114 {
115 switch (ret) {
116 case 0:
117 break;
118
119 case -EINPROGRESS:
120 case -EBUSY:
121 ret = wait_for_completion_interruptible(&res->completion);
122 if (!ret)
123 ret = res->err;
124 reinit_completion(&res->completion);
125 break;
126
127 default:
128 DMERR("verity_wait_hash: crypto op submission failed: %d", ret);
129 }
130
131 if (unlikely(ret < 0))
132 DMERR("verity_wait_hash: crypto op failed: %d", ret);
133
134 return ret;
135 }
136
verity_hash_update(struct dm_verity * v,struct ahash_request * req,const u8 * data,size_t len,struct verity_result * res)137 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
138 const u8 *data, size_t len,
139 struct verity_result *res)
140 {
141 struct scatterlist sg;
142
143 if (likely(!is_vmalloc_addr(data))) {
144 sg_init_one(&sg, data, len);
145 ahash_request_set_crypt(req, &sg, NULL, len);
146 return verity_complete_op(res, crypto_ahash_update(req));
147 } else {
148 do {
149 int r;
150 size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
151 flush_kernel_vmap_range((void *)data, this_step);
152 sg_init_table(&sg, 1);
153 sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
154 ahash_request_set_crypt(req, &sg, NULL, this_step);
155 r = verity_complete_op(res, crypto_ahash_update(req));
156 if (unlikely(r))
157 return r;
158 data += this_step;
159 len -= this_step;
160 } while (len);
161 return 0;
162 }
163 }
164
165 /*
166 * Wrapper for crypto_ahash_init, which handles verity salting.
167 */
verity_hash_init(struct dm_verity * v,struct ahash_request * req,struct verity_result * res)168 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
169 struct verity_result *res)
170 {
171 int r;
172
173 ahash_request_set_tfm(req, v->tfm);
174 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
175 CRYPTO_TFM_REQ_MAY_BACKLOG,
176 verity_op_done, (void *)res);
177 init_completion(&res->completion);
178
179 r = verity_complete_op(res, crypto_ahash_init(req));
180
181 if (unlikely(r < 0)) {
182 DMERR("crypto_ahash_init failed: %d", r);
183 return r;
184 }
185
186 if (likely(v->salt_size && (v->version >= 1)))
187 r = verity_hash_update(v, req, v->salt, v->salt_size, res);
188
189 return r;
190 }
191
verity_hash_final(struct dm_verity * v,struct ahash_request * req,u8 * digest,struct verity_result * res)192 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
193 u8 *digest, struct verity_result *res)
194 {
195 int r;
196
197 if (unlikely(v->salt_size && (!v->version))) {
198 r = verity_hash_update(v, req, v->salt, v->salt_size, res);
199
200 if (r < 0) {
201 DMERR("verity_hash_final failed updating salt: %d", r);
202 goto out;
203 }
204 }
205
206 ahash_request_set_crypt(req, NULL, digest, 0);
207 r = verity_complete_op(res, crypto_ahash_final(req));
208 out:
209 return r;
210 }
211
verity_hash(struct dm_verity * v,struct ahash_request * req,const u8 * data,size_t len,u8 * digest)212 int verity_hash(struct dm_verity *v, struct ahash_request *req,
213 const u8 *data, size_t len, u8 *digest)
214 {
215 int r;
216 struct verity_result res;
217
218 r = verity_hash_init(v, req, &res);
219 if (unlikely(r < 0))
220 goto out;
221
222 r = verity_hash_update(v, req, data, len, &res);
223 if (unlikely(r < 0))
224 goto out;
225
226 r = verity_hash_final(v, req, digest, &res);
227
228 out:
229 return r;
230 }
231
verity_hash_at_level(struct dm_verity * v,sector_t block,int level,sector_t * hash_block,unsigned * offset)232 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
233 sector_t *hash_block, unsigned *offset)
234 {
235 sector_t position = verity_position_at_level(v, block, level);
236 unsigned idx;
237
238 *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
239
240 if (!offset)
241 return;
242
243 idx = position & ((1 << v->hash_per_block_bits) - 1);
244 if (!v->version)
245 *offset = idx * v->digest_size;
246 else
247 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
248 }
249
250 /*
251 * Handle verification errors.
252 */
verity_handle_err(struct dm_verity * v,enum verity_block_type type,unsigned long long block)253 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
254 unsigned long long block)
255 {
256 char verity_env[DM_VERITY_ENV_LENGTH];
257 char *envp[] = { verity_env, NULL };
258 const char *type_str = "";
259 struct mapped_device *md = dm_table_get_md(v->ti->table);
260
261 /* Corruption should be visible in device status in all modes */
262 v->hash_failed = 1;
263
264 if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
265 goto out;
266
267 v->corrupted_errs++;
268
269 switch (type) {
270 case DM_VERITY_BLOCK_TYPE_DATA:
271 type_str = "data";
272 break;
273 case DM_VERITY_BLOCK_TYPE_METADATA:
274 type_str = "metadata";
275 break;
276 default:
277 BUG();
278 }
279
280 DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
281 type_str, block);
282
283 if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
284 DMERR("%s: reached maximum errors", v->data_dev->name);
285
286 snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
287 DM_VERITY_ENV_VAR_NAME, type, block);
288
289 kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
290
291 out:
292 if (v->mode == DM_VERITY_MODE_LOGGING)
293 return 0;
294
295 if (v->mode == DM_VERITY_MODE_RESTART) {
296 #ifdef CONFIG_DM_VERITY_AVB
297 dm_verity_avb_error_handler();
298 #endif
299 kernel_restart("dm-verity device corrupted");
300 }
301
302 return 1;
303 }
304
305 /*
306 * Verify hash of a metadata block pertaining to the specified data block
307 * ("block" argument) at a specified level ("level" argument).
308 *
309 * On successful return, verity_io_want_digest(v, io) contains the hash value
310 * for a lower tree level or for the data block (if we're at the lowest level).
311 *
312 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
313 * If "skip_unverified" is false, unverified buffer is hashed and verified
314 * against current value of verity_io_want_digest(v, io).
315 */
verity_verify_level(struct dm_verity * v,struct dm_verity_io * io,sector_t block,int level,bool skip_unverified,u8 * want_digest)316 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
317 sector_t block, int level, bool skip_unverified,
318 u8 *want_digest)
319 {
320 struct dm_buffer *buf;
321 struct buffer_aux *aux;
322 u8 *data;
323 int r;
324 sector_t hash_block;
325 unsigned offset;
326
327 verity_hash_at_level(v, block, level, &hash_block, &offset);
328
329 data = dm_bufio_read(v->bufio, hash_block, &buf);
330 if (IS_ERR(data))
331 return PTR_ERR(data);
332
333 aux = dm_bufio_get_aux_data(buf);
334
335 if (!aux->hash_verified) {
336 if (skip_unverified) {
337 r = 1;
338 goto release_ret_r;
339 }
340
341 r = verity_hash(v, verity_io_hash_req(v, io),
342 data, 1 << v->hash_dev_block_bits,
343 verity_io_real_digest(v, io));
344 if (unlikely(r < 0))
345 goto release_ret_r;
346
347 if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
348 v->digest_size) == 0))
349 aux->hash_verified = 1;
350 else if (verity_fec_decode(v, io,
351 DM_VERITY_BLOCK_TYPE_METADATA,
352 hash_block, data, NULL) == 0)
353 aux->hash_verified = 1;
354 else if (verity_handle_err(v,
355 DM_VERITY_BLOCK_TYPE_METADATA,
356 hash_block)) {
357 r = -EIO;
358 goto release_ret_r;
359 }
360 }
361
362 data += offset;
363 memcpy(want_digest, data, v->digest_size);
364 r = 0;
365
366 release_ret_r:
367 dm_bufio_release(buf);
368 return r;
369 }
370
371 /*
372 * Find a hash for a given block, write it to digest and verify the integrity
373 * of the hash tree if necessary.
374 */
verity_hash_for_block(struct dm_verity * v,struct dm_verity_io * io,sector_t block,u8 * digest,bool * is_zero)375 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
376 sector_t block, u8 *digest, bool *is_zero)
377 {
378 int r = 0, i;
379
380 if (likely(v->levels)) {
381 /*
382 * First, we try to get the requested hash for
383 * the current block. If the hash block itself is
384 * verified, zero is returned. If it isn't, this
385 * function returns 1 and we fall back to whole
386 * chain verification.
387 */
388 r = verity_verify_level(v, io, block, 0, true, digest);
389 if (likely(r <= 0))
390 goto out;
391 }
392
393 memcpy(digest, v->root_digest, v->digest_size);
394
395 for (i = v->levels - 1; i >= 0; i--) {
396 r = verity_verify_level(v, io, block, i, false, digest);
397 if (unlikely(r))
398 goto out;
399 }
400 out:
401 if (!r && v->zero_digest)
402 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
403 else
404 *is_zero = false;
405
406 return r;
407 }
408
409 /*
410 * Calculates the digest for the given bio
411 */
verity_for_io_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter,struct verity_result * res)412 int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
413 struct bvec_iter *iter, struct verity_result *res)
414 {
415 unsigned int todo = 1 << v->data_dev_block_bits;
416 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
417 struct scatterlist sg;
418 struct ahash_request *req = verity_io_hash_req(v, io);
419
420 do {
421 int r;
422 unsigned int len;
423 struct bio_vec bv = bio_iter_iovec(bio, *iter);
424
425 sg_init_table(&sg, 1);
426
427 len = bv.bv_len;
428
429 if (likely(len >= todo))
430 len = todo;
431 /*
432 * Operating on a single page at a time looks suboptimal
433 * until you consider the typical block size is 4,096B.
434 * Going through this loops twice should be very rare.
435 */
436 sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
437 ahash_request_set_crypt(req, &sg, NULL, len);
438 r = verity_complete_op(res, crypto_ahash_update(req));
439
440 if (unlikely(r < 0)) {
441 DMERR("verity_for_io_block crypto op failed: %d", r);
442 return r;
443 }
444
445 bio_advance_iter(bio, iter, len);
446 todo -= len;
447 } while (todo);
448
449 return 0;
450 }
451
452 /*
453 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
454 * starting from iter.
455 */
verity_for_bv_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter,int (* process)(struct dm_verity * v,struct dm_verity_io * io,u8 * data,size_t len))456 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
457 struct bvec_iter *iter,
458 int (*process)(struct dm_verity *v,
459 struct dm_verity_io *io, u8 *data,
460 size_t len))
461 {
462 unsigned todo = 1 << v->data_dev_block_bits;
463 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
464
465 do {
466 int r;
467 u8 *page;
468 unsigned len;
469 struct bio_vec bv = bio_iter_iovec(bio, *iter);
470
471 page = kmap_atomic(bv.bv_page);
472 len = bv.bv_len;
473
474 if (likely(len >= todo))
475 len = todo;
476
477 r = process(v, io, page + bv.bv_offset, len);
478 kunmap_atomic(page);
479
480 if (r < 0)
481 return r;
482
483 bio_advance_iter(bio, iter, len);
484 todo -= len;
485 } while (todo);
486
487 return 0;
488 }
489
verity_bv_zero(struct dm_verity * v,struct dm_verity_io * io,u8 * data,size_t len)490 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
491 u8 *data, size_t len)
492 {
493 memset(data, 0, len);
494 return 0;
495 }
496
497 /*
498 * Moves the bio iter one data block forward.
499 */
verity_bv_skip_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter)500 static inline void verity_bv_skip_block(struct dm_verity *v,
501 struct dm_verity_io *io,
502 struct bvec_iter *iter)
503 {
504 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
505
506 bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
507 }
508
509 /*
510 * Verify one "dm_verity_io" structure.
511 */
verity_verify_io(struct dm_verity_io * io)512 static int verity_verify_io(struct dm_verity_io *io)
513 {
514 bool is_zero;
515 struct dm_verity *v = io->v;
516 struct bvec_iter start;
517 unsigned b;
518 struct verity_result res;
519
520 for (b = 0; b < io->n_blocks; b++) {
521 int r;
522 sector_t cur_block = io->block + b;
523 struct ahash_request *req = verity_io_hash_req(v, io);
524
525 if (v->validated_blocks &&
526 likely(test_bit(cur_block, v->validated_blocks))) {
527 verity_bv_skip_block(v, io, &io->iter);
528 continue;
529 }
530
531 r = verity_hash_for_block(v, io, cur_block,
532 verity_io_want_digest(v, io),
533 &is_zero);
534 if (unlikely(r < 0))
535 return r;
536
537 if (is_zero) {
538 /*
539 * If we expect a zero block, don't validate, just
540 * return zeros.
541 */
542 r = verity_for_bv_block(v, io, &io->iter,
543 verity_bv_zero);
544 if (unlikely(r < 0))
545 return r;
546
547 continue;
548 }
549
550 r = verity_hash_init(v, req, &res);
551 if (unlikely(r < 0))
552 return r;
553
554 start = io->iter;
555 r = verity_for_io_block(v, io, &io->iter, &res);
556 if (unlikely(r < 0))
557 return r;
558
559 r = verity_hash_final(v, req, verity_io_real_digest(v, io),
560 &res);
561 if (unlikely(r < 0))
562 return r;
563
564 if (likely(memcmp(verity_io_real_digest(v, io),
565 verity_io_want_digest(v, io), v->digest_size) == 0)) {
566 if (v->validated_blocks)
567 set_bit(cur_block, v->validated_blocks);
568 continue;
569 }
570 else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
571 cur_block, NULL, &start) == 0)
572 continue;
573 else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
574 cur_block))
575 return -EIO;
576 }
577
578 return 0;
579 }
580
581 /*
582 * End one "io" structure with a given error.
583 */
verity_finish_io(struct dm_verity_io * io,blk_status_t status)584 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
585 {
586 struct dm_verity *v = io->v;
587 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
588
589 bio->bi_end_io = io->orig_bi_end_io;
590 bio->bi_status = status;
591
592 verity_fec_finish_io(io);
593
594 bio_endio(bio);
595 }
596
verity_work(struct work_struct * w)597 static void verity_work(struct work_struct *w)
598 {
599 struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
600
601 verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
602 }
603
verity_end_io(struct bio * bio)604 static void verity_end_io(struct bio *bio)
605 {
606 struct dm_verity_io *io = bio->bi_private;
607
608 if (bio->bi_status && !verity_fec_is_enabled(io->v)) {
609 verity_finish_io(io, bio->bi_status);
610 return;
611 }
612
613 INIT_WORK(&io->work, verity_work);
614 queue_work(io->v->verify_wq, &io->work);
615 }
616
617 /*
618 * Prefetch buffers for the specified io.
619 * The root buffer is not prefetched, it is assumed that it will be cached
620 * all the time.
621 */
verity_prefetch_io(struct work_struct * work)622 static void verity_prefetch_io(struct work_struct *work)
623 {
624 struct dm_verity_prefetch_work *pw =
625 container_of(work, struct dm_verity_prefetch_work, work);
626 struct dm_verity *v = pw->v;
627 int i;
628
629 for (i = v->levels - 2; i >= 0; i--) {
630 sector_t hash_block_start;
631 sector_t hash_block_end;
632 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
633 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
634 if (!i) {
635 unsigned cluster = ACCESS_ONCE(dm_verity_prefetch_cluster);
636
637 cluster >>= v->data_dev_block_bits;
638 if (unlikely(!cluster))
639 goto no_prefetch_cluster;
640
641 if (unlikely(cluster & (cluster - 1)))
642 cluster = 1 << __fls(cluster);
643
644 hash_block_start &= ~(sector_t)(cluster - 1);
645 hash_block_end |= cluster - 1;
646 if (unlikely(hash_block_end >= v->hash_blocks))
647 hash_block_end = v->hash_blocks - 1;
648 }
649 no_prefetch_cluster:
650 dm_bufio_prefetch(v->bufio, hash_block_start,
651 hash_block_end - hash_block_start + 1);
652 }
653
654 kfree(pw);
655 }
656
verity_submit_prefetch(struct dm_verity * v,struct dm_verity_io * io)657 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
658 {
659 struct dm_verity_prefetch_work *pw;
660
661 pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
662 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
663
664 if (!pw)
665 return;
666
667 INIT_WORK(&pw->work, verity_prefetch_io);
668 pw->v = v;
669 pw->block = io->block;
670 pw->n_blocks = io->n_blocks;
671 queue_work(v->verify_wq, &pw->work);
672 }
673
674 /*
675 * Bio map function. It allocates dm_verity_io structure and bio vector and
676 * fills them. Then it issues prefetches and the I/O.
677 */
verity_map(struct dm_target * ti,struct bio * bio)678 int verity_map(struct dm_target *ti, struct bio *bio)
679 {
680 struct dm_verity *v = ti->private;
681 struct dm_verity_io *io;
682
683 bio_set_dev(bio, v->data_dev->bdev);
684 bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
685
686 if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
687 ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
688 DMERR_LIMIT("unaligned io");
689 return DM_MAPIO_KILL;
690 }
691
692 if (bio_end_sector(bio) >>
693 (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
694 DMERR_LIMIT("io out of range");
695 return DM_MAPIO_KILL;
696 }
697
698 if (bio_data_dir(bio) == WRITE)
699 return DM_MAPIO_KILL;
700
701 io = dm_per_bio_data(bio, ti->per_io_data_size);
702 io->v = v;
703 io->orig_bi_end_io = bio->bi_end_io;
704 io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
705 io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
706
707 bio->bi_end_io = verity_end_io;
708 bio->bi_private = io;
709 io->iter = bio->bi_iter;
710
711 verity_fec_init_io(io);
712
713 verity_submit_prefetch(v, io);
714
715 generic_make_request(bio);
716
717 return DM_MAPIO_SUBMITTED;
718 }
719
720 /*
721 * Status: V (valid) or C (corruption found)
722 */
verity_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)723 void verity_status(struct dm_target *ti, status_type_t type,
724 unsigned status_flags, char *result, unsigned maxlen)
725 {
726 struct dm_verity *v = ti->private;
727 unsigned args = 0;
728 unsigned sz = 0;
729 unsigned x;
730
731 switch (type) {
732 case STATUSTYPE_INFO:
733 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
734 break;
735 case STATUSTYPE_TABLE:
736 DMEMIT("%u %s %s %u %u %llu %llu %s ",
737 v->version,
738 v->data_dev->name,
739 v->hash_dev->name,
740 1 << v->data_dev_block_bits,
741 1 << v->hash_dev_block_bits,
742 (unsigned long long)v->data_blocks,
743 (unsigned long long)v->hash_start,
744 v->alg_name
745 );
746 for (x = 0; x < v->digest_size; x++)
747 DMEMIT("%02x", v->root_digest[x]);
748 DMEMIT(" ");
749 if (!v->salt_size)
750 DMEMIT("-");
751 else
752 for (x = 0; x < v->salt_size; x++)
753 DMEMIT("%02x", v->salt[x]);
754 if (v->mode != DM_VERITY_MODE_EIO)
755 args++;
756 if (verity_fec_is_enabled(v))
757 args += DM_VERITY_OPTS_FEC;
758 if (v->zero_digest)
759 args++;
760 if (v->validated_blocks)
761 args++;
762 if (!args)
763 return;
764 DMEMIT(" %u", args);
765 if (v->mode != DM_VERITY_MODE_EIO) {
766 DMEMIT(" ");
767 switch (v->mode) {
768 case DM_VERITY_MODE_LOGGING:
769 DMEMIT(DM_VERITY_OPT_LOGGING);
770 break;
771 case DM_VERITY_MODE_RESTART:
772 DMEMIT(DM_VERITY_OPT_RESTART);
773 break;
774 default:
775 BUG();
776 }
777 }
778 if (v->zero_digest)
779 DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
780 if (v->validated_blocks)
781 DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
782 sz = verity_fec_status_table(v, sz, result, maxlen);
783 break;
784 }
785 }
786
verity_prepare_ioctl(struct dm_target * ti,struct block_device ** bdev,fmode_t * mode)787 int verity_prepare_ioctl(struct dm_target *ti,
788 struct block_device **bdev, fmode_t *mode)
789 {
790 struct dm_verity *v = ti->private;
791
792 *bdev = v->data_dev->bdev;
793
794 if (v->data_start ||
795 ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
796 return 1;
797 return 0;
798 }
799
verity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)800 int verity_iterate_devices(struct dm_target *ti,
801 iterate_devices_callout_fn fn, void *data)
802 {
803 struct dm_verity *v = ti->private;
804
805 return fn(ti, v->data_dev, v->data_start, ti->len, data);
806 }
807
verity_io_hints(struct dm_target * ti,struct queue_limits * limits)808 void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
809 {
810 struct dm_verity *v = ti->private;
811
812 if (limits->logical_block_size < 1 << v->data_dev_block_bits)
813 limits->logical_block_size = 1 << v->data_dev_block_bits;
814
815 if (limits->physical_block_size < 1 << v->data_dev_block_bits)
816 limits->physical_block_size = 1 << v->data_dev_block_bits;
817
818 blk_limits_io_min(limits, limits->logical_block_size);
819 }
820
verity_dtr(struct dm_target * ti)821 void verity_dtr(struct dm_target *ti)
822 {
823 struct dm_verity *v = ti->private;
824
825 if (v->verify_wq)
826 destroy_workqueue(v->verify_wq);
827
828 if (v->bufio)
829 dm_bufio_client_destroy(v->bufio);
830
831 kvfree(v->validated_blocks);
832 kfree(v->salt);
833 kfree(v->root_digest);
834 kfree(v->zero_digest);
835
836 if (v->tfm)
837 crypto_free_ahash(v->tfm);
838
839 kfree(v->alg_name);
840
841 if (v->hash_dev)
842 dm_put_device(ti, v->hash_dev);
843
844 if (v->data_dev)
845 dm_put_device(ti, v->data_dev);
846
847 verity_fec_dtr(v);
848
849 kfree(v);
850 }
851
verity_alloc_most_once(struct dm_verity * v)852 static int verity_alloc_most_once(struct dm_verity *v)
853 {
854 struct dm_target *ti = v->ti;
855
856 /* the bitset can only handle INT_MAX blocks */
857 if (v->data_blocks > INT_MAX) {
858 ti->error = "device too large to use check_at_most_once";
859 return -E2BIG;
860 }
861
862 v->validated_blocks = kvzalloc(BITS_TO_LONGS(v->data_blocks) *
863 sizeof(unsigned long), GFP_KERNEL);
864 if (!v->validated_blocks) {
865 ti->error = "failed to allocate bitset for check_at_most_once";
866 return -ENOMEM;
867 }
868
869 return 0;
870 }
871
verity_alloc_zero_digest(struct dm_verity * v)872 static int verity_alloc_zero_digest(struct dm_verity *v)
873 {
874 int r = -ENOMEM;
875 struct ahash_request *req;
876 u8 *zero_data;
877
878 v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
879
880 if (!v->zero_digest)
881 return r;
882
883 req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
884
885 if (!req)
886 return r; /* verity_dtr will free zero_digest */
887
888 zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
889
890 if (!zero_data)
891 goto out;
892
893 r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
894 v->zero_digest);
895
896 out:
897 kfree(req);
898 kfree(zero_data);
899
900 return r;
901 }
902
verity_parse_opt_args(struct dm_arg_set * as,struct dm_verity * v)903 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v)
904 {
905 int r;
906 unsigned argc;
907 struct dm_target *ti = v->ti;
908 const char *arg_name;
909
910 static const struct dm_arg _args[] = {
911 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
912 };
913
914 r = dm_read_arg_group(_args, as, &argc, &ti->error);
915 if (r)
916 return -EINVAL;
917
918 if (!argc)
919 return 0;
920
921 do {
922 arg_name = dm_shift_arg(as);
923 argc--;
924
925 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
926 v->mode = DM_VERITY_MODE_LOGGING;
927 continue;
928
929 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
930 v->mode = DM_VERITY_MODE_RESTART;
931 continue;
932
933 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
934 r = verity_alloc_zero_digest(v);
935 if (r) {
936 ti->error = "Cannot allocate zero digest";
937 return r;
938 }
939 continue;
940
941 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
942 r = verity_alloc_most_once(v);
943 if (r)
944 return r;
945 continue;
946
947 } else if (verity_is_fec_opt_arg(arg_name)) {
948 r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
949 if (r)
950 return r;
951 continue;
952 }
953
954 ti->error = "Unrecognized verity feature request";
955 return -EINVAL;
956 } while (argc && !r);
957
958 return r;
959 }
960
961 /*
962 * Target parameters:
963 * <version> The current format is version 1.
964 * Vsn 0 is compatible with original Chromium OS releases.
965 * <data device>
966 * <hash device>
967 * <data block size>
968 * <hash block size>
969 * <the number of data blocks>
970 * <hash start block>
971 * <algorithm>
972 * <digest>
973 * <salt> Hex string or "-" if no salt.
974 */
verity_ctr(struct dm_target * ti,unsigned argc,char ** argv)975 int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
976 {
977 struct dm_verity *v;
978 struct dm_arg_set as;
979 unsigned int num;
980 unsigned long long num_ll;
981 int r;
982 int i;
983 sector_t hash_position;
984 char dummy;
985
986 v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
987 if (!v) {
988 ti->error = "Cannot allocate verity structure";
989 return -ENOMEM;
990 }
991 ti->private = v;
992 v->ti = ti;
993
994 r = verity_fec_ctr_alloc(v);
995 if (r)
996 goto bad;
997
998 if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
999 ti->error = "Device must be readonly";
1000 r = -EINVAL;
1001 goto bad;
1002 }
1003
1004 if (argc < 10) {
1005 ti->error = "Not enough arguments";
1006 r = -EINVAL;
1007 goto bad;
1008 }
1009
1010 if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1011 num > 1) {
1012 ti->error = "Invalid version";
1013 r = -EINVAL;
1014 goto bad;
1015 }
1016 v->version = num;
1017
1018 r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
1019 if (r) {
1020 ti->error = "Data device lookup failed";
1021 goto bad;
1022 }
1023
1024 r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
1025 if (r) {
1026 ti->error = "Hash device lookup failed";
1027 goto bad;
1028 }
1029
1030 if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1031 !num || (num & (num - 1)) ||
1032 num < bdev_logical_block_size(v->data_dev->bdev) ||
1033 num > PAGE_SIZE) {
1034 ti->error = "Invalid data device block size";
1035 r = -EINVAL;
1036 goto bad;
1037 }
1038 v->data_dev_block_bits = __ffs(num);
1039
1040 if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1041 !num || (num & (num - 1)) ||
1042 num < bdev_logical_block_size(v->hash_dev->bdev) ||
1043 num > INT_MAX) {
1044 ti->error = "Invalid hash device block size";
1045 r = -EINVAL;
1046 goto bad;
1047 }
1048 v->hash_dev_block_bits = __ffs(num);
1049
1050 if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1051 (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1052 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1053 ti->error = "Invalid data blocks";
1054 r = -EINVAL;
1055 goto bad;
1056 }
1057 v->data_blocks = num_ll;
1058
1059 if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1060 ti->error = "Data device is too small";
1061 r = -EINVAL;
1062 goto bad;
1063 }
1064
1065 if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1066 (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1067 >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1068 ti->error = "Invalid hash start";
1069 r = -EINVAL;
1070 goto bad;
1071 }
1072 v->hash_start = num_ll;
1073
1074 v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1075 if (!v->alg_name) {
1076 ti->error = "Cannot allocate algorithm name";
1077 r = -ENOMEM;
1078 goto bad;
1079 }
1080
1081 v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
1082 if (IS_ERR(v->tfm)) {
1083 ti->error = "Cannot initialize hash function";
1084 r = PTR_ERR(v->tfm);
1085 v->tfm = NULL;
1086 goto bad;
1087 }
1088
1089 /*
1090 * dm-verity performance can vary greatly depending on which hash
1091 * algorithm implementation is used. Help people debug performance
1092 * problems by logging the ->cra_driver_name.
1093 */
1094 DMINFO("%s using implementation \"%s\"", v->alg_name,
1095 crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1096
1097 v->digest_size = crypto_ahash_digestsize(v->tfm);
1098 if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1099 ti->error = "Digest size too big";
1100 r = -EINVAL;
1101 goto bad;
1102 }
1103 v->ahash_reqsize = sizeof(struct ahash_request) +
1104 crypto_ahash_reqsize(v->tfm);
1105
1106 v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1107 if (!v->root_digest) {
1108 ti->error = "Cannot allocate root digest";
1109 r = -ENOMEM;
1110 goto bad;
1111 }
1112 if (strlen(argv[8]) != v->digest_size * 2 ||
1113 hex2bin(v->root_digest, argv[8], v->digest_size)) {
1114 ti->error = "Invalid root digest";
1115 r = -EINVAL;
1116 goto bad;
1117 }
1118
1119 if (strcmp(argv[9], "-")) {
1120 v->salt_size = strlen(argv[9]) / 2;
1121 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1122 if (!v->salt) {
1123 ti->error = "Cannot allocate salt";
1124 r = -ENOMEM;
1125 goto bad;
1126 }
1127 if (strlen(argv[9]) != v->salt_size * 2 ||
1128 hex2bin(v->salt, argv[9], v->salt_size)) {
1129 ti->error = "Invalid salt";
1130 r = -EINVAL;
1131 goto bad;
1132 }
1133 }
1134
1135 argv += 10;
1136 argc -= 10;
1137
1138 /* Optional parameters */
1139 if (argc) {
1140 as.argc = argc;
1141 as.argv = argv;
1142
1143 r = verity_parse_opt_args(&as, v);
1144 if (r < 0)
1145 goto bad;
1146 }
1147
1148 #ifdef CONFIG_DM_ANDROID_VERITY_AT_MOST_ONCE_DEFAULT_ENABLED
1149 if (!v->validated_blocks) {
1150 r = verity_alloc_most_once(v);
1151 if (r)
1152 goto bad;
1153 }
1154 #endif
1155
1156 v->hash_per_block_bits =
1157 __fls((1 << v->hash_dev_block_bits) / v->digest_size);
1158
1159 v->levels = 0;
1160 if (v->data_blocks)
1161 while (v->hash_per_block_bits * v->levels < 64 &&
1162 (unsigned long long)(v->data_blocks - 1) >>
1163 (v->hash_per_block_bits * v->levels))
1164 v->levels++;
1165
1166 if (v->levels > DM_VERITY_MAX_LEVELS) {
1167 ti->error = "Too many tree levels";
1168 r = -E2BIG;
1169 goto bad;
1170 }
1171
1172 hash_position = v->hash_start;
1173 for (i = v->levels - 1; i >= 0; i--) {
1174 sector_t s;
1175 v->hash_level_block[i] = hash_position;
1176 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1177 >> ((i + 1) * v->hash_per_block_bits);
1178 if (hash_position + s < hash_position) {
1179 ti->error = "Hash device offset overflow";
1180 r = -E2BIG;
1181 goto bad;
1182 }
1183 hash_position += s;
1184 }
1185 v->hash_blocks = hash_position;
1186
1187 v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1188 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1189 dm_bufio_alloc_callback, NULL);
1190 if (IS_ERR(v->bufio)) {
1191 ti->error = "Cannot initialize dm-bufio";
1192 r = PTR_ERR(v->bufio);
1193 v->bufio = NULL;
1194 goto bad;
1195 }
1196
1197 if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1198 ti->error = "Hash device is too small";
1199 r = -E2BIG;
1200 goto bad;
1201 }
1202
1203 /* WQ_UNBOUND greatly improves performance when running on ramdisk */
1204 v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
1205 if (!v->verify_wq) {
1206 ti->error = "Cannot allocate workqueue";
1207 r = -ENOMEM;
1208 goto bad;
1209 }
1210
1211 ti->per_io_data_size = sizeof(struct dm_verity_io) +
1212 v->ahash_reqsize + v->digest_size * 2;
1213
1214 r = verity_fec_ctr(v);
1215 if (r)
1216 goto bad;
1217
1218 ti->per_io_data_size = roundup(ti->per_io_data_size,
1219 __alignof__(struct dm_verity_io));
1220
1221 return 0;
1222
1223 bad:
1224 verity_dtr(ti);
1225
1226 return r;
1227 }
1228
1229 static struct target_type verity_target = {
1230 .name = "verity",
1231 .version = {1, 4, 0},
1232 .module = THIS_MODULE,
1233 .ctr = verity_ctr,
1234 .dtr = verity_dtr,
1235 .map = verity_map,
1236 .status = verity_status,
1237 .prepare_ioctl = verity_prepare_ioctl,
1238 .iterate_devices = verity_iterate_devices,
1239 .io_hints = verity_io_hints,
1240 };
1241
dm_verity_init(void)1242 static int __init dm_verity_init(void)
1243 {
1244 int r;
1245
1246 r = dm_register_target(&verity_target);
1247 if (r < 0)
1248 DMERR("register failed %d", r);
1249
1250 return r;
1251 }
1252
dm_verity_exit(void)1253 static void __exit dm_verity_exit(void)
1254 {
1255 dm_unregister_target(&verity_target);
1256 }
1257
1258 module_init(dm_verity_init);
1259 module_exit(dm_verity_exit);
1260
1261 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1262 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1263 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1264 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1265 MODULE_LICENSE("GPL");
1266