• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
7  *
8  * This file is released under the GPLv2.
9  *
10  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
11  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
12  * hash device. Setting this greatly improves performance when data and hash
13  * are on the same disk on different partitions on devices with poor random
14  * access behavior.
15  */
16 
17 #include "dm-verity.h"
18 #include "dm-verity-fec.h"
19 
20 #include <linux/module.h>
21 #include <linux/reboot.h>
22 
23 #define DM_MSG_PREFIX			"verity"
24 
25 #define DM_VERITY_ENV_LENGTH		42
26 #define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
27 
28 #define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
29 
30 #define DM_VERITY_MAX_CORRUPTED_ERRS	100
31 
32 #define DM_VERITY_OPT_LOGGING		"ignore_corruption"
33 #define DM_VERITY_OPT_RESTART		"restart_on_corruption"
34 #define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
35 #define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
36 
37 #define DM_VERITY_OPTS_MAX		(2 + DM_VERITY_OPTS_FEC)
38 
39 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
40 
41 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
42 
43 struct dm_verity_prefetch_work {
44 	struct work_struct work;
45 	struct dm_verity *v;
46 	sector_t block;
47 	unsigned n_blocks;
48 };
49 
50 /*
51  * Auxiliary structure appended to each dm-bufio buffer. If the value
52  * hash_verified is nonzero, hash of the block has been verified.
53  *
54  * The variable hash_verified is set to 0 when allocating the buffer, then
55  * it can be changed to 1 and it is never reset to 0 again.
56  *
57  * There is no lock around this value, a race condition can at worst cause
58  * that multiple processes verify the hash of the same buffer simultaneously
59  * and write 1 to hash_verified simultaneously.
60  * This condition is harmless, so we don't need locking.
61  */
62 struct buffer_aux {
63 	int hash_verified;
64 };
65 
66 /*
67  * Initialize struct buffer_aux for a freshly created buffer.
68  */
dm_bufio_alloc_callback(struct dm_buffer * buf)69 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
70 {
71 	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
72 
73 	aux->hash_verified = 0;
74 }
75 
76 /*
77  * Translate input sector number to the sector number on the target device.
78  */
verity_map_sector(struct dm_verity * v,sector_t bi_sector)79 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
80 {
81 	return v->data_start + dm_target_offset(v->ti, bi_sector);
82 }
83 
84 /*
85  * Return hash position of a specified block at a specified tree level
86  * (0 is the lowest level).
87  * The lowest "hash_per_block_bits"-bits of the result denote hash position
88  * inside a hash block. The remaining bits denote location of the hash block.
89  */
verity_position_at_level(struct dm_verity * v,sector_t block,int level)90 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
91 					 int level)
92 {
93 	return block >> (level * v->hash_per_block_bits);
94 }
95 
96 /*
97  * Callback function for asynchrnous crypto API completion notification
98  */
verity_op_done(struct crypto_async_request * base,int err)99 static void verity_op_done(struct crypto_async_request *base, int err)
100 {
101 	struct verity_result *res = (struct verity_result *)base->data;
102 
103 	if (err == -EINPROGRESS)
104 		return;
105 
106 	res->err = err;
107 	complete(&res->completion);
108 }
109 
110 /*
111  * Wait for async crypto API callback
112  */
verity_complete_op(struct verity_result * res,int ret)113 static inline int verity_complete_op(struct verity_result *res, int ret)
114 {
115 	switch (ret) {
116 	case 0:
117 		break;
118 
119 	case -EINPROGRESS:
120 	case -EBUSY:
121 		ret = wait_for_completion_interruptible(&res->completion);
122 		if (!ret)
123 			ret = res->err;
124 		reinit_completion(&res->completion);
125 		break;
126 
127 	default:
128 		DMERR("verity_wait_hash: crypto op submission failed: %d", ret);
129 	}
130 
131 	if (unlikely(ret < 0))
132 		DMERR("verity_wait_hash: crypto op failed: %d", ret);
133 
134 	return ret;
135 }
136 
verity_hash_update(struct dm_verity * v,struct ahash_request * req,const u8 * data,size_t len,struct verity_result * res)137 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
138 				const u8 *data, size_t len,
139 				struct verity_result *res)
140 {
141 	struct scatterlist sg;
142 
143 	if (likely(!is_vmalloc_addr(data))) {
144 		sg_init_one(&sg, data, len);
145 		ahash_request_set_crypt(req, &sg, NULL, len);
146 		return verity_complete_op(res, crypto_ahash_update(req));
147 	} else {
148 		do {
149 			int r;
150 			size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
151 			flush_kernel_vmap_range((void *)data, this_step);
152 			sg_init_table(&sg, 1);
153 			sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
154 			ahash_request_set_crypt(req, &sg, NULL, this_step);
155 			r = verity_complete_op(res, crypto_ahash_update(req));
156 			if (unlikely(r))
157 				return r;
158 			data += this_step;
159 			len -= this_step;
160 		} while (len);
161 		return 0;
162 	}
163 }
164 
165 /*
166  * Wrapper for crypto_ahash_init, which handles verity salting.
167  */
verity_hash_init(struct dm_verity * v,struct ahash_request * req,struct verity_result * res)168 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
169 				struct verity_result *res)
170 {
171 	int r;
172 
173 	ahash_request_set_tfm(req, v->tfm);
174 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
175 					CRYPTO_TFM_REQ_MAY_BACKLOG,
176 					verity_op_done, (void *)res);
177 	init_completion(&res->completion);
178 
179 	r = verity_complete_op(res, crypto_ahash_init(req));
180 
181 	if (unlikely(r < 0)) {
182 		DMERR("crypto_ahash_init failed: %d", r);
183 		return r;
184 	}
185 
186 	if (likely(v->salt_size && (v->version >= 1)))
187 		r = verity_hash_update(v, req, v->salt, v->salt_size, res);
188 
189 	return r;
190 }
191 
verity_hash_final(struct dm_verity * v,struct ahash_request * req,u8 * digest,struct verity_result * res)192 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
193 			     u8 *digest, struct verity_result *res)
194 {
195 	int r;
196 
197 	if (unlikely(v->salt_size && (!v->version))) {
198 		r = verity_hash_update(v, req, v->salt, v->salt_size, res);
199 
200 		if (r < 0) {
201 			DMERR("verity_hash_final failed updating salt: %d", r);
202 			goto out;
203 		}
204 	}
205 
206 	ahash_request_set_crypt(req, NULL, digest, 0);
207 	r = verity_complete_op(res, crypto_ahash_final(req));
208 out:
209 	return r;
210 }
211 
verity_hash(struct dm_verity * v,struct ahash_request * req,const u8 * data,size_t len,u8 * digest)212 int verity_hash(struct dm_verity *v, struct ahash_request *req,
213 		const u8 *data, size_t len, u8 *digest)
214 {
215 	int r;
216 	struct verity_result res;
217 
218 	r = verity_hash_init(v, req, &res);
219 	if (unlikely(r < 0))
220 		goto out;
221 
222 	r = verity_hash_update(v, req, data, len, &res);
223 	if (unlikely(r < 0))
224 		goto out;
225 
226 	r = verity_hash_final(v, req, digest, &res);
227 
228 out:
229 	return r;
230 }
231 
verity_hash_at_level(struct dm_verity * v,sector_t block,int level,sector_t * hash_block,unsigned * offset)232 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
233 				 sector_t *hash_block, unsigned *offset)
234 {
235 	sector_t position = verity_position_at_level(v, block, level);
236 	unsigned idx;
237 
238 	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
239 
240 	if (!offset)
241 		return;
242 
243 	idx = position & ((1 << v->hash_per_block_bits) - 1);
244 	if (!v->version)
245 		*offset = idx * v->digest_size;
246 	else
247 		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
248 }
249 
250 /*
251  * Handle verification errors.
252  */
verity_handle_err(struct dm_verity * v,enum verity_block_type type,unsigned long long block)253 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
254 			     unsigned long long block)
255 {
256 	char verity_env[DM_VERITY_ENV_LENGTH];
257 	char *envp[] = { verity_env, NULL };
258 	const char *type_str = "";
259 	struct mapped_device *md = dm_table_get_md(v->ti->table);
260 
261 	/* Corruption should be visible in device status in all modes */
262 	v->hash_failed = 1;
263 
264 	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
265 		goto out;
266 
267 	v->corrupted_errs++;
268 
269 	switch (type) {
270 	case DM_VERITY_BLOCK_TYPE_DATA:
271 		type_str = "data";
272 		break;
273 	case DM_VERITY_BLOCK_TYPE_METADATA:
274 		type_str = "metadata";
275 		break;
276 	default:
277 		BUG();
278 	}
279 
280 	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
281 		    type_str, block);
282 
283 	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
284 		DMERR("%s: reached maximum errors", v->data_dev->name);
285 
286 	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
287 		DM_VERITY_ENV_VAR_NAME, type, block);
288 
289 	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
290 
291 out:
292 	if (v->mode == DM_VERITY_MODE_LOGGING)
293 		return 0;
294 
295 	if (v->mode == DM_VERITY_MODE_RESTART) {
296 #ifdef CONFIG_DM_VERITY_AVB
297 		dm_verity_avb_error_handler();
298 #endif
299 		kernel_restart("dm-verity device corrupted");
300 	}
301 
302 	return 1;
303 }
304 
305 /*
306  * Verify hash of a metadata block pertaining to the specified data block
307  * ("block" argument) at a specified level ("level" argument).
308  *
309  * On successful return, verity_io_want_digest(v, io) contains the hash value
310  * for a lower tree level or for the data block (if we're at the lowest level).
311  *
312  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
313  * If "skip_unverified" is false, unverified buffer is hashed and verified
314  * against current value of verity_io_want_digest(v, io).
315  */
verity_verify_level(struct dm_verity * v,struct dm_verity_io * io,sector_t block,int level,bool skip_unverified,u8 * want_digest)316 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
317 			       sector_t block, int level, bool skip_unverified,
318 			       u8 *want_digest)
319 {
320 	struct dm_buffer *buf;
321 	struct buffer_aux *aux;
322 	u8 *data;
323 	int r;
324 	sector_t hash_block;
325 	unsigned offset;
326 
327 	verity_hash_at_level(v, block, level, &hash_block, &offset);
328 
329 	data = dm_bufio_read(v->bufio, hash_block, &buf);
330 	if (IS_ERR(data))
331 		return PTR_ERR(data);
332 
333 	aux = dm_bufio_get_aux_data(buf);
334 
335 	if (!aux->hash_verified) {
336 		if (skip_unverified) {
337 			r = 1;
338 			goto release_ret_r;
339 		}
340 
341 		r = verity_hash(v, verity_io_hash_req(v, io),
342 				data, 1 << v->hash_dev_block_bits,
343 				verity_io_real_digest(v, io));
344 		if (unlikely(r < 0))
345 			goto release_ret_r;
346 
347 		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
348 				  v->digest_size) == 0))
349 			aux->hash_verified = 1;
350 		else if (verity_fec_decode(v, io,
351 					   DM_VERITY_BLOCK_TYPE_METADATA,
352 					   hash_block, data, NULL) == 0)
353 			aux->hash_verified = 1;
354 		else if (verity_handle_err(v,
355 					   DM_VERITY_BLOCK_TYPE_METADATA,
356 					   hash_block)) {
357 			r = -EIO;
358 			goto release_ret_r;
359 		}
360 	}
361 
362 	data += offset;
363 	memcpy(want_digest, data, v->digest_size);
364 	r = 0;
365 
366 release_ret_r:
367 	dm_bufio_release(buf);
368 	return r;
369 }
370 
371 /*
372  * Find a hash for a given block, write it to digest and verify the integrity
373  * of the hash tree if necessary.
374  */
verity_hash_for_block(struct dm_verity * v,struct dm_verity_io * io,sector_t block,u8 * digest,bool * is_zero)375 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
376 			  sector_t block, u8 *digest, bool *is_zero)
377 {
378 	int r = 0, i;
379 
380 	if (likely(v->levels)) {
381 		/*
382 		 * First, we try to get the requested hash for
383 		 * the current block. If the hash block itself is
384 		 * verified, zero is returned. If it isn't, this
385 		 * function returns 1 and we fall back to whole
386 		 * chain verification.
387 		 */
388 		r = verity_verify_level(v, io, block, 0, true, digest);
389 		if (likely(r <= 0))
390 			goto out;
391 	}
392 
393 	memcpy(digest, v->root_digest, v->digest_size);
394 
395 	for (i = v->levels - 1; i >= 0; i--) {
396 		r = verity_verify_level(v, io, block, i, false, digest);
397 		if (unlikely(r))
398 			goto out;
399 	}
400 out:
401 	if (!r && v->zero_digest)
402 		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
403 	else
404 		*is_zero = false;
405 
406 	return r;
407 }
408 
409 /*
410  * Calculates the digest for the given bio
411  */
verity_for_io_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter,struct verity_result * res)412 int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
413 			struct bvec_iter *iter, struct verity_result *res)
414 {
415 	unsigned int todo = 1 << v->data_dev_block_bits;
416 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
417 	struct scatterlist sg;
418 	struct ahash_request *req = verity_io_hash_req(v, io);
419 
420 	do {
421 		int r;
422 		unsigned int len;
423 		struct bio_vec bv = bio_iter_iovec(bio, *iter);
424 
425 		sg_init_table(&sg, 1);
426 
427 		len = bv.bv_len;
428 
429 		if (likely(len >= todo))
430 			len = todo;
431 		/*
432 		 * Operating on a single page at a time looks suboptimal
433 		 * until you consider the typical block size is 4,096B.
434 		 * Going through this loops twice should be very rare.
435 		 */
436 		sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
437 		ahash_request_set_crypt(req, &sg, NULL, len);
438 		r = verity_complete_op(res, crypto_ahash_update(req));
439 
440 		if (unlikely(r < 0)) {
441 			DMERR("verity_for_io_block crypto op failed: %d", r);
442 			return r;
443 		}
444 
445 		bio_advance_iter(bio, iter, len);
446 		todo -= len;
447 	} while (todo);
448 
449 	return 0;
450 }
451 
452 /*
453  * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
454  * starting from iter.
455  */
verity_for_bv_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter,int (* process)(struct dm_verity * v,struct dm_verity_io * io,u8 * data,size_t len))456 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
457 			struct bvec_iter *iter,
458 			int (*process)(struct dm_verity *v,
459 				       struct dm_verity_io *io, u8 *data,
460 				       size_t len))
461 {
462 	unsigned todo = 1 << v->data_dev_block_bits;
463 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
464 
465 	do {
466 		int r;
467 		u8 *page;
468 		unsigned len;
469 		struct bio_vec bv = bio_iter_iovec(bio, *iter);
470 
471 		page = kmap_atomic(bv.bv_page);
472 		len = bv.bv_len;
473 
474 		if (likely(len >= todo))
475 			len = todo;
476 
477 		r = process(v, io, page + bv.bv_offset, len);
478 		kunmap_atomic(page);
479 
480 		if (r < 0)
481 			return r;
482 
483 		bio_advance_iter(bio, iter, len);
484 		todo -= len;
485 	} while (todo);
486 
487 	return 0;
488 }
489 
verity_bv_zero(struct dm_verity * v,struct dm_verity_io * io,u8 * data,size_t len)490 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
491 			  u8 *data, size_t len)
492 {
493 	memset(data, 0, len);
494 	return 0;
495 }
496 
497 /*
498  * Moves the bio iter one data block forward.
499  */
verity_bv_skip_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter)500 static inline void verity_bv_skip_block(struct dm_verity *v,
501 					struct dm_verity_io *io,
502 					struct bvec_iter *iter)
503 {
504 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
505 
506 	bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
507 }
508 
509 /*
510  * Verify one "dm_verity_io" structure.
511  */
verity_verify_io(struct dm_verity_io * io)512 static int verity_verify_io(struct dm_verity_io *io)
513 {
514 	bool is_zero;
515 	struct dm_verity *v = io->v;
516 	struct bvec_iter start;
517 	unsigned b;
518 	struct verity_result res;
519 
520 	for (b = 0; b < io->n_blocks; b++) {
521 		int r;
522 		sector_t cur_block = io->block + b;
523 		struct ahash_request *req = verity_io_hash_req(v, io);
524 
525 		if (v->validated_blocks &&
526 		    likely(test_bit(cur_block, v->validated_blocks))) {
527 			verity_bv_skip_block(v, io, &io->iter);
528 			continue;
529 		}
530 
531 		r = verity_hash_for_block(v, io, cur_block,
532 					  verity_io_want_digest(v, io),
533 					  &is_zero);
534 		if (unlikely(r < 0))
535 			return r;
536 
537 		if (is_zero) {
538 			/*
539 			 * If we expect a zero block, don't validate, just
540 			 * return zeros.
541 			 */
542 			r = verity_for_bv_block(v, io, &io->iter,
543 						verity_bv_zero);
544 			if (unlikely(r < 0))
545 				return r;
546 
547 			continue;
548 		}
549 
550 		r = verity_hash_init(v, req, &res);
551 		if (unlikely(r < 0))
552 			return r;
553 
554 		start = io->iter;
555 		r = verity_for_io_block(v, io, &io->iter, &res);
556 		if (unlikely(r < 0))
557 			return r;
558 
559 		r = verity_hash_final(v, req, verity_io_real_digest(v, io),
560 					&res);
561 		if (unlikely(r < 0))
562 			return r;
563 
564 		if (likely(memcmp(verity_io_real_digest(v, io),
565 				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
566 			if (v->validated_blocks)
567 				set_bit(cur_block, v->validated_blocks);
568 			continue;
569 		}
570 		else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
571 					   cur_block, NULL, &start) == 0)
572 			continue;
573 		else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
574 					   cur_block))
575 			return -EIO;
576 	}
577 
578 	return 0;
579 }
580 
581 /*
582  * End one "io" structure with a given error.
583  */
verity_finish_io(struct dm_verity_io * io,blk_status_t status)584 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
585 {
586 	struct dm_verity *v = io->v;
587 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
588 
589 	bio->bi_end_io = io->orig_bi_end_io;
590 	bio->bi_status = status;
591 
592 	verity_fec_finish_io(io);
593 
594 	bio_endio(bio);
595 }
596 
verity_work(struct work_struct * w)597 static void verity_work(struct work_struct *w)
598 {
599 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
600 
601 	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
602 }
603 
verity_end_io(struct bio * bio)604 static void verity_end_io(struct bio *bio)
605 {
606 	struct dm_verity_io *io = bio->bi_private;
607 
608 	if (bio->bi_status && !verity_fec_is_enabled(io->v)) {
609 		verity_finish_io(io, bio->bi_status);
610 		return;
611 	}
612 
613 	INIT_WORK(&io->work, verity_work);
614 	queue_work(io->v->verify_wq, &io->work);
615 }
616 
617 /*
618  * Prefetch buffers for the specified io.
619  * The root buffer is not prefetched, it is assumed that it will be cached
620  * all the time.
621  */
verity_prefetch_io(struct work_struct * work)622 static void verity_prefetch_io(struct work_struct *work)
623 {
624 	struct dm_verity_prefetch_work *pw =
625 		container_of(work, struct dm_verity_prefetch_work, work);
626 	struct dm_verity *v = pw->v;
627 	int i;
628 
629 	for (i = v->levels - 2; i >= 0; i--) {
630 		sector_t hash_block_start;
631 		sector_t hash_block_end;
632 		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
633 		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
634 		if (!i) {
635 			unsigned cluster = ACCESS_ONCE(dm_verity_prefetch_cluster);
636 
637 			cluster >>= v->data_dev_block_bits;
638 			if (unlikely(!cluster))
639 				goto no_prefetch_cluster;
640 
641 			if (unlikely(cluster & (cluster - 1)))
642 				cluster = 1 << __fls(cluster);
643 
644 			hash_block_start &= ~(sector_t)(cluster - 1);
645 			hash_block_end |= cluster - 1;
646 			if (unlikely(hash_block_end >= v->hash_blocks))
647 				hash_block_end = v->hash_blocks - 1;
648 		}
649 no_prefetch_cluster:
650 		dm_bufio_prefetch(v->bufio, hash_block_start,
651 				  hash_block_end - hash_block_start + 1);
652 	}
653 
654 	kfree(pw);
655 }
656 
verity_submit_prefetch(struct dm_verity * v,struct dm_verity_io * io)657 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
658 {
659 	struct dm_verity_prefetch_work *pw;
660 
661 	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
662 		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
663 
664 	if (!pw)
665 		return;
666 
667 	INIT_WORK(&pw->work, verity_prefetch_io);
668 	pw->v = v;
669 	pw->block = io->block;
670 	pw->n_blocks = io->n_blocks;
671 	queue_work(v->verify_wq, &pw->work);
672 }
673 
674 /*
675  * Bio map function. It allocates dm_verity_io structure and bio vector and
676  * fills them. Then it issues prefetches and the I/O.
677  */
verity_map(struct dm_target * ti,struct bio * bio)678 int verity_map(struct dm_target *ti, struct bio *bio)
679 {
680 	struct dm_verity *v = ti->private;
681 	struct dm_verity_io *io;
682 
683 	bio_set_dev(bio, v->data_dev->bdev);
684 	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
685 
686 	if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
687 	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
688 		DMERR_LIMIT("unaligned io");
689 		return DM_MAPIO_KILL;
690 	}
691 
692 	if (bio_end_sector(bio) >>
693 	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
694 		DMERR_LIMIT("io out of range");
695 		return DM_MAPIO_KILL;
696 	}
697 
698 	if (bio_data_dir(bio) == WRITE)
699 		return DM_MAPIO_KILL;
700 
701 	io = dm_per_bio_data(bio, ti->per_io_data_size);
702 	io->v = v;
703 	io->orig_bi_end_io = bio->bi_end_io;
704 	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
705 	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
706 
707 	bio->bi_end_io = verity_end_io;
708 	bio->bi_private = io;
709 	io->iter = bio->bi_iter;
710 
711 	verity_fec_init_io(io);
712 
713 	verity_submit_prefetch(v, io);
714 
715 	generic_make_request(bio);
716 
717 	return DM_MAPIO_SUBMITTED;
718 }
719 
720 /*
721  * Status: V (valid) or C (corruption found)
722  */
verity_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)723 void verity_status(struct dm_target *ti, status_type_t type,
724 			  unsigned status_flags, char *result, unsigned maxlen)
725 {
726 	struct dm_verity *v = ti->private;
727 	unsigned args = 0;
728 	unsigned sz = 0;
729 	unsigned x;
730 
731 	switch (type) {
732 	case STATUSTYPE_INFO:
733 		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
734 		break;
735 	case STATUSTYPE_TABLE:
736 		DMEMIT("%u %s %s %u %u %llu %llu %s ",
737 			v->version,
738 			v->data_dev->name,
739 			v->hash_dev->name,
740 			1 << v->data_dev_block_bits,
741 			1 << v->hash_dev_block_bits,
742 			(unsigned long long)v->data_blocks,
743 			(unsigned long long)v->hash_start,
744 			v->alg_name
745 			);
746 		for (x = 0; x < v->digest_size; x++)
747 			DMEMIT("%02x", v->root_digest[x]);
748 		DMEMIT(" ");
749 		if (!v->salt_size)
750 			DMEMIT("-");
751 		else
752 			for (x = 0; x < v->salt_size; x++)
753 				DMEMIT("%02x", v->salt[x]);
754 		if (v->mode != DM_VERITY_MODE_EIO)
755 			args++;
756 		if (verity_fec_is_enabled(v))
757 			args += DM_VERITY_OPTS_FEC;
758 		if (v->zero_digest)
759 			args++;
760 		if (v->validated_blocks)
761 			args++;
762 		if (!args)
763 			return;
764 		DMEMIT(" %u", args);
765 		if (v->mode != DM_VERITY_MODE_EIO) {
766 			DMEMIT(" ");
767 			switch (v->mode) {
768 			case DM_VERITY_MODE_LOGGING:
769 				DMEMIT(DM_VERITY_OPT_LOGGING);
770 				break;
771 			case DM_VERITY_MODE_RESTART:
772 				DMEMIT(DM_VERITY_OPT_RESTART);
773 				break;
774 			default:
775 				BUG();
776 			}
777 		}
778 		if (v->zero_digest)
779 			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
780 		if (v->validated_blocks)
781 			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
782 		sz = verity_fec_status_table(v, sz, result, maxlen);
783 		break;
784 	}
785 }
786 
verity_prepare_ioctl(struct dm_target * ti,struct block_device ** bdev,fmode_t * mode)787 int verity_prepare_ioctl(struct dm_target *ti,
788 		struct block_device **bdev, fmode_t *mode)
789 {
790 	struct dm_verity *v = ti->private;
791 
792 	*bdev = v->data_dev->bdev;
793 
794 	if (v->data_start ||
795 	    ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
796 		return 1;
797 	return 0;
798 }
799 
verity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)800 int verity_iterate_devices(struct dm_target *ti,
801 				  iterate_devices_callout_fn fn, void *data)
802 {
803 	struct dm_verity *v = ti->private;
804 
805 	return fn(ti, v->data_dev, v->data_start, ti->len, data);
806 }
807 
verity_io_hints(struct dm_target * ti,struct queue_limits * limits)808 void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
809 {
810 	struct dm_verity *v = ti->private;
811 
812 	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
813 		limits->logical_block_size = 1 << v->data_dev_block_bits;
814 
815 	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
816 		limits->physical_block_size = 1 << v->data_dev_block_bits;
817 
818 	blk_limits_io_min(limits, limits->logical_block_size);
819 }
820 
verity_dtr(struct dm_target * ti)821 void verity_dtr(struct dm_target *ti)
822 {
823 	struct dm_verity *v = ti->private;
824 
825 	if (v->verify_wq)
826 		destroy_workqueue(v->verify_wq);
827 
828 	if (v->bufio)
829 		dm_bufio_client_destroy(v->bufio);
830 
831 	kvfree(v->validated_blocks);
832 	kfree(v->salt);
833 	kfree(v->root_digest);
834 	kfree(v->zero_digest);
835 
836 	if (v->tfm)
837 		crypto_free_ahash(v->tfm);
838 
839 	kfree(v->alg_name);
840 
841 	if (v->hash_dev)
842 		dm_put_device(ti, v->hash_dev);
843 
844 	if (v->data_dev)
845 		dm_put_device(ti, v->data_dev);
846 
847 	verity_fec_dtr(v);
848 
849 	kfree(v);
850 }
851 
verity_alloc_most_once(struct dm_verity * v)852 static int verity_alloc_most_once(struct dm_verity *v)
853 {
854 	struct dm_target *ti = v->ti;
855 
856 	/* the bitset can only handle INT_MAX blocks */
857 	if (v->data_blocks > INT_MAX) {
858 		ti->error = "device too large to use check_at_most_once";
859 		return -E2BIG;
860 	}
861 
862 	v->validated_blocks = kvzalloc(BITS_TO_LONGS(v->data_blocks) *
863 				       sizeof(unsigned long), GFP_KERNEL);
864 	if (!v->validated_blocks) {
865 		ti->error = "failed to allocate bitset for check_at_most_once";
866 		return -ENOMEM;
867 	}
868 
869 	return 0;
870 }
871 
verity_alloc_zero_digest(struct dm_verity * v)872 static int verity_alloc_zero_digest(struct dm_verity *v)
873 {
874 	int r = -ENOMEM;
875 	struct ahash_request *req;
876 	u8 *zero_data;
877 
878 	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
879 
880 	if (!v->zero_digest)
881 		return r;
882 
883 	req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
884 
885 	if (!req)
886 		return r; /* verity_dtr will free zero_digest */
887 
888 	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
889 
890 	if (!zero_data)
891 		goto out;
892 
893 	r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
894 			v->zero_digest);
895 
896 out:
897 	kfree(req);
898 	kfree(zero_data);
899 
900 	return r;
901 }
902 
verity_parse_opt_args(struct dm_arg_set * as,struct dm_verity * v)903 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v)
904 {
905 	int r;
906 	unsigned argc;
907 	struct dm_target *ti = v->ti;
908 	const char *arg_name;
909 
910 	static const struct dm_arg _args[] = {
911 		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
912 	};
913 
914 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
915 	if (r)
916 		return -EINVAL;
917 
918 	if (!argc)
919 		return 0;
920 
921 	do {
922 		arg_name = dm_shift_arg(as);
923 		argc--;
924 
925 		if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
926 			v->mode = DM_VERITY_MODE_LOGGING;
927 			continue;
928 
929 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
930 			v->mode = DM_VERITY_MODE_RESTART;
931 			continue;
932 
933 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
934 			r = verity_alloc_zero_digest(v);
935 			if (r) {
936 				ti->error = "Cannot allocate zero digest";
937 				return r;
938 			}
939 			continue;
940 
941 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
942 			r = verity_alloc_most_once(v);
943 			if (r)
944 				return r;
945 			continue;
946 
947 		} else if (verity_is_fec_opt_arg(arg_name)) {
948 			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
949 			if (r)
950 				return r;
951 			continue;
952 		}
953 
954 		ti->error = "Unrecognized verity feature request";
955 		return -EINVAL;
956 	} while (argc && !r);
957 
958 	return r;
959 }
960 
961 /*
962  * Target parameters:
963  *	<version>	The current format is version 1.
964  *			Vsn 0 is compatible with original Chromium OS releases.
965  *	<data device>
966  *	<hash device>
967  *	<data block size>
968  *	<hash block size>
969  *	<the number of data blocks>
970  *	<hash start block>
971  *	<algorithm>
972  *	<digest>
973  *	<salt>		Hex string or "-" if no salt.
974  */
verity_ctr(struct dm_target * ti,unsigned argc,char ** argv)975 int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
976 {
977 	struct dm_verity *v;
978 	struct dm_arg_set as;
979 	unsigned int num;
980 	unsigned long long num_ll;
981 	int r;
982 	int i;
983 	sector_t hash_position;
984 	char dummy;
985 
986 	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
987 	if (!v) {
988 		ti->error = "Cannot allocate verity structure";
989 		return -ENOMEM;
990 	}
991 	ti->private = v;
992 	v->ti = ti;
993 
994 	r = verity_fec_ctr_alloc(v);
995 	if (r)
996 		goto bad;
997 
998 	if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
999 		ti->error = "Device must be readonly";
1000 		r = -EINVAL;
1001 		goto bad;
1002 	}
1003 
1004 	if (argc < 10) {
1005 		ti->error = "Not enough arguments";
1006 		r = -EINVAL;
1007 		goto bad;
1008 	}
1009 
1010 	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1011 	    num > 1) {
1012 		ti->error = "Invalid version";
1013 		r = -EINVAL;
1014 		goto bad;
1015 	}
1016 	v->version = num;
1017 
1018 	r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
1019 	if (r) {
1020 		ti->error = "Data device lookup failed";
1021 		goto bad;
1022 	}
1023 
1024 	r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
1025 	if (r) {
1026 		ti->error = "Hash device lookup failed";
1027 		goto bad;
1028 	}
1029 
1030 	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1031 	    !num || (num & (num - 1)) ||
1032 	    num < bdev_logical_block_size(v->data_dev->bdev) ||
1033 	    num > PAGE_SIZE) {
1034 		ti->error = "Invalid data device block size";
1035 		r = -EINVAL;
1036 		goto bad;
1037 	}
1038 	v->data_dev_block_bits = __ffs(num);
1039 
1040 	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1041 	    !num || (num & (num - 1)) ||
1042 	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
1043 	    num > INT_MAX) {
1044 		ti->error = "Invalid hash device block size";
1045 		r = -EINVAL;
1046 		goto bad;
1047 	}
1048 	v->hash_dev_block_bits = __ffs(num);
1049 
1050 	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1051 	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1052 	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1053 		ti->error = "Invalid data blocks";
1054 		r = -EINVAL;
1055 		goto bad;
1056 	}
1057 	v->data_blocks = num_ll;
1058 
1059 	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1060 		ti->error = "Data device is too small";
1061 		r = -EINVAL;
1062 		goto bad;
1063 	}
1064 
1065 	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1066 	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1067 	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1068 		ti->error = "Invalid hash start";
1069 		r = -EINVAL;
1070 		goto bad;
1071 	}
1072 	v->hash_start = num_ll;
1073 
1074 	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1075 	if (!v->alg_name) {
1076 		ti->error = "Cannot allocate algorithm name";
1077 		r = -ENOMEM;
1078 		goto bad;
1079 	}
1080 
1081 	v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
1082 	if (IS_ERR(v->tfm)) {
1083 		ti->error = "Cannot initialize hash function";
1084 		r = PTR_ERR(v->tfm);
1085 		v->tfm = NULL;
1086 		goto bad;
1087 	}
1088 
1089 	/*
1090 	 * dm-verity performance can vary greatly depending on which hash
1091 	 * algorithm implementation is used.  Help people debug performance
1092 	 * problems by logging the ->cra_driver_name.
1093 	 */
1094 	DMINFO("%s using implementation \"%s\"", v->alg_name,
1095 	       crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1096 
1097 	v->digest_size = crypto_ahash_digestsize(v->tfm);
1098 	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1099 		ti->error = "Digest size too big";
1100 		r = -EINVAL;
1101 		goto bad;
1102 	}
1103 	v->ahash_reqsize = sizeof(struct ahash_request) +
1104 		crypto_ahash_reqsize(v->tfm);
1105 
1106 	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1107 	if (!v->root_digest) {
1108 		ti->error = "Cannot allocate root digest";
1109 		r = -ENOMEM;
1110 		goto bad;
1111 	}
1112 	if (strlen(argv[8]) != v->digest_size * 2 ||
1113 	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1114 		ti->error = "Invalid root digest";
1115 		r = -EINVAL;
1116 		goto bad;
1117 	}
1118 
1119 	if (strcmp(argv[9], "-")) {
1120 		v->salt_size = strlen(argv[9]) / 2;
1121 		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1122 		if (!v->salt) {
1123 			ti->error = "Cannot allocate salt";
1124 			r = -ENOMEM;
1125 			goto bad;
1126 		}
1127 		if (strlen(argv[9]) != v->salt_size * 2 ||
1128 		    hex2bin(v->salt, argv[9], v->salt_size)) {
1129 			ti->error = "Invalid salt";
1130 			r = -EINVAL;
1131 			goto bad;
1132 		}
1133 	}
1134 
1135 	argv += 10;
1136 	argc -= 10;
1137 
1138 	/* Optional parameters */
1139 	if (argc) {
1140 		as.argc = argc;
1141 		as.argv = argv;
1142 
1143 		r = verity_parse_opt_args(&as, v);
1144 		if (r < 0)
1145 			goto bad;
1146 	}
1147 
1148 #ifdef CONFIG_DM_ANDROID_VERITY_AT_MOST_ONCE_DEFAULT_ENABLED
1149 	if (!v->validated_blocks) {
1150 		r = verity_alloc_most_once(v);
1151 		if (r)
1152 			goto bad;
1153 	}
1154 #endif
1155 
1156 	v->hash_per_block_bits =
1157 		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1158 
1159 	v->levels = 0;
1160 	if (v->data_blocks)
1161 		while (v->hash_per_block_bits * v->levels < 64 &&
1162 		       (unsigned long long)(v->data_blocks - 1) >>
1163 		       (v->hash_per_block_bits * v->levels))
1164 			v->levels++;
1165 
1166 	if (v->levels > DM_VERITY_MAX_LEVELS) {
1167 		ti->error = "Too many tree levels";
1168 		r = -E2BIG;
1169 		goto bad;
1170 	}
1171 
1172 	hash_position = v->hash_start;
1173 	for (i = v->levels - 1; i >= 0; i--) {
1174 		sector_t s;
1175 		v->hash_level_block[i] = hash_position;
1176 		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1177 					>> ((i + 1) * v->hash_per_block_bits);
1178 		if (hash_position + s < hash_position) {
1179 			ti->error = "Hash device offset overflow";
1180 			r = -E2BIG;
1181 			goto bad;
1182 		}
1183 		hash_position += s;
1184 	}
1185 	v->hash_blocks = hash_position;
1186 
1187 	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1188 		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1189 		dm_bufio_alloc_callback, NULL);
1190 	if (IS_ERR(v->bufio)) {
1191 		ti->error = "Cannot initialize dm-bufio";
1192 		r = PTR_ERR(v->bufio);
1193 		v->bufio = NULL;
1194 		goto bad;
1195 	}
1196 
1197 	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1198 		ti->error = "Hash device is too small";
1199 		r = -E2BIG;
1200 		goto bad;
1201 	}
1202 
1203 	/* WQ_UNBOUND greatly improves performance when running on ramdisk */
1204 	v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
1205 	if (!v->verify_wq) {
1206 		ti->error = "Cannot allocate workqueue";
1207 		r = -ENOMEM;
1208 		goto bad;
1209 	}
1210 
1211 	ti->per_io_data_size = sizeof(struct dm_verity_io) +
1212 				v->ahash_reqsize + v->digest_size * 2;
1213 
1214 	r = verity_fec_ctr(v);
1215 	if (r)
1216 		goto bad;
1217 
1218 	ti->per_io_data_size = roundup(ti->per_io_data_size,
1219 				       __alignof__(struct dm_verity_io));
1220 
1221 	return 0;
1222 
1223 bad:
1224 	verity_dtr(ti);
1225 
1226 	return r;
1227 }
1228 
1229 static struct target_type verity_target = {
1230 	.name		= "verity",
1231 	.version	= {1, 4, 0},
1232 	.module		= THIS_MODULE,
1233 	.ctr		= verity_ctr,
1234 	.dtr		= verity_dtr,
1235 	.map		= verity_map,
1236 	.status		= verity_status,
1237 	.prepare_ioctl	= verity_prepare_ioctl,
1238 	.iterate_devices = verity_iterate_devices,
1239 	.io_hints	= verity_io_hints,
1240 };
1241 
dm_verity_init(void)1242 static int __init dm_verity_init(void)
1243 {
1244 	int r;
1245 
1246 	r = dm_register_target(&verity_target);
1247 	if (r < 0)
1248 		DMERR("register failed %d", r);
1249 
1250 	return r;
1251 }
1252 
dm_verity_exit(void)1253 static void __exit dm_verity_exit(void)
1254 {
1255 	dm_unregister_target(&verity_target);
1256 }
1257 
1258 module_init(dm_verity_init);
1259 module_exit(dm_verity_exit);
1260 
1261 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1262 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1263 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1264 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1265 MODULE_LICENSE("GPL");
1266