• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
3  *
4  * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
5  *
6  * This program is free software; you may redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17  * SOFTWARE.
18  */
19 
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/kmod.h>
25 #include <linux/ktime.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 
31 #include <drm/drm_edid.h>
32 
33 #include "cec-priv.h"
34 
35 static void cec_fill_msg_report_features(struct cec_adapter *adap,
36 					 struct cec_msg *msg,
37 					 unsigned int la_idx);
38 
39 /*
40  * 400 ms is the time it takes for one 16 byte message to be
41  * transferred and 5 is the maximum number of retries. Add
42  * another 100 ms as a margin. So if the transmit doesn't
43  * finish before that time something is really wrong and we
44  * have to time out.
45  *
46  * This is a sign that something it really wrong and a warning
47  * will be issued.
48  */
49 #define CEC_XFER_TIMEOUT_MS (5 * 400 + 100)
50 
51 #define call_op(adap, op, arg...) \
52 	(adap->ops->op ? adap->ops->op(adap, ## arg) : 0)
53 
54 #define call_void_op(adap, op, arg...)			\
55 	do {						\
56 		if (adap->ops->op)			\
57 			adap->ops->op(adap, ## arg);	\
58 	} while (0)
59 
cec_log_addr2idx(const struct cec_adapter * adap,u8 log_addr)60 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
61 {
62 	int i;
63 
64 	for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
65 		if (adap->log_addrs.log_addr[i] == log_addr)
66 			return i;
67 	return -1;
68 }
69 
cec_log_addr2dev(const struct cec_adapter * adap,u8 log_addr)70 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
71 {
72 	int i = cec_log_addr2idx(adap, log_addr);
73 
74 	return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
75 }
76 
77 /*
78  * Queue a new event for this filehandle. If ts == 0, then set it
79  * to the current time.
80  *
81  * We keep a queue of at most max_event events where max_event differs
82  * per event. If the queue becomes full, then drop the oldest event and
83  * keep track of how many events we've dropped.
84  */
cec_queue_event_fh(struct cec_fh * fh,const struct cec_event * new_ev,u64 ts)85 void cec_queue_event_fh(struct cec_fh *fh,
86 			const struct cec_event *new_ev, u64 ts)
87 {
88 	static const u8 max_events[CEC_NUM_EVENTS] = {
89 		1, 1, 64, 64,
90 	};
91 	struct cec_event_entry *entry;
92 	unsigned int ev_idx = new_ev->event - 1;
93 
94 	if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
95 		return;
96 
97 	if (ts == 0)
98 		ts = ktime_get_ns();
99 
100 	mutex_lock(&fh->lock);
101 	if (ev_idx < CEC_NUM_CORE_EVENTS)
102 		entry = &fh->core_events[ev_idx];
103 	else
104 		entry = kmalloc(sizeof(*entry), GFP_KERNEL);
105 	if (entry) {
106 		if (new_ev->event == CEC_EVENT_LOST_MSGS &&
107 		    fh->queued_events[ev_idx]) {
108 			entry->ev.lost_msgs.lost_msgs +=
109 				new_ev->lost_msgs.lost_msgs;
110 			goto unlock;
111 		}
112 		entry->ev = *new_ev;
113 		entry->ev.ts = ts;
114 
115 		if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
116 			/* Add new msg at the end of the queue */
117 			list_add_tail(&entry->list, &fh->events[ev_idx]);
118 			fh->queued_events[ev_idx]++;
119 			fh->total_queued_events++;
120 			goto unlock;
121 		}
122 
123 		if (ev_idx >= CEC_NUM_CORE_EVENTS) {
124 			list_add_tail(&entry->list, &fh->events[ev_idx]);
125 			/* drop the oldest event */
126 			entry = list_first_entry(&fh->events[ev_idx],
127 						 struct cec_event_entry, list);
128 			list_del(&entry->list);
129 			kfree(entry);
130 		}
131 	}
132 	/* Mark that events were lost */
133 	entry = list_first_entry_or_null(&fh->events[ev_idx],
134 					 struct cec_event_entry, list);
135 	if (entry)
136 		entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
137 
138 unlock:
139 	mutex_unlock(&fh->lock);
140 	wake_up_interruptible(&fh->wait);
141 }
142 
143 /* Queue a new event for all open filehandles. */
cec_queue_event(struct cec_adapter * adap,const struct cec_event * ev)144 static void cec_queue_event(struct cec_adapter *adap,
145 			    const struct cec_event *ev)
146 {
147 	u64 ts = ktime_get_ns();
148 	struct cec_fh *fh;
149 
150 	mutex_lock(&adap->devnode.lock);
151 	list_for_each_entry(fh, &adap->devnode.fhs, list)
152 		cec_queue_event_fh(fh, ev, ts);
153 	mutex_unlock(&adap->devnode.lock);
154 }
155 
156 /* Notify userspace that the CEC pin changed state at the given time. */
cec_queue_pin_cec_event(struct cec_adapter * adap,bool is_high,ktime_t ts)157 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
158 {
159 	struct cec_event ev = {
160 		.event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
161 				   CEC_EVENT_PIN_CEC_LOW,
162 	};
163 	struct cec_fh *fh;
164 
165 	mutex_lock(&adap->devnode.lock);
166 	list_for_each_entry(fh, &adap->devnode.fhs, list)
167 		if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
168 			cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
169 	mutex_unlock(&adap->devnode.lock);
170 }
171 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
172 
173 /*
174  * Queue a new message for this filehandle.
175  *
176  * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
177  * queue becomes full, then drop the oldest message and keep track
178  * of how many messages we've dropped.
179  */
cec_queue_msg_fh(struct cec_fh * fh,const struct cec_msg * msg)180 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
181 {
182 	static const struct cec_event ev_lost_msgs = {
183 		.event = CEC_EVENT_LOST_MSGS,
184 		.flags = 0,
185 		{
186 			.lost_msgs = { 1 },
187 		},
188 	};
189 	struct cec_msg_entry *entry;
190 
191 	mutex_lock(&fh->lock);
192 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
193 	if (entry) {
194 		entry->msg = *msg;
195 		/* Add new msg at the end of the queue */
196 		list_add_tail(&entry->list, &fh->msgs);
197 
198 		if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
199 			/* All is fine if there is enough room */
200 			fh->queued_msgs++;
201 			mutex_unlock(&fh->lock);
202 			wake_up_interruptible(&fh->wait);
203 			return;
204 		}
205 
206 		/*
207 		 * if the message queue is full, then drop the oldest one and
208 		 * send a lost message event.
209 		 */
210 		entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
211 		list_del(&entry->list);
212 		kfree(entry);
213 	}
214 	mutex_unlock(&fh->lock);
215 
216 	/*
217 	 * We lost a message, either because kmalloc failed or the queue
218 	 * was full.
219 	 */
220 	cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns());
221 }
222 
223 /*
224  * Queue the message for those filehandles that are in monitor mode.
225  * If valid_la is true (this message is for us or was sent by us),
226  * then pass it on to any monitoring filehandle. If this message
227  * isn't for us or from us, then only give it to filehandles that
228  * are in MONITOR_ALL mode.
229  *
230  * This can only happen if the CEC_CAP_MONITOR_ALL capability is
231  * set and the CEC adapter was placed in 'monitor all' mode.
232  */
cec_queue_msg_monitor(struct cec_adapter * adap,const struct cec_msg * msg,bool valid_la)233 static void cec_queue_msg_monitor(struct cec_adapter *adap,
234 				  const struct cec_msg *msg,
235 				  bool valid_la)
236 {
237 	struct cec_fh *fh;
238 	u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
239 				      CEC_MODE_MONITOR_ALL;
240 
241 	mutex_lock(&adap->devnode.lock);
242 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
243 		if (fh->mode_follower >= monitor_mode)
244 			cec_queue_msg_fh(fh, msg);
245 	}
246 	mutex_unlock(&adap->devnode.lock);
247 }
248 
249 /*
250  * Queue the message for follower filehandles.
251  */
cec_queue_msg_followers(struct cec_adapter * adap,const struct cec_msg * msg)252 static void cec_queue_msg_followers(struct cec_adapter *adap,
253 				    const struct cec_msg *msg)
254 {
255 	struct cec_fh *fh;
256 
257 	mutex_lock(&adap->devnode.lock);
258 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
259 		if (fh->mode_follower == CEC_MODE_FOLLOWER)
260 			cec_queue_msg_fh(fh, msg);
261 	}
262 	mutex_unlock(&adap->devnode.lock);
263 }
264 
265 /* Notify userspace of an adapter state change. */
cec_post_state_event(struct cec_adapter * adap)266 static void cec_post_state_event(struct cec_adapter *adap)
267 {
268 	struct cec_event ev = {
269 		.event = CEC_EVENT_STATE_CHANGE,
270 	};
271 
272 	ev.state_change.phys_addr = adap->phys_addr;
273 	ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
274 	cec_queue_event(adap, &ev);
275 }
276 
277 /*
278  * A CEC transmit (and a possible wait for reply) completed.
279  * If this was in blocking mode, then complete it, otherwise
280  * queue the message for userspace to dequeue later.
281  *
282  * This function is called with adap->lock held.
283  */
cec_data_completed(struct cec_data * data)284 static void cec_data_completed(struct cec_data *data)
285 {
286 	/*
287 	 * Delete this transmit from the filehandle's xfer_list since
288 	 * we're done with it.
289 	 *
290 	 * Note that if the filehandle is closed before this transmit
291 	 * finished, then the release() function will set data->fh to NULL.
292 	 * Without that we would be referring to a closed filehandle.
293 	 */
294 	if (data->fh)
295 		list_del(&data->xfer_list);
296 
297 	if (data->blocking) {
298 		/*
299 		 * Someone is blocking so mark the message as completed
300 		 * and call complete.
301 		 */
302 		data->completed = true;
303 		complete(&data->c);
304 	} else {
305 		/*
306 		 * No blocking, so just queue the message if needed and
307 		 * free the memory.
308 		 */
309 		if (data->fh)
310 			cec_queue_msg_fh(data->fh, &data->msg);
311 		kfree(data);
312 	}
313 }
314 
315 /*
316  * A pending CEC transmit needs to be cancelled, either because the CEC
317  * adapter is disabled or the transmit takes an impossibly long time to
318  * finish.
319  *
320  * This function is called with adap->lock held.
321  */
cec_data_cancel(struct cec_data * data)322 static void cec_data_cancel(struct cec_data *data)
323 {
324 	/*
325 	 * It's either the current transmit, or it is a pending
326 	 * transmit. Take the appropriate action to clear it.
327 	 */
328 	if (data->adap->transmitting == data) {
329 		data->adap->transmitting = NULL;
330 	} else {
331 		list_del_init(&data->list);
332 		if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
333 			if (!WARN_ON(!data->adap->transmit_queue_sz))
334 				data->adap->transmit_queue_sz--;
335 	}
336 
337 	/* Mark it as an error */
338 	data->msg.tx_ts = ktime_get_ns();
339 	data->msg.tx_status |= CEC_TX_STATUS_ERROR |
340 			       CEC_TX_STATUS_MAX_RETRIES;
341 	data->msg.tx_error_cnt++;
342 	data->attempts = 0;
343 	/* Queue transmitted message for monitoring purposes */
344 	cec_queue_msg_monitor(data->adap, &data->msg, 1);
345 
346 	cec_data_completed(data);
347 }
348 
349 /*
350  * Flush all pending transmits and cancel any pending timeout work.
351  *
352  * This function is called with adap->lock held.
353  */
cec_flush(struct cec_adapter * adap)354 static void cec_flush(struct cec_adapter *adap)
355 {
356 	struct cec_data *data, *n;
357 
358 	/*
359 	 * If the adapter is disabled, or we're asked to stop,
360 	 * then cancel any pending transmits.
361 	 */
362 	while (!list_empty(&adap->transmit_queue)) {
363 		data = list_first_entry(&adap->transmit_queue,
364 					struct cec_data, list);
365 		cec_data_cancel(data);
366 	}
367 	if (adap->transmitting)
368 		cec_data_cancel(adap->transmitting);
369 
370 	/* Cancel the pending timeout work. */
371 	list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
372 		if (cancel_delayed_work(&data->work))
373 			cec_data_cancel(data);
374 		/*
375 		 * If cancel_delayed_work returned false, then
376 		 * the cec_wait_timeout function is running,
377 		 * which will call cec_data_completed. So no
378 		 * need to do anything special in that case.
379 		 */
380 	}
381 	/*
382 	 * If something went wrong and this counter isn't what it should
383 	 * be, then this will reset it back to 0. Warn if it is not 0,
384 	 * since it indicates a bug, either in this framework or in a
385 	 * CEC driver.
386 	 */
387 	if (WARN_ON(adap->transmit_queue_sz))
388 		adap->transmit_queue_sz = 0;
389 }
390 
391 /*
392  * Main CEC state machine
393  *
394  * Wait until the thread should be stopped, or we are not transmitting and
395  * a new transmit message is queued up, in which case we start transmitting
396  * that message. When the adapter finished transmitting the message it will
397  * call cec_transmit_done().
398  *
399  * If the adapter is disabled, then remove all queued messages instead.
400  *
401  * If the current transmit times out, then cancel that transmit.
402  */
cec_thread_func(void * _adap)403 int cec_thread_func(void *_adap)
404 {
405 	struct cec_adapter *adap = _adap;
406 
407 	for (;;) {
408 		unsigned int signal_free_time;
409 		struct cec_data *data;
410 		bool timeout = false;
411 		u8 attempts;
412 
413 		if (adap->transmitting) {
414 			int err;
415 
416 			/*
417 			 * We are transmitting a message, so add a timeout
418 			 * to prevent the state machine to get stuck waiting
419 			 * for this message to finalize and add a check to
420 			 * see if the adapter is disabled in which case the
421 			 * transmit should be canceled.
422 			 */
423 			err = wait_event_interruptible_timeout(adap->kthread_waitq,
424 				(adap->needs_hpd &&
425 				 (!adap->is_configured && !adap->is_configuring)) ||
426 				kthread_should_stop() ||
427 				(!adap->transmitting &&
428 				 !list_empty(&adap->transmit_queue)),
429 				msecs_to_jiffies(CEC_XFER_TIMEOUT_MS));
430 			timeout = err == 0;
431 		} else {
432 			/* Otherwise we just wait for something to happen. */
433 			wait_event_interruptible(adap->kthread_waitq,
434 				kthread_should_stop() ||
435 				(!adap->transmitting &&
436 				 !list_empty(&adap->transmit_queue)));
437 		}
438 
439 		mutex_lock(&adap->lock);
440 
441 		if ((adap->needs_hpd &&
442 		     (!adap->is_configured && !adap->is_configuring)) ||
443 		    kthread_should_stop()) {
444 			cec_flush(adap);
445 			goto unlock;
446 		}
447 
448 		if (adap->transmitting && timeout) {
449 			/*
450 			 * If we timeout, then log that. Normally this does
451 			 * not happen and it is an indication of a faulty CEC
452 			 * adapter driver, or the CEC bus is in some weird
453 			 * state. On rare occasions it can happen if there is
454 			 * so much traffic on the bus that the adapter was
455 			 * unable to transmit for CEC_XFER_TIMEOUT_MS (2.1s).
456 			 */
457 			dprintk(1, "%s: message %*ph timed out\n", __func__,
458 				adap->transmitting->msg.len,
459 				adap->transmitting->msg.msg);
460 			adap->tx_timeouts++;
461 			/* Just give up on this. */
462 			cec_data_cancel(adap->transmitting);
463 			goto unlock;
464 		}
465 
466 		/*
467 		 * If we are still transmitting, or there is nothing new to
468 		 * transmit, then just continue waiting.
469 		 */
470 		if (adap->transmitting || list_empty(&adap->transmit_queue))
471 			goto unlock;
472 
473 		/* Get a new message to transmit */
474 		data = list_first_entry(&adap->transmit_queue,
475 					struct cec_data, list);
476 		list_del_init(&data->list);
477 		if (!WARN_ON(!data->adap->transmit_queue_sz))
478 			adap->transmit_queue_sz--;
479 
480 		/* Make this the current transmitting message */
481 		adap->transmitting = data;
482 
483 		/*
484 		 * Suggested number of attempts as per the CEC 2.0 spec:
485 		 * 4 attempts is the default, except for 'secondary poll
486 		 * messages', i.e. poll messages not sent during the adapter
487 		 * configuration phase when it allocates logical addresses.
488 		 */
489 		if (data->msg.len == 1 && adap->is_configured)
490 			attempts = 2;
491 		else
492 			attempts = 4;
493 
494 		/* Set the suggested signal free time */
495 		if (data->attempts) {
496 			/* should be >= 3 data bit periods for a retry */
497 			signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
498 		} else if (data->new_initiator) {
499 			/* should be >= 5 data bit periods for new initiator */
500 			signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
501 		} else {
502 			/*
503 			 * should be >= 7 data bit periods for sending another
504 			 * frame immediately after another.
505 			 */
506 			signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
507 		}
508 		if (data->attempts == 0)
509 			data->attempts = attempts;
510 
511 		/* Tell the adapter to transmit, cancel on error */
512 		if (adap->ops->adap_transmit(adap, data->attempts,
513 					     signal_free_time, &data->msg))
514 			cec_data_cancel(data);
515 
516 unlock:
517 		mutex_unlock(&adap->lock);
518 
519 		if (kthread_should_stop())
520 			break;
521 	}
522 	return 0;
523 }
524 
525 /*
526  * Called by the CEC adapter if a transmit finished.
527  */
cec_transmit_done_ts(struct cec_adapter * adap,u8 status,u8 arb_lost_cnt,u8 nack_cnt,u8 low_drive_cnt,u8 error_cnt,ktime_t ts)528 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
529 			  u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
530 			  u8 error_cnt, ktime_t ts)
531 {
532 	struct cec_data *data;
533 	struct cec_msg *msg;
534 	unsigned int attempts_made = arb_lost_cnt + nack_cnt +
535 				     low_drive_cnt + error_cnt;
536 
537 	dprintk(2, "%s: status %02x\n", __func__, status);
538 	if (attempts_made < 1)
539 		attempts_made = 1;
540 
541 	mutex_lock(&adap->lock);
542 	data = adap->transmitting;
543 	if (!data) {
544 		/*
545 		 * This can happen if a transmit was issued and the cable is
546 		 * unplugged while the transmit is ongoing. Ignore this
547 		 * transmit in that case.
548 		 */
549 		dprintk(1, "%s was called without an ongoing transmit!\n",
550 			__func__);
551 		goto unlock;
552 	}
553 
554 	msg = &data->msg;
555 
556 	/* Drivers must fill in the status! */
557 	WARN_ON(status == 0);
558 	msg->tx_ts = ktime_to_ns(ts);
559 	msg->tx_status |= status;
560 	msg->tx_arb_lost_cnt += arb_lost_cnt;
561 	msg->tx_nack_cnt += nack_cnt;
562 	msg->tx_low_drive_cnt += low_drive_cnt;
563 	msg->tx_error_cnt += error_cnt;
564 
565 	/* Mark that we're done with this transmit */
566 	adap->transmitting = NULL;
567 
568 	/*
569 	 * If there are still retry attempts left and there was an error and
570 	 * the hardware didn't signal that it retried itself (by setting
571 	 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
572 	 */
573 	if (data->attempts > attempts_made &&
574 	    !(status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK))) {
575 		/* Retry this message */
576 		data->attempts -= attempts_made;
577 		if (msg->timeout)
578 			dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n",
579 				msg->len, msg->msg, data->attempts, msg->reply);
580 		else
581 			dprintk(2, "retransmit: %*ph (attempts: %d)\n",
582 				msg->len, msg->msg, data->attempts);
583 		/* Add the message in front of the transmit queue */
584 		list_add(&data->list, &adap->transmit_queue);
585 		adap->transmit_queue_sz++;
586 		goto wake_thread;
587 	}
588 
589 	data->attempts = 0;
590 
591 	/* Always set CEC_TX_STATUS_MAX_RETRIES on error */
592 	if (!(status & CEC_TX_STATUS_OK))
593 		msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
594 
595 	/* Queue transmitted message for monitoring purposes */
596 	cec_queue_msg_monitor(adap, msg, 1);
597 
598 	if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
599 	    msg->timeout) {
600 		/*
601 		 * Queue the message into the wait queue if we want to wait
602 		 * for a reply.
603 		 */
604 		list_add_tail(&data->list, &adap->wait_queue);
605 		schedule_delayed_work(&data->work,
606 				      msecs_to_jiffies(msg->timeout));
607 	} else {
608 		/* Otherwise we're done */
609 		cec_data_completed(data);
610 	}
611 
612 wake_thread:
613 	/*
614 	 * Wake up the main thread to see if another message is ready
615 	 * for transmitting or to retry the current message.
616 	 */
617 	wake_up_interruptible(&adap->kthread_waitq);
618 unlock:
619 	mutex_unlock(&adap->lock);
620 }
621 EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
622 
cec_transmit_attempt_done_ts(struct cec_adapter * adap,u8 status,ktime_t ts)623 void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
624 				  u8 status, ktime_t ts)
625 {
626 	switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
627 	case CEC_TX_STATUS_OK:
628 		cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
629 		return;
630 	case CEC_TX_STATUS_ARB_LOST:
631 		cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
632 		return;
633 	case CEC_TX_STATUS_NACK:
634 		cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
635 		return;
636 	case CEC_TX_STATUS_LOW_DRIVE:
637 		cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
638 		return;
639 	case CEC_TX_STATUS_ERROR:
640 		cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
641 		return;
642 	default:
643 		/* Should never happen */
644 		WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
645 		return;
646 	}
647 }
648 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
649 
650 /*
651  * Called when waiting for a reply times out.
652  */
cec_wait_timeout(struct work_struct * work)653 static void cec_wait_timeout(struct work_struct *work)
654 {
655 	struct cec_data *data = container_of(work, struct cec_data, work.work);
656 	struct cec_adapter *adap = data->adap;
657 
658 	mutex_lock(&adap->lock);
659 	/*
660 	 * Sanity check in case the timeout and the arrival of the message
661 	 * happened at the same time.
662 	 */
663 	if (list_empty(&data->list))
664 		goto unlock;
665 
666 	/* Mark the message as timed out */
667 	list_del_init(&data->list);
668 	data->msg.rx_ts = ktime_get_ns();
669 	data->msg.rx_status = CEC_RX_STATUS_TIMEOUT;
670 	cec_data_completed(data);
671 unlock:
672 	mutex_unlock(&adap->lock);
673 }
674 
675 /*
676  * Transmit a message. The fh argument may be NULL if the transmit is not
677  * associated with a specific filehandle.
678  *
679  * This function is called with adap->lock held.
680  */
cec_transmit_msg_fh(struct cec_adapter * adap,struct cec_msg * msg,struct cec_fh * fh,bool block)681 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
682 			struct cec_fh *fh, bool block)
683 {
684 	struct cec_data *data;
685 	u8 last_initiator = 0xff;
686 	unsigned int timeout;
687 	int res = 0;
688 
689 	msg->rx_ts = 0;
690 	msg->tx_ts = 0;
691 	msg->rx_status = 0;
692 	msg->tx_status = 0;
693 	msg->tx_arb_lost_cnt = 0;
694 	msg->tx_nack_cnt = 0;
695 	msg->tx_low_drive_cnt = 0;
696 	msg->tx_error_cnt = 0;
697 	msg->sequence = 0;
698 
699 	if (msg->reply && msg->timeout == 0) {
700 		/* Make sure the timeout isn't 0. */
701 		msg->timeout = 1000;
702 	}
703 	if (msg->timeout)
704 		msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS;
705 	else
706 		msg->flags = 0;
707 
708 	/* Sanity checks */
709 	if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
710 		dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
711 		return -EINVAL;
712 	}
713 	if (msg->timeout && msg->len == 1) {
714 		dprintk(1, "%s: can't reply for poll msg\n", __func__);
715 		return -EINVAL;
716 	}
717 	memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
718 	if (msg->len == 1) {
719 		if (cec_msg_destination(msg) == 0xf) {
720 			dprintk(1, "%s: invalid poll message\n", __func__);
721 			return -EINVAL;
722 		}
723 		if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
724 			/*
725 			 * If the destination is a logical address our adapter
726 			 * has already claimed, then just NACK this.
727 			 * It depends on the hardware what it will do with a
728 			 * POLL to itself (some OK this), so it is just as
729 			 * easy to handle it here so the behavior will be
730 			 * consistent.
731 			 */
732 			msg->tx_ts = ktime_get_ns();
733 			msg->tx_status = CEC_TX_STATUS_NACK |
734 					 CEC_TX_STATUS_MAX_RETRIES;
735 			msg->tx_nack_cnt = 1;
736 			msg->sequence = ++adap->sequence;
737 			if (!msg->sequence)
738 				msg->sequence = ++adap->sequence;
739 			return 0;
740 		}
741 	}
742 	if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
743 	    cec_has_log_addr(adap, cec_msg_destination(msg))) {
744 		dprintk(1, "%s: destination is the adapter itself\n", __func__);
745 		return -EINVAL;
746 	}
747 	if (msg->len > 1 && adap->is_configured &&
748 	    !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
749 		dprintk(1, "%s: initiator has unknown logical address %d\n",
750 			__func__, cec_msg_initiator(msg));
751 		return -EINVAL;
752 	}
753 	if (!adap->is_configured && !adap->is_configuring) {
754 		if (adap->needs_hpd || msg->msg[0] != 0xf0) {
755 			dprintk(1, "%s: adapter is unconfigured\n", __func__);
756 			return -ENONET;
757 		}
758 		if (msg->reply) {
759 			dprintk(1, "%s: invalid msg->reply\n", __func__);
760 			return -EINVAL;
761 		}
762 	}
763 
764 	if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
765 		dprintk(1, "%s: transmit queue full\n", __func__);
766 		return -EBUSY;
767 	}
768 
769 	data = kzalloc(sizeof(*data), GFP_KERNEL);
770 	if (!data)
771 		return -ENOMEM;
772 
773 	msg->sequence = ++adap->sequence;
774 	if (!msg->sequence)
775 		msg->sequence = ++adap->sequence;
776 
777 	if (msg->len > 1 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
778 		msg->msg[2] = adap->phys_addr >> 8;
779 		msg->msg[3] = adap->phys_addr & 0xff;
780 	}
781 
782 	if (msg->timeout)
783 		dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
784 			__func__, msg->len, msg->msg, msg->reply,
785 			!block ? ", nb" : "");
786 	else
787 		dprintk(2, "%s: %*ph%s\n",
788 			__func__, msg->len, msg->msg, !block ? " (nb)" : "");
789 
790 	data->msg = *msg;
791 	data->fh = fh;
792 	data->adap = adap;
793 	data->blocking = block;
794 
795 	/*
796 	 * Determine if this message follows a message from the same
797 	 * initiator. Needed to determine the free signal time later on.
798 	 */
799 	if (msg->len > 1) {
800 		if (!(list_empty(&adap->transmit_queue))) {
801 			const struct cec_data *last;
802 
803 			last = list_last_entry(&adap->transmit_queue,
804 					       const struct cec_data, list);
805 			last_initiator = cec_msg_initiator(&last->msg);
806 		} else if (adap->transmitting) {
807 			last_initiator =
808 				cec_msg_initiator(&adap->transmitting->msg);
809 		}
810 	}
811 	data->new_initiator = last_initiator != cec_msg_initiator(msg);
812 	init_completion(&data->c);
813 	INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
814 
815 	if (fh)
816 		list_add_tail(&data->xfer_list, &fh->xfer_list);
817 
818 	list_add_tail(&data->list, &adap->transmit_queue);
819 	adap->transmit_queue_sz++;
820 	if (!adap->transmitting)
821 		wake_up_interruptible(&adap->kthread_waitq);
822 
823 	/* All done if we don't need to block waiting for completion */
824 	if (!block)
825 		return 0;
826 
827 	/*
828 	 * If we don't get a completion before this time something is really
829 	 * wrong and we time out.
830 	 */
831 	timeout = CEC_XFER_TIMEOUT_MS;
832 	/* Add the requested timeout if we have to wait for a reply as well */
833 	if (msg->timeout)
834 		timeout += msg->timeout;
835 
836 	/*
837 	 * Release the lock and wait, retake the lock afterwards.
838 	 */
839 	mutex_unlock(&adap->lock);
840 	res = wait_for_completion_killable_timeout(&data->c,
841 						   msecs_to_jiffies(timeout));
842 	mutex_lock(&adap->lock);
843 
844 	if (data->completed) {
845 		/* The transmit completed (possibly with an error) */
846 		*msg = data->msg;
847 		kfree(data);
848 		return 0;
849 	}
850 	/*
851 	 * The wait for completion timed out or was interrupted, so mark this
852 	 * as non-blocking and disconnect from the filehandle since it is
853 	 * still 'in flight'. When it finally completes it will just drop the
854 	 * result silently.
855 	 */
856 	data->blocking = false;
857 	if (data->fh)
858 		list_del(&data->xfer_list);
859 	data->fh = NULL;
860 
861 	if (res == 0) { /* timed out */
862 		/* Check if the reply or the transmit failed */
863 		if (msg->timeout && (msg->tx_status & CEC_TX_STATUS_OK))
864 			msg->rx_status = CEC_RX_STATUS_TIMEOUT;
865 		else
866 			msg->tx_status = CEC_TX_STATUS_MAX_RETRIES;
867 	}
868 	return res > 0 ? 0 : res;
869 }
870 
871 /* Helper function to be used by drivers and this framework. */
cec_transmit_msg(struct cec_adapter * adap,struct cec_msg * msg,bool block)872 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
873 		     bool block)
874 {
875 	int ret;
876 
877 	mutex_lock(&adap->lock);
878 	ret = cec_transmit_msg_fh(adap, msg, NULL, block);
879 	mutex_unlock(&adap->lock);
880 	return ret;
881 }
882 EXPORT_SYMBOL_GPL(cec_transmit_msg);
883 
884 /*
885  * I don't like forward references but without this the low-level
886  * cec_received_msg() function would come after a bunch of high-level
887  * CEC protocol handling functions. That was very confusing.
888  */
889 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
890 			      bool is_reply);
891 
892 #define DIRECTED	0x80
893 #define BCAST1_4	0x40
894 #define BCAST2_0	0x20	/* broadcast only allowed for >= 2.0 */
895 #define BCAST		(BCAST1_4 | BCAST2_0)
896 #define BOTH		(BCAST | DIRECTED)
897 
898 /*
899  * Specify minimum length and whether the message is directed, broadcast
900  * or both. Messages that do not match the criteria are ignored as per
901  * the CEC specification.
902  */
903 static const u8 cec_msg_size[256] = {
904 	[CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
905 	[CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
906 	[CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
907 	[CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
908 	[CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
909 	[CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
910 	[CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
911 	[CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
912 	[CEC_MSG_STANDBY] = 2 | BOTH,
913 	[CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
914 	[CEC_MSG_RECORD_ON] = 3 | DIRECTED,
915 	[CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
916 	[CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
917 	[CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
918 	[CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
919 	[CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
920 	[CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
921 	[CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
922 	[CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
923 	[CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
924 	[CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
925 	[CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
926 	[CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
927 	[CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
928 	[CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
929 	[CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
930 	[CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
931 	[CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
932 	[CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
933 	[CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
934 	[CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
935 	[CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
936 	[CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
937 	[CEC_MSG_PLAY] = 3 | DIRECTED,
938 	[CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
939 	[CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
940 	[CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
941 	[CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
942 	[CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
943 	[CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
944 	[CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
945 	[CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
946 	[CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
947 	[CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
948 	[CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
949 	[CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
950 	[CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
951 	[CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
952 	[CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
953 	[CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
954 	[CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
955 	[CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
956 	[CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
957 	[CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
958 	[CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
959 	[CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
960 	[CEC_MSG_ABORT] = 2 | DIRECTED,
961 	[CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
962 	[CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
963 	[CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
964 	[CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
965 	[CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
966 	[CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
967 	[CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
968 	[CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
969 	[CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
970 	[CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
971 	[CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
972 	[CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
973 	[CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
974 	[CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
975 	[CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
976 	[CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
977 	[CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
978 	[CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
979 };
980 
981 /* Called by the CEC adapter if a message is received */
cec_received_msg_ts(struct cec_adapter * adap,struct cec_msg * msg,ktime_t ts)982 void cec_received_msg_ts(struct cec_adapter *adap,
983 			 struct cec_msg *msg, ktime_t ts)
984 {
985 	struct cec_data *data;
986 	u8 msg_init = cec_msg_initiator(msg);
987 	u8 msg_dest = cec_msg_destination(msg);
988 	u8 cmd = msg->msg[1];
989 	bool is_reply = false;
990 	bool valid_la = true;
991 	u8 min_len = 0;
992 
993 	if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
994 		return;
995 
996 	/*
997 	 * Some CEC adapters will receive the messages that they transmitted.
998 	 * This test filters out those messages by checking if we are the
999 	 * initiator, and just returning in that case.
1000 	 *
1001 	 * Note that this won't work if this is an Unregistered device.
1002 	 *
1003 	 * It is bad practice if the hardware receives the message that it
1004 	 * transmitted and luckily most CEC adapters behave correctly in this
1005 	 * respect.
1006 	 */
1007 	if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
1008 	    cec_has_log_addr(adap, msg_init))
1009 		return;
1010 
1011 	msg->rx_ts = ktime_to_ns(ts);
1012 	msg->rx_status = CEC_RX_STATUS_OK;
1013 	msg->sequence = msg->reply = msg->timeout = 0;
1014 	msg->tx_status = 0;
1015 	msg->tx_ts = 0;
1016 	msg->tx_arb_lost_cnt = 0;
1017 	msg->tx_nack_cnt = 0;
1018 	msg->tx_low_drive_cnt = 0;
1019 	msg->tx_error_cnt = 0;
1020 	msg->flags = 0;
1021 	memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
1022 
1023 	mutex_lock(&adap->lock);
1024 	dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1025 
1026 	/* Check if this message was for us (directed or broadcast). */
1027 	if (!cec_msg_is_broadcast(msg))
1028 		valid_la = cec_has_log_addr(adap, msg_dest);
1029 
1030 	/*
1031 	 * Check if the length is not too short or if the message is a
1032 	 * broadcast message where a directed message was expected or
1033 	 * vice versa. If so, then the message has to be ignored (according
1034 	 * to section CEC 7.3 and CEC 12.2).
1035 	 */
1036 	if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
1037 		u8 dir_fl = cec_msg_size[cmd] & BOTH;
1038 
1039 		min_len = cec_msg_size[cmd] & 0x1f;
1040 		if (msg->len < min_len)
1041 			valid_la = false;
1042 		else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
1043 			valid_la = false;
1044 		else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST))
1045 			valid_la = false;
1046 		else if (cec_msg_is_broadcast(msg) &&
1047 			 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 &&
1048 			 !(dir_fl & BCAST1_4))
1049 			valid_la = false;
1050 	}
1051 	if (valid_la && min_len) {
1052 		/* These messages have special length requirements */
1053 		switch (cmd) {
1054 		case CEC_MSG_TIMER_STATUS:
1055 			if (msg->msg[2] & 0x10) {
1056 				switch (msg->msg[2] & 0xf) {
1057 				case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE:
1058 				case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE:
1059 					if (msg->len < 5)
1060 						valid_la = false;
1061 					break;
1062 				}
1063 			} else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) {
1064 				if (msg->len < 5)
1065 					valid_la = false;
1066 			}
1067 			break;
1068 		case CEC_MSG_RECORD_ON:
1069 			switch (msg->msg[2]) {
1070 			case CEC_OP_RECORD_SRC_OWN:
1071 				break;
1072 			case CEC_OP_RECORD_SRC_DIGITAL:
1073 				if (msg->len < 10)
1074 					valid_la = false;
1075 				break;
1076 			case CEC_OP_RECORD_SRC_ANALOG:
1077 				if (msg->len < 7)
1078 					valid_la = false;
1079 				break;
1080 			case CEC_OP_RECORD_SRC_EXT_PLUG:
1081 				if (msg->len < 4)
1082 					valid_la = false;
1083 				break;
1084 			case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
1085 				if (msg->len < 5)
1086 					valid_la = false;
1087 				break;
1088 			}
1089 			break;
1090 		}
1091 	}
1092 
1093 	/* It's a valid message and not a poll or CDC message */
1094 	if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
1095 		bool abort = cmd == CEC_MSG_FEATURE_ABORT;
1096 
1097 		/* The aborted command is in msg[2] */
1098 		if (abort)
1099 			cmd = msg->msg[2];
1100 
1101 		/*
1102 		 * Walk over all transmitted messages that are waiting for a
1103 		 * reply.
1104 		 */
1105 		list_for_each_entry(data, &adap->wait_queue, list) {
1106 			struct cec_msg *dst = &data->msg;
1107 
1108 			/*
1109 			 * The *only* CEC message that has two possible replies
1110 			 * is CEC_MSG_INITIATE_ARC.
1111 			 * In this case allow either of the two replies.
1112 			 */
1113 			if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
1114 			    (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
1115 			     cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
1116 			    (dst->reply == CEC_MSG_REPORT_ARC_INITIATED ||
1117 			     dst->reply == CEC_MSG_REPORT_ARC_TERMINATED))
1118 				dst->reply = cmd;
1119 
1120 			/* Does the command match? */
1121 			if ((abort && cmd != dst->msg[1]) ||
1122 			    (!abort && cmd != dst->reply))
1123 				continue;
1124 
1125 			/* Does the addressing match? */
1126 			if (msg_init != cec_msg_destination(dst) &&
1127 			    !cec_msg_is_broadcast(dst))
1128 				continue;
1129 
1130 			/* We got a reply */
1131 			memcpy(dst->msg, msg->msg, msg->len);
1132 			dst->len = msg->len;
1133 			dst->rx_ts = msg->rx_ts;
1134 			dst->rx_status = msg->rx_status;
1135 			if (abort)
1136 				dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1137 			msg->flags = dst->flags;
1138 			/* Remove it from the wait_queue */
1139 			list_del_init(&data->list);
1140 
1141 			/* Cancel the pending timeout work */
1142 			if (!cancel_delayed_work(&data->work)) {
1143 				mutex_unlock(&adap->lock);
1144 				flush_scheduled_work();
1145 				mutex_lock(&adap->lock);
1146 			}
1147 			/*
1148 			 * Mark this as a reply, provided someone is still
1149 			 * waiting for the answer.
1150 			 */
1151 			if (data->fh)
1152 				is_reply = true;
1153 			cec_data_completed(data);
1154 			break;
1155 		}
1156 	}
1157 	mutex_unlock(&adap->lock);
1158 
1159 	/* Pass the message on to any monitoring filehandles */
1160 	cec_queue_msg_monitor(adap, msg, valid_la);
1161 
1162 	/* We're done if it is not for us or a poll message */
1163 	if (!valid_la || msg->len <= 1)
1164 		return;
1165 
1166 	if (adap->log_addrs.log_addr_mask == 0)
1167 		return;
1168 
1169 	/*
1170 	 * Process the message on the protocol level. If is_reply is true,
1171 	 * then cec_receive_notify() won't pass on the reply to the listener(s)
1172 	 * since that was already done by cec_data_completed() above.
1173 	 */
1174 	cec_receive_notify(adap, msg, is_reply);
1175 }
1176 EXPORT_SYMBOL_GPL(cec_received_msg_ts);
1177 
1178 /* Logical Address Handling */
1179 
1180 /*
1181  * Attempt to claim a specific logical address.
1182  *
1183  * This function is called with adap->lock held.
1184  */
cec_config_log_addr(struct cec_adapter * adap,unsigned int idx,unsigned int log_addr)1185 static int cec_config_log_addr(struct cec_adapter *adap,
1186 			       unsigned int idx,
1187 			       unsigned int log_addr)
1188 {
1189 	struct cec_log_addrs *las = &adap->log_addrs;
1190 	struct cec_msg msg = { };
1191 	int err;
1192 
1193 	if (cec_has_log_addr(adap, log_addr))
1194 		return 0;
1195 
1196 	/* Send poll message */
1197 	msg.len = 1;
1198 	msg.msg[0] = (log_addr << 4) | log_addr;
1199 	err = cec_transmit_msg_fh(adap, &msg, NULL, true);
1200 
1201 	/*
1202 	 * While trying to poll the physical address was reset
1203 	 * and the adapter was unconfigured, so bail out.
1204 	 */
1205 	if (!adap->is_configuring)
1206 		return -EINTR;
1207 
1208 	if (err)
1209 		return err;
1210 
1211 	if (msg.tx_status & CEC_TX_STATUS_OK)
1212 		return 0;
1213 
1214 	/*
1215 	 * Message not acknowledged, so this logical
1216 	 * address is free to use.
1217 	 */
1218 	err = adap->ops->adap_log_addr(adap, log_addr);
1219 	if (err)
1220 		return err;
1221 
1222 	las->log_addr[idx] = log_addr;
1223 	las->log_addr_mask |= 1 << log_addr;
1224 	adap->phys_addrs[log_addr] = adap->phys_addr;
1225 	return 1;
1226 }
1227 
1228 /*
1229  * Unconfigure the adapter: clear all logical addresses and send
1230  * the state changed event.
1231  *
1232  * This function is called with adap->lock held.
1233  */
cec_adap_unconfigure(struct cec_adapter * adap)1234 static void cec_adap_unconfigure(struct cec_adapter *adap)
1235 {
1236 	if (!adap->needs_hpd ||
1237 	    adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1238 		WARN_ON(adap->ops->adap_log_addr(adap, CEC_LOG_ADDR_INVALID));
1239 	adap->log_addrs.log_addr_mask = 0;
1240 	adap->is_configuring = false;
1241 	adap->is_configured = false;
1242 	memset(adap->phys_addrs, 0xff, sizeof(adap->phys_addrs));
1243 	cec_flush(adap);
1244 	wake_up_interruptible(&adap->kthread_waitq);
1245 	cec_post_state_event(adap);
1246 }
1247 
1248 /*
1249  * Attempt to claim the required logical addresses.
1250  */
cec_config_thread_func(void * arg)1251 static int cec_config_thread_func(void *arg)
1252 {
1253 	/* The various LAs for each type of device */
1254 	static const u8 tv_log_addrs[] = {
1255 		CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1256 		CEC_LOG_ADDR_INVALID
1257 	};
1258 	static const u8 record_log_addrs[] = {
1259 		CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1260 		CEC_LOG_ADDR_RECORD_3,
1261 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1262 		CEC_LOG_ADDR_INVALID
1263 	};
1264 	static const u8 tuner_log_addrs[] = {
1265 		CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1266 		CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1267 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1268 		CEC_LOG_ADDR_INVALID
1269 	};
1270 	static const u8 playback_log_addrs[] = {
1271 		CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1272 		CEC_LOG_ADDR_PLAYBACK_3,
1273 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1274 		CEC_LOG_ADDR_INVALID
1275 	};
1276 	static const u8 audiosystem_log_addrs[] = {
1277 		CEC_LOG_ADDR_AUDIOSYSTEM,
1278 		CEC_LOG_ADDR_INVALID
1279 	};
1280 	static const u8 specific_use_log_addrs[] = {
1281 		CEC_LOG_ADDR_SPECIFIC,
1282 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1283 		CEC_LOG_ADDR_INVALID
1284 	};
1285 	static const u8 *type2addrs[6] = {
1286 		[CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1287 		[CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1288 		[CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1289 		[CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1290 		[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1291 		[CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1292 	};
1293 	static const u16 type2mask[] = {
1294 		[CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1295 		[CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1296 		[CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1297 		[CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1298 		[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1299 		[CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1300 	};
1301 	struct cec_adapter *adap = arg;
1302 	struct cec_log_addrs *las = &adap->log_addrs;
1303 	int err;
1304 	int i, j;
1305 
1306 	mutex_lock(&adap->lock);
1307 	dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1308 		cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1309 	las->log_addr_mask = 0;
1310 
1311 	if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1312 		goto configured;
1313 
1314 	for (i = 0; i < las->num_log_addrs; i++) {
1315 		unsigned int type = las->log_addr_type[i];
1316 		const u8 *la_list;
1317 		u8 last_la;
1318 
1319 		/*
1320 		 * The TV functionality can only map to physical address 0.
1321 		 * For any other address, try the Specific functionality
1322 		 * instead as per the spec.
1323 		 */
1324 		if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1325 			type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1326 
1327 		la_list = type2addrs[type];
1328 		last_la = las->log_addr[i];
1329 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1330 		if (last_la == CEC_LOG_ADDR_INVALID ||
1331 		    last_la == CEC_LOG_ADDR_UNREGISTERED ||
1332 		    !((1 << last_la) & type2mask[type]))
1333 			last_la = la_list[0];
1334 
1335 		err = cec_config_log_addr(adap, i, last_la);
1336 		if (err > 0) /* Reused last LA */
1337 			continue;
1338 
1339 		if (err < 0)
1340 			goto unconfigure;
1341 
1342 		for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1343 			/* Tried this one already, skip it */
1344 			if (la_list[j] == last_la)
1345 				continue;
1346 			/* The backup addresses are CEC 2.0 specific */
1347 			if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1348 			     la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1349 			    las->cec_version < CEC_OP_CEC_VERSION_2_0)
1350 				continue;
1351 
1352 			err = cec_config_log_addr(adap, i, la_list[j]);
1353 			if (err == 0) /* LA is in use */
1354 				continue;
1355 			if (err < 0)
1356 				goto unconfigure;
1357 			/* Done, claimed an LA */
1358 			break;
1359 		}
1360 
1361 		if (la_list[j] == CEC_LOG_ADDR_INVALID)
1362 			dprintk(1, "could not claim LA %d\n", i);
1363 	}
1364 
1365 	if (adap->log_addrs.log_addr_mask == 0 &&
1366 	    !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1367 		goto unconfigure;
1368 
1369 configured:
1370 	if (adap->log_addrs.log_addr_mask == 0) {
1371 		/* Fall back to unregistered */
1372 		las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1373 		las->log_addr_mask = 1 << las->log_addr[0];
1374 		for (i = 1; i < las->num_log_addrs; i++)
1375 			las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1376 	}
1377 	for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1378 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1379 	adap->is_configured = true;
1380 	adap->is_configuring = false;
1381 	cec_post_state_event(adap);
1382 
1383 	/*
1384 	 * Now post the Report Features and Report Physical Address broadcast
1385 	 * messages. Note that these are non-blocking transmits, meaning that
1386 	 * they are just queued up and once adap->lock is unlocked the main
1387 	 * thread will kick in and start transmitting these.
1388 	 *
1389 	 * If after this function is done (but before one or more of these
1390 	 * messages are actually transmitted) the CEC adapter is unconfigured,
1391 	 * then any remaining messages will be dropped by the main thread.
1392 	 */
1393 	for (i = 0; i < las->num_log_addrs; i++) {
1394 		struct cec_msg msg = {};
1395 
1396 		if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1397 		    (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1398 			continue;
1399 
1400 		msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
1401 
1402 		/* Report Features must come first according to CEC 2.0 */
1403 		if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
1404 		    adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
1405 			cec_fill_msg_report_features(adap, &msg, i);
1406 			cec_transmit_msg_fh(adap, &msg, NULL, false);
1407 		}
1408 
1409 		/* Report Physical Address */
1410 		cec_msg_report_physical_addr(&msg, adap->phys_addr,
1411 					     las->primary_device_type[i]);
1412 		dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1413 			las->log_addr[i],
1414 			cec_phys_addr_exp(adap->phys_addr));
1415 		cec_transmit_msg_fh(adap, &msg, NULL, false);
1416 
1417 		/* Report Vendor ID */
1418 		if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) {
1419 			cec_msg_device_vendor_id(&msg,
1420 						 adap->log_addrs.vendor_id);
1421 			cec_transmit_msg_fh(adap, &msg, NULL, false);
1422 		}
1423 	}
1424 	adap->kthread_config = NULL;
1425 	complete(&adap->config_completion);
1426 	mutex_unlock(&adap->lock);
1427 	return 0;
1428 
1429 unconfigure:
1430 	for (i = 0; i < las->num_log_addrs; i++)
1431 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1432 	cec_adap_unconfigure(adap);
1433 	adap->kthread_config = NULL;
1434 	mutex_unlock(&adap->lock);
1435 	complete(&adap->config_completion);
1436 	return 0;
1437 }
1438 
1439 /*
1440  * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1441  * logical addresses.
1442  *
1443  * This function is called with adap->lock held.
1444  */
cec_claim_log_addrs(struct cec_adapter * adap,bool block)1445 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1446 {
1447 	if (WARN_ON(adap->is_configuring || adap->is_configured))
1448 		return;
1449 
1450 	init_completion(&adap->config_completion);
1451 
1452 	/* Ready to kick off the thread */
1453 	adap->is_configuring = true;
1454 	adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1455 					   "ceccfg-%s", adap->name);
1456 	if (IS_ERR(adap->kthread_config)) {
1457 		adap->kthread_config = NULL;
1458 	} else if (block) {
1459 		mutex_unlock(&adap->lock);
1460 		wait_for_completion(&adap->config_completion);
1461 		mutex_lock(&adap->lock);
1462 	}
1463 }
1464 
1465 /* Set a new physical address and send an event notifying userspace of this.
1466  *
1467  * This function is called with adap->lock held.
1468  */
__cec_s_phys_addr(struct cec_adapter * adap,u16 phys_addr,bool block)1469 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1470 {
1471 	if (phys_addr == adap->phys_addr)
1472 		return;
1473 	if (phys_addr != CEC_PHYS_ADDR_INVALID && adap->devnode.unregistered)
1474 		return;
1475 
1476 	dprintk(1, "new physical address %x.%x.%x.%x\n",
1477 		cec_phys_addr_exp(phys_addr));
1478 	if (phys_addr == CEC_PHYS_ADDR_INVALID ||
1479 	    adap->phys_addr != CEC_PHYS_ADDR_INVALID) {
1480 		adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1481 		cec_post_state_event(adap);
1482 		cec_adap_unconfigure(adap);
1483 		/* Disabling monitor all mode should always succeed */
1484 		if (adap->monitor_all_cnt)
1485 			WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1486 		mutex_lock(&adap->devnode.lock);
1487 		if (adap->needs_hpd || list_empty(&adap->devnode.fhs))
1488 			WARN_ON(adap->ops->adap_enable(adap, false));
1489 		mutex_unlock(&adap->devnode.lock);
1490 		if (phys_addr == CEC_PHYS_ADDR_INVALID)
1491 			return;
1492 	}
1493 
1494 	mutex_lock(&adap->devnode.lock);
1495 	if ((adap->needs_hpd || list_empty(&adap->devnode.fhs)) &&
1496 	    adap->ops->adap_enable(adap, true)) {
1497 		mutex_unlock(&adap->devnode.lock);
1498 		return;
1499 	}
1500 
1501 	if (adap->monitor_all_cnt &&
1502 	    call_op(adap, adap_monitor_all_enable, true)) {
1503 		if (adap->needs_hpd || list_empty(&adap->devnode.fhs))
1504 			WARN_ON(adap->ops->adap_enable(adap, false));
1505 		mutex_unlock(&adap->devnode.lock);
1506 		return;
1507 	}
1508 	mutex_unlock(&adap->devnode.lock);
1509 
1510 	adap->phys_addr = phys_addr;
1511 	cec_post_state_event(adap);
1512 	if (adap->log_addrs.num_log_addrs)
1513 		cec_claim_log_addrs(adap, block);
1514 }
1515 
cec_s_phys_addr(struct cec_adapter * adap,u16 phys_addr,bool block)1516 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1517 {
1518 	if (IS_ERR_OR_NULL(adap))
1519 		return;
1520 
1521 	mutex_lock(&adap->lock);
1522 	__cec_s_phys_addr(adap, phys_addr, block);
1523 	mutex_unlock(&adap->lock);
1524 }
1525 EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1526 
cec_s_phys_addr_from_edid(struct cec_adapter * adap,const struct edid * edid)1527 void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
1528 			       const struct edid *edid)
1529 {
1530 	u16 pa = CEC_PHYS_ADDR_INVALID;
1531 
1532 	if (edid && edid->extensions)
1533 		pa = cec_get_edid_phys_addr((const u8 *)edid,
1534 				EDID_LENGTH * (edid->extensions + 1), NULL);
1535 	cec_s_phys_addr(adap, pa, false);
1536 }
1537 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);
1538 
1539 /*
1540  * Called from either the ioctl or a driver to set the logical addresses.
1541  *
1542  * This function is called with adap->lock held.
1543  */
__cec_s_log_addrs(struct cec_adapter * adap,struct cec_log_addrs * log_addrs,bool block)1544 int __cec_s_log_addrs(struct cec_adapter *adap,
1545 		      struct cec_log_addrs *log_addrs, bool block)
1546 {
1547 	u16 type_mask = 0;
1548 	int i;
1549 
1550 	if (adap->devnode.unregistered)
1551 		return -ENODEV;
1552 
1553 	if (!log_addrs || log_addrs->num_log_addrs == 0) {
1554 		cec_adap_unconfigure(adap);
1555 		adap->log_addrs.num_log_addrs = 0;
1556 		for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
1557 			adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
1558 		adap->log_addrs.osd_name[0] = '\0';
1559 		adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
1560 		adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
1561 		return 0;
1562 	}
1563 
1564 	if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1565 		/*
1566 		 * Sanitize log_addrs fields if a CDC-Only device is
1567 		 * requested.
1568 		 */
1569 		log_addrs->num_log_addrs = 1;
1570 		log_addrs->osd_name[0] = '\0';
1571 		log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1572 		log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1573 		/*
1574 		 * This is just an internal convention since a CDC-Only device
1575 		 * doesn't have to be a switch. But switches already use
1576 		 * unregistered, so it makes some kind of sense to pick this
1577 		 * as the primary device. Since a CDC-Only device never sends
1578 		 * any 'normal' CEC messages this primary device type is never
1579 		 * sent over the CEC bus.
1580 		 */
1581 		log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1582 		log_addrs->all_device_types[0] = 0;
1583 		log_addrs->features[0][0] = 0;
1584 		log_addrs->features[0][1] = 0;
1585 	}
1586 
1587 	/* Ensure the osd name is 0-terminated */
1588 	log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1589 
1590 	/* Sanity checks */
1591 	if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1592 		dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1593 		return -EINVAL;
1594 	}
1595 
1596 	/*
1597 	 * Vendor ID is a 24 bit number, so check if the value is
1598 	 * within the correct range.
1599 	 */
1600 	if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1601 	    (log_addrs->vendor_id & 0xff000000) != 0) {
1602 		dprintk(1, "invalid vendor ID\n");
1603 		return -EINVAL;
1604 	}
1605 
1606 	if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1607 	    log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
1608 		dprintk(1, "invalid CEC version\n");
1609 		return -EINVAL;
1610 	}
1611 
1612 	if (log_addrs->num_log_addrs > 1)
1613 		for (i = 0; i < log_addrs->num_log_addrs; i++)
1614 			if (log_addrs->log_addr_type[i] ==
1615 					CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1616 				dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1617 				return -EINVAL;
1618 			}
1619 
1620 	for (i = 0; i < log_addrs->num_log_addrs; i++) {
1621 		const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1622 		u8 *features = log_addrs->features[i];
1623 		bool op_is_dev_features = false;
1624 		unsigned j;
1625 
1626 		log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1627 		if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1628 			dprintk(1, "duplicate logical address type\n");
1629 			return -EINVAL;
1630 		}
1631 		type_mask |= 1 << log_addrs->log_addr_type[i];
1632 		if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1633 		    (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1634 			/* Record already contains the playback functionality */
1635 			dprintk(1, "invalid record + playback combination\n");
1636 			return -EINVAL;
1637 		}
1638 		if (log_addrs->primary_device_type[i] >
1639 					CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1640 			dprintk(1, "unknown primary device type\n");
1641 			return -EINVAL;
1642 		}
1643 		if (log_addrs->primary_device_type[i] == 2) {
1644 			dprintk(1, "invalid primary device type\n");
1645 			return -EINVAL;
1646 		}
1647 		if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1648 			dprintk(1, "unknown logical address type\n");
1649 			return -EINVAL;
1650 		}
1651 		for (j = 0; j < feature_sz; j++) {
1652 			if ((features[j] & 0x80) == 0) {
1653 				if (op_is_dev_features)
1654 					break;
1655 				op_is_dev_features = true;
1656 			}
1657 		}
1658 		if (!op_is_dev_features || j == feature_sz) {
1659 			dprintk(1, "malformed features\n");
1660 			return -EINVAL;
1661 		}
1662 		/* Zero unused part of the feature array */
1663 		memset(features + j + 1, 0, feature_sz - j - 1);
1664 	}
1665 
1666 	if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1667 		if (log_addrs->num_log_addrs > 2) {
1668 			dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1669 			return -EINVAL;
1670 		}
1671 		if (log_addrs->num_log_addrs == 2) {
1672 			if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1673 					   (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1674 				dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1675 				return -EINVAL;
1676 			}
1677 			if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1678 					   (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1679 				dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1680 				return -EINVAL;
1681 			}
1682 		}
1683 	}
1684 
1685 	/* Zero unused LAs */
1686 	for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1687 		log_addrs->primary_device_type[i] = 0;
1688 		log_addrs->log_addr_type[i] = 0;
1689 		log_addrs->all_device_types[i] = 0;
1690 		memset(log_addrs->features[i], 0,
1691 		       sizeof(log_addrs->features[i]));
1692 	}
1693 
1694 	log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1695 	adap->log_addrs = *log_addrs;
1696 	if (adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1697 		cec_claim_log_addrs(adap, block);
1698 	return 0;
1699 }
1700 
cec_s_log_addrs(struct cec_adapter * adap,struct cec_log_addrs * log_addrs,bool block)1701 int cec_s_log_addrs(struct cec_adapter *adap,
1702 		    struct cec_log_addrs *log_addrs, bool block)
1703 {
1704 	int err;
1705 
1706 	mutex_lock(&adap->lock);
1707 	err = __cec_s_log_addrs(adap, log_addrs, block);
1708 	mutex_unlock(&adap->lock);
1709 	return err;
1710 }
1711 EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1712 
1713 /* High-level core CEC message handling */
1714 
1715 /* Fill in the Report Features message */
cec_fill_msg_report_features(struct cec_adapter * adap,struct cec_msg * msg,unsigned int la_idx)1716 static void cec_fill_msg_report_features(struct cec_adapter *adap,
1717 					 struct cec_msg *msg,
1718 					 unsigned int la_idx)
1719 {
1720 	const struct cec_log_addrs *las = &adap->log_addrs;
1721 	const u8 *features = las->features[la_idx];
1722 	bool op_is_dev_features = false;
1723 	unsigned int idx;
1724 
1725 	/* Report Features */
1726 	msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1727 	msg->len = 4;
1728 	msg->msg[1] = CEC_MSG_REPORT_FEATURES;
1729 	msg->msg[2] = adap->log_addrs.cec_version;
1730 	msg->msg[3] = las->all_device_types[la_idx];
1731 
1732 	/* Write RC Profiles first, then Device Features */
1733 	for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1734 		msg->msg[msg->len++] = features[idx];
1735 		if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1736 			if (op_is_dev_features)
1737 				break;
1738 			op_is_dev_features = true;
1739 		}
1740 	}
1741 }
1742 
1743 /* Transmit the Feature Abort message */
cec_feature_abort_reason(struct cec_adapter * adap,struct cec_msg * msg,u8 reason)1744 static int cec_feature_abort_reason(struct cec_adapter *adap,
1745 				    struct cec_msg *msg, u8 reason)
1746 {
1747 	struct cec_msg tx_msg = { };
1748 
1749 	/*
1750 	 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1751 	 * message!
1752 	 */
1753 	if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
1754 		return 0;
1755 	/* Don't Feature Abort messages from 'Unregistered' */
1756 	if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
1757 		return 0;
1758 	cec_msg_set_reply_to(&tx_msg, msg);
1759 	cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
1760 	return cec_transmit_msg(adap, &tx_msg, false);
1761 }
1762 
cec_feature_abort(struct cec_adapter * adap,struct cec_msg * msg)1763 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
1764 {
1765 	return cec_feature_abort_reason(adap, msg,
1766 					CEC_OP_ABORT_UNRECOGNIZED_OP);
1767 }
1768 
cec_feature_refused(struct cec_adapter * adap,struct cec_msg * msg)1769 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
1770 {
1771 	return cec_feature_abort_reason(adap, msg,
1772 					CEC_OP_ABORT_REFUSED);
1773 }
1774 
1775 /*
1776  * Called when a CEC message is received. This function will do any
1777  * necessary core processing. The is_reply bool is true if this message
1778  * is a reply to an earlier transmit.
1779  *
1780  * The message is either a broadcast message or a valid directed message.
1781  */
cec_receive_notify(struct cec_adapter * adap,struct cec_msg * msg,bool is_reply)1782 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
1783 			      bool is_reply)
1784 {
1785 	bool is_broadcast = cec_msg_is_broadcast(msg);
1786 	u8 dest_laddr = cec_msg_destination(msg);
1787 	u8 init_laddr = cec_msg_initiator(msg);
1788 	u8 devtype = cec_log_addr2dev(adap, dest_laddr);
1789 	int la_idx = cec_log_addr2idx(adap, dest_laddr);
1790 	bool from_unregistered = init_laddr == 0xf;
1791 	struct cec_msg tx_cec_msg = { };
1792 #ifdef CONFIG_MEDIA_CEC_RC
1793 	int scancode;
1794 #endif
1795 
1796 	dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1797 
1798 	/* If this is a CDC-Only device, then ignore any non-CDC messages */
1799 	if (cec_is_cdc_only(&adap->log_addrs) &&
1800 	    msg->msg[1] != CEC_MSG_CDC_MESSAGE)
1801 		return 0;
1802 
1803 	if (adap->ops->received) {
1804 		/* Allow drivers to process the message first */
1805 		if (adap->ops->received(adap, msg) != -ENOMSG)
1806 			return 0;
1807 	}
1808 
1809 	/*
1810 	 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
1811 	 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
1812 	 * handled by the CEC core, even if the passthrough mode is on.
1813 	 * The others are just ignored if passthrough mode is on.
1814 	 */
1815 	switch (msg->msg[1]) {
1816 	case CEC_MSG_GET_CEC_VERSION:
1817 	case CEC_MSG_ABORT:
1818 	case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
1819 	case CEC_MSG_GIVE_OSD_NAME:
1820 		/*
1821 		 * These messages reply with a directed message, so ignore if
1822 		 * the initiator is Unregistered.
1823 		 */
1824 		if (!adap->passthrough && from_unregistered)
1825 			return 0;
1826 		/* Fall through */
1827 	case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
1828 	case CEC_MSG_GIVE_FEATURES:
1829 	case CEC_MSG_GIVE_PHYSICAL_ADDR:
1830 		/*
1831 		 * Skip processing these messages if the passthrough mode
1832 		 * is on.
1833 		 */
1834 		if (adap->passthrough)
1835 			goto skip_processing;
1836 		/* Ignore if addressing is wrong */
1837 		if (is_broadcast)
1838 			return 0;
1839 		break;
1840 
1841 	case CEC_MSG_USER_CONTROL_PRESSED:
1842 	case CEC_MSG_USER_CONTROL_RELEASED:
1843 		/* Wrong addressing mode: don't process */
1844 		if (is_broadcast || from_unregistered)
1845 			goto skip_processing;
1846 		break;
1847 
1848 	case CEC_MSG_REPORT_PHYSICAL_ADDR:
1849 		/*
1850 		 * This message is always processed, regardless of the
1851 		 * passthrough setting.
1852 		 *
1853 		 * Exception: don't process if wrong addressing mode.
1854 		 */
1855 		if (!is_broadcast)
1856 			goto skip_processing;
1857 		break;
1858 
1859 	default:
1860 		break;
1861 	}
1862 
1863 	cec_msg_set_reply_to(&tx_cec_msg, msg);
1864 
1865 	switch (msg->msg[1]) {
1866 	/* The following messages are processed but still passed through */
1867 	case CEC_MSG_REPORT_PHYSICAL_ADDR: {
1868 		u16 pa = (msg->msg[2] << 8) | msg->msg[3];
1869 
1870 		if (!from_unregistered)
1871 			adap->phys_addrs[init_laddr] = pa;
1872 		dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
1873 			cec_phys_addr_exp(pa), init_laddr);
1874 		break;
1875 	}
1876 
1877 	case CEC_MSG_USER_CONTROL_PRESSED:
1878 		if (!(adap->capabilities & CEC_CAP_RC) ||
1879 		    !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
1880 			break;
1881 
1882 #ifdef CONFIG_MEDIA_CEC_RC
1883 		switch (msg->msg[2]) {
1884 		/*
1885 		 * Play function, this message can have variable length
1886 		 * depending on the specific play function that is used.
1887 		 */
1888 		case 0x60:
1889 			if (msg->len == 2)
1890 				scancode = msg->msg[2];
1891 			else
1892 				scancode = msg->msg[2] << 8 | msg->msg[3];
1893 			break;
1894 		/*
1895 		 * Other function messages that are not handled.
1896 		 * Currently the RC framework does not allow to supply an
1897 		 * additional parameter to a keypress. These "keys" contain
1898 		 * other information such as channel number, an input number
1899 		 * etc.
1900 		 * For the time being these messages are not processed by the
1901 		 * framework and are simply forwarded to the user space.
1902 		 */
1903 		case 0x56: case 0x57:
1904 		case 0x67: case 0x68: case 0x69: case 0x6a:
1905 			scancode = -1;
1906 			break;
1907 		default:
1908 			scancode = msg->msg[2];
1909 			break;
1910 		}
1911 
1912 		/* Was repeating, but keypress timed out */
1913 		if (adap->rc_repeating && !adap->rc->keypressed) {
1914 			adap->rc_repeating = false;
1915 			adap->rc_last_scancode = -1;
1916 		}
1917 		/* Different keypress from last time, ends repeat mode */
1918 		if (adap->rc_last_scancode != scancode) {
1919 			rc_keyup(adap->rc);
1920 			adap->rc_repeating = false;
1921 		}
1922 		/* We can't handle this scancode */
1923 		if (scancode < 0) {
1924 			adap->rc_last_scancode = scancode;
1925 			break;
1926 		}
1927 
1928 		/* Send key press */
1929 		rc_keydown(adap->rc, RC_PROTO_CEC, scancode, 0);
1930 
1931 		/* When in repeating mode, we're done */
1932 		if (adap->rc_repeating)
1933 			break;
1934 
1935 		/*
1936 		 * We are not repeating, but the new scancode is
1937 		 * the same as the last one, and this second key press is
1938 		 * within 550 ms (the 'Follower Safety Timeout') from the
1939 		 * previous key press, so we now enable the repeating mode.
1940 		 */
1941 		if (adap->rc_last_scancode == scancode &&
1942 		    msg->rx_ts - adap->rc_last_keypress < 550 * NSEC_PER_MSEC) {
1943 			adap->rc_repeating = true;
1944 			break;
1945 		}
1946 		/*
1947 		 * Not in repeating mode, so avoid triggering repeat mode
1948 		 * by calling keyup.
1949 		 */
1950 		rc_keyup(adap->rc);
1951 		adap->rc_last_scancode = scancode;
1952 		adap->rc_last_keypress = msg->rx_ts;
1953 #endif
1954 		break;
1955 
1956 	case CEC_MSG_USER_CONTROL_RELEASED:
1957 		if (!(adap->capabilities & CEC_CAP_RC) ||
1958 		    !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
1959 			break;
1960 #ifdef CONFIG_MEDIA_CEC_RC
1961 		rc_keyup(adap->rc);
1962 		adap->rc_repeating = false;
1963 		adap->rc_last_scancode = -1;
1964 #endif
1965 		break;
1966 
1967 	/*
1968 	 * The remaining messages are only processed if the passthrough mode
1969 	 * is off.
1970 	 */
1971 	case CEC_MSG_GET_CEC_VERSION:
1972 		cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
1973 		return cec_transmit_msg(adap, &tx_cec_msg, false);
1974 
1975 	case CEC_MSG_GIVE_PHYSICAL_ADDR:
1976 		/* Do nothing for CEC switches using addr 15 */
1977 		if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
1978 			return 0;
1979 		cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
1980 		return cec_transmit_msg(adap, &tx_cec_msg, false);
1981 
1982 	case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
1983 		if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
1984 			return cec_feature_abort(adap, msg);
1985 		cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
1986 		return cec_transmit_msg(adap, &tx_cec_msg, false);
1987 
1988 	case CEC_MSG_ABORT:
1989 		/* Do nothing for CEC switches */
1990 		if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
1991 			return 0;
1992 		return cec_feature_refused(adap, msg);
1993 
1994 	case CEC_MSG_GIVE_OSD_NAME: {
1995 		if (adap->log_addrs.osd_name[0] == 0)
1996 			return cec_feature_abort(adap, msg);
1997 		cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
1998 		return cec_transmit_msg(adap, &tx_cec_msg, false);
1999 	}
2000 
2001 	case CEC_MSG_GIVE_FEATURES:
2002 		if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
2003 			return cec_feature_abort(adap, msg);
2004 		cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
2005 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2006 
2007 	default:
2008 		/*
2009 		 * Unprocessed messages are aborted if userspace isn't doing
2010 		 * any processing either.
2011 		 */
2012 		if (!is_broadcast && !is_reply && !adap->follower_cnt &&
2013 		    !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
2014 			return cec_feature_abort(adap, msg);
2015 		break;
2016 	}
2017 
2018 skip_processing:
2019 	/* If this was a reply, then we're done, unless otherwise specified */
2020 	if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
2021 		return 0;
2022 
2023 	/*
2024 	 * Send to the exclusive follower if there is one, otherwise send
2025 	 * to all followers.
2026 	 */
2027 	if (adap->cec_follower)
2028 		cec_queue_msg_fh(adap->cec_follower, msg);
2029 	else
2030 		cec_queue_msg_followers(adap, msg);
2031 	return 0;
2032 }
2033 
2034 /*
2035  * Helper functions to keep track of the 'monitor all' use count.
2036  *
2037  * These functions are called with adap->lock held.
2038  */
cec_monitor_all_cnt_inc(struct cec_adapter * adap)2039 int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
2040 {
2041 	int ret = 0;
2042 
2043 	if (adap->monitor_all_cnt == 0)
2044 		ret = call_op(adap, adap_monitor_all_enable, 1);
2045 	if (ret == 0)
2046 		adap->monitor_all_cnt++;
2047 	return ret;
2048 }
2049 
cec_monitor_all_cnt_dec(struct cec_adapter * adap)2050 void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
2051 {
2052 	adap->monitor_all_cnt--;
2053 	if (adap->monitor_all_cnt == 0)
2054 		WARN_ON(call_op(adap, adap_monitor_all_enable, 0));
2055 }
2056 
2057 #ifdef CONFIG_DEBUG_FS
2058 /*
2059  * Log the current state of the CEC adapter.
2060  * Very useful for debugging.
2061  */
cec_adap_status(struct seq_file * file,void * priv)2062 int cec_adap_status(struct seq_file *file, void *priv)
2063 {
2064 	struct cec_adapter *adap = dev_get_drvdata(file->private);
2065 	struct cec_data *data;
2066 
2067 	mutex_lock(&adap->lock);
2068 	seq_printf(file, "configured: %d\n", adap->is_configured);
2069 	seq_printf(file, "configuring: %d\n", adap->is_configuring);
2070 	seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
2071 		   cec_phys_addr_exp(adap->phys_addr));
2072 	seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
2073 	seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
2074 	if (adap->cec_follower)
2075 		seq_printf(file, "has CEC follower%s\n",
2076 			   adap->passthrough ? " (in passthrough mode)" : "");
2077 	if (adap->cec_initiator)
2078 		seq_puts(file, "has CEC initiator\n");
2079 	if (adap->monitor_all_cnt)
2080 		seq_printf(file, "file handles in Monitor All mode: %u\n",
2081 			   adap->monitor_all_cnt);
2082 	if (adap->tx_timeouts) {
2083 		seq_printf(file, "transmit timeouts: %u\n",
2084 			   adap->tx_timeouts);
2085 		adap->tx_timeouts = 0;
2086 	}
2087 	data = adap->transmitting;
2088 	if (data)
2089 		seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
2090 			   data->msg.len, data->msg.msg, data->msg.reply,
2091 			   data->msg.timeout);
2092 	seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
2093 	list_for_each_entry(data, &adap->transmit_queue, list) {
2094 		seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
2095 			   data->msg.len, data->msg.msg, data->msg.reply,
2096 			   data->msg.timeout);
2097 	}
2098 	list_for_each_entry(data, &adap->wait_queue, list) {
2099 		seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
2100 			   data->msg.len, data->msg.msg, data->msg.reply,
2101 			   data->msg.timeout);
2102 	}
2103 
2104 	call_void_op(adap, adap_status, file);
2105 	mutex_unlock(&adap->lock);
2106 	return 0;
2107 }
2108 #endif
2109