• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * omap_vout_vrfb.c
3  *
4  * Copyright (C) 2010 Texas Instruments.
5  *
6  * This file is licensed under the terms of the GNU General Public License
7  * version 2. This program is licensed "as is" without any warranty of any
8  * kind, whether express or implied.
9  *
10  */
11 
12 #include <linux/sched.h>
13 #include <linux/platform_device.h>
14 #include <linux/videodev2.h>
15 #include <linux/slab.h>
16 
17 #include <media/videobuf-dma-contig.h>
18 #include <media/v4l2-device.h>
19 
20 #include <video/omapvrfb.h>
21 
22 #include "omap_voutdef.h"
23 #include "omap_voutlib.h"
24 #include "omap_vout_vrfb.h"
25 
26 #define OMAP_DMA_NO_DEVICE	0
27 
28 /*
29  * Function for allocating video buffers
30  */
omap_vout_allocate_vrfb_buffers(struct omap_vout_device * vout,unsigned int * count,int startindex)31 static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout,
32 		unsigned int *count, int startindex)
33 {
34 	int i, j;
35 
36 	for (i = 0; i < *count; i++) {
37 		if (!vout->smsshado_virt_addr[i]) {
38 			vout->smsshado_virt_addr[i] =
39 				omap_vout_alloc_buffer(vout->smsshado_size,
40 						&vout->smsshado_phy_addr[i]);
41 		}
42 		if (!vout->smsshado_virt_addr[i] && startindex != -1) {
43 			if (V4L2_MEMORY_MMAP == vout->memory && i >= startindex)
44 				break;
45 		}
46 		if (!vout->smsshado_virt_addr[i]) {
47 			for (j = 0; j < i; j++) {
48 				omap_vout_free_buffer(
49 						vout->smsshado_virt_addr[j],
50 						vout->smsshado_size);
51 				vout->smsshado_virt_addr[j] = 0;
52 				vout->smsshado_phy_addr[j] = 0;
53 			}
54 			*count = 0;
55 			return -ENOMEM;
56 		}
57 		memset((void *) vout->smsshado_virt_addr[i], 0,
58 				vout->smsshado_size);
59 	}
60 	return 0;
61 }
62 
63 /*
64  * Wakes up the application once the DMA transfer to VRFB space is completed.
65  */
omap_vout_vrfb_dma_tx_callback(void * data)66 static void omap_vout_vrfb_dma_tx_callback(void *data)
67 {
68 	struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data;
69 
70 	t->tx_status = 1;
71 	wake_up_interruptible(&t->wait);
72 }
73 
74 /*
75  * Free VRFB buffers
76  */
omap_vout_free_vrfb_buffers(struct omap_vout_device * vout)77 void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout)
78 {
79 	int j;
80 
81 	for (j = 0; j < VRFB_NUM_BUFS; j++) {
82 		if (vout->smsshado_virt_addr[j]) {
83 			omap_vout_free_buffer(vout->smsshado_virt_addr[j],
84 					      vout->smsshado_size);
85 			vout->smsshado_virt_addr[j] = 0;
86 			vout->smsshado_phy_addr[j] = 0;
87 		}
88 	}
89 }
90 
omap_vout_setup_vrfb_bufs(struct platform_device * pdev,int vid_num,bool static_vrfb_allocation)91 int omap_vout_setup_vrfb_bufs(struct platform_device *pdev, int vid_num,
92 			      bool static_vrfb_allocation)
93 {
94 	int ret = 0, i, j;
95 	struct omap_vout_device *vout;
96 	struct video_device *vfd;
97 	dma_cap_mask_t mask;
98 	int image_width, image_height;
99 	int vrfb_num_bufs = VRFB_NUM_BUFS;
100 	struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
101 	struct omap2video_device *vid_dev =
102 		container_of(v4l2_dev, struct omap2video_device, v4l2_dev);
103 
104 	vout = vid_dev->vouts[vid_num];
105 	vfd = vout->vfd;
106 
107 	for (i = 0; i < VRFB_NUM_BUFS; i++) {
108 		if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) {
109 			dev_info(&pdev->dev, ": VRFB allocation failed\n");
110 			for (j = 0; j < i; j++)
111 				omap_vrfb_release_ctx(&vout->vrfb_context[j]);
112 			ret = -ENOMEM;
113 			goto free_buffers;
114 		}
115 	}
116 
117 	/* Calculate VRFB memory size */
118 	/* allocate for worst case size */
119 	image_width = VID_MAX_WIDTH / TILE_SIZE;
120 	if (VID_MAX_WIDTH % TILE_SIZE)
121 		image_width++;
122 
123 	image_width = image_width * TILE_SIZE;
124 	image_height = VID_MAX_HEIGHT / TILE_SIZE;
125 
126 	if (VID_MAX_HEIGHT % TILE_SIZE)
127 		image_height++;
128 
129 	image_height = image_height * TILE_SIZE;
130 	vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2);
131 
132 	/*
133 	 * Request and Initialize DMA, for DMA based VRFB transfer
134 	 */
135 	dma_cap_zero(mask);
136 	dma_cap_set(DMA_INTERLEAVE, mask);
137 	vout->vrfb_dma_tx.chan = dma_request_chan_by_mask(&mask);
138 	if (IS_ERR(vout->vrfb_dma_tx.chan)) {
139 		vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
140 	} else {
141 		size_t xt_size = sizeof(struct dma_interleaved_template) +
142 				 sizeof(struct data_chunk);
143 
144 		vout->vrfb_dma_tx.xt = kzalloc(xt_size, GFP_KERNEL);
145 		if (!vout->vrfb_dma_tx.xt) {
146 			dma_release_channel(vout->vrfb_dma_tx.chan);
147 			vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
148 		}
149 	}
150 
151 	if (vout->vrfb_dma_tx.req_status == DMA_CHAN_NOT_ALLOTED)
152 		dev_info(&pdev->dev,
153 			 ": failed to allocate DMA Channel for video%d\n",
154 			 vfd->minor);
155 
156 	init_waitqueue_head(&vout->vrfb_dma_tx.wait);
157 
158 	/* statically allocated the VRFB buffer is done through
159 	   commands line aruments */
160 	if (static_vrfb_allocation) {
161 		if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) {
162 			ret =  -ENOMEM;
163 			goto release_vrfb_ctx;
164 		}
165 		vout->vrfb_static_allocation = true;
166 	}
167 	return 0;
168 
169 release_vrfb_ctx:
170 	for (j = 0; j < VRFB_NUM_BUFS; j++)
171 		omap_vrfb_release_ctx(&vout->vrfb_context[j]);
172 free_buffers:
173 	omap_vout_free_buffers(vout);
174 
175 	return ret;
176 }
177 
178 /*
179  * Release the VRFB context once the module exits
180  */
omap_vout_release_vrfb(struct omap_vout_device * vout)181 void omap_vout_release_vrfb(struct omap_vout_device *vout)
182 {
183 	int i;
184 
185 	for (i = 0; i < VRFB_NUM_BUFS; i++)
186 		omap_vrfb_release_ctx(&vout->vrfb_context[i]);
187 
188 	if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) {
189 		vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
190 		kfree(vout->vrfb_dma_tx.xt);
191 		dmaengine_terminate_sync(vout->vrfb_dma_tx.chan);
192 		dma_release_channel(vout->vrfb_dma_tx.chan);
193 	}
194 }
195 
196 /*
197  * Allocate the buffers for the VRFB space.  Data is copied from V4L2
198  * buffers to the VRFB buffers using the DMA engine.
199  */
omap_vout_vrfb_buffer_setup(struct omap_vout_device * vout,unsigned int * count,unsigned int startindex)200 int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout,
201 			  unsigned int *count, unsigned int startindex)
202 {
203 	int i;
204 	bool yuv_mode;
205 
206 	if (!is_rotation_enabled(vout))
207 		return 0;
208 
209 	/* If rotation is enabled, allocate memory for VRFB space also */
210 	*count = *count > VRFB_NUM_BUFS ? VRFB_NUM_BUFS : *count;
211 
212 	/* Allocate the VRFB buffers only if the buffers are not
213 	 * allocated during init time.
214 	 */
215 	if (!vout->vrfb_static_allocation)
216 		if (omap_vout_allocate_vrfb_buffers(vout, count, startindex))
217 			return -ENOMEM;
218 
219 	if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 ||
220 			vout->dss_mode == OMAP_DSS_COLOR_UYVY)
221 		yuv_mode = true;
222 	else
223 		yuv_mode = false;
224 
225 	for (i = 0; i < *count; i++)
226 		omap_vrfb_setup(&vout->vrfb_context[i],
227 				vout->smsshado_phy_addr[i], vout->pix.width,
228 				vout->pix.height, vout->bpp, yuv_mode);
229 
230 	return 0;
231 }
232 
omap_vout_prepare_vrfb(struct omap_vout_device * vout,struct videobuf_buffer * vb)233 int omap_vout_prepare_vrfb(struct omap_vout_device *vout,
234 			   struct videobuf_buffer *vb)
235 {
236 	struct dma_async_tx_descriptor *tx;
237 	enum dma_ctrl_flags flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK;
238 	struct dma_chan *chan = vout->vrfb_dma_tx.chan;
239 	struct dma_device *dmadev = chan->device;
240 	struct dma_interleaved_template *xt = vout->vrfb_dma_tx.xt;
241 	dma_cookie_t cookie;
242 	enum dma_status status;
243 	enum dss_rotation rotation;
244 	size_t dst_icg;
245 	u32 pixsize;
246 
247 	if (!is_rotation_enabled(vout))
248 		return 0;
249 
250 	/* If rotation is enabled, copy input buffer into VRFB
251 	 * memory space using DMA. We are copying input buffer
252 	 * into VRFB memory space of desired angle and DSS will
253 	 * read image VRFB memory for 0 degree angle
254 	 */
255 
256 	pixsize = vout->bpp * vout->vrfb_bpp;
257 	dst_icg = ((MAX_PIXELS_PER_LINE * pixsize) -
258 		  (vout->pix.width * vout->bpp)) + 1;
259 
260 	xt->src_start = vout->buf_phy_addr[vb->i];
261 	xt->dst_start = vout->vrfb_context[vb->i].paddr[0];
262 
263 	xt->numf = vout->pix.height;
264 	xt->frame_size = 1;
265 	xt->sgl[0].size = vout->pix.width * vout->bpp;
266 	xt->sgl[0].icg = dst_icg;
267 
268 	xt->dir = DMA_MEM_TO_MEM;
269 	xt->src_sgl = false;
270 	xt->src_inc = true;
271 	xt->dst_sgl = true;
272 	xt->dst_inc = true;
273 
274 	tx = dmadev->device_prep_interleaved_dma(chan, xt, flags);
275 	if (tx == NULL) {
276 		pr_err("%s: DMA interleaved prep error\n", __func__);
277 		return -EINVAL;
278 	}
279 
280 	tx->callback = omap_vout_vrfb_dma_tx_callback;
281 	tx->callback_param = &vout->vrfb_dma_tx;
282 
283 	cookie = dmaengine_submit(tx);
284 	if (dma_submit_error(cookie)) {
285 		pr_err("%s: dmaengine_submit failed (%d)\n", __func__, cookie);
286 		return -EINVAL;
287 	}
288 
289 	vout->vrfb_dma_tx.tx_status = 0;
290 	dma_async_issue_pending(chan);
291 
292 	wait_event_interruptible_timeout(vout->vrfb_dma_tx.wait,
293 					 vout->vrfb_dma_tx.tx_status == 1,
294 					 VRFB_TX_TIMEOUT);
295 
296 	status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
297 
298 	if (vout->vrfb_dma_tx.tx_status == 0) {
299 		pr_err("%s: Timeout while waiting for DMA\n", __func__);
300 		dmaengine_terminate_sync(chan);
301 		return -EINVAL;
302 	} else if (status != DMA_COMPLETE) {
303 		pr_err("%s: DMA completion %s status\n", __func__,
304 		       status == DMA_ERROR ? "error" : "busy");
305 		dmaengine_terminate_sync(chan);
306 		return -EINVAL;
307 	}
308 
309 	/* Store buffers physical address into an array. Addresses
310 	 * from this array will be used to configure DSS */
311 	rotation = calc_rotation(vout);
312 	vout->queued_buf_addr[vb->i] = (u8 *)
313 		vout->vrfb_context[vb->i].paddr[rotation];
314 	return 0;
315 }
316 
317 /*
318  * Calculate the buffer offsets from which the streaming should
319  * start. This offset calculation is mainly required because of
320  * the VRFB 32 pixels alignment with rotation.
321  */
omap_vout_calculate_vrfb_offset(struct omap_vout_device * vout)322 void omap_vout_calculate_vrfb_offset(struct omap_vout_device *vout)
323 {
324 	enum dss_rotation rotation;
325 	bool mirroring = vout->mirror;
326 	struct v4l2_rect *crop = &vout->crop;
327 	struct v4l2_pix_format *pix = &vout->pix;
328 	int *cropped_offset = &vout->cropped_offset;
329 	int vr_ps = 1, ps = 2, temp_ps = 2;
330 	int offset = 0, ctop = 0, cleft = 0, line_length = 0;
331 
332 	rotation = calc_rotation(vout);
333 
334 	if (V4L2_PIX_FMT_YUYV == pix->pixelformat ||
335 			V4L2_PIX_FMT_UYVY == pix->pixelformat) {
336 		if (is_rotation_enabled(vout)) {
337 			/*
338 			 * ps    - Actual pixel size for YUYV/UYVY for
339 			 *         VRFB/Mirroring is 4 bytes
340 			 * vr_ps - Virtually pixel size for YUYV/UYVY is
341 			 *         2 bytes
342 			 */
343 			ps = 4;
344 			vr_ps = 2;
345 		} else {
346 			ps = 2;	/* otherwise the pixel size is 2 byte */
347 		}
348 	} else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) {
349 		ps = 4;
350 	} else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) {
351 		ps = 3;
352 	}
353 	vout->ps = ps;
354 	vout->vr_ps = vr_ps;
355 
356 	if (is_rotation_enabled(vout)) {
357 		line_length = MAX_PIXELS_PER_LINE;
358 		ctop = (pix->height - crop->height) - crop->top;
359 		cleft = (pix->width - crop->width) - crop->left;
360 	} else {
361 		line_length = pix->width;
362 	}
363 	vout->line_length = line_length;
364 	switch (rotation) {
365 	case dss_rotation_90_degree:
366 		offset = vout->vrfb_context[0].yoffset *
367 			vout->vrfb_context[0].bytespp;
368 		temp_ps = ps / vr_ps;
369 		if (!mirroring) {
370 			*cropped_offset = offset + line_length *
371 				temp_ps * cleft + crop->top * temp_ps;
372 		} else {
373 			*cropped_offset = offset + line_length * temp_ps *
374 				cleft + crop->top * temp_ps + (line_length *
375 				((crop->width / (vr_ps)) - 1) * ps);
376 		}
377 		break;
378 	case dss_rotation_180_degree:
379 		offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset *
380 			vout->vrfb_context[0].bytespp) +
381 			(vout->vrfb_context[0].xoffset *
382 			vout->vrfb_context[0].bytespp));
383 		if (!mirroring) {
384 			*cropped_offset = offset + (line_length * ps * ctop) +
385 				(cleft / vr_ps) * ps;
386 
387 		} else {
388 			*cropped_offset = offset + (line_length * ps * ctop) +
389 				(cleft / vr_ps) * ps + (line_length *
390 				(crop->height - 1) * ps);
391 		}
392 		break;
393 	case dss_rotation_270_degree:
394 		offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset *
395 			vout->vrfb_context[0].bytespp;
396 		temp_ps = ps / vr_ps;
397 		if (!mirroring) {
398 			*cropped_offset = offset + line_length *
399 			    temp_ps * crop->left + ctop * ps;
400 		} else {
401 			*cropped_offset = offset + line_length *
402 				temp_ps * crop->left + ctop * ps +
403 				(line_length * ((crop->width / vr_ps) - 1) *
404 				 ps);
405 		}
406 		break;
407 	case dss_rotation_0_degree:
408 		if (!mirroring) {
409 			*cropped_offset = (line_length * ps) *
410 				crop->top + (crop->left / vr_ps) * ps;
411 		} else {
412 			*cropped_offset = (line_length * ps) *
413 				crop->top + (crop->left / vr_ps) * ps +
414 				(line_length * (crop->height - 1) * ps);
415 		}
416 		break;
417 	default:
418 		*cropped_offset = (line_length * ps * crop->top) /
419 			vr_ps + (crop->left * ps) / vr_ps +
420 			((crop->width / vr_ps) - 1) * ps;
421 		break;
422 	}
423 }
424