• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * isp.c
3  *
4  * TI OMAP3 ISP - Core
5  *
6  * Copyright (C) 2006-2010 Nokia Corporation
7  * Copyright (C) 2007-2009 Texas Instruments, Inc.
8  *
9  * Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10  *	     Sakari Ailus <sakari.ailus@iki.fi>
11  *
12  * Contributors:
13  *	Laurent Pinchart <laurent.pinchart@ideasonboard.com>
14  *	Sakari Ailus <sakari.ailus@iki.fi>
15  *	David Cohen <dacohen@gmail.com>
16  *	Stanimir Varbanov <svarbanov@mm-sol.com>
17  *	Vimarsh Zutshi <vimarsh.zutshi@gmail.com>
18  *	Tuukka Toivonen <tuukkat76@gmail.com>
19  *	Sergio Aguirre <saaguirre@ti.com>
20  *	Antti Koskipaa <akoskipa@gmail.com>
21  *	Ivan T. Ivanov <iivanov@mm-sol.com>
22  *	RaniSuneela <r-m@ti.com>
23  *	Atanas Filipov <afilipov@mm-sol.com>
24  *	Gjorgji Rosikopulos <grosikopulos@mm-sol.com>
25  *	Hiroshi DOYU <hiroshi.doyu@nokia.com>
26  *	Nayden Kanchev <nkanchev@mm-sol.com>
27  *	Phil Carmody <ext-phil.2.carmody@nokia.com>
28  *	Artem Bityutskiy <artem.bityutskiy@nokia.com>
29  *	Dominic Curran <dcurran@ti.com>
30  *	Ilkka Myllyperkio <ilkka.myllyperkio@sofica.fi>
31  *	Pallavi Kulkarni <p-kulkarni@ti.com>
32  *	Vaibhav Hiremath <hvaibhav@ti.com>
33  *	Mohit Jalori <mjalori@ti.com>
34  *	Sameer Venkatraman <sameerv@ti.com>
35  *	Senthilvadivu Guruswamy <svadivu@ti.com>
36  *	Thara Gopinath <thara@ti.com>
37  *	Toni Leinonen <toni.leinonen@nokia.com>
38  *	Troy Laramy <t-laramy@ti.com>
39  *
40  * This program is free software; you can redistribute it and/or modify
41  * it under the terms of the GNU General Public License version 2 as
42  * published by the Free Software Foundation.
43  */
44 
45 #include <asm/cacheflush.h>
46 
47 #include <linux/clk.h>
48 #include <linux/clkdev.h>
49 #include <linux/delay.h>
50 #include <linux/device.h>
51 #include <linux/dma-mapping.h>
52 #include <linux/i2c.h>
53 #include <linux/interrupt.h>
54 #include <linux/mfd/syscon.h>
55 #include <linux/module.h>
56 #include <linux/omap-iommu.h>
57 #include <linux/platform_device.h>
58 #include <linux/property.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/slab.h>
61 #include <linux/sched.h>
62 #include <linux/vmalloc.h>
63 
64 #include <asm/dma-iommu.h>
65 
66 #include <media/v4l2-common.h>
67 #include <media/v4l2-fwnode.h>
68 #include <media/v4l2-device.h>
69 #include <media/v4l2-mc.h>
70 
71 #include "isp.h"
72 #include "ispreg.h"
73 #include "ispccdc.h"
74 #include "isppreview.h"
75 #include "ispresizer.h"
76 #include "ispcsi2.h"
77 #include "ispccp2.h"
78 #include "isph3a.h"
79 #include "isphist.h"
80 
81 static unsigned int autoidle;
82 module_param(autoidle, int, 0444);
83 MODULE_PARM_DESC(autoidle, "Enable OMAP3ISP AUTOIDLE support");
84 
85 static void isp_save_ctx(struct isp_device *isp);
86 
87 static void isp_restore_ctx(struct isp_device *isp);
88 
89 static const struct isp_res_mapping isp_res_maps[] = {
90 	{
91 		.isp_rev = ISP_REVISION_2_0,
92 		.offset = {
93 			/* first MMIO area */
94 			0x0000, /* base, len 0x0070 */
95 			0x0400, /* ccp2, len 0x01f0 */
96 			0x0600, /* ccdc, len 0x00a8 */
97 			0x0a00, /* hist, len 0x0048 */
98 			0x0c00, /* h3a, len 0x0060 */
99 			0x0e00, /* preview, len 0x00a0 */
100 			0x1000, /* resizer, len 0x00ac */
101 			0x1200, /* sbl, len 0x00fc */
102 			/* second MMIO area */
103 			0x0000, /* csi2a, len 0x0170 */
104 			0x0170, /* csiphy2, len 0x000c */
105 		},
106 		.phy_type = ISP_PHY_TYPE_3430,
107 	},
108 	{
109 		.isp_rev = ISP_REVISION_15_0,
110 		.offset = {
111 			/* first MMIO area */
112 			0x0000, /* base, len 0x0070 */
113 			0x0400, /* ccp2, len 0x01f0 */
114 			0x0600, /* ccdc, len 0x00a8 */
115 			0x0a00, /* hist, len 0x0048 */
116 			0x0c00, /* h3a, len 0x0060 */
117 			0x0e00, /* preview, len 0x00a0 */
118 			0x1000, /* resizer, len 0x00ac */
119 			0x1200, /* sbl, len 0x00fc */
120 			/* second MMIO area */
121 			0x0000, /* csi2a, len 0x0170 (1st area) */
122 			0x0170, /* csiphy2, len 0x000c */
123 			0x01c0, /* csi2a, len 0x0040 (2nd area) */
124 			0x0400, /* csi2c, len 0x0170 (1st area) */
125 			0x0570, /* csiphy1, len 0x000c */
126 			0x05c0, /* csi2c, len 0x0040 (2nd area) */
127 		},
128 		.phy_type = ISP_PHY_TYPE_3630,
129 	},
130 };
131 
132 /* Structure for saving/restoring ISP module registers */
133 static struct isp_reg isp_reg_list[] = {
134 	{OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG, 0},
135 	{OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, 0},
136 	{OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL, 0},
137 	{0, ISP_TOK_TERM, 0}
138 };
139 
140 /*
141  * omap3isp_flush - Post pending L3 bus writes by doing a register readback
142  * @isp: OMAP3 ISP device
143  *
144  * In order to force posting of pending writes, we need to write and
145  * readback the same register, in this case the revision register.
146  *
147  * See this link for reference:
148  *   http://www.mail-archive.com/linux-omap@vger.kernel.org/msg08149.html
149  */
omap3isp_flush(struct isp_device * isp)150 void omap3isp_flush(struct isp_device *isp)
151 {
152 	isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
153 	isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
154 }
155 
156 /* -----------------------------------------------------------------------------
157  * XCLK
158  */
159 
160 #define to_isp_xclk(_hw)	container_of(_hw, struct isp_xclk, hw)
161 
isp_xclk_update(struct isp_xclk * xclk,u32 divider)162 static void isp_xclk_update(struct isp_xclk *xclk, u32 divider)
163 {
164 	switch (xclk->id) {
165 	case ISP_XCLK_A:
166 		isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
167 				ISPTCTRL_CTRL_DIVA_MASK,
168 				divider << ISPTCTRL_CTRL_DIVA_SHIFT);
169 		break;
170 	case ISP_XCLK_B:
171 		isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
172 				ISPTCTRL_CTRL_DIVB_MASK,
173 				divider << ISPTCTRL_CTRL_DIVB_SHIFT);
174 		break;
175 	}
176 }
177 
isp_xclk_prepare(struct clk_hw * hw)178 static int isp_xclk_prepare(struct clk_hw *hw)
179 {
180 	struct isp_xclk *xclk = to_isp_xclk(hw);
181 
182 	omap3isp_get(xclk->isp);
183 
184 	return 0;
185 }
186 
isp_xclk_unprepare(struct clk_hw * hw)187 static void isp_xclk_unprepare(struct clk_hw *hw)
188 {
189 	struct isp_xclk *xclk = to_isp_xclk(hw);
190 
191 	omap3isp_put(xclk->isp);
192 }
193 
isp_xclk_enable(struct clk_hw * hw)194 static int isp_xclk_enable(struct clk_hw *hw)
195 {
196 	struct isp_xclk *xclk = to_isp_xclk(hw);
197 	unsigned long flags;
198 
199 	spin_lock_irqsave(&xclk->lock, flags);
200 	isp_xclk_update(xclk, xclk->divider);
201 	xclk->enabled = true;
202 	spin_unlock_irqrestore(&xclk->lock, flags);
203 
204 	return 0;
205 }
206 
isp_xclk_disable(struct clk_hw * hw)207 static void isp_xclk_disable(struct clk_hw *hw)
208 {
209 	struct isp_xclk *xclk = to_isp_xclk(hw);
210 	unsigned long flags;
211 
212 	spin_lock_irqsave(&xclk->lock, flags);
213 	isp_xclk_update(xclk, 0);
214 	xclk->enabled = false;
215 	spin_unlock_irqrestore(&xclk->lock, flags);
216 }
217 
isp_xclk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)218 static unsigned long isp_xclk_recalc_rate(struct clk_hw *hw,
219 					  unsigned long parent_rate)
220 {
221 	struct isp_xclk *xclk = to_isp_xclk(hw);
222 
223 	return parent_rate / xclk->divider;
224 }
225 
isp_xclk_calc_divider(unsigned long * rate,unsigned long parent_rate)226 static u32 isp_xclk_calc_divider(unsigned long *rate, unsigned long parent_rate)
227 {
228 	u32 divider;
229 
230 	if (*rate >= parent_rate) {
231 		*rate = parent_rate;
232 		return ISPTCTRL_CTRL_DIV_BYPASS;
233 	}
234 
235 	if (*rate == 0)
236 		*rate = 1;
237 
238 	divider = DIV_ROUND_CLOSEST(parent_rate, *rate);
239 	if (divider >= ISPTCTRL_CTRL_DIV_BYPASS)
240 		divider = ISPTCTRL_CTRL_DIV_BYPASS - 1;
241 
242 	*rate = parent_rate / divider;
243 	return divider;
244 }
245 
isp_xclk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)246 static long isp_xclk_round_rate(struct clk_hw *hw, unsigned long rate,
247 				unsigned long *parent_rate)
248 {
249 	isp_xclk_calc_divider(&rate, *parent_rate);
250 	return rate;
251 }
252 
isp_xclk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)253 static int isp_xclk_set_rate(struct clk_hw *hw, unsigned long rate,
254 			     unsigned long parent_rate)
255 {
256 	struct isp_xclk *xclk = to_isp_xclk(hw);
257 	unsigned long flags;
258 	u32 divider;
259 
260 	divider = isp_xclk_calc_divider(&rate, parent_rate);
261 
262 	spin_lock_irqsave(&xclk->lock, flags);
263 
264 	xclk->divider = divider;
265 	if (xclk->enabled)
266 		isp_xclk_update(xclk, divider);
267 
268 	spin_unlock_irqrestore(&xclk->lock, flags);
269 
270 	dev_dbg(xclk->isp->dev, "%s: cam_xclk%c set to %lu Hz (div %u)\n",
271 		__func__, xclk->id == ISP_XCLK_A ? 'a' : 'b', rate, divider);
272 	return 0;
273 }
274 
275 static const struct clk_ops isp_xclk_ops = {
276 	.prepare = isp_xclk_prepare,
277 	.unprepare = isp_xclk_unprepare,
278 	.enable = isp_xclk_enable,
279 	.disable = isp_xclk_disable,
280 	.recalc_rate = isp_xclk_recalc_rate,
281 	.round_rate = isp_xclk_round_rate,
282 	.set_rate = isp_xclk_set_rate,
283 };
284 
285 static const char *isp_xclk_parent_name = "cam_mclk";
286 
287 static const struct clk_init_data isp_xclk_init_data = {
288 	.name = "cam_xclk",
289 	.ops = &isp_xclk_ops,
290 	.parent_names = &isp_xclk_parent_name,
291 	.num_parents = 1,
292 };
293 
isp_xclk_src_get(struct of_phandle_args * clkspec,void * data)294 static struct clk *isp_xclk_src_get(struct of_phandle_args *clkspec, void *data)
295 {
296 	unsigned int idx = clkspec->args[0];
297 	struct isp_device *isp = data;
298 
299 	if (idx >= ARRAY_SIZE(isp->xclks))
300 		return ERR_PTR(-ENOENT);
301 
302 	return isp->xclks[idx].clk;
303 }
304 
isp_xclk_init(struct isp_device * isp)305 static int isp_xclk_init(struct isp_device *isp)
306 {
307 	struct device_node *np = isp->dev->of_node;
308 	struct clk_init_data init = { 0 };
309 	unsigned int i;
310 
311 	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i)
312 		isp->xclks[i].clk = ERR_PTR(-EINVAL);
313 
314 	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
315 		struct isp_xclk *xclk = &isp->xclks[i];
316 
317 		xclk->isp = isp;
318 		xclk->id = i == 0 ? ISP_XCLK_A : ISP_XCLK_B;
319 		xclk->divider = 1;
320 		spin_lock_init(&xclk->lock);
321 
322 		init.name = i == 0 ? "cam_xclka" : "cam_xclkb";
323 		init.ops = &isp_xclk_ops;
324 		init.parent_names = &isp_xclk_parent_name;
325 		init.num_parents = 1;
326 
327 		xclk->hw.init = &init;
328 		/*
329 		 * The first argument is NULL in order to avoid circular
330 		 * reference, as this driver takes reference on the
331 		 * sensor subdevice modules and the sensors would take
332 		 * reference on this module through clk_get().
333 		 */
334 		xclk->clk = clk_register(NULL, &xclk->hw);
335 		if (IS_ERR(xclk->clk))
336 			return PTR_ERR(xclk->clk);
337 	}
338 
339 	if (np)
340 		of_clk_add_provider(np, isp_xclk_src_get, isp);
341 
342 	return 0;
343 }
344 
isp_xclk_cleanup(struct isp_device * isp)345 static void isp_xclk_cleanup(struct isp_device *isp)
346 {
347 	struct device_node *np = isp->dev->of_node;
348 	unsigned int i;
349 
350 	if (np)
351 		of_clk_del_provider(np);
352 
353 	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
354 		struct isp_xclk *xclk = &isp->xclks[i];
355 
356 		if (!IS_ERR(xclk->clk))
357 			clk_unregister(xclk->clk);
358 	}
359 }
360 
361 /* -----------------------------------------------------------------------------
362  * Interrupts
363  */
364 
365 /*
366  * isp_enable_interrupts - Enable ISP interrupts.
367  * @isp: OMAP3 ISP device
368  */
isp_enable_interrupts(struct isp_device * isp)369 static void isp_enable_interrupts(struct isp_device *isp)
370 {
371 	static const u32 irq = IRQ0ENABLE_CSIA_IRQ
372 			     | IRQ0ENABLE_CSIB_IRQ
373 			     | IRQ0ENABLE_CCDC_LSC_PREF_ERR_IRQ
374 			     | IRQ0ENABLE_CCDC_LSC_DONE_IRQ
375 			     | IRQ0ENABLE_CCDC_VD0_IRQ
376 			     | IRQ0ENABLE_CCDC_VD1_IRQ
377 			     | IRQ0ENABLE_HS_VS_IRQ
378 			     | IRQ0ENABLE_HIST_DONE_IRQ
379 			     | IRQ0ENABLE_H3A_AWB_DONE_IRQ
380 			     | IRQ0ENABLE_H3A_AF_DONE_IRQ
381 			     | IRQ0ENABLE_PRV_DONE_IRQ
382 			     | IRQ0ENABLE_RSZ_DONE_IRQ;
383 
384 	isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
385 	isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
386 }
387 
388 /*
389  * isp_disable_interrupts - Disable ISP interrupts.
390  * @isp: OMAP3 ISP device
391  */
isp_disable_interrupts(struct isp_device * isp)392 static void isp_disable_interrupts(struct isp_device *isp)
393 {
394 	isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
395 }
396 
397 /*
398  * isp_core_init - ISP core settings
399  * @isp: OMAP3 ISP device
400  * @idle: Consider idle state.
401  *
402  * Set the power settings for the ISP and SBL bus and configure the HS/VS
403  * interrupt source.
404  *
405  * We need to configure the HS/VS interrupt source before interrupts get
406  * enabled, as the sensor might be free-running and the ISP default setting
407  * (HS edge) would put an unnecessary burden on the CPU.
408  */
isp_core_init(struct isp_device * isp,int idle)409 static void isp_core_init(struct isp_device *isp, int idle)
410 {
411 	isp_reg_writel(isp,
412 		       ((idle ? ISP_SYSCONFIG_MIDLEMODE_SMARTSTANDBY :
413 				ISP_SYSCONFIG_MIDLEMODE_FORCESTANDBY) <<
414 			ISP_SYSCONFIG_MIDLEMODE_SHIFT) |
415 			((isp->revision == ISP_REVISION_15_0) ?
416 			  ISP_SYSCONFIG_AUTOIDLE : 0),
417 		       OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
418 
419 	isp_reg_writel(isp,
420 		       (isp->autoidle ? ISPCTRL_SBL_AUTOIDLE : 0) |
421 		       ISPCTRL_SYNC_DETECT_VSRISE,
422 		       OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
423 }
424 
425 /*
426  * Configure the bridge and lane shifter. Valid inputs are
427  *
428  * CCDC_INPUT_PARALLEL: Parallel interface
429  * CCDC_INPUT_CSI2A: CSI2a receiver
430  * CCDC_INPUT_CCP2B: CCP2b receiver
431  * CCDC_INPUT_CSI2C: CSI2c receiver
432  *
433  * The bridge and lane shifter are configured according to the selected input
434  * and the ISP platform data.
435  */
omap3isp_configure_bridge(struct isp_device * isp,enum ccdc_input_entity input,const struct isp_parallel_cfg * parcfg,unsigned int shift,unsigned int bridge)436 void omap3isp_configure_bridge(struct isp_device *isp,
437 			       enum ccdc_input_entity input,
438 			       const struct isp_parallel_cfg *parcfg,
439 			       unsigned int shift, unsigned int bridge)
440 {
441 	u32 ispctrl_val;
442 
443 	ispctrl_val  = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
444 	ispctrl_val &= ~ISPCTRL_SHIFT_MASK;
445 	ispctrl_val &= ~ISPCTRL_PAR_CLK_POL_INV;
446 	ispctrl_val &= ~ISPCTRL_PAR_SER_CLK_SEL_MASK;
447 	ispctrl_val &= ~ISPCTRL_PAR_BRIDGE_MASK;
448 	ispctrl_val |= bridge;
449 
450 	switch (input) {
451 	case CCDC_INPUT_PARALLEL:
452 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_PARALLEL;
453 		ispctrl_val |= parcfg->clk_pol << ISPCTRL_PAR_CLK_POL_SHIFT;
454 		shift += parcfg->data_lane_shift;
455 		break;
456 
457 	case CCDC_INPUT_CSI2A:
458 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIA;
459 		break;
460 
461 	case CCDC_INPUT_CCP2B:
462 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIB;
463 		break;
464 
465 	case CCDC_INPUT_CSI2C:
466 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIC;
467 		break;
468 
469 	default:
470 		return;
471 	}
472 
473 	ispctrl_val |= ((shift/2) << ISPCTRL_SHIFT_SHIFT) & ISPCTRL_SHIFT_MASK;
474 
475 	isp_reg_writel(isp, ispctrl_val, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
476 }
477 
omap3isp_hist_dma_done(struct isp_device * isp)478 void omap3isp_hist_dma_done(struct isp_device *isp)
479 {
480 	if (omap3isp_ccdc_busy(&isp->isp_ccdc) ||
481 	    omap3isp_stat_pcr_busy(&isp->isp_hist)) {
482 		/* Histogram cannot be enabled in this frame anymore */
483 		atomic_set(&isp->isp_hist.buf_err, 1);
484 		dev_dbg(isp->dev,
485 			"hist: Out of synchronization with CCDC. Ignoring next buffer.\n");
486 	}
487 }
488 
isp_isr_dbg(struct isp_device * isp,u32 irqstatus)489 static inline void isp_isr_dbg(struct isp_device *isp, u32 irqstatus)
490 {
491 	static const char *name[] = {
492 		"CSIA_IRQ",
493 		"res1",
494 		"res2",
495 		"CSIB_LCM_IRQ",
496 		"CSIB_IRQ",
497 		"res5",
498 		"res6",
499 		"res7",
500 		"CCDC_VD0_IRQ",
501 		"CCDC_VD1_IRQ",
502 		"CCDC_VD2_IRQ",
503 		"CCDC_ERR_IRQ",
504 		"H3A_AF_DONE_IRQ",
505 		"H3A_AWB_DONE_IRQ",
506 		"res14",
507 		"res15",
508 		"HIST_DONE_IRQ",
509 		"CCDC_LSC_DONE",
510 		"CCDC_LSC_PREFETCH_COMPLETED",
511 		"CCDC_LSC_PREFETCH_ERROR",
512 		"PRV_DONE_IRQ",
513 		"CBUFF_IRQ",
514 		"res22",
515 		"res23",
516 		"RSZ_DONE_IRQ",
517 		"OVF_IRQ",
518 		"res26",
519 		"res27",
520 		"MMU_ERR_IRQ",
521 		"OCP_ERR_IRQ",
522 		"SEC_ERR_IRQ",
523 		"HS_VS_IRQ",
524 	};
525 	int i;
526 
527 	dev_dbg(isp->dev, "ISP IRQ: ");
528 
529 	for (i = 0; i < ARRAY_SIZE(name); i++) {
530 		if ((1 << i) & irqstatus)
531 			printk(KERN_CONT "%s ", name[i]);
532 	}
533 	printk(KERN_CONT "\n");
534 }
535 
isp_isr_sbl(struct isp_device * isp)536 static void isp_isr_sbl(struct isp_device *isp)
537 {
538 	struct device *dev = isp->dev;
539 	struct isp_pipeline *pipe;
540 	u32 sbl_pcr;
541 
542 	/*
543 	 * Handle shared buffer logic overflows for video buffers.
544 	 * ISPSBL_PCR_CCDCPRV_2_RSZ_OVF can be safely ignored.
545 	 */
546 	sbl_pcr = isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
547 	isp_reg_writel(isp, sbl_pcr, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
548 	sbl_pcr &= ~ISPSBL_PCR_CCDCPRV_2_RSZ_OVF;
549 
550 	if (sbl_pcr)
551 		dev_dbg(dev, "SBL overflow (PCR = 0x%08x)\n", sbl_pcr);
552 
553 	if (sbl_pcr & ISPSBL_PCR_CSIB_WBL_OVF) {
554 		pipe = to_isp_pipeline(&isp->isp_ccp2.subdev.entity);
555 		if (pipe != NULL)
556 			pipe->error = true;
557 	}
558 
559 	if (sbl_pcr & ISPSBL_PCR_CSIA_WBL_OVF) {
560 		pipe = to_isp_pipeline(&isp->isp_csi2a.subdev.entity);
561 		if (pipe != NULL)
562 			pipe->error = true;
563 	}
564 
565 	if (sbl_pcr & ISPSBL_PCR_CCDC_WBL_OVF) {
566 		pipe = to_isp_pipeline(&isp->isp_ccdc.subdev.entity);
567 		if (pipe != NULL)
568 			pipe->error = true;
569 	}
570 
571 	if (sbl_pcr & ISPSBL_PCR_PRV_WBL_OVF) {
572 		pipe = to_isp_pipeline(&isp->isp_prev.subdev.entity);
573 		if (pipe != NULL)
574 			pipe->error = true;
575 	}
576 
577 	if (sbl_pcr & (ISPSBL_PCR_RSZ1_WBL_OVF
578 		       | ISPSBL_PCR_RSZ2_WBL_OVF
579 		       | ISPSBL_PCR_RSZ3_WBL_OVF
580 		       | ISPSBL_PCR_RSZ4_WBL_OVF)) {
581 		pipe = to_isp_pipeline(&isp->isp_res.subdev.entity);
582 		if (pipe != NULL)
583 			pipe->error = true;
584 	}
585 
586 	if (sbl_pcr & ISPSBL_PCR_H3A_AF_WBL_OVF)
587 		omap3isp_stat_sbl_overflow(&isp->isp_af);
588 
589 	if (sbl_pcr & ISPSBL_PCR_H3A_AEAWB_WBL_OVF)
590 		omap3isp_stat_sbl_overflow(&isp->isp_aewb);
591 }
592 
593 /*
594  * isp_isr - Interrupt Service Routine for Camera ISP module.
595  * @irq: Not used currently.
596  * @_isp: Pointer to the OMAP3 ISP device
597  *
598  * Handles the corresponding callback if plugged in.
599  */
isp_isr(int irq,void * _isp)600 static irqreturn_t isp_isr(int irq, void *_isp)
601 {
602 	static const u32 ccdc_events = IRQ0STATUS_CCDC_LSC_PREF_ERR_IRQ |
603 				       IRQ0STATUS_CCDC_LSC_DONE_IRQ |
604 				       IRQ0STATUS_CCDC_VD0_IRQ |
605 				       IRQ0STATUS_CCDC_VD1_IRQ |
606 				       IRQ0STATUS_HS_VS_IRQ;
607 	struct isp_device *isp = _isp;
608 	u32 irqstatus;
609 
610 	irqstatus = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
611 	isp_reg_writel(isp, irqstatus, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
612 
613 	isp_isr_sbl(isp);
614 
615 	if (irqstatus & IRQ0STATUS_CSIA_IRQ)
616 		omap3isp_csi2_isr(&isp->isp_csi2a);
617 
618 	if (irqstatus & IRQ0STATUS_CSIB_IRQ)
619 		omap3isp_ccp2_isr(&isp->isp_ccp2);
620 
621 	if (irqstatus & IRQ0STATUS_CCDC_VD0_IRQ) {
622 		if (isp->isp_ccdc.output & CCDC_OUTPUT_PREVIEW)
623 			omap3isp_preview_isr_frame_sync(&isp->isp_prev);
624 		if (isp->isp_ccdc.output & CCDC_OUTPUT_RESIZER)
625 			omap3isp_resizer_isr_frame_sync(&isp->isp_res);
626 		omap3isp_stat_isr_frame_sync(&isp->isp_aewb);
627 		omap3isp_stat_isr_frame_sync(&isp->isp_af);
628 		omap3isp_stat_isr_frame_sync(&isp->isp_hist);
629 	}
630 
631 	if (irqstatus & ccdc_events)
632 		omap3isp_ccdc_isr(&isp->isp_ccdc, irqstatus & ccdc_events);
633 
634 	if (irqstatus & IRQ0STATUS_PRV_DONE_IRQ) {
635 		if (isp->isp_prev.output & PREVIEW_OUTPUT_RESIZER)
636 			omap3isp_resizer_isr_frame_sync(&isp->isp_res);
637 		omap3isp_preview_isr(&isp->isp_prev);
638 	}
639 
640 	if (irqstatus & IRQ0STATUS_RSZ_DONE_IRQ)
641 		omap3isp_resizer_isr(&isp->isp_res);
642 
643 	if (irqstatus & IRQ0STATUS_H3A_AWB_DONE_IRQ)
644 		omap3isp_stat_isr(&isp->isp_aewb);
645 
646 	if (irqstatus & IRQ0STATUS_H3A_AF_DONE_IRQ)
647 		omap3isp_stat_isr(&isp->isp_af);
648 
649 	if (irqstatus & IRQ0STATUS_HIST_DONE_IRQ)
650 		omap3isp_stat_isr(&isp->isp_hist);
651 
652 	omap3isp_flush(isp);
653 
654 #if defined(DEBUG) && defined(ISP_ISR_DEBUG)
655 	isp_isr_dbg(isp, irqstatus);
656 #endif
657 
658 	return IRQ_HANDLED;
659 }
660 
661 static const struct media_device_ops isp_media_ops = {
662 	.link_notify = v4l2_pipeline_link_notify,
663 };
664 
665 /* -----------------------------------------------------------------------------
666  * Pipeline stream management
667  */
668 
669 /*
670  * isp_pipeline_enable - Enable streaming on a pipeline
671  * @pipe: ISP pipeline
672  * @mode: Stream mode (single shot or continuous)
673  *
674  * Walk the entities chain starting at the pipeline output video node and start
675  * all modules in the chain in the given mode.
676  *
677  * Return 0 if successful, or the return value of the failed video::s_stream
678  * operation otherwise.
679  */
isp_pipeline_enable(struct isp_pipeline * pipe,enum isp_pipeline_stream_state mode)680 static int isp_pipeline_enable(struct isp_pipeline *pipe,
681 			       enum isp_pipeline_stream_state mode)
682 {
683 	struct isp_device *isp = pipe->output->isp;
684 	struct media_entity *entity;
685 	struct media_pad *pad;
686 	struct v4l2_subdev *subdev;
687 	unsigned long flags;
688 	int ret;
689 
690 	/* Refuse to start streaming if an entity included in the pipeline has
691 	 * crashed. This check must be performed before the loop below to avoid
692 	 * starting entities if the pipeline won't start anyway (those entities
693 	 * would then likely fail to stop, making the problem worse).
694 	 */
695 	if (media_entity_enum_intersects(&pipe->ent_enum, &isp->crashed))
696 		return -EIO;
697 
698 	spin_lock_irqsave(&pipe->lock, flags);
699 	pipe->state &= ~(ISP_PIPELINE_IDLE_INPUT | ISP_PIPELINE_IDLE_OUTPUT);
700 	spin_unlock_irqrestore(&pipe->lock, flags);
701 
702 	pipe->do_propagation = false;
703 
704 	entity = &pipe->output->video.entity;
705 	while (1) {
706 		pad = &entity->pads[0];
707 		if (!(pad->flags & MEDIA_PAD_FL_SINK))
708 			break;
709 
710 		pad = media_entity_remote_pad(pad);
711 		if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
712 			break;
713 
714 		entity = pad->entity;
715 		subdev = media_entity_to_v4l2_subdev(entity);
716 
717 		ret = v4l2_subdev_call(subdev, video, s_stream, mode);
718 		if (ret < 0 && ret != -ENOIOCTLCMD)
719 			return ret;
720 
721 		if (subdev == &isp->isp_ccdc.subdev) {
722 			v4l2_subdev_call(&isp->isp_aewb.subdev, video,
723 					s_stream, mode);
724 			v4l2_subdev_call(&isp->isp_af.subdev, video,
725 					s_stream, mode);
726 			v4l2_subdev_call(&isp->isp_hist.subdev, video,
727 					s_stream, mode);
728 			pipe->do_propagation = true;
729 		}
730 
731 		/* Stop at the first external sub-device. */
732 		if (subdev->dev != isp->dev)
733 			break;
734 	}
735 
736 	return 0;
737 }
738 
isp_pipeline_wait_resizer(struct isp_device * isp)739 static int isp_pipeline_wait_resizer(struct isp_device *isp)
740 {
741 	return omap3isp_resizer_busy(&isp->isp_res);
742 }
743 
isp_pipeline_wait_preview(struct isp_device * isp)744 static int isp_pipeline_wait_preview(struct isp_device *isp)
745 {
746 	return omap3isp_preview_busy(&isp->isp_prev);
747 }
748 
isp_pipeline_wait_ccdc(struct isp_device * isp)749 static int isp_pipeline_wait_ccdc(struct isp_device *isp)
750 {
751 	return omap3isp_stat_busy(&isp->isp_af)
752 	    || omap3isp_stat_busy(&isp->isp_aewb)
753 	    || omap3isp_stat_busy(&isp->isp_hist)
754 	    || omap3isp_ccdc_busy(&isp->isp_ccdc);
755 }
756 
757 #define ISP_STOP_TIMEOUT	msecs_to_jiffies(1000)
758 
isp_pipeline_wait(struct isp_device * isp,int (* busy)(struct isp_device * isp))759 static int isp_pipeline_wait(struct isp_device *isp,
760 			     int(*busy)(struct isp_device *isp))
761 {
762 	unsigned long timeout = jiffies + ISP_STOP_TIMEOUT;
763 
764 	while (!time_after(jiffies, timeout)) {
765 		if (!busy(isp))
766 			return 0;
767 	}
768 
769 	return 1;
770 }
771 
772 /*
773  * isp_pipeline_disable - Disable streaming on a pipeline
774  * @pipe: ISP pipeline
775  *
776  * Walk the entities chain starting at the pipeline output video node and stop
777  * all modules in the chain. Wait synchronously for the modules to be stopped if
778  * necessary.
779  *
780  * Return 0 if all modules have been properly stopped, or -ETIMEDOUT if a module
781  * can't be stopped (in which case a software reset of the ISP is probably
782  * necessary).
783  */
isp_pipeline_disable(struct isp_pipeline * pipe)784 static int isp_pipeline_disable(struct isp_pipeline *pipe)
785 {
786 	struct isp_device *isp = pipe->output->isp;
787 	struct media_entity *entity;
788 	struct media_pad *pad;
789 	struct v4l2_subdev *subdev;
790 	int failure = 0;
791 	int ret;
792 
793 	/*
794 	 * We need to stop all the modules after CCDC first or they'll
795 	 * never stop since they may not get a full frame from CCDC.
796 	 */
797 	entity = &pipe->output->video.entity;
798 	while (1) {
799 		pad = &entity->pads[0];
800 		if (!(pad->flags & MEDIA_PAD_FL_SINK))
801 			break;
802 
803 		pad = media_entity_remote_pad(pad);
804 		if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
805 			break;
806 
807 		entity = pad->entity;
808 		subdev = media_entity_to_v4l2_subdev(entity);
809 
810 		if (subdev == &isp->isp_ccdc.subdev) {
811 			v4l2_subdev_call(&isp->isp_aewb.subdev,
812 					 video, s_stream, 0);
813 			v4l2_subdev_call(&isp->isp_af.subdev,
814 					 video, s_stream, 0);
815 			v4l2_subdev_call(&isp->isp_hist.subdev,
816 					 video, s_stream, 0);
817 		}
818 
819 		ret = v4l2_subdev_call(subdev, video, s_stream, 0);
820 
821 		if (subdev == &isp->isp_res.subdev)
822 			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_resizer);
823 		else if (subdev == &isp->isp_prev.subdev)
824 			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_preview);
825 		else if (subdev == &isp->isp_ccdc.subdev)
826 			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_ccdc);
827 
828 		/* Handle stop failures. An entity that fails to stop can
829 		 * usually just be restarted. Flag the stop failure nonetheless
830 		 * to trigger an ISP reset the next time the device is released,
831 		 * just in case.
832 		 *
833 		 * The preview engine is a special case. A failure to stop can
834 		 * mean a hardware crash. When that happens the preview engine
835 		 * won't respond to read/write operations on the L4 bus anymore,
836 		 * resulting in a bus fault and a kernel oops next time it gets
837 		 * accessed. Mark it as crashed to prevent pipelines including
838 		 * it from being started.
839 		 */
840 		if (ret) {
841 			dev_info(isp->dev, "Unable to stop %s\n", subdev->name);
842 			isp->stop_failure = true;
843 			if (subdev == &isp->isp_prev.subdev)
844 				media_entity_enum_set(&isp->crashed,
845 						      &subdev->entity);
846 			failure = -ETIMEDOUT;
847 		}
848 
849 		/* Stop at the first external sub-device. */
850 		if (subdev->dev != isp->dev)
851 			break;
852 	}
853 
854 	return failure;
855 }
856 
857 /*
858  * omap3isp_pipeline_set_stream - Enable/disable streaming on a pipeline
859  * @pipe: ISP pipeline
860  * @state: Stream state (stopped, single shot or continuous)
861  *
862  * Set the pipeline to the given stream state. Pipelines can be started in
863  * single-shot or continuous mode.
864  *
865  * Return 0 if successful, or the return value of the failed video::s_stream
866  * operation otherwise. The pipeline state is not updated when the operation
867  * fails, except when stopping the pipeline.
868  */
omap3isp_pipeline_set_stream(struct isp_pipeline * pipe,enum isp_pipeline_stream_state state)869 int omap3isp_pipeline_set_stream(struct isp_pipeline *pipe,
870 				 enum isp_pipeline_stream_state state)
871 {
872 	int ret;
873 
874 	if (state == ISP_PIPELINE_STREAM_STOPPED)
875 		ret = isp_pipeline_disable(pipe);
876 	else
877 		ret = isp_pipeline_enable(pipe, state);
878 
879 	if (ret == 0 || state == ISP_PIPELINE_STREAM_STOPPED)
880 		pipe->stream_state = state;
881 
882 	return ret;
883 }
884 
885 /*
886  * omap3isp_pipeline_cancel_stream - Cancel stream on a pipeline
887  * @pipe: ISP pipeline
888  *
889  * Cancelling a stream mark all buffers on all video nodes in the pipeline as
890  * erroneous and makes sure no new buffer can be queued. This function is called
891  * when a fatal error that prevents any further operation on the pipeline
892  * occurs.
893  */
omap3isp_pipeline_cancel_stream(struct isp_pipeline * pipe)894 void omap3isp_pipeline_cancel_stream(struct isp_pipeline *pipe)
895 {
896 	if (pipe->input)
897 		omap3isp_video_cancel_stream(pipe->input);
898 	if (pipe->output)
899 		omap3isp_video_cancel_stream(pipe->output);
900 }
901 
902 /*
903  * isp_pipeline_resume - Resume streaming on a pipeline
904  * @pipe: ISP pipeline
905  *
906  * Resume video output and input and re-enable pipeline.
907  */
isp_pipeline_resume(struct isp_pipeline * pipe)908 static void isp_pipeline_resume(struct isp_pipeline *pipe)
909 {
910 	int singleshot = pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT;
911 
912 	omap3isp_video_resume(pipe->output, !singleshot);
913 	if (singleshot)
914 		omap3isp_video_resume(pipe->input, 0);
915 	isp_pipeline_enable(pipe, pipe->stream_state);
916 }
917 
918 /*
919  * isp_pipeline_suspend - Suspend streaming on a pipeline
920  * @pipe: ISP pipeline
921  *
922  * Suspend pipeline.
923  */
isp_pipeline_suspend(struct isp_pipeline * pipe)924 static void isp_pipeline_suspend(struct isp_pipeline *pipe)
925 {
926 	isp_pipeline_disable(pipe);
927 }
928 
929 /*
930  * isp_pipeline_is_last - Verify if entity has an enabled link to the output
931  * 			  video node
932  * @me: ISP module's media entity
933  *
934  * Returns 1 if the entity has an enabled link to the output video node or 0
935  * otherwise. It's true only while pipeline can have no more than one output
936  * node.
937  */
isp_pipeline_is_last(struct media_entity * me)938 static int isp_pipeline_is_last(struct media_entity *me)
939 {
940 	struct isp_pipeline *pipe;
941 	struct media_pad *pad;
942 
943 	if (!me->pipe)
944 		return 0;
945 	pipe = to_isp_pipeline(me);
946 	if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED)
947 		return 0;
948 	pad = media_entity_remote_pad(&pipe->output->pad);
949 	return pad->entity == me;
950 }
951 
952 /*
953  * isp_suspend_module_pipeline - Suspend pipeline to which belongs the module
954  * @me: ISP module's media entity
955  *
956  * Suspend the whole pipeline if module's entity has an enabled link to the
957  * output video node. It works only while pipeline can have no more than one
958  * output node.
959  */
isp_suspend_module_pipeline(struct media_entity * me)960 static void isp_suspend_module_pipeline(struct media_entity *me)
961 {
962 	if (isp_pipeline_is_last(me))
963 		isp_pipeline_suspend(to_isp_pipeline(me));
964 }
965 
966 /*
967  * isp_resume_module_pipeline - Resume pipeline to which belongs the module
968  * @me: ISP module's media entity
969  *
970  * Resume the whole pipeline if module's entity has an enabled link to the
971  * output video node. It works only while pipeline can have no more than one
972  * output node.
973  */
isp_resume_module_pipeline(struct media_entity * me)974 static void isp_resume_module_pipeline(struct media_entity *me)
975 {
976 	if (isp_pipeline_is_last(me))
977 		isp_pipeline_resume(to_isp_pipeline(me));
978 }
979 
980 /*
981  * isp_suspend_modules - Suspend ISP submodules.
982  * @isp: OMAP3 ISP device
983  *
984  * Returns 0 if suspend left in idle state all the submodules properly,
985  * or returns 1 if a general Reset is required to suspend the submodules.
986  */
isp_suspend_modules(struct isp_device * isp)987 static int isp_suspend_modules(struct isp_device *isp)
988 {
989 	unsigned long timeout;
990 
991 	omap3isp_stat_suspend(&isp->isp_aewb);
992 	omap3isp_stat_suspend(&isp->isp_af);
993 	omap3isp_stat_suspend(&isp->isp_hist);
994 	isp_suspend_module_pipeline(&isp->isp_res.subdev.entity);
995 	isp_suspend_module_pipeline(&isp->isp_prev.subdev.entity);
996 	isp_suspend_module_pipeline(&isp->isp_ccdc.subdev.entity);
997 	isp_suspend_module_pipeline(&isp->isp_csi2a.subdev.entity);
998 	isp_suspend_module_pipeline(&isp->isp_ccp2.subdev.entity);
999 
1000 	timeout = jiffies + ISP_STOP_TIMEOUT;
1001 	while (omap3isp_stat_busy(&isp->isp_af)
1002 	    || omap3isp_stat_busy(&isp->isp_aewb)
1003 	    || omap3isp_stat_busy(&isp->isp_hist)
1004 	    || omap3isp_preview_busy(&isp->isp_prev)
1005 	    || omap3isp_resizer_busy(&isp->isp_res)
1006 	    || omap3isp_ccdc_busy(&isp->isp_ccdc)) {
1007 		if (time_after(jiffies, timeout)) {
1008 			dev_info(isp->dev, "can't stop modules.\n");
1009 			return 1;
1010 		}
1011 		msleep(1);
1012 	}
1013 
1014 	return 0;
1015 }
1016 
1017 /*
1018  * isp_resume_modules - Resume ISP submodules.
1019  * @isp: OMAP3 ISP device
1020  */
isp_resume_modules(struct isp_device * isp)1021 static void isp_resume_modules(struct isp_device *isp)
1022 {
1023 	omap3isp_stat_resume(&isp->isp_aewb);
1024 	omap3isp_stat_resume(&isp->isp_af);
1025 	omap3isp_stat_resume(&isp->isp_hist);
1026 	isp_resume_module_pipeline(&isp->isp_res.subdev.entity);
1027 	isp_resume_module_pipeline(&isp->isp_prev.subdev.entity);
1028 	isp_resume_module_pipeline(&isp->isp_ccdc.subdev.entity);
1029 	isp_resume_module_pipeline(&isp->isp_csi2a.subdev.entity);
1030 	isp_resume_module_pipeline(&isp->isp_ccp2.subdev.entity);
1031 }
1032 
1033 /*
1034  * isp_reset - Reset ISP with a timeout wait for idle.
1035  * @isp: OMAP3 ISP device
1036  */
isp_reset(struct isp_device * isp)1037 static int isp_reset(struct isp_device *isp)
1038 {
1039 	unsigned long timeout = 0;
1040 
1041 	isp_reg_writel(isp,
1042 		       isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG)
1043 		       | ISP_SYSCONFIG_SOFTRESET,
1044 		       OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
1045 	while (!(isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN,
1046 			       ISP_SYSSTATUS) & 0x1)) {
1047 		if (timeout++ > 10000) {
1048 			dev_alert(isp->dev, "cannot reset ISP\n");
1049 			return -ETIMEDOUT;
1050 		}
1051 		udelay(1);
1052 	}
1053 
1054 	isp->stop_failure = false;
1055 	media_entity_enum_zero(&isp->crashed);
1056 	return 0;
1057 }
1058 
1059 /*
1060  * isp_save_context - Saves the values of the ISP module registers.
1061  * @isp: OMAP3 ISP device
1062  * @reg_list: Structure containing pairs of register address and value to
1063  *            modify on OMAP.
1064  */
1065 static void
isp_save_context(struct isp_device * isp,struct isp_reg * reg_list)1066 isp_save_context(struct isp_device *isp, struct isp_reg *reg_list)
1067 {
1068 	struct isp_reg *next = reg_list;
1069 
1070 	for (; next->reg != ISP_TOK_TERM; next++)
1071 		next->val = isp_reg_readl(isp, next->mmio_range, next->reg);
1072 }
1073 
1074 /*
1075  * isp_restore_context - Restores the values of the ISP module registers.
1076  * @isp: OMAP3 ISP device
1077  * @reg_list: Structure containing pairs of register address and value to
1078  *            modify on OMAP.
1079  */
1080 static void
isp_restore_context(struct isp_device * isp,struct isp_reg * reg_list)1081 isp_restore_context(struct isp_device *isp, struct isp_reg *reg_list)
1082 {
1083 	struct isp_reg *next = reg_list;
1084 
1085 	for (; next->reg != ISP_TOK_TERM; next++)
1086 		isp_reg_writel(isp, next->val, next->mmio_range, next->reg);
1087 }
1088 
1089 /*
1090  * isp_save_ctx - Saves ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1091  * @isp: OMAP3 ISP device
1092  *
1093  * Routine for saving the context of each module in the ISP.
1094  * CCDC, HIST, H3A, PREV, RESZ and MMU.
1095  */
isp_save_ctx(struct isp_device * isp)1096 static void isp_save_ctx(struct isp_device *isp)
1097 {
1098 	isp_save_context(isp, isp_reg_list);
1099 	omap_iommu_save_ctx(isp->dev);
1100 }
1101 
1102 /*
1103  * isp_restore_ctx - Restores ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1104  * @isp: OMAP3 ISP device
1105  *
1106  * Routine for restoring the context of each module in the ISP.
1107  * CCDC, HIST, H3A, PREV, RESZ and MMU.
1108  */
isp_restore_ctx(struct isp_device * isp)1109 static void isp_restore_ctx(struct isp_device *isp)
1110 {
1111 	isp_restore_context(isp, isp_reg_list);
1112 	omap_iommu_restore_ctx(isp->dev);
1113 	omap3isp_ccdc_restore_context(isp);
1114 	omap3isp_preview_restore_context(isp);
1115 }
1116 
1117 /* -----------------------------------------------------------------------------
1118  * SBL resources management
1119  */
1120 #define OMAP3_ISP_SBL_READ	(OMAP3_ISP_SBL_CSI1_READ | \
1121 				 OMAP3_ISP_SBL_CCDC_LSC_READ | \
1122 				 OMAP3_ISP_SBL_PREVIEW_READ | \
1123 				 OMAP3_ISP_SBL_RESIZER_READ)
1124 #define OMAP3_ISP_SBL_WRITE	(OMAP3_ISP_SBL_CSI1_WRITE | \
1125 				 OMAP3_ISP_SBL_CSI2A_WRITE | \
1126 				 OMAP3_ISP_SBL_CSI2C_WRITE | \
1127 				 OMAP3_ISP_SBL_CCDC_WRITE | \
1128 				 OMAP3_ISP_SBL_PREVIEW_WRITE)
1129 
omap3isp_sbl_enable(struct isp_device * isp,enum isp_sbl_resource res)1130 void omap3isp_sbl_enable(struct isp_device *isp, enum isp_sbl_resource res)
1131 {
1132 	u32 sbl = 0;
1133 
1134 	isp->sbl_resources |= res;
1135 
1136 	if (isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ)
1137 		sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1138 
1139 	if (isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ)
1140 		sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1141 
1142 	if (isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE)
1143 		sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1144 
1145 	if (isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE)
1146 		sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1147 
1148 	if (isp->sbl_resources & OMAP3_ISP_SBL_WRITE)
1149 		sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1150 
1151 	if (isp->sbl_resources & OMAP3_ISP_SBL_READ)
1152 		sbl |= ISPCTRL_SBL_RD_RAM_EN;
1153 
1154 	isp_reg_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1155 }
1156 
omap3isp_sbl_disable(struct isp_device * isp,enum isp_sbl_resource res)1157 void omap3isp_sbl_disable(struct isp_device *isp, enum isp_sbl_resource res)
1158 {
1159 	u32 sbl = 0;
1160 
1161 	isp->sbl_resources &= ~res;
1162 
1163 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ))
1164 		sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1165 
1166 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ))
1167 		sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1168 
1169 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE))
1170 		sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1171 
1172 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE))
1173 		sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1174 
1175 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_WRITE))
1176 		sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1177 
1178 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_READ))
1179 		sbl |= ISPCTRL_SBL_RD_RAM_EN;
1180 
1181 	isp_reg_clr(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1182 }
1183 
1184 /*
1185  * isp_module_sync_idle - Helper to sync module with its idle state
1186  * @me: ISP submodule's media entity
1187  * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1188  * @stopping: flag which tells module wants to stop
1189  *
1190  * This function checks if ISP submodule needs to wait for next interrupt. If
1191  * yes, makes the caller to sleep while waiting for such event.
1192  */
omap3isp_module_sync_idle(struct media_entity * me,wait_queue_head_t * wait,atomic_t * stopping)1193 int omap3isp_module_sync_idle(struct media_entity *me, wait_queue_head_t *wait,
1194 			      atomic_t *stopping)
1195 {
1196 	struct isp_pipeline *pipe = to_isp_pipeline(me);
1197 
1198 	if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED ||
1199 	    (pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT &&
1200 	     !isp_pipeline_ready(pipe)))
1201 		return 0;
1202 
1203 	/*
1204 	 * atomic_set() doesn't include memory barrier on ARM platform for SMP
1205 	 * scenario. We'll call it here to avoid race conditions.
1206 	 */
1207 	atomic_set(stopping, 1);
1208 	smp_mb();
1209 
1210 	/*
1211 	 * If module is the last one, it's writing to memory. In this case,
1212 	 * it's necessary to check if the module is already paused due to
1213 	 * DMA queue underrun or if it has to wait for next interrupt to be
1214 	 * idle.
1215 	 * If it isn't the last one, the function won't sleep but *stopping
1216 	 * will still be set to warn next submodule caller's interrupt the
1217 	 * module wants to be idle.
1218 	 */
1219 	if (isp_pipeline_is_last(me)) {
1220 		struct isp_video *video = pipe->output;
1221 		unsigned long flags;
1222 		spin_lock_irqsave(&video->irqlock, flags);
1223 		if (video->dmaqueue_flags & ISP_VIDEO_DMAQUEUE_UNDERRUN) {
1224 			spin_unlock_irqrestore(&video->irqlock, flags);
1225 			atomic_set(stopping, 0);
1226 			smp_mb();
1227 			return 0;
1228 		}
1229 		spin_unlock_irqrestore(&video->irqlock, flags);
1230 		if (!wait_event_timeout(*wait, !atomic_read(stopping),
1231 					msecs_to_jiffies(1000))) {
1232 			atomic_set(stopping, 0);
1233 			smp_mb();
1234 			return -ETIMEDOUT;
1235 		}
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 /*
1242  * omap3isp_module_sync_is_stopping - Helper to verify if module was stopping
1243  * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1244  * @stopping: flag which tells module wants to stop
1245  *
1246  * This function checks if ISP submodule was stopping. In case of yes, it
1247  * notices the caller by setting stopping to 0 and waking up the wait queue.
1248  * Returns 1 if it was stopping or 0 otherwise.
1249  */
omap3isp_module_sync_is_stopping(wait_queue_head_t * wait,atomic_t * stopping)1250 int omap3isp_module_sync_is_stopping(wait_queue_head_t *wait,
1251 				     atomic_t *stopping)
1252 {
1253 	if (atomic_cmpxchg(stopping, 1, 0)) {
1254 		wake_up(wait);
1255 		return 1;
1256 	}
1257 
1258 	return 0;
1259 }
1260 
1261 /* --------------------------------------------------------------------------
1262  * Clock management
1263  */
1264 
1265 #define ISPCTRL_CLKS_MASK	(ISPCTRL_H3A_CLK_EN | \
1266 				 ISPCTRL_HIST_CLK_EN | \
1267 				 ISPCTRL_RSZ_CLK_EN | \
1268 				 (ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN) | \
1269 				 (ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN))
1270 
__isp_subclk_update(struct isp_device * isp)1271 static void __isp_subclk_update(struct isp_device *isp)
1272 {
1273 	u32 clk = 0;
1274 
1275 	/* AEWB and AF share the same clock. */
1276 	if (isp->subclk_resources &
1277 	    (OMAP3_ISP_SUBCLK_AEWB | OMAP3_ISP_SUBCLK_AF))
1278 		clk |= ISPCTRL_H3A_CLK_EN;
1279 
1280 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_HIST)
1281 		clk |= ISPCTRL_HIST_CLK_EN;
1282 
1283 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_RESIZER)
1284 		clk |= ISPCTRL_RSZ_CLK_EN;
1285 
1286 	/* NOTE: For CCDC & Preview submodules, we need to affect internal
1287 	 *       RAM as well.
1288 	 */
1289 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_CCDC)
1290 		clk |= ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN;
1291 
1292 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_PREVIEW)
1293 		clk |= ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN;
1294 
1295 	isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL,
1296 			ISPCTRL_CLKS_MASK, clk);
1297 }
1298 
omap3isp_subclk_enable(struct isp_device * isp,enum isp_subclk_resource res)1299 void omap3isp_subclk_enable(struct isp_device *isp,
1300 			    enum isp_subclk_resource res)
1301 {
1302 	isp->subclk_resources |= res;
1303 
1304 	__isp_subclk_update(isp);
1305 }
1306 
omap3isp_subclk_disable(struct isp_device * isp,enum isp_subclk_resource res)1307 void omap3isp_subclk_disable(struct isp_device *isp,
1308 			     enum isp_subclk_resource res)
1309 {
1310 	isp->subclk_resources &= ~res;
1311 
1312 	__isp_subclk_update(isp);
1313 }
1314 
1315 /*
1316  * isp_enable_clocks - Enable ISP clocks
1317  * @isp: OMAP3 ISP device
1318  *
1319  * Return 0 if successful, or clk_prepare_enable return value if any of them
1320  * fails.
1321  */
isp_enable_clocks(struct isp_device * isp)1322 static int isp_enable_clocks(struct isp_device *isp)
1323 {
1324 	int r;
1325 	unsigned long rate;
1326 
1327 	r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_ICK]);
1328 	if (r) {
1329 		dev_err(isp->dev, "failed to enable cam_ick clock\n");
1330 		goto out_clk_enable_ick;
1331 	}
1332 	r = clk_set_rate(isp->clock[ISP_CLK_CAM_MCLK], CM_CAM_MCLK_HZ);
1333 	if (r) {
1334 		dev_err(isp->dev, "clk_set_rate for cam_mclk failed\n");
1335 		goto out_clk_enable_mclk;
1336 	}
1337 	r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_MCLK]);
1338 	if (r) {
1339 		dev_err(isp->dev, "failed to enable cam_mclk clock\n");
1340 		goto out_clk_enable_mclk;
1341 	}
1342 	rate = clk_get_rate(isp->clock[ISP_CLK_CAM_MCLK]);
1343 	if (rate != CM_CAM_MCLK_HZ)
1344 		dev_warn(isp->dev, "unexpected cam_mclk rate:\n"
1345 				   " expected : %d\n"
1346 				   " actual   : %ld\n", CM_CAM_MCLK_HZ, rate);
1347 	r = clk_prepare_enable(isp->clock[ISP_CLK_CSI2_FCK]);
1348 	if (r) {
1349 		dev_err(isp->dev, "failed to enable csi2_fck clock\n");
1350 		goto out_clk_enable_csi2_fclk;
1351 	}
1352 	return 0;
1353 
1354 out_clk_enable_csi2_fclk:
1355 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1356 out_clk_enable_mclk:
1357 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1358 out_clk_enable_ick:
1359 	return r;
1360 }
1361 
1362 /*
1363  * isp_disable_clocks - Disable ISP clocks
1364  * @isp: OMAP3 ISP device
1365  */
isp_disable_clocks(struct isp_device * isp)1366 static void isp_disable_clocks(struct isp_device *isp)
1367 {
1368 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1369 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1370 	clk_disable_unprepare(isp->clock[ISP_CLK_CSI2_FCK]);
1371 }
1372 
1373 static const char *isp_clocks[] = {
1374 	"cam_ick",
1375 	"cam_mclk",
1376 	"csi2_96m_fck",
1377 	"l3_ick",
1378 };
1379 
isp_get_clocks(struct isp_device * isp)1380 static int isp_get_clocks(struct isp_device *isp)
1381 {
1382 	struct clk *clk;
1383 	unsigned int i;
1384 
1385 	for (i = 0; i < ARRAY_SIZE(isp_clocks); ++i) {
1386 		clk = devm_clk_get(isp->dev, isp_clocks[i]);
1387 		if (IS_ERR(clk)) {
1388 			dev_err(isp->dev, "clk_get %s failed\n", isp_clocks[i]);
1389 			return PTR_ERR(clk);
1390 		}
1391 
1392 		isp->clock[i] = clk;
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 /*
1399  * omap3isp_get - Acquire the ISP resource.
1400  *
1401  * Initializes the clocks for the first acquire.
1402  *
1403  * Increment the reference count on the ISP. If the first reference is taken,
1404  * enable clocks and power-up all submodules.
1405  *
1406  * Return a pointer to the ISP device structure, or NULL if an error occurred.
1407  */
__omap3isp_get(struct isp_device * isp,bool irq)1408 static struct isp_device *__omap3isp_get(struct isp_device *isp, bool irq)
1409 {
1410 	struct isp_device *__isp = isp;
1411 
1412 	if (isp == NULL)
1413 		return NULL;
1414 
1415 	mutex_lock(&isp->isp_mutex);
1416 	if (isp->ref_count > 0)
1417 		goto out;
1418 
1419 	if (isp_enable_clocks(isp) < 0) {
1420 		__isp = NULL;
1421 		goto out;
1422 	}
1423 
1424 	/* We don't want to restore context before saving it! */
1425 	if (isp->has_context)
1426 		isp_restore_ctx(isp);
1427 
1428 	if (irq)
1429 		isp_enable_interrupts(isp);
1430 
1431 out:
1432 	if (__isp != NULL)
1433 		isp->ref_count++;
1434 	mutex_unlock(&isp->isp_mutex);
1435 
1436 	return __isp;
1437 }
1438 
omap3isp_get(struct isp_device * isp)1439 struct isp_device *omap3isp_get(struct isp_device *isp)
1440 {
1441 	return __omap3isp_get(isp, true);
1442 }
1443 
1444 /*
1445  * omap3isp_put - Release the ISP
1446  *
1447  * Decrement the reference count on the ISP. If the last reference is released,
1448  * power-down all submodules, disable clocks and free temporary buffers.
1449  */
__omap3isp_put(struct isp_device * isp,bool save_ctx)1450 static void __omap3isp_put(struct isp_device *isp, bool save_ctx)
1451 {
1452 	if (isp == NULL)
1453 		return;
1454 
1455 	mutex_lock(&isp->isp_mutex);
1456 	BUG_ON(isp->ref_count == 0);
1457 	if (--isp->ref_count == 0) {
1458 		isp_disable_interrupts(isp);
1459 		if (save_ctx) {
1460 			isp_save_ctx(isp);
1461 			isp->has_context = 1;
1462 		}
1463 		/* Reset the ISP if an entity has failed to stop. This is the
1464 		 * only way to recover from such conditions.
1465 		 */
1466 		if (!media_entity_enum_empty(&isp->crashed) ||
1467 		    isp->stop_failure)
1468 			isp_reset(isp);
1469 		isp_disable_clocks(isp);
1470 	}
1471 	mutex_unlock(&isp->isp_mutex);
1472 }
1473 
omap3isp_put(struct isp_device * isp)1474 void omap3isp_put(struct isp_device *isp)
1475 {
1476 	__omap3isp_put(isp, true);
1477 }
1478 
1479 /* --------------------------------------------------------------------------
1480  * Platform device driver
1481  */
1482 
1483 /*
1484  * omap3isp_print_status - Prints the values of the ISP Control Module registers
1485  * @isp: OMAP3 ISP device
1486  */
1487 #define ISP_PRINT_REGISTER(isp, name)\
1488 	dev_dbg(isp->dev, "###ISP " #name "=0x%08x\n", \
1489 		isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_##name))
1490 #define SBL_PRINT_REGISTER(isp, name)\
1491 	dev_dbg(isp->dev, "###SBL " #name "=0x%08x\n", \
1492 		isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_##name))
1493 
omap3isp_print_status(struct isp_device * isp)1494 void omap3isp_print_status(struct isp_device *isp)
1495 {
1496 	dev_dbg(isp->dev, "-------------ISP Register dump--------------\n");
1497 
1498 	ISP_PRINT_REGISTER(isp, SYSCONFIG);
1499 	ISP_PRINT_REGISTER(isp, SYSSTATUS);
1500 	ISP_PRINT_REGISTER(isp, IRQ0ENABLE);
1501 	ISP_PRINT_REGISTER(isp, IRQ0STATUS);
1502 	ISP_PRINT_REGISTER(isp, TCTRL_GRESET_LENGTH);
1503 	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_REPLAY);
1504 	ISP_PRINT_REGISTER(isp, CTRL);
1505 	ISP_PRINT_REGISTER(isp, TCTRL_CTRL);
1506 	ISP_PRINT_REGISTER(isp, TCTRL_FRAME);
1507 	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_DELAY);
1508 	ISP_PRINT_REGISTER(isp, TCTRL_STRB_DELAY);
1509 	ISP_PRINT_REGISTER(isp, TCTRL_SHUT_DELAY);
1510 	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_LENGTH);
1511 	ISP_PRINT_REGISTER(isp, TCTRL_STRB_LENGTH);
1512 	ISP_PRINT_REGISTER(isp, TCTRL_SHUT_LENGTH);
1513 
1514 	SBL_PRINT_REGISTER(isp, PCR);
1515 	SBL_PRINT_REGISTER(isp, SDR_REQ_EXP);
1516 
1517 	dev_dbg(isp->dev, "--------------------------------------------\n");
1518 }
1519 
1520 #ifdef CONFIG_PM
1521 
1522 /*
1523  * Power management support.
1524  *
1525  * As the ISP can't properly handle an input video stream interruption on a non
1526  * frame boundary, the ISP pipelines need to be stopped before sensors get
1527  * suspended. However, as suspending the sensors can require a running clock,
1528  * which can be provided by the ISP, the ISP can't be completely suspended
1529  * before the sensor.
1530  *
1531  * To solve this problem power management support is split into prepare/complete
1532  * and suspend/resume operations. The pipelines are stopped in prepare() and the
1533  * ISP clocks get disabled in suspend(). Similarly, the clocks are reenabled in
1534  * resume(), and the the pipelines are restarted in complete().
1535  *
1536  * TODO: PM dependencies between the ISP and sensors are not modelled explicitly
1537  * yet.
1538  */
isp_pm_prepare(struct device * dev)1539 static int isp_pm_prepare(struct device *dev)
1540 {
1541 	struct isp_device *isp = dev_get_drvdata(dev);
1542 	int reset;
1543 
1544 	WARN_ON(mutex_is_locked(&isp->isp_mutex));
1545 
1546 	if (isp->ref_count == 0)
1547 		return 0;
1548 
1549 	reset = isp_suspend_modules(isp);
1550 	isp_disable_interrupts(isp);
1551 	isp_save_ctx(isp);
1552 	if (reset)
1553 		isp_reset(isp);
1554 
1555 	return 0;
1556 }
1557 
isp_pm_suspend(struct device * dev)1558 static int isp_pm_suspend(struct device *dev)
1559 {
1560 	struct isp_device *isp = dev_get_drvdata(dev);
1561 
1562 	WARN_ON(mutex_is_locked(&isp->isp_mutex));
1563 
1564 	if (isp->ref_count)
1565 		isp_disable_clocks(isp);
1566 
1567 	return 0;
1568 }
1569 
isp_pm_resume(struct device * dev)1570 static int isp_pm_resume(struct device *dev)
1571 {
1572 	struct isp_device *isp = dev_get_drvdata(dev);
1573 
1574 	if (isp->ref_count == 0)
1575 		return 0;
1576 
1577 	return isp_enable_clocks(isp);
1578 }
1579 
isp_pm_complete(struct device * dev)1580 static void isp_pm_complete(struct device *dev)
1581 {
1582 	struct isp_device *isp = dev_get_drvdata(dev);
1583 
1584 	if (isp->ref_count == 0)
1585 		return;
1586 
1587 	isp_restore_ctx(isp);
1588 	isp_enable_interrupts(isp);
1589 	isp_resume_modules(isp);
1590 }
1591 
1592 #else
1593 
1594 #define isp_pm_prepare	NULL
1595 #define isp_pm_suspend	NULL
1596 #define isp_pm_resume	NULL
1597 #define isp_pm_complete	NULL
1598 
1599 #endif /* CONFIG_PM */
1600 
isp_unregister_entities(struct isp_device * isp)1601 static void isp_unregister_entities(struct isp_device *isp)
1602 {
1603 	media_device_unregister(&isp->media_dev);
1604 
1605 	omap3isp_csi2_unregister_entities(&isp->isp_csi2a);
1606 	omap3isp_ccp2_unregister_entities(&isp->isp_ccp2);
1607 	omap3isp_ccdc_unregister_entities(&isp->isp_ccdc);
1608 	omap3isp_preview_unregister_entities(&isp->isp_prev);
1609 	omap3isp_resizer_unregister_entities(&isp->isp_res);
1610 	omap3isp_stat_unregister_entities(&isp->isp_aewb);
1611 	omap3isp_stat_unregister_entities(&isp->isp_af);
1612 	omap3isp_stat_unregister_entities(&isp->isp_hist);
1613 
1614 	v4l2_device_unregister(&isp->v4l2_dev);
1615 	media_device_cleanup(&isp->media_dev);
1616 }
1617 
isp_link_entity(struct isp_device * isp,struct media_entity * entity,enum isp_interface_type interface)1618 static int isp_link_entity(
1619 	struct isp_device *isp, struct media_entity *entity,
1620 	enum isp_interface_type interface)
1621 {
1622 	struct media_entity *input;
1623 	unsigned int flags;
1624 	unsigned int pad;
1625 	unsigned int i;
1626 
1627 	/* Connect the sensor to the correct interface module.
1628 	 * Parallel sensors are connected directly to the CCDC, while
1629 	 * serial sensors are connected to the CSI2a, CCP2b or CSI2c
1630 	 * receiver through CSIPHY1 or CSIPHY2.
1631 	 */
1632 	switch (interface) {
1633 	case ISP_INTERFACE_PARALLEL:
1634 		input = &isp->isp_ccdc.subdev.entity;
1635 		pad = CCDC_PAD_SINK;
1636 		flags = 0;
1637 		break;
1638 
1639 	case ISP_INTERFACE_CSI2A_PHY2:
1640 		input = &isp->isp_csi2a.subdev.entity;
1641 		pad = CSI2_PAD_SINK;
1642 		flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1643 		break;
1644 
1645 	case ISP_INTERFACE_CCP2B_PHY1:
1646 	case ISP_INTERFACE_CCP2B_PHY2:
1647 		input = &isp->isp_ccp2.subdev.entity;
1648 		pad = CCP2_PAD_SINK;
1649 		flags = 0;
1650 		break;
1651 
1652 	case ISP_INTERFACE_CSI2C_PHY1:
1653 		input = &isp->isp_csi2c.subdev.entity;
1654 		pad = CSI2_PAD_SINK;
1655 		flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1656 		break;
1657 
1658 	default:
1659 		dev_err(isp->dev, "%s: invalid interface type %u\n", __func__,
1660 			interface);
1661 		return -EINVAL;
1662 	}
1663 
1664 	/*
1665 	 * Not all interfaces are available on all revisions of the
1666 	 * ISP. The sub-devices of those interfaces aren't initialised
1667 	 * in such a case. Check this by ensuring the num_pads is
1668 	 * non-zero.
1669 	 */
1670 	if (!input->num_pads) {
1671 		dev_err(isp->dev, "%s: invalid input %u\n", entity->name,
1672 			interface);
1673 		return -EINVAL;
1674 	}
1675 
1676 	for (i = 0; i < entity->num_pads; i++) {
1677 		if (entity->pads[i].flags & MEDIA_PAD_FL_SOURCE)
1678 			break;
1679 	}
1680 	if (i == entity->num_pads) {
1681 		dev_err(isp->dev, "%s: no source pad in external entity\n",
1682 			__func__);
1683 		return -EINVAL;
1684 	}
1685 
1686 	return media_create_pad_link(entity, i, input, pad, flags);
1687 }
1688 
isp_register_entities(struct isp_device * isp)1689 static int isp_register_entities(struct isp_device *isp)
1690 {
1691 	int ret;
1692 
1693 	isp->media_dev.dev = isp->dev;
1694 	strlcpy(isp->media_dev.model, "TI OMAP3 ISP",
1695 		sizeof(isp->media_dev.model));
1696 	isp->media_dev.hw_revision = isp->revision;
1697 	isp->media_dev.ops = &isp_media_ops;
1698 	media_device_init(&isp->media_dev);
1699 
1700 	isp->v4l2_dev.mdev = &isp->media_dev;
1701 	ret = v4l2_device_register(isp->dev, &isp->v4l2_dev);
1702 	if (ret < 0) {
1703 		dev_err(isp->dev, "%s: V4L2 device registration failed (%d)\n",
1704 			__func__, ret);
1705 		goto done;
1706 	}
1707 
1708 	/* Register internal entities */
1709 	ret = omap3isp_ccp2_register_entities(&isp->isp_ccp2, &isp->v4l2_dev);
1710 	if (ret < 0)
1711 		goto done;
1712 
1713 	ret = omap3isp_csi2_register_entities(&isp->isp_csi2a, &isp->v4l2_dev);
1714 	if (ret < 0)
1715 		goto done;
1716 
1717 	ret = omap3isp_ccdc_register_entities(&isp->isp_ccdc, &isp->v4l2_dev);
1718 	if (ret < 0)
1719 		goto done;
1720 
1721 	ret = omap3isp_preview_register_entities(&isp->isp_prev,
1722 						 &isp->v4l2_dev);
1723 	if (ret < 0)
1724 		goto done;
1725 
1726 	ret = omap3isp_resizer_register_entities(&isp->isp_res, &isp->v4l2_dev);
1727 	if (ret < 0)
1728 		goto done;
1729 
1730 	ret = omap3isp_stat_register_entities(&isp->isp_aewb, &isp->v4l2_dev);
1731 	if (ret < 0)
1732 		goto done;
1733 
1734 	ret = omap3isp_stat_register_entities(&isp->isp_af, &isp->v4l2_dev);
1735 	if (ret < 0)
1736 		goto done;
1737 
1738 	ret = omap3isp_stat_register_entities(&isp->isp_hist, &isp->v4l2_dev);
1739 	if (ret < 0)
1740 		goto done;
1741 
1742 done:
1743 	if (ret < 0)
1744 		isp_unregister_entities(isp);
1745 
1746 	return ret;
1747 }
1748 
1749 /*
1750  * isp_create_links() - Create links for internal and external ISP entities
1751  * @isp : Pointer to ISP device
1752  *
1753  * This function creates all links between ISP internal and external entities.
1754  *
1755  * Return: A negative error code on failure or zero on success. Possible error
1756  * codes are those returned by media_create_pad_link().
1757  */
isp_create_links(struct isp_device * isp)1758 static int isp_create_links(struct isp_device *isp)
1759 {
1760 	int ret;
1761 
1762 	/* Create links between entities and video nodes. */
1763 	ret = media_create_pad_link(
1764 			&isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
1765 			&isp->isp_csi2a.video_out.video.entity, 0, 0);
1766 	if (ret < 0)
1767 		return ret;
1768 
1769 	ret = media_create_pad_link(
1770 			&isp->isp_ccp2.video_in.video.entity, 0,
1771 			&isp->isp_ccp2.subdev.entity, CCP2_PAD_SINK, 0);
1772 	if (ret < 0)
1773 		return ret;
1774 
1775 	ret = media_create_pad_link(
1776 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
1777 			&isp->isp_ccdc.video_out.video.entity, 0, 0);
1778 	if (ret < 0)
1779 		return ret;
1780 
1781 	ret = media_create_pad_link(
1782 			&isp->isp_prev.video_in.video.entity, 0,
1783 			&isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
1784 	if (ret < 0)
1785 		return ret;
1786 
1787 	ret = media_create_pad_link(
1788 			&isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
1789 			&isp->isp_prev.video_out.video.entity, 0, 0);
1790 	if (ret < 0)
1791 		return ret;
1792 
1793 	ret = media_create_pad_link(
1794 			&isp->isp_res.video_in.video.entity, 0,
1795 			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1796 	if (ret < 0)
1797 		return ret;
1798 
1799 	ret = media_create_pad_link(
1800 			&isp->isp_res.subdev.entity, RESZ_PAD_SOURCE,
1801 			&isp->isp_res.video_out.video.entity, 0, 0);
1802 
1803 	if (ret < 0)
1804 		return ret;
1805 
1806 	/* Create links between entities. */
1807 	ret = media_create_pad_link(
1808 			&isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
1809 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
1810 	if (ret < 0)
1811 		return ret;
1812 
1813 	ret = media_create_pad_link(
1814 			&isp->isp_ccp2.subdev.entity, CCP2_PAD_SOURCE,
1815 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
1816 	if (ret < 0)
1817 		return ret;
1818 
1819 	ret = media_create_pad_link(
1820 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1821 			&isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
1822 	if (ret < 0)
1823 		return ret;
1824 
1825 	ret = media_create_pad_link(
1826 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
1827 			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1828 	if (ret < 0)
1829 		return ret;
1830 
1831 	ret = media_create_pad_link(
1832 			&isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
1833 			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1834 	if (ret < 0)
1835 		return ret;
1836 
1837 	ret = media_create_pad_link(
1838 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1839 			&isp->isp_aewb.subdev.entity, 0,
1840 			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1841 	if (ret < 0)
1842 		return ret;
1843 
1844 	ret = media_create_pad_link(
1845 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1846 			&isp->isp_af.subdev.entity, 0,
1847 			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1848 	if (ret < 0)
1849 		return ret;
1850 
1851 	ret = media_create_pad_link(
1852 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1853 			&isp->isp_hist.subdev.entity, 0,
1854 			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1855 	if (ret < 0)
1856 		return ret;
1857 
1858 	return 0;
1859 }
1860 
isp_cleanup_modules(struct isp_device * isp)1861 static void isp_cleanup_modules(struct isp_device *isp)
1862 {
1863 	omap3isp_h3a_aewb_cleanup(isp);
1864 	omap3isp_h3a_af_cleanup(isp);
1865 	omap3isp_hist_cleanup(isp);
1866 	omap3isp_resizer_cleanup(isp);
1867 	omap3isp_preview_cleanup(isp);
1868 	omap3isp_ccdc_cleanup(isp);
1869 	omap3isp_ccp2_cleanup(isp);
1870 	omap3isp_csi2_cleanup(isp);
1871 	omap3isp_csiphy_cleanup(isp);
1872 }
1873 
isp_initialize_modules(struct isp_device * isp)1874 static int isp_initialize_modules(struct isp_device *isp)
1875 {
1876 	int ret;
1877 
1878 	ret = omap3isp_csiphy_init(isp);
1879 	if (ret < 0) {
1880 		dev_err(isp->dev, "CSI PHY initialization failed\n");
1881 		return ret;
1882 	}
1883 
1884 	ret = omap3isp_csi2_init(isp);
1885 	if (ret < 0) {
1886 		dev_err(isp->dev, "CSI2 initialization failed\n");
1887 		goto error_csi2;
1888 	}
1889 
1890 	ret = omap3isp_ccp2_init(isp);
1891 	if (ret < 0) {
1892 		if (ret != -EPROBE_DEFER)
1893 			dev_err(isp->dev, "CCP2 initialization failed\n");
1894 		goto error_ccp2;
1895 	}
1896 
1897 	ret = omap3isp_ccdc_init(isp);
1898 	if (ret < 0) {
1899 		dev_err(isp->dev, "CCDC initialization failed\n");
1900 		goto error_ccdc;
1901 	}
1902 
1903 	ret = omap3isp_preview_init(isp);
1904 	if (ret < 0) {
1905 		dev_err(isp->dev, "Preview initialization failed\n");
1906 		goto error_preview;
1907 	}
1908 
1909 	ret = omap3isp_resizer_init(isp);
1910 	if (ret < 0) {
1911 		dev_err(isp->dev, "Resizer initialization failed\n");
1912 		goto error_resizer;
1913 	}
1914 
1915 	ret = omap3isp_hist_init(isp);
1916 	if (ret < 0) {
1917 		dev_err(isp->dev, "Histogram initialization failed\n");
1918 		goto error_hist;
1919 	}
1920 
1921 	ret = omap3isp_h3a_aewb_init(isp);
1922 	if (ret < 0) {
1923 		dev_err(isp->dev, "H3A AEWB initialization failed\n");
1924 		goto error_h3a_aewb;
1925 	}
1926 
1927 	ret = omap3isp_h3a_af_init(isp);
1928 	if (ret < 0) {
1929 		dev_err(isp->dev, "H3A AF initialization failed\n");
1930 		goto error_h3a_af;
1931 	}
1932 
1933 	return 0;
1934 
1935 error_h3a_af:
1936 	omap3isp_h3a_aewb_cleanup(isp);
1937 error_h3a_aewb:
1938 	omap3isp_hist_cleanup(isp);
1939 error_hist:
1940 	omap3isp_resizer_cleanup(isp);
1941 error_resizer:
1942 	omap3isp_preview_cleanup(isp);
1943 error_preview:
1944 	omap3isp_ccdc_cleanup(isp);
1945 error_ccdc:
1946 	omap3isp_ccp2_cleanup(isp);
1947 error_ccp2:
1948 	omap3isp_csi2_cleanup(isp);
1949 error_csi2:
1950 	omap3isp_csiphy_cleanup(isp);
1951 
1952 	return ret;
1953 }
1954 
isp_detach_iommu(struct isp_device * isp)1955 static void isp_detach_iommu(struct isp_device *isp)
1956 {
1957 	arm_iommu_detach_device(isp->dev);
1958 	arm_iommu_release_mapping(isp->mapping);
1959 	isp->mapping = NULL;
1960 }
1961 
isp_attach_iommu(struct isp_device * isp)1962 static int isp_attach_iommu(struct isp_device *isp)
1963 {
1964 	struct dma_iommu_mapping *mapping;
1965 	int ret;
1966 
1967 	/*
1968 	 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
1969 	 * VAs. This will allocate a corresponding IOMMU domain.
1970 	 */
1971 	mapping = arm_iommu_create_mapping(&platform_bus_type, SZ_1G, SZ_2G);
1972 	if (IS_ERR(mapping)) {
1973 		dev_err(isp->dev, "failed to create ARM IOMMU mapping\n");
1974 		return PTR_ERR(mapping);
1975 	}
1976 
1977 	isp->mapping = mapping;
1978 
1979 	/* Attach the ARM VA mapping to the device. */
1980 	ret = arm_iommu_attach_device(isp->dev, mapping);
1981 	if (ret < 0) {
1982 		dev_err(isp->dev, "failed to attach device to VA mapping\n");
1983 		goto error;
1984 	}
1985 
1986 	return 0;
1987 
1988 error:
1989 	arm_iommu_release_mapping(isp->mapping);
1990 	isp->mapping = NULL;
1991 	return ret;
1992 }
1993 
1994 /*
1995  * isp_remove - Remove ISP platform device
1996  * @pdev: Pointer to ISP platform device
1997  *
1998  * Always returns 0.
1999  */
isp_remove(struct platform_device * pdev)2000 static int isp_remove(struct platform_device *pdev)
2001 {
2002 	struct isp_device *isp = platform_get_drvdata(pdev);
2003 
2004 	v4l2_async_notifier_unregister(&isp->notifier);
2005 	isp_unregister_entities(isp);
2006 	isp_cleanup_modules(isp);
2007 	isp_xclk_cleanup(isp);
2008 
2009 	__omap3isp_get(isp, false);
2010 	isp_detach_iommu(isp);
2011 	__omap3isp_put(isp, false);
2012 
2013 	media_entity_enum_cleanup(&isp->crashed);
2014 
2015 	return 0;
2016 }
2017 
2018 enum isp_of_phy {
2019 	ISP_OF_PHY_PARALLEL = 0,
2020 	ISP_OF_PHY_CSIPHY1,
2021 	ISP_OF_PHY_CSIPHY2,
2022 };
2023 
isp_fwnode_parse(struct device * dev,struct fwnode_handle * fwnode,struct isp_async_subdev * isd)2024 static int isp_fwnode_parse(struct device *dev, struct fwnode_handle *fwnode,
2025 			    struct isp_async_subdev *isd)
2026 {
2027 	struct isp_bus_cfg *buscfg = &isd->bus;
2028 	struct v4l2_fwnode_endpoint vep;
2029 	unsigned int i;
2030 	int ret;
2031 	bool csi1 = false;
2032 
2033 	ret = v4l2_fwnode_endpoint_parse(fwnode, &vep);
2034 	if (ret)
2035 		return ret;
2036 
2037 	dev_dbg(dev, "parsing endpoint %pOF, interface %u\n",
2038 		to_of_node(fwnode), vep.base.port);
2039 
2040 	switch (vep.base.port) {
2041 	case ISP_OF_PHY_PARALLEL:
2042 		buscfg->interface = ISP_INTERFACE_PARALLEL;
2043 		buscfg->bus.parallel.data_lane_shift =
2044 			vep.bus.parallel.data_shift;
2045 		buscfg->bus.parallel.clk_pol =
2046 			!!(vep.bus.parallel.flags
2047 			   & V4L2_MBUS_PCLK_SAMPLE_FALLING);
2048 		buscfg->bus.parallel.hs_pol =
2049 			!!(vep.bus.parallel.flags & V4L2_MBUS_VSYNC_ACTIVE_LOW);
2050 		buscfg->bus.parallel.vs_pol =
2051 			!!(vep.bus.parallel.flags & V4L2_MBUS_HSYNC_ACTIVE_LOW);
2052 		buscfg->bus.parallel.fld_pol =
2053 			!!(vep.bus.parallel.flags & V4L2_MBUS_FIELD_EVEN_LOW);
2054 		buscfg->bus.parallel.data_pol =
2055 			!!(vep.bus.parallel.flags & V4L2_MBUS_DATA_ACTIVE_LOW);
2056 		buscfg->bus.parallel.bt656 = vep.bus_type == V4L2_MBUS_BT656;
2057 		break;
2058 
2059 	case ISP_OF_PHY_CSIPHY1:
2060 	case ISP_OF_PHY_CSIPHY2:
2061 		switch (vep.bus_type) {
2062 		case V4L2_MBUS_CCP2:
2063 		case V4L2_MBUS_CSI1:
2064 			dev_dbg(dev, "CSI-1/CCP-2 configuration\n");
2065 			csi1 = true;
2066 			break;
2067 		case V4L2_MBUS_CSI2:
2068 			dev_dbg(dev, "CSI-2 configuration\n");
2069 			csi1 = false;
2070 			break;
2071 		default:
2072 			dev_err(dev, "unsupported bus type %u\n",
2073 				vep.bus_type);
2074 			return -EINVAL;
2075 		}
2076 
2077 		switch (vep.base.port) {
2078 		case ISP_OF_PHY_CSIPHY1:
2079 			if (csi1)
2080 				buscfg->interface = ISP_INTERFACE_CCP2B_PHY1;
2081 			else
2082 				buscfg->interface = ISP_INTERFACE_CSI2C_PHY1;
2083 			break;
2084 		case ISP_OF_PHY_CSIPHY2:
2085 			if (csi1)
2086 				buscfg->interface = ISP_INTERFACE_CCP2B_PHY2;
2087 			else
2088 				buscfg->interface = ISP_INTERFACE_CSI2A_PHY2;
2089 			break;
2090 		}
2091 		if (csi1) {
2092 			buscfg->bus.ccp2.lanecfg.clk.pos =
2093 				vep.bus.mipi_csi1.clock_lane;
2094 			buscfg->bus.ccp2.lanecfg.clk.pol =
2095 				vep.bus.mipi_csi1.lane_polarity[0];
2096 			dev_dbg(dev, "clock lane polarity %u, pos %u\n",
2097 				buscfg->bus.ccp2.lanecfg.clk.pol,
2098 				buscfg->bus.ccp2.lanecfg.clk.pos);
2099 
2100 			buscfg->bus.ccp2.lanecfg.data[0].pos =
2101 				vep.bus.mipi_csi1.data_lane;
2102 			buscfg->bus.ccp2.lanecfg.data[0].pol =
2103 				vep.bus.mipi_csi1.lane_polarity[1];
2104 
2105 			dev_dbg(dev, "data lane polarity %u, pos %u\n",
2106 				buscfg->bus.ccp2.lanecfg.data[0].pol,
2107 				buscfg->bus.ccp2.lanecfg.data[0].pos);
2108 
2109 			buscfg->bus.ccp2.strobe_clk_pol =
2110 				vep.bus.mipi_csi1.clock_inv;
2111 			buscfg->bus.ccp2.phy_layer = vep.bus.mipi_csi1.strobe;
2112 			buscfg->bus.ccp2.ccp2_mode =
2113 				vep.bus_type == V4L2_MBUS_CCP2;
2114 			buscfg->bus.ccp2.vp_clk_pol = 1;
2115 
2116 			buscfg->bus.ccp2.crc = 1;
2117 		} else {
2118 			buscfg->bus.csi2.lanecfg.clk.pos =
2119 				vep.bus.mipi_csi2.clock_lane;
2120 			buscfg->bus.csi2.lanecfg.clk.pol =
2121 				vep.bus.mipi_csi2.lane_polarities[0];
2122 			dev_dbg(dev, "clock lane polarity %u, pos %u\n",
2123 				buscfg->bus.csi2.lanecfg.clk.pol,
2124 				buscfg->bus.csi2.lanecfg.clk.pos);
2125 
2126 			buscfg->bus.csi2.num_data_lanes =
2127 				vep.bus.mipi_csi2.num_data_lanes;
2128 
2129 			for (i = 0; i < buscfg->bus.csi2.num_data_lanes; i++) {
2130 				buscfg->bus.csi2.lanecfg.data[i].pos =
2131 					vep.bus.mipi_csi2.data_lanes[i];
2132 				buscfg->bus.csi2.lanecfg.data[i].pol =
2133 					vep.bus.mipi_csi2.lane_polarities[i + 1];
2134 				dev_dbg(dev,
2135 					"data lane %u polarity %u, pos %u\n", i,
2136 					buscfg->bus.csi2.lanecfg.data[i].pol,
2137 					buscfg->bus.csi2.lanecfg.data[i].pos);
2138 			}
2139 			/*
2140 			 * FIXME: now we assume the CRC is always there.
2141 			 * Implement a way to obtain this information from the
2142 			 * sensor. Frame descriptors, perhaps?
2143 			 */
2144 			buscfg->bus.csi2.crc = 1;
2145 		}
2146 		break;
2147 
2148 	default:
2149 		dev_warn(dev, "%pOF: invalid interface %u\n",
2150 			 to_of_node(fwnode), vep.base.port);
2151 		return -EINVAL;
2152 	}
2153 
2154 	return 0;
2155 }
2156 
isp_fwnodes_parse(struct device * dev,struct v4l2_async_notifier * notifier)2157 static int isp_fwnodes_parse(struct device *dev,
2158 			     struct v4l2_async_notifier *notifier)
2159 {
2160 	struct fwnode_handle *fwnode = NULL;
2161 
2162 	notifier->subdevs = devm_kcalloc(
2163 		dev, ISP_MAX_SUBDEVS, sizeof(*notifier->subdevs), GFP_KERNEL);
2164 	if (!notifier->subdevs)
2165 		return -ENOMEM;
2166 
2167 	while (notifier->num_subdevs < ISP_MAX_SUBDEVS &&
2168 	       (fwnode = fwnode_graph_get_next_endpoint(
2169 			of_fwnode_handle(dev->of_node), fwnode))) {
2170 		struct isp_async_subdev *isd;
2171 
2172 		isd = devm_kzalloc(dev, sizeof(*isd), GFP_KERNEL);
2173 		if (!isd)
2174 			goto error;
2175 
2176 		if (isp_fwnode_parse(dev, fwnode, isd)) {
2177 			devm_kfree(dev, isd);
2178 			continue;
2179 		}
2180 
2181 		notifier->subdevs[notifier->num_subdevs] = &isd->asd;
2182 
2183 		isd->asd.match.fwnode.fwnode =
2184 			fwnode_graph_get_remote_port_parent(fwnode);
2185 		if (!isd->asd.match.fwnode.fwnode) {
2186 			dev_warn(dev, "bad remote port parent\n");
2187 			goto error;
2188 		}
2189 
2190 		isd->asd.match_type = V4L2_ASYNC_MATCH_FWNODE;
2191 		notifier->num_subdevs++;
2192 	}
2193 
2194 	return notifier->num_subdevs;
2195 
2196 error:
2197 	fwnode_handle_put(fwnode);
2198 	return -EINVAL;
2199 }
2200 
isp_subdev_notifier_complete(struct v4l2_async_notifier * async)2201 static int isp_subdev_notifier_complete(struct v4l2_async_notifier *async)
2202 {
2203 	struct isp_device *isp = container_of(async, struct isp_device,
2204 					      notifier);
2205 	struct v4l2_device *v4l2_dev = &isp->v4l2_dev;
2206 	struct v4l2_subdev *sd;
2207 	int ret;
2208 
2209 	ret = media_entity_enum_init(&isp->crashed, &isp->media_dev);
2210 	if (ret)
2211 		return ret;
2212 
2213 	list_for_each_entry(sd, &v4l2_dev->subdevs, list) {
2214 		if (!sd->asd)
2215 			continue;
2216 
2217 		ret = isp_link_entity(isp, &sd->entity,
2218 				      v4l2_subdev_to_bus_cfg(sd)->interface);
2219 		if (ret < 0)
2220 			return ret;
2221 	}
2222 
2223 	ret = v4l2_device_register_subdev_nodes(&isp->v4l2_dev);
2224 	if (ret < 0)
2225 		return ret;
2226 
2227 	return media_device_register(&isp->media_dev);
2228 }
2229 
2230 /*
2231  * isp_probe - Probe ISP platform device
2232  * @pdev: Pointer to ISP platform device
2233  *
2234  * Returns 0 if successful,
2235  *   -ENOMEM if no memory available,
2236  *   -ENODEV if no platform device resources found
2237  *     or no space for remapping registers,
2238  *   -EINVAL if couldn't install ISR,
2239  *   or clk_get return error value.
2240  */
isp_probe(struct platform_device * pdev)2241 static int isp_probe(struct platform_device *pdev)
2242 {
2243 	struct isp_device *isp;
2244 	struct resource *mem;
2245 	int ret;
2246 	int i, m;
2247 
2248 	isp = devm_kzalloc(&pdev->dev, sizeof(*isp), GFP_KERNEL);
2249 	if (!isp) {
2250 		dev_err(&pdev->dev, "could not allocate memory\n");
2251 		return -ENOMEM;
2252 	}
2253 
2254 	ret = fwnode_property_read_u32(of_fwnode_handle(pdev->dev.of_node),
2255 				       "ti,phy-type", &isp->phy_type);
2256 	if (ret)
2257 		return ret;
2258 
2259 	isp->syscon = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
2260 						      "syscon");
2261 	if (IS_ERR(isp->syscon))
2262 		return PTR_ERR(isp->syscon);
2263 
2264 	ret = of_property_read_u32_index(pdev->dev.of_node,
2265 					 "syscon", 1, &isp->syscon_offset);
2266 	if (ret)
2267 		return ret;
2268 
2269 	ret = isp_fwnodes_parse(&pdev->dev, &isp->notifier);
2270 	if (ret < 0)
2271 		return ret;
2272 
2273 	isp->autoidle = autoidle;
2274 
2275 	mutex_init(&isp->isp_mutex);
2276 	spin_lock_init(&isp->stat_lock);
2277 
2278 	isp->dev = &pdev->dev;
2279 	isp->ref_count = 0;
2280 
2281 	ret = dma_coerce_mask_and_coherent(isp->dev, DMA_BIT_MASK(32));
2282 	if (ret)
2283 		goto error;
2284 
2285 	platform_set_drvdata(pdev, isp);
2286 
2287 	/* Regulators */
2288 	isp->isp_csiphy1.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy1");
2289 	isp->isp_csiphy2.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy2");
2290 
2291 	/* Clocks
2292 	 *
2293 	 * The ISP clock tree is revision-dependent. We thus need to enable ICLK
2294 	 * manually to read the revision before calling __omap3isp_get().
2295 	 *
2296 	 * Start by mapping the ISP MMIO area, which is in two pieces.
2297 	 * The ISP IOMMU is in between. Map both now, and fill in the
2298 	 * ISP revision specific portions a little later in the
2299 	 * function.
2300 	 */
2301 	for (i = 0; i < 2; i++) {
2302 		unsigned int map_idx = i ? OMAP3_ISP_IOMEM_CSI2A_REGS1 : 0;
2303 
2304 		mem = platform_get_resource(pdev, IORESOURCE_MEM, i);
2305 		isp->mmio_base[map_idx] =
2306 			devm_ioremap_resource(isp->dev, mem);
2307 		if (IS_ERR(isp->mmio_base[map_idx]))
2308 			return PTR_ERR(isp->mmio_base[map_idx]);
2309 	}
2310 
2311 	ret = isp_get_clocks(isp);
2312 	if (ret < 0)
2313 		goto error;
2314 
2315 	ret = clk_enable(isp->clock[ISP_CLK_CAM_ICK]);
2316 	if (ret < 0)
2317 		goto error;
2318 
2319 	isp->revision = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
2320 	dev_info(isp->dev, "Revision %d.%d found\n",
2321 		 (isp->revision & 0xf0) >> 4, isp->revision & 0x0f);
2322 
2323 	clk_disable(isp->clock[ISP_CLK_CAM_ICK]);
2324 
2325 	if (__omap3isp_get(isp, false) == NULL) {
2326 		ret = -ENODEV;
2327 		goto error;
2328 	}
2329 
2330 	ret = isp_reset(isp);
2331 	if (ret < 0)
2332 		goto error_isp;
2333 
2334 	ret = isp_xclk_init(isp);
2335 	if (ret < 0)
2336 		goto error_isp;
2337 
2338 	/* Memory resources */
2339 	for (m = 0; m < ARRAY_SIZE(isp_res_maps); m++)
2340 		if (isp->revision == isp_res_maps[m].isp_rev)
2341 			break;
2342 
2343 	if (m == ARRAY_SIZE(isp_res_maps)) {
2344 		dev_err(isp->dev, "No resource map found for ISP rev %d.%d\n",
2345 			(isp->revision & 0xf0) >> 4, isp->revision & 0xf);
2346 		ret = -ENODEV;
2347 		goto error_isp;
2348 	}
2349 
2350 	for (i = 1; i < OMAP3_ISP_IOMEM_CSI2A_REGS1; i++)
2351 		isp->mmio_base[i] =
2352 			isp->mmio_base[0] + isp_res_maps[m].offset[i];
2353 
2354 	for (i = OMAP3_ISP_IOMEM_CSIPHY2; i < OMAP3_ISP_IOMEM_LAST; i++)
2355 		isp->mmio_base[i] =
2356 			isp->mmio_base[OMAP3_ISP_IOMEM_CSI2A_REGS1]
2357 			+ isp_res_maps[m].offset[i];
2358 
2359 	isp->mmio_hist_base_phys =
2360 		mem->start + isp_res_maps[m].offset[OMAP3_ISP_IOMEM_HIST];
2361 
2362 	/* IOMMU */
2363 	ret = isp_attach_iommu(isp);
2364 	if (ret < 0) {
2365 		dev_err(&pdev->dev, "unable to attach to IOMMU\n");
2366 		goto error_isp;
2367 	}
2368 
2369 	/* Interrupt */
2370 	ret = platform_get_irq(pdev, 0);
2371 	if (ret <= 0) {
2372 		dev_err(isp->dev, "No IRQ resource\n");
2373 		ret = -ENODEV;
2374 		goto error_iommu;
2375 	}
2376 	isp->irq_num = ret;
2377 
2378 	if (devm_request_irq(isp->dev, isp->irq_num, isp_isr, IRQF_SHARED,
2379 			     "OMAP3 ISP", isp)) {
2380 		dev_err(isp->dev, "Unable to request IRQ\n");
2381 		ret = -EINVAL;
2382 		goto error_iommu;
2383 	}
2384 
2385 	/* Entities */
2386 	ret = isp_initialize_modules(isp);
2387 	if (ret < 0)
2388 		goto error_iommu;
2389 
2390 	ret = isp_register_entities(isp);
2391 	if (ret < 0)
2392 		goto error_modules;
2393 
2394 	ret = isp_create_links(isp);
2395 	if (ret < 0)
2396 		goto error_register_entities;
2397 
2398 	isp->notifier.complete = isp_subdev_notifier_complete;
2399 
2400 	ret = v4l2_async_notifier_register(&isp->v4l2_dev, &isp->notifier);
2401 	if (ret)
2402 		goto error_register_entities;
2403 
2404 	isp_core_init(isp, 1);
2405 	omap3isp_put(isp);
2406 
2407 	return 0;
2408 
2409 error_register_entities:
2410 	isp_unregister_entities(isp);
2411 error_modules:
2412 	isp_cleanup_modules(isp);
2413 error_iommu:
2414 	isp_detach_iommu(isp);
2415 error_isp:
2416 	isp_xclk_cleanup(isp);
2417 	__omap3isp_put(isp, false);
2418 error:
2419 	mutex_destroy(&isp->isp_mutex);
2420 
2421 	return ret;
2422 }
2423 
2424 static const struct dev_pm_ops omap3isp_pm_ops = {
2425 	.prepare = isp_pm_prepare,
2426 	.suspend = isp_pm_suspend,
2427 	.resume = isp_pm_resume,
2428 	.complete = isp_pm_complete,
2429 };
2430 
2431 static struct platform_device_id omap3isp_id_table[] = {
2432 	{ "omap3isp", 0 },
2433 	{ },
2434 };
2435 MODULE_DEVICE_TABLE(platform, omap3isp_id_table);
2436 
2437 static const struct of_device_id omap3isp_of_table[] = {
2438 	{ .compatible = "ti,omap3-isp" },
2439 	{ },
2440 };
2441 MODULE_DEVICE_TABLE(of, omap3isp_of_table);
2442 
2443 static struct platform_driver omap3isp_driver = {
2444 	.probe = isp_probe,
2445 	.remove = isp_remove,
2446 	.id_table = omap3isp_id_table,
2447 	.driver = {
2448 		.name = "omap3isp",
2449 		.pm	= &omap3isp_pm_ops,
2450 		.of_match_table = omap3isp_of_table,
2451 	},
2452 };
2453 
2454 module_platform_driver(omap3isp_driver);
2455 
2456 MODULE_AUTHOR("Nokia Corporation");
2457 MODULE_DESCRIPTION("TI OMAP3 ISP driver");
2458 MODULE_LICENSE("GPL");
2459 MODULE_VERSION(ISP_VIDEO_DRIVER_VERSION);
2460