1 /*
2 * TI VPE mem2mem driver, based on the virtual v4l2-mem2mem example driver
3 *
4 * Copyright (c) 2013 Texas Instruments Inc.
5 * David Griego, <dagriego@biglakesoftware.com>
6 * Dale Farnsworth, <dale@farnsworth.org>
7 * Archit Taneja, <archit@ti.com>
8 *
9 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
10 * Pawel Osciak, <pawel@osciak.com>
11 * Marek Szyprowski, <m.szyprowski@samsung.com>
12 *
13 * Based on the virtual v4l2-mem2mem example device
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License version 2 as published by
17 * the Free Software Foundation
18 */
19
20 #include <linux/delay.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/err.h>
23 #include <linux/fs.h>
24 #include <linux/interrupt.h>
25 #include <linux/io.h>
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/platform_device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/sched.h>
32 #include <linux/slab.h>
33 #include <linux/videodev2.h>
34 #include <linux/log2.h>
35 #include <linux/sizes.h>
36
37 #include <media/v4l2-common.h>
38 #include <media/v4l2-ctrls.h>
39 #include <media/v4l2-device.h>
40 #include <media/v4l2-event.h>
41 #include <media/v4l2-ioctl.h>
42 #include <media/v4l2-mem2mem.h>
43 #include <media/videobuf2-v4l2.h>
44 #include <media/videobuf2-dma-contig.h>
45
46 #include "vpdma.h"
47 #include "vpdma_priv.h"
48 #include "vpe_regs.h"
49 #include "sc.h"
50 #include "csc.h"
51
52 #define VPE_MODULE_NAME "vpe"
53
54 /* minimum and maximum frame sizes */
55 #define MIN_W 32
56 #define MIN_H 32
57 #define MAX_W 2048
58 #define MAX_H 1184
59
60 /* required alignments */
61 #define S_ALIGN 0 /* multiple of 1 */
62 #define H_ALIGN 1 /* multiple of 2 */
63
64 /* flags that indicate a format can be used for capture/output */
65 #define VPE_FMT_TYPE_CAPTURE (1 << 0)
66 #define VPE_FMT_TYPE_OUTPUT (1 << 1)
67
68 /* used as plane indices */
69 #define VPE_MAX_PLANES 2
70 #define VPE_LUMA 0
71 #define VPE_CHROMA 1
72
73 /* per m2m context info */
74 #define VPE_MAX_SRC_BUFS 3 /* need 3 src fields to de-interlace */
75
76 #define VPE_DEF_BUFS_PER_JOB 1 /* default one buffer per batch job */
77
78 /*
79 * each VPE context can need up to 3 config descriptors, 7 input descriptors,
80 * 3 output descriptors, and 10 control descriptors
81 */
82 #define VPE_DESC_LIST_SIZE (10 * VPDMA_DTD_DESC_SIZE + \
83 13 * VPDMA_CFD_CTD_DESC_SIZE)
84
85 #define vpe_dbg(vpedev, fmt, arg...) \
86 dev_dbg((vpedev)->v4l2_dev.dev, fmt, ##arg)
87 #define vpe_err(vpedev, fmt, arg...) \
88 dev_err((vpedev)->v4l2_dev.dev, fmt, ##arg)
89
90 struct vpe_us_coeffs {
91 unsigned short anchor_fid0_c0;
92 unsigned short anchor_fid0_c1;
93 unsigned short anchor_fid0_c2;
94 unsigned short anchor_fid0_c3;
95 unsigned short interp_fid0_c0;
96 unsigned short interp_fid0_c1;
97 unsigned short interp_fid0_c2;
98 unsigned short interp_fid0_c3;
99 unsigned short anchor_fid1_c0;
100 unsigned short anchor_fid1_c1;
101 unsigned short anchor_fid1_c2;
102 unsigned short anchor_fid1_c3;
103 unsigned short interp_fid1_c0;
104 unsigned short interp_fid1_c1;
105 unsigned short interp_fid1_c2;
106 unsigned short interp_fid1_c3;
107 };
108
109 /*
110 * Default upsampler coefficients
111 */
112 static const struct vpe_us_coeffs us_coeffs[] = {
113 {
114 /* Coefficients for progressive input */
115 0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
116 0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
117 },
118 {
119 /* Coefficients for Top Field Interlaced input */
120 0x0051, 0x03D5, 0x3FE3, 0x3FF7, 0x3FB5, 0x02E9, 0x018F, 0x3FD3,
121 /* Coefficients for Bottom Field Interlaced input */
122 0x016B, 0x0247, 0x00B1, 0x3F9D, 0x3FCF, 0x03DB, 0x005D, 0x3FF9,
123 },
124 };
125
126 /*
127 * the following registers are for configuring some of the parameters of the
128 * motion and edge detection blocks inside DEI, these generally remain the same,
129 * these could be passed later via userspace if some one needs to tweak these.
130 */
131 struct vpe_dei_regs {
132 unsigned long mdt_spacial_freq_thr_reg; /* VPE_DEI_REG2 */
133 unsigned long edi_config_reg; /* VPE_DEI_REG3 */
134 unsigned long edi_lut_reg0; /* VPE_DEI_REG4 */
135 unsigned long edi_lut_reg1; /* VPE_DEI_REG5 */
136 unsigned long edi_lut_reg2; /* VPE_DEI_REG6 */
137 unsigned long edi_lut_reg3; /* VPE_DEI_REG7 */
138 };
139
140 /*
141 * default expert DEI register values, unlikely to be modified.
142 */
143 static const struct vpe_dei_regs dei_regs = {
144 .mdt_spacial_freq_thr_reg = 0x020C0804u,
145 .edi_config_reg = 0x0118100Cu,
146 .edi_lut_reg0 = 0x08040200u,
147 .edi_lut_reg1 = 0x1010100Cu,
148 .edi_lut_reg2 = 0x10101010u,
149 .edi_lut_reg3 = 0x10101010u,
150 };
151
152 /*
153 * The port_data structure contains per-port data.
154 */
155 struct vpe_port_data {
156 enum vpdma_channel channel; /* VPDMA channel */
157 u8 vb_index; /* input frame f, f-1, f-2 index */
158 u8 vb_part; /* plane index for co-panar formats */
159 };
160
161 /*
162 * Define indices into the port_data tables
163 */
164 #define VPE_PORT_LUMA1_IN 0
165 #define VPE_PORT_CHROMA1_IN 1
166 #define VPE_PORT_LUMA2_IN 2
167 #define VPE_PORT_CHROMA2_IN 3
168 #define VPE_PORT_LUMA3_IN 4
169 #define VPE_PORT_CHROMA3_IN 5
170 #define VPE_PORT_MV_IN 6
171 #define VPE_PORT_MV_OUT 7
172 #define VPE_PORT_LUMA_OUT 8
173 #define VPE_PORT_CHROMA_OUT 9
174 #define VPE_PORT_RGB_OUT 10
175
176 static const struct vpe_port_data port_data[11] = {
177 [VPE_PORT_LUMA1_IN] = {
178 .channel = VPE_CHAN_LUMA1_IN,
179 .vb_index = 0,
180 .vb_part = VPE_LUMA,
181 },
182 [VPE_PORT_CHROMA1_IN] = {
183 .channel = VPE_CHAN_CHROMA1_IN,
184 .vb_index = 0,
185 .vb_part = VPE_CHROMA,
186 },
187 [VPE_PORT_LUMA2_IN] = {
188 .channel = VPE_CHAN_LUMA2_IN,
189 .vb_index = 1,
190 .vb_part = VPE_LUMA,
191 },
192 [VPE_PORT_CHROMA2_IN] = {
193 .channel = VPE_CHAN_CHROMA2_IN,
194 .vb_index = 1,
195 .vb_part = VPE_CHROMA,
196 },
197 [VPE_PORT_LUMA3_IN] = {
198 .channel = VPE_CHAN_LUMA3_IN,
199 .vb_index = 2,
200 .vb_part = VPE_LUMA,
201 },
202 [VPE_PORT_CHROMA3_IN] = {
203 .channel = VPE_CHAN_CHROMA3_IN,
204 .vb_index = 2,
205 .vb_part = VPE_CHROMA,
206 },
207 [VPE_PORT_MV_IN] = {
208 .channel = VPE_CHAN_MV_IN,
209 },
210 [VPE_PORT_MV_OUT] = {
211 .channel = VPE_CHAN_MV_OUT,
212 },
213 [VPE_PORT_LUMA_OUT] = {
214 .channel = VPE_CHAN_LUMA_OUT,
215 .vb_part = VPE_LUMA,
216 },
217 [VPE_PORT_CHROMA_OUT] = {
218 .channel = VPE_CHAN_CHROMA_OUT,
219 .vb_part = VPE_CHROMA,
220 },
221 [VPE_PORT_RGB_OUT] = {
222 .channel = VPE_CHAN_RGB_OUT,
223 .vb_part = VPE_LUMA,
224 },
225 };
226
227
228 /* driver info for each of the supported video formats */
229 struct vpe_fmt {
230 char *name; /* human-readable name */
231 u32 fourcc; /* standard format identifier */
232 u8 types; /* CAPTURE and/or OUTPUT */
233 u8 coplanar; /* set for unpacked Luma and Chroma */
234 /* vpdma format info for each plane */
235 struct vpdma_data_format const *vpdma_fmt[VPE_MAX_PLANES];
236 };
237
238 static struct vpe_fmt vpe_formats[] = {
239 {
240 .name = "NV16 YUV 422 co-planar",
241 .fourcc = V4L2_PIX_FMT_NV16,
242 .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
243 .coplanar = 1,
244 .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y444],
245 &vpdma_yuv_fmts[VPDMA_DATA_FMT_C444],
246 },
247 },
248 {
249 .name = "NV12 YUV 420 co-planar",
250 .fourcc = V4L2_PIX_FMT_NV12,
251 .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
252 .coplanar = 1,
253 .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y420],
254 &vpdma_yuv_fmts[VPDMA_DATA_FMT_C420],
255 },
256 },
257 {
258 .name = "YUYV 422 packed",
259 .fourcc = V4L2_PIX_FMT_YUYV,
260 .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
261 .coplanar = 0,
262 .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_YCB422],
263 },
264 },
265 {
266 .name = "UYVY 422 packed",
267 .fourcc = V4L2_PIX_FMT_UYVY,
268 .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
269 .coplanar = 0,
270 .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_CBY422],
271 },
272 },
273 {
274 .name = "RGB888 packed",
275 .fourcc = V4L2_PIX_FMT_RGB24,
276 .types = VPE_FMT_TYPE_CAPTURE,
277 .coplanar = 0,
278 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB24],
279 },
280 },
281 {
282 .name = "ARGB32",
283 .fourcc = V4L2_PIX_FMT_RGB32,
284 .types = VPE_FMT_TYPE_CAPTURE,
285 .coplanar = 0,
286 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ARGB32],
287 },
288 },
289 {
290 .name = "BGR888 packed",
291 .fourcc = V4L2_PIX_FMT_BGR24,
292 .types = VPE_FMT_TYPE_CAPTURE,
293 .coplanar = 0,
294 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_BGR24],
295 },
296 },
297 {
298 .name = "ABGR32",
299 .fourcc = V4L2_PIX_FMT_BGR32,
300 .types = VPE_FMT_TYPE_CAPTURE,
301 .coplanar = 0,
302 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ABGR32],
303 },
304 },
305 {
306 .name = "RGB565",
307 .fourcc = V4L2_PIX_FMT_RGB565,
308 .types = VPE_FMT_TYPE_CAPTURE,
309 .coplanar = 0,
310 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB565],
311 },
312 },
313 {
314 .name = "RGB5551",
315 .fourcc = V4L2_PIX_FMT_RGB555,
316 .types = VPE_FMT_TYPE_CAPTURE,
317 .coplanar = 0,
318 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGBA16_5551],
319 },
320 },
321 };
322
323 /*
324 * per-queue, driver-specific private data.
325 * there is one source queue and one destination queue for each m2m context.
326 */
327 struct vpe_q_data {
328 unsigned int width; /* frame width */
329 unsigned int height; /* frame height */
330 unsigned int nplanes; /* Current number of planes */
331 unsigned int bytesperline[VPE_MAX_PLANES]; /* bytes per line in memory */
332 enum v4l2_colorspace colorspace;
333 enum v4l2_field field; /* supported field value */
334 unsigned int flags;
335 unsigned int sizeimage[VPE_MAX_PLANES]; /* image size in memory */
336 struct v4l2_rect c_rect; /* crop/compose rectangle */
337 struct vpe_fmt *fmt; /* format info */
338 };
339
340 /* vpe_q_data flag bits */
341 #define Q_DATA_FRAME_1D BIT(0)
342 #define Q_DATA_MODE_TILED BIT(1)
343 #define Q_DATA_INTERLACED_ALTERNATE BIT(2)
344 #define Q_DATA_INTERLACED_SEQ_TB BIT(3)
345
346 #define Q_IS_INTERLACED (Q_DATA_INTERLACED_ALTERNATE | \
347 Q_DATA_INTERLACED_SEQ_TB)
348
349 enum {
350 Q_DATA_SRC = 0,
351 Q_DATA_DST = 1,
352 };
353
354 /* find our format description corresponding to the passed v4l2_format */
__find_format(u32 fourcc)355 static struct vpe_fmt *__find_format(u32 fourcc)
356 {
357 struct vpe_fmt *fmt;
358 unsigned int k;
359
360 for (k = 0; k < ARRAY_SIZE(vpe_formats); k++) {
361 fmt = &vpe_formats[k];
362 if (fmt->fourcc == fourcc)
363 return fmt;
364 }
365
366 return NULL;
367 }
368
find_format(struct v4l2_format * f)369 static struct vpe_fmt *find_format(struct v4l2_format *f)
370 {
371 return __find_format(f->fmt.pix.pixelformat);
372 }
373
374 /*
375 * there is one vpe_dev structure in the driver, it is shared by
376 * all instances.
377 */
378 struct vpe_dev {
379 struct v4l2_device v4l2_dev;
380 struct video_device vfd;
381 struct v4l2_m2m_dev *m2m_dev;
382
383 atomic_t num_instances; /* count of driver instances */
384 dma_addr_t loaded_mmrs; /* shadow mmrs in device */
385 struct mutex dev_mutex;
386 spinlock_t lock;
387
388 int irq;
389 void __iomem *base;
390 struct resource *res;
391
392 struct vpdma_data vpdma_data;
393 struct vpdma_data *vpdma; /* vpdma data handle */
394 struct sc_data *sc; /* scaler data handle */
395 struct csc_data *csc; /* csc data handle */
396 };
397
398 /*
399 * There is one vpe_ctx structure for each m2m context.
400 */
401 struct vpe_ctx {
402 struct v4l2_fh fh;
403 struct vpe_dev *dev;
404 struct v4l2_ctrl_handler hdl;
405
406 unsigned int field; /* current field */
407 unsigned int sequence; /* current frame/field seq */
408 unsigned int aborting; /* abort after next irq */
409
410 unsigned int bufs_per_job; /* input buffers per batch */
411 unsigned int bufs_completed; /* bufs done in this batch */
412
413 struct vpe_q_data q_data[2]; /* src & dst queue data */
414 struct vb2_v4l2_buffer *src_vbs[VPE_MAX_SRC_BUFS];
415 struct vb2_v4l2_buffer *dst_vb;
416
417 dma_addr_t mv_buf_dma[2]; /* dma addrs of motion vector in/out bufs */
418 void *mv_buf[2]; /* virtual addrs of motion vector bufs */
419 size_t mv_buf_size; /* current motion vector buffer size */
420 struct vpdma_buf mmr_adb; /* shadow reg addr/data block */
421 struct vpdma_buf sc_coeff_h; /* h coeff buffer */
422 struct vpdma_buf sc_coeff_v; /* v coeff buffer */
423 struct vpdma_desc_list desc_list; /* DMA descriptor list */
424
425 bool deinterlacing; /* using de-interlacer */
426 bool load_mmrs; /* have new shadow reg values */
427
428 unsigned int src_mv_buf_selector;
429 };
430
431
432 /*
433 * M2M devices get 2 queues.
434 * Return the queue given the type.
435 */
get_q_data(struct vpe_ctx * ctx,enum v4l2_buf_type type)436 static struct vpe_q_data *get_q_data(struct vpe_ctx *ctx,
437 enum v4l2_buf_type type)
438 {
439 switch (type) {
440 case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE:
441 case V4L2_BUF_TYPE_VIDEO_OUTPUT:
442 return &ctx->q_data[Q_DATA_SRC];
443 case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE:
444 case V4L2_BUF_TYPE_VIDEO_CAPTURE:
445 return &ctx->q_data[Q_DATA_DST];
446 default:
447 return NULL;
448 }
449 return NULL;
450 }
451
read_reg(struct vpe_dev * dev,int offset)452 static u32 read_reg(struct vpe_dev *dev, int offset)
453 {
454 return ioread32(dev->base + offset);
455 }
456
write_reg(struct vpe_dev * dev,int offset,u32 value)457 static void write_reg(struct vpe_dev *dev, int offset, u32 value)
458 {
459 iowrite32(value, dev->base + offset);
460 }
461
462 /* register field read/write helpers */
get_field(u32 value,u32 mask,int shift)463 static int get_field(u32 value, u32 mask, int shift)
464 {
465 return (value & (mask << shift)) >> shift;
466 }
467
read_field_reg(struct vpe_dev * dev,int offset,u32 mask,int shift)468 static int read_field_reg(struct vpe_dev *dev, int offset, u32 mask, int shift)
469 {
470 return get_field(read_reg(dev, offset), mask, shift);
471 }
472
write_field(u32 * valp,u32 field,u32 mask,int shift)473 static void write_field(u32 *valp, u32 field, u32 mask, int shift)
474 {
475 u32 val = *valp;
476
477 val &= ~(mask << shift);
478 val |= (field & mask) << shift;
479 *valp = val;
480 }
481
write_field_reg(struct vpe_dev * dev,int offset,u32 field,u32 mask,int shift)482 static void write_field_reg(struct vpe_dev *dev, int offset, u32 field,
483 u32 mask, int shift)
484 {
485 u32 val = read_reg(dev, offset);
486
487 write_field(&val, field, mask, shift);
488
489 write_reg(dev, offset, val);
490 }
491
492 /*
493 * DMA address/data block for the shadow registers
494 */
495 struct vpe_mmr_adb {
496 struct vpdma_adb_hdr out_fmt_hdr;
497 u32 out_fmt_reg[1];
498 u32 out_fmt_pad[3];
499 struct vpdma_adb_hdr us1_hdr;
500 u32 us1_regs[8];
501 struct vpdma_adb_hdr us2_hdr;
502 u32 us2_regs[8];
503 struct vpdma_adb_hdr us3_hdr;
504 u32 us3_regs[8];
505 struct vpdma_adb_hdr dei_hdr;
506 u32 dei_regs[8];
507 struct vpdma_adb_hdr sc_hdr0;
508 u32 sc_regs0[7];
509 u32 sc_pad0[1];
510 struct vpdma_adb_hdr sc_hdr8;
511 u32 sc_regs8[6];
512 u32 sc_pad8[2];
513 struct vpdma_adb_hdr sc_hdr17;
514 u32 sc_regs17[9];
515 u32 sc_pad17[3];
516 struct vpdma_adb_hdr csc_hdr;
517 u32 csc_regs[6];
518 u32 csc_pad[2];
519 };
520
521 #define GET_OFFSET_TOP(ctx, obj, reg) \
522 ((obj)->res->start - ctx->dev->res->start + reg)
523
524 #define VPE_SET_MMR_ADB_HDR(ctx, hdr, regs, offset_a) \
525 VPDMA_SET_MMR_ADB_HDR(ctx->mmr_adb, vpe_mmr_adb, hdr, regs, offset_a)
526 /*
527 * Set the headers for all of the address/data block structures.
528 */
init_adb_hdrs(struct vpe_ctx * ctx)529 static void init_adb_hdrs(struct vpe_ctx *ctx)
530 {
531 VPE_SET_MMR_ADB_HDR(ctx, out_fmt_hdr, out_fmt_reg, VPE_CLK_FORMAT_SELECT);
532 VPE_SET_MMR_ADB_HDR(ctx, us1_hdr, us1_regs, VPE_US1_R0);
533 VPE_SET_MMR_ADB_HDR(ctx, us2_hdr, us2_regs, VPE_US2_R0);
534 VPE_SET_MMR_ADB_HDR(ctx, us3_hdr, us3_regs, VPE_US3_R0);
535 VPE_SET_MMR_ADB_HDR(ctx, dei_hdr, dei_regs, VPE_DEI_FRAME_SIZE);
536 VPE_SET_MMR_ADB_HDR(ctx, sc_hdr0, sc_regs0,
537 GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC0));
538 VPE_SET_MMR_ADB_HDR(ctx, sc_hdr8, sc_regs8,
539 GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC8));
540 VPE_SET_MMR_ADB_HDR(ctx, sc_hdr17, sc_regs17,
541 GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC17));
542 VPE_SET_MMR_ADB_HDR(ctx, csc_hdr, csc_regs,
543 GET_OFFSET_TOP(ctx, ctx->dev->csc, CSC_CSC00));
544 };
545
546 /*
547 * Allocate or re-allocate the motion vector DMA buffers
548 * There are two buffers, one for input and one for output.
549 * However, the roles are reversed after each field is processed.
550 * In other words, after each field is processed, the previous
551 * output (dst) MV buffer becomes the new input (src) MV buffer.
552 */
realloc_mv_buffers(struct vpe_ctx * ctx,size_t size)553 static int realloc_mv_buffers(struct vpe_ctx *ctx, size_t size)
554 {
555 struct device *dev = ctx->dev->v4l2_dev.dev;
556
557 if (ctx->mv_buf_size == size)
558 return 0;
559
560 if (ctx->mv_buf[0])
561 dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[0],
562 ctx->mv_buf_dma[0]);
563
564 if (ctx->mv_buf[1])
565 dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[1],
566 ctx->mv_buf_dma[1]);
567
568 if (size == 0)
569 return 0;
570
571 ctx->mv_buf[0] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[0],
572 GFP_KERNEL);
573 if (!ctx->mv_buf[0]) {
574 vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
575 return -ENOMEM;
576 }
577
578 ctx->mv_buf[1] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[1],
579 GFP_KERNEL);
580 if (!ctx->mv_buf[1]) {
581 vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
582 dma_free_coherent(dev, size, ctx->mv_buf[0],
583 ctx->mv_buf_dma[0]);
584
585 return -ENOMEM;
586 }
587
588 ctx->mv_buf_size = size;
589 ctx->src_mv_buf_selector = 0;
590
591 return 0;
592 }
593
free_mv_buffers(struct vpe_ctx * ctx)594 static void free_mv_buffers(struct vpe_ctx *ctx)
595 {
596 realloc_mv_buffers(ctx, 0);
597 }
598
599 /*
600 * While de-interlacing, we keep the two most recent input buffers
601 * around. This function frees those two buffers when we have
602 * finished processing the current stream.
603 */
free_vbs(struct vpe_ctx * ctx)604 static void free_vbs(struct vpe_ctx *ctx)
605 {
606 struct vpe_dev *dev = ctx->dev;
607 unsigned long flags;
608
609 if (ctx->src_vbs[2] == NULL)
610 return;
611
612 spin_lock_irqsave(&dev->lock, flags);
613 if (ctx->src_vbs[2]) {
614 v4l2_m2m_buf_done(ctx->src_vbs[2], VB2_BUF_STATE_DONE);
615 if (ctx->src_vbs[1] && (ctx->src_vbs[1] != ctx->src_vbs[2]))
616 v4l2_m2m_buf_done(ctx->src_vbs[1], VB2_BUF_STATE_DONE);
617 ctx->src_vbs[2] = NULL;
618 ctx->src_vbs[1] = NULL;
619 }
620 spin_unlock_irqrestore(&dev->lock, flags);
621 }
622
623 /*
624 * Enable or disable the VPE clocks
625 */
vpe_set_clock_enable(struct vpe_dev * dev,bool on)626 static void vpe_set_clock_enable(struct vpe_dev *dev, bool on)
627 {
628 u32 val = 0;
629
630 if (on)
631 val = VPE_DATA_PATH_CLK_ENABLE | VPE_VPEDMA_CLK_ENABLE;
632 write_reg(dev, VPE_CLK_ENABLE, val);
633 }
634
vpe_top_reset(struct vpe_dev * dev)635 static void vpe_top_reset(struct vpe_dev *dev)
636 {
637
638 write_field_reg(dev, VPE_CLK_RESET, 1, VPE_DATA_PATH_CLK_RESET_MASK,
639 VPE_DATA_PATH_CLK_RESET_SHIFT);
640
641 usleep_range(100, 150);
642
643 write_field_reg(dev, VPE_CLK_RESET, 0, VPE_DATA_PATH_CLK_RESET_MASK,
644 VPE_DATA_PATH_CLK_RESET_SHIFT);
645 }
646
vpe_top_vpdma_reset(struct vpe_dev * dev)647 static void vpe_top_vpdma_reset(struct vpe_dev *dev)
648 {
649 write_field_reg(dev, VPE_CLK_RESET, 1, VPE_VPDMA_CLK_RESET_MASK,
650 VPE_VPDMA_CLK_RESET_SHIFT);
651
652 usleep_range(100, 150);
653
654 write_field_reg(dev, VPE_CLK_RESET, 0, VPE_VPDMA_CLK_RESET_MASK,
655 VPE_VPDMA_CLK_RESET_SHIFT);
656 }
657
658 /*
659 * Load the correct of upsampler coefficients into the shadow MMRs
660 */
set_us_coefficients(struct vpe_ctx * ctx)661 static void set_us_coefficients(struct vpe_ctx *ctx)
662 {
663 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
664 struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
665 u32 *us1_reg = &mmr_adb->us1_regs[0];
666 u32 *us2_reg = &mmr_adb->us2_regs[0];
667 u32 *us3_reg = &mmr_adb->us3_regs[0];
668 const unsigned short *cp, *end_cp;
669
670 cp = &us_coeffs[0].anchor_fid0_c0;
671
672 if (s_q_data->flags & Q_IS_INTERLACED) /* interlaced */
673 cp += sizeof(us_coeffs[0]) / sizeof(*cp);
674
675 end_cp = cp + sizeof(us_coeffs[0]) / sizeof(*cp);
676
677 while (cp < end_cp) {
678 write_field(us1_reg, *cp++, VPE_US_C0_MASK, VPE_US_C0_SHIFT);
679 write_field(us1_reg, *cp++, VPE_US_C1_MASK, VPE_US_C1_SHIFT);
680 *us2_reg++ = *us1_reg;
681 *us3_reg++ = *us1_reg++;
682 }
683 ctx->load_mmrs = true;
684 }
685
686 /*
687 * Set the upsampler config mode and the VPDMA line mode in the shadow MMRs.
688 */
set_cfg_modes(struct vpe_ctx * ctx)689 static void set_cfg_modes(struct vpe_ctx *ctx)
690 {
691 struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt;
692 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
693 u32 *us1_reg0 = &mmr_adb->us1_regs[0];
694 u32 *us2_reg0 = &mmr_adb->us2_regs[0];
695 u32 *us3_reg0 = &mmr_adb->us3_regs[0];
696 int cfg_mode = 1;
697
698 /*
699 * Cfg Mode 0: YUV420 source, enable upsampler, DEI is de-interlacing.
700 * Cfg Mode 1: YUV422 source, disable upsampler, DEI is de-interlacing.
701 */
702
703 if (fmt->fourcc == V4L2_PIX_FMT_NV12)
704 cfg_mode = 0;
705
706 write_field(us1_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
707 write_field(us2_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
708 write_field(us3_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
709
710 ctx->load_mmrs = true;
711 }
712
set_line_modes(struct vpe_ctx * ctx)713 static void set_line_modes(struct vpe_ctx *ctx)
714 {
715 struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt;
716 int line_mode = 1;
717
718 if (fmt->fourcc == V4L2_PIX_FMT_NV12)
719 line_mode = 0; /* double lines to line buffer */
720
721 /* regs for now */
722 vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA1_IN);
723 vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA2_IN);
724 vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA3_IN);
725
726 /* frame start for input luma */
727 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
728 VPE_CHAN_LUMA1_IN);
729 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
730 VPE_CHAN_LUMA2_IN);
731 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
732 VPE_CHAN_LUMA3_IN);
733
734 /* frame start for input chroma */
735 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
736 VPE_CHAN_CHROMA1_IN);
737 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
738 VPE_CHAN_CHROMA2_IN);
739 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
740 VPE_CHAN_CHROMA3_IN);
741
742 /* frame start for MV in client */
743 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
744 VPE_CHAN_MV_IN);
745 }
746
747 /*
748 * Set the shadow registers that are modified when the source
749 * format changes.
750 */
set_src_registers(struct vpe_ctx * ctx)751 static void set_src_registers(struct vpe_ctx *ctx)
752 {
753 set_us_coefficients(ctx);
754 }
755
756 /*
757 * Set the shadow registers that are modified when the destination
758 * format changes.
759 */
set_dst_registers(struct vpe_ctx * ctx)760 static void set_dst_registers(struct vpe_ctx *ctx)
761 {
762 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
763 enum v4l2_colorspace clrspc = ctx->q_data[Q_DATA_DST].colorspace;
764 struct vpe_fmt *fmt = ctx->q_data[Q_DATA_DST].fmt;
765 u32 val = 0;
766
767 if (clrspc == V4L2_COLORSPACE_SRGB) {
768 val |= VPE_RGB_OUT_SELECT;
769 vpdma_set_bg_color(ctx->dev->vpdma,
770 (struct vpdma_data_format *)fmt->vpdma_fmt[0], 0xff);
771 } else if (fmt->fourcc == V4L2_PIX_FMT_NV16)
772 val |= VPE_COLOR_SEPARATE_422;
773
774 /*
775 * the source of CHR_DS and CSC is always the scaler, irrespective of
776 * whether it's used or not
777 */
778 val |= VPE_DS_SRC_DEI_SCALER | VPE_CSC_SRC_DEI_SCALER;
779
780 if (fmt->fourcc != V4L2_PIX_FMT_NV12)
781 val |= VPE_DS_BYPASS;
782
783 mmr_adb->out_fmt_reg[0] = val;
784
785 ctx->load_mmrs = true;
786 }
787
788 /*
789 * Set the de-interlacer shadow register values
790 */
set_dei_regs(struct vpe_ctx * ctx)791 static void set_dei_regs(struct vpe_ctx *ctx)
792 {
793 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
794 struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
795 unsigned int src_h = s_q_data->c_rect.height;
796 unsigned int src_w = s_q_data->c_rect.width;
797 u32 *dei_mmr0 = &mmr_adb->dei_regs[0];
798 bool deinterlace = true;
799 u32 val = 0;
800
801 /*
802 * according to TRM, we should set DEI in progressive bypass mode when
803 * the input content is progressive, however, DEI is bypassed correctly
804 * for both progressive and interlace content in interlace bypass mode.
805 * It has been recommended not to use progressive bypass mode.
806 */
807 if (!(s_q_data->flags & Q_IS_INTERLACED) || !ctx->deinterlacing) {
808 deinterlace = false;
809 val = VPE_DEI_INTERLACE_BYPASS;
810 }
811
812 src_h = deinterlace ? src_h * 2 : src_h;
813
814 val |= (src_h << VPE_DEI_HEIGHT_SHIFT) |
815 (src_w << VPE_DEI_WIDTH_SHIFT) |
816 VPE_DEI_FIELD_FLUSH;
817
818 *dei_mmr0 = val;
819
820 ctx->load_mmrs = true;
821 }
822
set_dei_shadow_registers(struct vpe_ctx * ctx)823 static void set_dei_shadow_registers(struct vpe_ctx *ctx)
824 {
825 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
826 u32 *dei_mmr = &mmr_adb->dei_regs[0];
827 const struct vpe_dei_regs *cur = &dei_regs;
828
829 dei_mmr[2] = cur->mdt_spacial_freq_thr_reg;
830 dei_mmr[3] = cur->edi_config_reg;
831 dei_mmr[4] = cur->edi_lut_reg0;
832 dei_mmr[5] = cur->edi_lut_reg1;
833 dei_mmr[6] = cur->edi_lut_reg2;
834 dei_mmr[7] = cur->edi_lut_reg3;
835
836 ctx->load_mmrs = true;
837 }
838
config_edi_input_mode(struct vpe_ctx * ctx,int mode)839 static void config_edi_input_mode(struct vpe_ctx *ctx, int mode)
840 {
841 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
842 u32 *edi_config_reg = &mmr_adb->dei_regs[3];
843
844 if (mode & 0x2)
845 write_field(edi_config_reg, 1, 1, 2); /* EDI_ENABLE_3D */
846
847 if (mode & 0x3)
848 write_field(edi_config_reg, 1, 1, 3); /* EDI_CHROMA_3D */
849
850 write_field(edi_config_reg, mode, VPE_EDI_INP_MODE_MASK,
851 VPE_EDI_INP_MODE_SHIFT);
852
853 ctx->load_mmrs = true;
854 }
855
856 /*
857 * Set the shadow registers whose values are modified when either the
858 * source or destination format is changed.
859 */
set_srcdst_params(struct vpe_ctx * ctx)860 static int set_srcdst_params(struct vpe_ctx *ctx)
861 {
862 struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
863 struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST];
864 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
865 unsigned int src_w = s_q_data->c_rect.width;
866 unsigned int src_h = s_q_data->c_rect.height;
867 unsigned int dst_w = d_q_data->c_rect.width;
868 unsigned int dst_h = d_q_data->c_rect.height;
869 size_t mv_buf_size;
870 int ret;
871
872 ctx->sequence = 0;
873 ctx->field = V4L2_FIELD_TOP;
874
875 if ((s_q_data->flags & Q_IS_INTERLACED) &&
876 !(d_q_data->flags & Q_IS_INTERLACED)) {
877 int bytes_per_line;
878 const struct vpdma_data_format *mv =
879 &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
880
881 /*
882 * we make sure that the source image has a 16 byte aligned
883 * stride, we need to do the same for the motion vector buffer
884 * by aligning it's stride to the next 16 byte boundry. this
885 * extra space will not be used by the de-interlacer, but will
886 * ensure that vpdma operates correctly
887 */
888 bytes_per_line = ALIGN((s_q_data->width * mv->depth) >> 3,
889 VPDMA_STRIDE_ALIGN);
890 mv_buf_size = bytes_per_line * s_q_data->height;
891
892 ctx->deinterlacing = true;
893 src_h <<= 1;
894 } else {
895 ctx->deinterlacing = false;
896 mv_buf_size = 0;
897 }
898
899 free_vbs(ctx);
900 ctx->src_vbs[2] = ctx->src_vbs[1] = ctx->src_vbs[0] = NULL;
901
902 ret = realloc_mv_buffers(ctx, mv_buf_size);
903 if (ret)
904 return ret;
905
906 set_cfg_modes(ctx);
907 set_dei_regs(ctx);
908
909 csc_set_coeff(ctx->dev->csc, &mmr_adb->csc_regs[0],
910 s_q_data->colorspace, d_q_data->colorspace);
911
912 sc_set_hs_coeffs(ctx->dev->sc, ctx->sc_coeff_h.addr, src_w, dst_w);
913 sc_set_vs_coeffs(ctx->dev->sc, ctx->sc_coeff_v.addr, src_h, dst_h);
914
915 sc_config_scaler(ctx->dev->sc, &mmr_adb->sc_regs0[0],
916 &mmr_adb->sc_regs8[0], &mmr_adb->sc_regs17[0],
917 src_w, src_h, dst_w, dst_h);
918
919 return 0;
920 }
921
922 /*
923 * Return the vpe_ctx structure for a given struct file
924 */
file2ctx(struct file * file)925 static struct vpe_ctx *file2ctx(struct file *file)
926 {
927 return container_of(file->private_data, struct vpe_ctx, fh);
928 }
929
930 /*
931 * mem2mem callbacks
932 */
933
934 /**
935 * job_ready() - check whether an instance is ready to be scheduled to run
936 */
job_ready(void * priv)937 static int job_ready(void *priv)
938 {
939 struct vpe_ctx *ctx = priv;
940
941 /*
942 * This check is needed as this might be called directly from driver
943 * When called by m2m framework, this will always satisfy, but when
944 * called from vpe_irq, this might fail. (src stream with zero buffers)
945 */
946 if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) <= 0 ||
947 v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) <= 0)
948 return 0;
949
950 return 1;
951 }
952
job_abort(void * priv)953 static void job_abort(void *priv)
954 {
955 struct vpe_ctx *ctx = priv;
956
957 /* Will cancel the transaction in the next interrupt handler */
958 ctx->aborting = 1;
959 }
960
961 /*
962 * Lock access to the device
963 */
vpe_lock(void * priv)964 static void vpe_lock(void *priv)
965 {
966 struct vpe_ctx *ctx = priv;
967 struct vpe_dev *dev = ctx->dev;
968 mutex_lock(&dev->dev_mutex);
969 }
970
vpe_unlock(void * priv)971 static void vpe_unlock(void *priv)
972 {
973 struct vpe_ctx *ctx = priv;
974 struct vpe_dev *dev = ctx->dev;
975 mutex_unlock(&dev->dev_mutex);
976 }
977
vpe_dump_regs(struct vpe_dev * dev)978 static void vpe_dump_regs(struct vpe_dev *dev)
979 {
980 #define DUMPREG(r) vpe_dbg(dev, "%-35s %08x\n", #r, read_reg(dev, VPE_##r))
981
982 vpe_dbg(dev, "VPE Registers:\n");
983
984 DUMPREG(PID);
985 DUMPREG(SYSCONFIG);
986 DUMPREG(INT0_STATUS0_RAW);
987 DUMPREG(INT0_STATUS0);
988 DUMPREG(INT0_ENABLE0);
989 DUMPREG(INT0_STATUS1_RAW);
990 DUMPREG(INT0_STATUS1);
991 DUMPREG(INT0_ENABLE1);
992 DUMPREG(CLK_ENABLE);
993 DUMPREG(CLK_RESET);
994 DUMPREG(CLK_FORMAT_SELECT);
995 DUMPREG(CLK_RANGE_MAP);
996 DUMPREG(US1_R0);
997 DUMPREG(US1_R1);
998 DUMPREG(US1_R2);
999 DUMPREG(US1_R3);
1000 DUMPREG(US1_R4);
1001 DUMPREG(US1_R5);
1002 DUMPREG(US1_R6);
1003 DUMPREG(US1_R7);
1004 DUMPREG(US2_R0);
1005 DUMPREG(US2_R1);
1006 DUMPREG(US2_R2);
1007 DUMPREG(US2_R3);
1008 DUMPREG(US2_R4);
1009 DUMPREG(US2_R5);
1010 DUMPREG(US2_R6);
1011 DUMPREG(US2_R7);
1012 DUMPREG(US3_R0);
1013 DUMPREG(US3_R1);
1014 DUMPREG(US3_R2);
1015 DUMPREG(US3_R3);
1016 DUMPREG(US3_R4);
1017 DUMPREG(US3_R5);
1018 DUMPREG(US3_R6);
1019 DUMPREG(US3_R7);
1020 DUMPREG(DEI_FRAME_SIZE);
1021 DUMPREG(MDT_BYPASS);
1022 DUMPREG(MDT_SF_THRESHOLD);
1023 DUMPREG(EDI_CONFIG);
1024 DUMPREG(DEI_EDI_LUT_R0);
1025 DUMPREG(DEI_EDI_LUT_R1);
1026 DUMPREG(DEI_EDI_LUT_R2);
1027 DUMPREG(DEI_EDI_LUT_R3);
1028 DUMPREG(DEI_FMD_WINDOW_R0);
1029 DUMPREG(DEI_FMD_WINDOW_R1);
1030 DUMPREG(DEI_FMD_CONTROL_R0);
1031 DUMPREG(DEI_FMD_CONTROL_R1);
1032 DUMPREG(DEI_FMD_STATUS_R0);
1033 DUMPREG(DEI_FMD_STATUS_R1);
1034 DUMPREG(DEI_FMD_STATUS_R2);
1035 #undef DUMPREG
1036
1037 sc_dump_regs(dev->sc);
1038 csc_dump_regs(dev->csc);
1039 }
1040
add_out_dtd(struct vpe_ctx * ctx,int port)1041 static void add_out_dtd(struct vpe_ctx *ctx, int port)
1042 {
1043 struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_DST];
1044 const struct vpe_port_data *p_data = &port_data[port];
1045 struct vb2_buffer *vb = &ctx->dst_vb->vb2_buf;
1046 struct vpe_fmt *fmt = q_data->fmt;
1047 const struct vpdma_data_format *vpdma_fmt;
1048 int mv_buf_selector = !ctx->src_mv_buf_selector;
1049 dma_addr_t dma_addr;
1050 u32 flags = 0;
1051 u32 offset = 0;
1052 u32 stride;
1053
1054 if (port == VPE_PORT_MV_OUT) {
1055 vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
1056 dma_addr = ctx->mv_buf_dma[mv_buf_selector];
1057 q_data = &ctx->q_data[Q_DATA_SRC];
1058 stride = ALIGN((q_data->width * vpdma_fmt->depth) >> 3,
1059 VPDMA_STRIDE_ALIGN);
1060 } else {
1061 /* to incorporate interleaved formats */
1062 int plane = fmt->coplanar ? p_data->vb_part : 0;
1063
1064 vpdma_fmt = fmt->vpdma_fmt[plane];
1065 /*
1066 * If we are using a single plane buffer and
1067 * we need to set a separate vpdma chroma channel.
1068 */
1069 if (q_data->nplanes == 1 && plane) {
1070 dma_addr = vb2_dma_contig_plane_dma_addr(vb, 0);
1071 /* Compute required offset */
1072 offset = q_data->bytesperline[0] * q_data->height;
1073 } else {
1074 dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
1075 /* Use address as is, no offset */
1076 offset = 0;
1077 }
1078 if (!dma_addr) {
1079 vpe_err(ctx->dev,
1080 "acquiring output buffer(%d) dma_addr failed\n",
1081 port);
1082 return;
1083 }
1084 /* Apply the offset */
1085 dma_addr += offset;
1086 stride = q_data->bytesperline[VPE_LUMA];
1087 }
1088
1089 if (q_data->flags & Q_DATA_FRAME_1D)
1090 flags |= VPDMA_DATA_FRAME_1D;
1091 if (q_data->flags & Q_DATA_MODE_TILED)
1092 flags |= VPDMA_DATA_MODE_TILED;
1093
1094 vpdma_set_max_size(ctx->dev->vpdma, VPDMA_MAX_SIZE1,
1095 MAX_W, MAX_H);
1096
1097 vpdma_add_out_dtd(&ctx->desc_list, q_data->width,
1098 stride, &q_data->c_rect,
1099 vpdma_fmt, dma_addr, MAX_OUT_WIDTH_REG1,
1100 MAX_OUT_HEIGHT_REG1, p_data->channel, flags);
1101 }
1102
add_in_dtd(struct vpe_ctx * ctx,int port)1103 static void add_in_dtd(struct vpe_ctx *ctx, int port)
1104 {
1105 struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_SRC];
1106 const struct vpe_port_data *p_data = &port_data[port];
1107 struct vb2_buffer *vb = &ctx->src_vbs[p_data->vb_index]->vb2_buf;
1108 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1109 struct vpe_fmt *fmt = q_data->fmt;
1110 const struct vpdma_data_format *vpdma_fmt;
1111 int mv_buf_selector = ctx->src_mv_buf_selector;
1112 int field = vbuf->field == V4L2_FIELD_BOTTOM;
1113 int frame_width, frame_height;
1114 dma_addr_t dma_addr;
1115 u32 flags = 0;
1116 u32 offset = 0;
1117 u32 stride;
1118
1119 if (port == VPE_PORT_MV_IN) {
1120 vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
1121 dma_addr = ctx->mv_buf_dma[mv_buf_selector];
1122 stride = ALIGN((q_data->width * vpdma_fmt->depth) >> 3,
1123 VPDMA_STRIDE_ALIGN);
1124 } else {
1125 /* to incorporate interleaved formats */
1126 int plane = fmt->coplanar ? p_data->vb_part : 0;
1127
1128 vpdma_fmt = fmt->vpdma_fmt[plane];
1129 /*
1130 * If we are using a single plane buffer and
1131 * we need to set a separate vpdma chroma channel.
1132 */
1133 if (q_data->nplanes == 1 && plane) {
1134 dma_addr = vb2_dma_contig_plane_dma_addr(vb, 0);
1135 /* Compute required offset */
1136 offset = q_data->bytesperline[0] * q_data->height;
1137 } else {
1138 dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
1139 /* Use address as is, no offset */
1140 offset = 0;
1141 }
1142 if (!dma_addr) {
1143 vpe_err(ctx->dev,
1144 "acquiring output buffer(%d) dma_addr failed\n",
1145 port);
1146 return;
1147 }
1148 /* Apply the offset */
1149 dma_addr += offset;
1150 stride = q_data->bytesperline[VPE_LUMA];
1151
1152 if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB) {
1153 /*
1154 * Use top or bottom field from same vb alternately
1155 * f,f-1,f-2 = TBT when seq is even
1156 * f,f-1,f-2 = BTB when seq is odd
1157 */
1158 field = (p_data->vb_index + (ctx->sequence % 2)) % 2;
1159
1160 if (field) {
1161 /*
1162 * bottom field of a SEQ_TB buffer
1163 * Skip the top field data by
1164 */
1165 int height = q_data->height / 2;
1166 int bpp = fmt->fourcc == V4L2_PIX_FMT_NV12 ?
1167 1 : (vpdma_fmt->depth >> 3);
1168 if (plane)
1169 height /= 2;
1170 dma_addr += q_data->width * height * bpp;
1171 }
1172 }
1173 }
1174
1175 if (q_data->flags & Q_DATA_FRAME_1D)
1176 flags |= VPDMA_DATA_FRAME_1D;
1177 if (q_data->flags & Q_DATA_MODE_TILED)
1178 flags |= VPDMA_DATA_MODE_TILED;
1179
1180 frame_width = q_data->c_rect.width;
1181 frame_height = q_data->c_rect.height;
1182
1183 if (p_data->vb_part && fmt->fourcc == V4L2_PIX_FMT_NV12)
1184 frame_height /= 2;
1185
1186 vpdma_add_in_dtd(&ctx->desc_list, q_data->width, stride,
1187 &q_data->c_rect, vpdma_fmt, dma_addr,
1188 p_data->channel, field, flags, frame_width,
1189 frame_height, 0, 0);
1190 }
1191
1192 /*
1193 * Enable the expected IRQ sources
1194 */
enable_irqs(struct vpe_ctx * ctx)1195 static void enable_irqs(struct vpe_ctx *ctx)
1196 {
1197 write_reg(ctx->dev, VPE_INT0_ENABLE0_SET, VPE_INT0_LIST0_COMPLETE);
1198 write_reg(ctx->dev, VPE_INT0_ENABLE1_SET, VPE_DEI_ERROR_INT |
1199 VPE_DS1_UV_ERROR_INT);
1200
1201 vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, 0, true);
1202 }
1203
disable_irqs(struct vpe_ctx * ctx)1204 static void disable_irqs(struct vpe_ctx *ctx)
1205 {
1206 write_reg(ctx->dev, VPE_INT0_ENABLE0_CLR, 0xffffffff);
1207 write_reg(ctx->dev, VPE_INT0_ENABLE1_CLR, 0xffffffff);
1208
1209 vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, 0, false);
1210 }
1211
1212 /* device_run() - prepares and starts the device
1213 *
1214 * This function is only called when both the source and destination
1215 * buffers are in place.
1216 */
device_run(void * priv)1217 static void device_run(void *priv)
1218 {
1219 struct vpe_ctx *ctx = priv;
1220 struct sc_data *sc = ctx->dev->sc;
1221 struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST];
1222 struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
1223
1224 if (ctx->deinterlacing && s_q_data->flags & Q_DATA_INTERLACED_SEQ_TB &&
1225 ctx->sequence % 2 == 0) {
1226 /* When using SEQ_TB buffers, When using it first time,
1227 * No need to remove the buffer as the next field is present
1228 * in the same buffer. (so that job_ready won't fail)
1229 * It will be removed when using bottom field
1230 */
1231 ctx->src_vbs[0] = v4l2_m2m_next_src_buf(ctx->fh.m2m_ctx);
1232 WARN_ON(ctx->src_vbs[0] == NULL);
1233 } else {
1234 ctx->src_vbs[0] = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1235 WARN_ON(ctx->src_vbs[0] == NULL);
1236 }
1237
1238 ctx->dst_vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
1239 WARN_ON(ctx->dst_vb == NULL);
1240
1241 if (ctx->deinterlacing) {
1242
1243 if (ctx->src_vbs[2] == NULL) {
1244 ctx->src_vbs[2] = ctx->src_vbs[0];
1245 WARN_ON(ctx->src_vbs[2] == NULL);
1246 ctx->src_vbs[1] = ctx->src_vbs[0];
1247 WARN_ON(ctx->src_vbs[1] == NULL);
1248 }
1249
1250 /*
1251 * we have output the first 2 frames through line average, we
1252 * now switch to EDI de-interlacer
1253 */
1254 if (ctx->sequence == 2)
1255 config_edi_input_mode(ctx, 0x3); /* EDI (Y + UV) */
1256 }
1257
1258 /* config descriptors */
1259 if (ctx->dev->loaded_mmrs != ctx->mmr_adb.dma_addr || ctx->load_mmrs) {
1260 vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->mmr_adb);
1261 vpdma_add_cfd_adb(&ctx->desc_list, CFD_MMR_CLIENT, &ctx->mmr_adb);
1262
1263 set_line_modes(ctx);
1264
1265 ctx->dev->loaded_mmrs = ctx->mmr_adb.dma_addr;
1266 ctx->load_mmrs = false;
1267 }
1268
1269 if (sc->loaded_coeff_h != ctx->sc_coeff_h.dma_addr ||
1270 sc->load_coeff_h) {
1271 vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_h);
1272 vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
1273 &ctx->sc_coeff_h, 0);
1274
1275 sc->loaded_coeff_h = ctx->sc_coeff_h.dma_addr;
1276 sc->load_coeff_h = false;
1277 }
1278
1279 if (sc->loaded_coeff_v != ctx->sc_coeff_v.dma_addr ||
1280 sc->load_coeff_v) {
1281 vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_v);
1282 vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
1283 &ctx->sc_coeff_v, SC_COEF_SRAM_SIZE >> 4);
1284
1285 sc->loaded_coeff_v = ctx->sc_coeff_v.dma_addr;
1286 sc->load_coeff_v = false;
1287 }
1288
1289 /* output data descriptors */
1290 if (ctx->deinterlacing)
1291 add_out_dtd(ctx, VPE_PORT_MV_OUT);
1292
1293 if (d_q_data->colorspace == V4L2_COLORSPACE_SRGB) {
1294 add_out_dtd(ctx, VPE_PORT_RGB_OUT);
1295 } else {
1296 add_out_dtd(ctx, VPE_PORT_LUMA_OUT);
1297 if (d_q_data->fmt->coplanar)
1298 add_out_dtd(ctx, VPE_PORT_CHROMA_OUT);
1299 }
1300
1301 /* input data descriptors */
1302 if (ctx->deinterlacing) {
1303 add_in_dtd(ctx, VPE_PORT_LUMA3_IN);
1304 add_in_dtd(ctx, VPE_PORT_CHROMA3_IN);
1305
1306 add_in_dtd(ctx, VPE_PORT_LUMA2_IN);
1307 add_in_dtd(ctx, VPE_PORT_CHROMA2_IN);
1308 }
1309
1310 add_in_dtd(ctx, VPE_PORT_LUMA1_IN);
1311 add_in_dtd(ctx, VPE_PORT_CHROMA1_IN);
1312
1313 if (ctx->deinterlacing)
1314 add_in_dtd(ctx, VPE_PORT_MV_IN);
1315
1316 /* sync on channel control descriptors for input ports */
1317 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_LUMA1_IN);
1318 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_CHROMA1_IN);
1319
1320 if (ctx->deinterlacing) {
1321 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1322 VPE_CHAN_LUMA2_IN);
1323 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1324 VPE_CHAN_CHROMA2_IN);
1325
1326 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1327 VPE_CHAN_LUMA3_IN);
1328 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1329 VPE_CHAN_CHROMA3_IN);
1330
1331 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_IN);
1332 }
1333
1334 /* sync on channel control descriptors for output ports */
1335 if (d_q_data->colorspace == V4L2_COLORSPACE_SRGB) {
1336 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1337 VPE_CHAN_RGB_OUT);
1338 } else {
1339 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1340 VPE_CHAN_LUMA_OUT);
1341 if (d_q_data->fmt->coplanar)
1342 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1343 VPE_CHAN_CHROMA_OUT);
1344 }
1345
1346 if (ctx->deinterlacing)
1347 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_OUT);
1348
1349 enable_irqs(ctx);
1350
1351 vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->desc_list.buf);
1352 vpdma_submit_descs(ctx->dev->vpdma, &ctx->desc_list, 0);
1353 }
1354
dei_error(struct vpe_ctx * ctx)1355 static void dei_error(struct vpe_ctx *ctx)
1356 {
1357 dev_warn(ctx->dev->v4l2_dev.dev,
1358 "received DEI error interrupt\n");
1359 }
1360
ds1_uv_error(struct vpe_ctx * ctx)1361 static void ds1_uv_error(struct vpe_ctx *ctx)
1362 {
1363 dev_warn(ctx->dev->v4l2_dev.dev,
1364 "received downsampler error interrupt\n");
1365 }
1366
vpe_irq(int irq_vpe,void * data)1367 static irqreturn_t vpe_irq(int irq_vpe, void *data)
1368 {
1369 struct vpe_dev *dev = (struct vpe_dev *)data;
1370 struct vpe_ctx *ctx;
1371 struct vpe_q_data *d_q_data;
1372 struct vb2_v4l2_buffer *s_vb, *d_vb;
1373 unsigned long flags;
1374 u32 irqst0, irqst1;
1375 bool list_complete = false;
1376
1377 irqst0 = read_reg(dev, VPE_INT0_STATUS0);
1378 if (irqst0) {
1379 write_reg(dev, VPE_INT0_STATUS0_CLR, irqst0);
1380 vpe_dbg(dev, "INT0_STATUS0 = 0x%08x\n", irqst0);
1381 }
1382
1383 irqst1 = read_reg(dev, VPE_INT0_STATUS1);
1384 if (irqst1) {
1385 write_reg(dev, VPE_INT0_STATUS1_CLR, irqst1);
1386 vpe_dbg(dev, "INT0_STATUS1 = 0x%08x\n", irqst1);
1387 }
1388
1389 ctx = v4l2_m2m_get_curr_priv(dev->m2m_dev);
1390 if (!ctx) {
1391 vpe_err(dev, "instance released before end of transaction\n");
1392 goto handled;
1393 }
1394
1395 if (irqst1) {
1396 if (irqst1 & VPE_DEI_ERROR_INT) {
1397 irqst1 &= ~VPE_DEI_ERROR_INT;
1398 dei_error(ctx);
1399 }
1400 if (irqst1 & VPE_DS1_UV_ERROR_INT) {
1401 irqst1 &= ~VPE_DS1_UV_ERROR_INT;
1402 ds1_uv_error(ctx);
1403 }
1404 }
1405
1406 if (irqst0) {
1407 if (irqst0 & VPE_INT0_LIST0_COMPLETE)
1408 vpdma_clear_list_stat(ctx->dev->vpdma, 0, 0);
1409
1410 irqst0 &= ~(VPE_INT0_LIST0_COMPLETE);
1411 list_complete = true;
1412 }
1413
1414 if (irqst0 | irqst1) {
1415 dev_warn(dev->v4l2_dev.dev, "Unexpected interrupt: INT0_STATUS0 = 0x%08x, INT0_STATUS1 = 0x%08x\n",
1416 irqst0, irqst1);
1417 }
1418
1419 /*
1420 * Setup next operation only when list complete IRQ occurs
1421 * otherwise, skip the following code
1422 */
1423 if (!list_complete)
1424 goto handled;
1425
1426 disable_irqs(ctx);
1427
1428 vpdma_unmap_desc_buf(dev->vpdma, &ctx->desc_list.buf);
1429 vpdma_unmap_desc_buf(dev->vpdma, &ctx->mmr_adb);
1430 vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_h);
1431 vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_v);
1432
1433 vpdma_reset_desc_list(&ctx->desc_list);
1434
1435 /* the previous dst mv buffer becomes the next src mv buffer */
1436 ctx->src_mv_buf_selector = !ctx->src_mv_buf_selector;
1437
1438 s_vb = ctx->src_vbs[0];
1439 d_vb = ctx->dst_vb;
1440
1441 d_vb->flags = s_vb->flags;
1442 d_vb->vb2_buf.timestamp = s_vb->vb2_buf.timestamp;
1443
1444 if (s_vb->flags & V4L2_BUF_FLAG_TIMECODE)
1445 d_vb->timecode = s_vb->timecode;
1446
1447 d_vb->sequence = ctx->sequence;
1448 s_vb->sequence = ctx->sequence;
1449
1450 d_q_data = &ctx->q_data[Q_DATA_DST];
1451 if (d_q_data->flags & Q_IS_INTERLACED) {
1452 d_vb->field = ctx->field;
1453 if (ctx->field == V4L2_FIELD_BOTTOM) {
1454 ctx->sequence++;
1455 ctx->field = V4L2_FIELD_TOP;
1456 } else {
1457 WARN_ON(ctx->field != V4L2_FIELD_TOP);
1458 ctx->field = V4L2_FIELD_BOTTOM;
1459 }
1460 } else {
1461 d_vb->field = V4L2_FIELD_NONE;
1462 ctx->sequence++;
1463 }
1464
1465 if (ctx->deinterlacing) {
1466 /*
1467 * Allow source buffer to be dequeued only if it won't be used
1468 * in the next iteration. All vbs are initialized to first
1469 * buffer and we are shifting buffers every iteration, for the
1470 * first two iterations, no buffer will be dequeued.
1471 * This ensures that driver will keep (n-2)th (n-1)th and (n)th
1472 * field when deinterlacing is enabled
1473 */
1474 if (ctx->src_vbs[2] != ctx->src_vbs[1])
1475 s_vb = ctx->src_vbs[2];
1476 else
1477 s_vb = NULL;
1478 }
1479
1480 spin_lock_irqsave(&dev->lock, flags);
1481
1482 if (s_vb)
1483 v4l2_m2m_buf_done(s_vb, VB2_BUF_STATE_DONE);
1484
1485 v4l2_m2m_buf_done(d_vb, VB2_BUF_STATE_DONE);
1486
1487 spin_unlock_irqrestore(&dev->lock, flags);
1488
1489 if (ctx->deinterlacing) {
1490 ctx->src_vbs[2] = ctx->src_vbs[1];
1491 ctx->src_vbs[1] = ctx->src_vbs[0];
1492 }
1493
1494 /*
1495 * Since the vb2_buf_done has already been called fir therse
1496 * buffer we can now NULL them out so that we won't try
1497 * to clean out stray pointer later on.
1498 */
1499 ctx->src_vbs[0] = NULL;
1500 ctx->dst_vb = NULL;
1501
1502 if (ctx->aborting)
1503 goto finished;
1504
1505 ctx->bufs_completed++;
1506 if (ctx->bufs_completed < ctx->bufs_per_job && job_ready(ctx)) {
1507 device_run(ctx);
1508 goto handled;
1509 }
1510
1511 finished:
1512 vpe_dbg(ctx->dev, "finishing transaction\n");
1513 ctx->bufs_completed = 0;
1514 v4l2_m2m_job_finish(dev->m2m_dev, ctx->fh.m2m_ctx);
1515 handled:
1516 return IRQ_HANDLED;
1517 }
1518
1519 /*
1520 * video ioctls
1521 */
vpe_querycap(struct file * file,void * priv,struct v4l2_capability * cap)1522 static int vpe_querycap(struct file *file, void *priv,
1523 struct v4l2_capability *cap)
1524 {
1525 strncpy(cap->driver, VPE_MODULE_NAME, sizeof(cap->driver) - 1);
1526 strncpy(cap->card, VPE_MODULE_NAME, sizeof(cap->card) - 1);
1527 snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
1528 VPE_MODULE_NAME);
1529 cap->device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING;
1530 cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS;
1531 return 0;
1532 }
1533
__enum_fmt(struct v4l2_fmtdesc * f,u32 type)1534 static int __enum_fmt(struct v4l2_fmtdesc *f, u32 type)
1535 {
1536 int i, index;
1537 struct vpe_fmt *fmt = NULL;
1538
1539 index = 0;
1540 for (i = 0; i < ARRAY_SIZE(vpe_formats); ++i) {
1541 if (vpe_formats[i].types & type) {
1542 if (index == f->index) {
1543 fmt = &vpe_formats[i];
1544 break;
1545 }
1546 index++;
1547 }
1548 }
1549
1550 if (!fmt)
1551 return -EINVAL;
1552
1553 strncpy(f->description, fmt->name, sizeof(f->description) - 1);
1554 f->pixelformat = fmt->fourcc;
1555 return 0;
1556 }
1557
vpe_enum_fmt(struct file * file,void * priv,struct v4l2_fmtdesc * f)1558 static int vpe_enum_fmt(struct file *file, void *priv,
1559 struct v4l2_fmtdesc *f)
1560 {
1561 if (V4L2_TYPE_IS_OUTPUT(f->type))
1562 return __enum_fmt(f, VPE_FMT_TYPE_OUTPUT);
1563
1564 return __enum_fmt(f, VPE_FMT_TYPE_CAPTURE);
1565 }
1566
vpe_g_fmt(struct file * file,void * priv,struct v4l2_format * f)1567 static int vpe_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
1568 {
1569 struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1570 struct vpe_ctx *ctx = file2ctx(file);
1571 struct vb2_queue *vq;
1572 struct vpe_q_data *q_data;
1573 int i;
1574
1575 vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
1576 if (!vq)
1577 return -EINVAL;
1578
1579 q_data = get_q_data(ctx, f->type);
1580
1581 pix->width = q_data->width;
1582 pix->height = q_data->height;
1583 pix->pixelformat = q_data->fmt->fourcc;
1584 pix->field = q_data->field;
1585
1586 if (V4L2_TYPE_IS_OUTPUT(f->type)) {
1587 pix->colorspace = q_data->colorspace;
1588 } else {
1589 struct vpe_q_data *s_q_data;
1590
1591 /* get colorspace from the source queue */
1592 s_q_data = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
1593
1594 pix->colorspace = s_q_data->colorspace;
1595 }
1596
1597 pix->num_planes = q_data->nplanes;
1598
1599 for (i = 0; i < pix->num_planes; i++) {
1600 pix->plane_fmt[i].bytesperline = q_data->bytesperline[i];
1601 pix->plane_fmt[i].sizeimage = q_data->sizeimage[i];
1602 }
1603
1604 return 0;
1605 }
1606
__vpe_try_fmt(struct vpe_ctx * ctx,struct v4l2_format * f,struct vpe_fmt * fmt,int type)1607 static int __vpe_try_fmt(struct vpe_ctx *ctx, struct v4l2_format *f,
1608 struct vpe_fmt *fmt, int type)
1609 {
1610 struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1611 struct v4l2_plane_pix_format *plane_fmt;
1612 unsigned int w_align;
1613 int i, depth, depth_bytes, height;
1614 unsigned int stride = 0;
1615
1616 if (!fmt || !(fmt->types & type)) {
1617 vpe_dbg(ctx->dev, "Fourcc format (0x%08x) invalid.\n",
1618 pix->pixelformat);
1619 fmt = __find_format(V4L2_PIX_FMT_YUYV);
1620 }
1621
1622 if (pix->field != V4L2_FIELD_NONE && pix->field != V4L2_FIELD_ALTERNATE
1623 && pix->field != V4L2_FIELD_SEQ_TB)
1624 pix->field = V4L2_FIELD_NONE;
1625
1626 depth = fmt->vpdma_fmt[VPE_LUMA]->depth;
1627
1628 /*
1629 * the line stride should 16 byte aligned for VPDMA to work, based on
1630 * the bytes per pixel, figure out how much the width should be aligned
1631 * to make sure line stride is 16 byte aligned
1632 */
1633 depth_bytes = depth >> 3;
1634
1635 if (depth_bytes == 3) {
1636 /*
1637 * if bpp is 3(as in some RGB formats), the pixel width doesn't
1638 * really help in ensuring line stride is 16 byte aligned
1639 */
1640 w_align = 4;
1641 } else {
1642 /*
1643 * for the remainder bpp(4, 2 and 1), the pixel width alignment
1644 * can ensure a line stride alignment of 16 bytes. For example,
1645 * if bpp is 2, then the line stride can be 16 byte aligned if
1646 * the width is 8 byte aligned
1647 */
1648
1649 /*
1650 * HACK: using order_base_2() here causes lots of asm output
1651 * errors with smatch, on i386:
1652 * ./arch/x86/include/asm/bitops.h:457:22:
1653 * warning: asm output is not an lvalue
1654 * Perhaps some gcc optimization is doing the wrong thing
1655 * there.
1656 * Let's get rid of them by doing the calculus on two steps
1657 */
1658 w_align = roundup_pow_of_two(VPDMA_DESC_ALIGN / depth_bytes);
1659 w_align = ilog2(w_align);
1660 }
1661
1662 v4l_bound_align_image(&pix->width, MIN_W, MAX_W, w_align,
1663 &pix->height, MIN_H, MAX_H, H_ALIGN,
1664 S_ALIGN);
1665
1666 if (!pix->num_planes || pix->num_planes > 2)
1667 pix->num_planes = fmt->coplanar ? 2 : 1;
1668 else if (pix->num_planes > 1 && !fmt->coplanar)
1669 pix->num_planes = 1;
1670
1671 pix->pixelformat = fmt->fourcc;
1672
1673 /*
1674 * For the actual image parameters, we need to consider the field
1675 * height of the image for SEQ_TB buffers.
1676 */
1677 if (pix->field == V4L2_FIELD_SEQ_TB)
1678 height = pix->height / 2;
1679 else
1680 height = pix->height;
1681
1682 if (!pix->colorspace) {
1683 if (fmt->fourcc == V4L2_PIX_FMT_RGB24 ||
1684 fmt->fourcc == V4L2_PIX_FMT_BGR24 ||
1685 fmt->fourcc == V4L2_PIX_FMT_RGB32 ||
1686 fmt->fourcc == V4L2_PIX_FMT_BGR32) {
1687 pix->colorspace = V4L2_COLORSPACE_SRGB;
1688 } else {
1689 if (height > 1280) /* HD */
1690 pix->colorspace = V4L2_COLORSPACE_REC709;
1691 else /* SD */
1692 pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
1693 }
1694 }
1695
1696 memset(pix->reserved, 0, sizeof(pix->reserved));
1697 for (i = 0; i < pix->num_planes; i++) {
1698 plane_fmt = &pix->plane_fmt[i];
1699 depth = fmt->vpdma_fmt[i]->depth;
1700
1701 stride = (pix->width * fmt->vpdma_fmt[VPE_LUMA]->depth) >> 3;
1702 if (stride > plane_fmt->bytesperline)
1703 plane_fmt->bytesperline = stride;
1704
1705 plane_fmt->bytesperline = clamp_t(u32, plane_fmt->bytesperline,
1706 stride,
1707 VPDMA_MAX_STRIDE);
1708
1709 plane_fmt->bytesperline = ALIGN(plane_fmt->bytesperline,
1710 VPDMA_STRIDE_ALIGN);
1711
1712 if (i == VPE_LUMA) {
1713 plane_fmt->sizeimage = pix->height *
1714 plane_fmt->bytesperline;
1715
1716 if (pix->num_planes == 1 && fmt->coplanar)
1717 plane_fmt->sizeimage += pix->height *
1718 plane_fmt->bytesperline *
1719 fmt->vpdma_fmt[VPE_CHROMA]->depth >> 3;
1720
1721 } else { /* i == VIP_CHROMA */
1722 plane_fmt->sizeimage = (pix->height *
1723 plane_fmt->bytesperline *
1724 depth) >> 3;
1725 }
1726 memset(plane_fmt->reserved, 0, sizeof(plane_fmt->reserved));
1727 }
1728
1729 return 0;
1730 }
1731
vpe_try_fmt(struct file * file,void * priv,struct v4l2_format * f)1732 static int vpe_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
1733 {
1734 struct vpe_ctx *ctx = file2ctx(file);
1735 struct vpe_fmt *fmt = find_format(f);
1736
1737 if (V4L2_TYPE_IS_OUTPUT(f->type))
1738 return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_OUTPUT);
1739 else
1740 return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_CAPTURE);
1741 }
1742
__vpe_s_fmt(struct vpe_ctx * ctx,struct v4l2_format * f)1743 static int __vpe_s_fmt(struct vpe_ctx *ctx, struct v4l2_format *f)
1744 {
1745 struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1746 struct v4l2_plane_pix_format *plane_fmt;
1747 struct vpe_q_data *q_data;
1748 struct vb2_queue *vq;
1749 int i;
1750
1751 vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
1752 if (!vq)
1753 return -EINVAL;
1754
1755 if (vb2_is_busy(vq)) {
1756 vpe_err(ctx->dev, "queue busy\n");
1757 return -EBUSY;
1758 }
1759
1760 q_data = get_q_data(ctx, f->type);
1761 if (!q_data)
1762 return -EINVAL;
1763
1764 q_data->fmt = find_format(f);
1765 q_data->width = pix->width;
1766 q_data->height = pix->height;
1767 q_data->colorspace = pix->colorspace;
1768 q_data->field = pix->field;
1769 q_data->nplanes = pix->num_planes;
1770
1771 for (i = 0; i < pix->num_planes; i++) {
1772 plane_fmt = &pix->plane_fmt[i];
1773
1774 q_data->bytesperline[i] = plane_fmt->bytesperline;
1775 q_data->sizeimage[i] = plane_fmt->sizeimage;
1776 }
1777
1778 q_data->c_rect.left = 0;
1779 q_data->c_rect.top = 0;
1780 q_data->c_rect.width = q_data->width;
1781 q_data->c_rect.height = q_data->height;
1782
1783 if (q_data->field == V4L2_FIELD_ALTERNATE)
1784 q_data->flags |= Q_DATA_INTERLACED_ALTERNATE;
1785 else if (q_data->field == V4L2_FIELD_SEQ_TB)
1786 q_data->flags |= Q_DATA_INTERLACED_SEQ_TB;
1787 else
1788 q_data->flags &= ~Q_IS_INTERLACED;
1789
1790 /* the crop height is halved for the case of SEQ_TB buffers */
1791 if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB)
1792 q_data->c_rect.height /= 2;
1793
1794 vpe_dbg(ctx->dev, "Setting format for type %d, wxh: %dx%d, fmt: %d bpl_y %d",
1795 f->type, q_data->width, q_data->height, q_data->fmt->fourcc,
1796 q_data->bytesperline[VPE_LUMA]);
1797 if (q_data->nplanes == 2)
1798 vpe_dbg(ctx->dev, " bpl_uv %d\n",
1799 q_data->bytesperline[VPE_CHROMA]);
1800
1801 return 0;
1802 }
1803
vpe_s_fmt(struct file * file,void * priv,struct v4l2_format * f)1804 static int vpe_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
1805 {
1806 int ret;
1807 struct vpe_ctx *ctx = file2ctx(file);
1808
1809 ret = vpe_try_fmt(file, priv, f);
1810 if (ret)
1811 return ret;
1812
1813 ret = __vpe_s_fmt(ctx, f);
1814 if (ret)
1815 return ret;
1816
1817 if (V4L2_TYPE_IS_OUTPUT(f->type))
1818 set_src_registers(ctx);
1819 else
1820 set_dst_registers(ctx);
1821
1822 return set_srcdst_params(ctx);
1823 }
1824
__vpe_try_selection(struct vpe_ctx * ctx,struct v4l2_selection * s)1825 static int __vpe_try_selection(struct vpe_ctx *ctx, struct v4l2_selection *s)
1826 {
1827 struct vpe_q_data *q_data;
1828 int height;
1829
1830 if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) &&
1831 (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT))
1832 return -EINVAL;
1833
1834 q_data = get_q_data(ctx, s->type);
1835 if (!q_data)
1836 return -EINVAL;
1837
1838 switch (s->target) {
1839 case V4L2_SEL_TGT_COMPOSE:
1840 /*
1841 * COMPOSE target is only valid for capture buffer type, return
1842 * error for output buffer type
1843 */
1844 if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1845 return -EINVAL;
1846 break;
1847 case V4L2_SEL_TGT_CROP:
1848 /*
1849 * CROP target is only valid for output buffer type, return
1850 * error for capture buffer type
1851 */
1852 if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1853 return -EINVAL;
1854 break;
1855 /*
1856 * bound and default crop/compose targets are invalid targets to
1857 * try/set
1858 */
1859 default:
1860 return -EINVAL;
1861 }
1862
1863 /*
1864 * For SEQ_TB buffers, crop height should be less than the height of
1865 * the field height, not the buffer height
1866 */
1867 if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB)
1868 height = q_data->height / 2;
1869 else
1870 height = q_data->height;
1871
1872 if (s->r.top < 0 || s->r.left < 0) {
1873 vpe_err(ctx->dev, "negative values for top and left\n");
1874 s->r.top = s->r.left = 0;
1875 }
1876
1877 v4l_bound_align_image(&s->r.width, MIN_W, q_data->width, 1,
1878 &s->r.height, MIN_H, height, H_ALIGN, S_ALIGN);
1879
1880 /* adjust left/top if cropping rectangle is out of bounds */
1881 if (s->r.left + s->r.width > q_data->width)
1882 s->r.left = q_data->width - s->r.width;
1883 if (s->r.top + s->r.height > q_data->height)
1884 s->r.top = q_data->height - s->r.height;
1885
1886 return 0;
1887 }
1888
vpe_g_selection(struct file * file,void * fh,struct v4l2_selection * s)1889 static int vpe_g_selection(struct file *file, void *fh,
1890 struct v4l2_selection *s)
1891 {
1892 struct vpe_ctx *ctx = file2ctx(file);
1893 struct vpe_q_data *q_data;
1894 bool use_c_rect = false;
1895
1896 if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) &&
1897 (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT))
1898 return -EINVAL;
1899
1900 q_data = get_q_data(ctx, s->type);
1901 if (!q_data)
1902 return -EINVAL;
1903
1904 switch (s->target) {
1905 case V4L2_SEL_TGT_COMPOSE_DEFAULT:
1906 case V4L2_SEL_TGT_COMPOSE_BOUNDS:
1907 if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1908 return -EINVAL;
1909 break;
1910 case V4L2_SEL_TGT_CROP_BOUNDS:
1911 case V4L2_SEL_TGT_CROP_DEFAULT:
1912 if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1913 return -EINVAL;
1914 break;
1915 case V4L2_SEL_TGT_COMPOSE:
1916 if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1917 return -EINVAL;
1918 use_c_rect = true;
1919 break;
1920 case V4L2_SEL_TGT_CROP:
1921 if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1922 return -EINVAL;
1923 use_c_rect = true;
1924 break;
1925 default:
1926 return -EINVAL;
1927 }
1928
1929 if (use_c_rect) {
1930 /*
1931 * for CROP/COMPOSE target type, return c_rect params from the
1932 * respective buffer type
1933 */
1934 s->r = q_data->c_rect;
1935 } else {
1936 /*
1937 * for DEFAULT/BOUNDS target type, return width and height from
1938 * S_FMT of the respective buffer type
1939 */
1940 s->r.left = 0;
1941 s->r.top = 0;
1942 s->r.width = q_data->width;
1943 s->r.height = q_data->height;
1944 }
1945
1946 return 0;
1947 }
1948
1949
vpe_s_selection(struct file * file,void * fh,struct v4l2_selection * s)1950 static int vpe_s_selection(struct file *file, void *fh,
1951 struct v4l2_selection *s)
1952 {
1953 struct vpe_ctx *ctx = file2ctx(file);
1954 struct vpe_q_data *q_data;
1955 struct v4l2_selection sel = *s;
1956 int ret;
1957
1958 ret = __vpe_try_selection(ctx, &sel);
1959 if (ret)
1960 return ret;
1961
1962 q_data = get_q_data(ctx, sel.type);
1963 if (!q_data)
1964 return -EINVAL;
1965
1966 if ((q_data->c_rect.left == sel.r.left) &&
1967 (q_data->c_rect.top == sel.r.top) &&
1968 (q_data->c_rect.width == sel.r.width) &&
1969 (q_data->c_rect.height == sel.r.height)) {
1970 vpe_dbg(ctx->dev,
1971 "requested crop/compose values are already set\n");
1972 return 0;
1973 }
1974
1975 q_data->c_rect = sel.r;
1976
1977 return set_srcdst_params(ctx);
1978 }
1979
1980 /*
1981 * defines number of buffers/frames a context can process with VPE before
1982 * switching to a different context. default value is 1 buffer per context
1983 */
1984 #define V4L2_CID_VPE_BUFS_PER_JOB (V4L2_CID_USER_TI_VPE_BASE + 0)
1985
vpe_s_ctrl(struct v4l2_ctrl * ctrl)1986 static int vpe_s_ctrl(struct v4l2_ctrl *ctrl)
1987 {
1988 struct vpe_ctx *ctx =
1989 container_of(ctrl->handler, struct vpe_ctx, hdl);
1990
1991 switch (ctrl->id) {
1992 case V4L2_CID_VPE_BUFS_PER_JOB:
1993 ctx->bufs_per_job = ctrl->val;
1994 break;
1995
1996 default:
1997 vpe_err(ctx->dev, "Invalid control\n");
1998 return -EINVAL;
1999 }
2000
2001 return 0;
2002 }
2003
2004 static const struct v4l2_ctrl_ops vpe_ctrl_ops = {
2005 .s_ctrl = vpe_s_ctrl,
2006 };
2007
2008 static const struct v4l2_ioctl_ops vpe_ioctl_ops = {
2009 .vidioc_querycap = vpe_querycap,
2010
2011 .vidioc_enum_fmt_vid_cap_mplane = vpe_enum_fmt,
2012 .vidioc_g_fmt_vid_cap_mplane = vpe_g_fmt,
2013 .vidioc_try_fmt_vid_cap_mplane = vpe_try_fmt,
2014 .vidioc_s_fmt_vid_cap_mplane = vpe_s_fmt,
2015
2016 .vidioc_enum_fmt_vid_out_mplane = vpe_enum_fmt,
2017 .vidioc_g_fmt_vid_out_mplane = vpe_g_fmt,
2018 .vidioc_try_fmt_vid_out_mplane = vpe_try_fmt,
2019 .vidioc_s_fmt_vid_out_mplane = vpe_s_fmt,
2020
2021 .vidioc_g_selection = vpe_g_selection,
2022 .vidioc_s_selection = vpe_s_selection,
2023
2024 .vidioc_reqbufs = v4l2_m2m_ioctl_reqbufs,
2025 .vidioc_querybuf = v4l2_m2m_ioctl_querybuf,
2026 .vidioc_qbuf = v4l2_m2m_ioctl_qbuf,
2027 .vidioc_dqbuf = v4l2_m2m_ioctl_dqbuf,
2028 .vidioc_expbuf = v4l2_m2m_ioctl_expbuf,
2029 .vidioc_streamon = v4l2_m2m_ioctl_streamon,
2030 .vidioc_streamoff = v4l2_m2m_ioctl_streamoff,
2031
2032 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
2033 .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
2034 };
2035
2036 /*
2037 * Queue operations
2038 */
vpe_queue_setup(struct vb2_queue * vq,unsigned int * nbuffers,unsigned int * nplanes,unsigned int sizes[],struct device * alloc_devs[])2039 static int vpe_queue_setup(struct vb2_queue *vq,
2040 unsigned int *nbuffers, unsigned int *nplanes,
2041 unsigned int sizes[], struct device *alloc_devs[])
2042 {
2043 int i;
2044 struct vpe_ctx *ctx = vb2_get_drv_priv(vq);
2045 struct vpe_q_data *q_data;
2046
2047 q_data = get_q_data(ctx, vq->type);
2048
2049 *nplanes = q_data->nplanes;
2050
2051 for (i = 0; i < *nplanes; i++)
2052 sizes[i] = q_data->sizeimage[i];
2053
2054 vpe_dbg(ctx->dev, "get %d buffer(s) of size %d", *nbuffers,
2055 sizes[VPE_LUMA]);
2056 if (q_data->nplanes == 2)
2057 vpe_dbg(ctx->dev, " and %d\n", sizes[VPE_CHROMA]);
2058
2059 return 0;
2060 }
2061
vpe_buf_prepare(struct vb2_buffer * vb)2062 static int vpe_buf_prepare(struct vb2_buffer *vb)
2063 {
2064 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
2065 struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
2066 struct vpe_q_data *q_data;
2067 int i, num_planes;
2068
2069 vpe_dbg(ctx->dev, "type: %d\n", vb->vb2_queue->type);
2070
2071 q_data = get_q_data(ctx, vb->vb2_queue->type);
2072 num_planes = q_data->nplanes;
2073
2074 if (vb->vb2_queue->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
2075 if (!(q_data->flags & Q_IS_INTERLACED)) {
2076 vbuf->field = V4L2_FIELD_NONE;
2077 } else {
2078 if (vbuf->field != V4L2_FIELD_TOP &&
2079 vbuf->field != V4L2_FIELD_BOTTOM &&
2080 vbuf->field != V4L2_FIELD_SEQ_TB)
2081 return -EINVAL;
2082 }
2083 }
2084
2085 for (i = 0; i < num_planes; i++) {
2086 if (vb2_plane_size(vb, i) < q_data->sizeimage[i]) {
2087 vpe_err(ctx->dev,
2088 "data will not fit into plane (%lu < %lu)\n",
2089 vb2_plane_size(vb, i),
2090 (long) q_data->sizeimage[i]);
2091 return -EINVAL;
2092 }
2093 }
2094
2095 for (i = 0; i < num_planes; i++)
2096 vb2_set_plane_payload(vb, i, q_data->sizeimage[i]);
2097
2098 return 0;
2099 }
2100
vpe_buf_queue(struct vb2_buffer * vb)2101 static void vpe_buf_queue(struct vb2_buffer *vb)
2102 {
2103 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
2104 struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
2105
2106 v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
2107 }
2108
check_srcdst_sizes(struct vpe_ctx * ctx)2109 static int check_srcdst_sizes(struct vpe_ctx *ctx)
2110 {
2111 struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
2112 struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST];
2113 unsigned int src_w = s_q_data->c_rect.width;
2114 unsigned int src_h = s_q_data->c_rect.height;
2115 unsigned int dst_w = d_q_data->c_rect.width;
2116 unsigned int dst_h = d_q_data->c_rect.height;
2117
2118 if (src_w == dst_w && src_h == dst_h)
2119 return 0;
2120
2121 if (src_h <= SC_MAX_PIXEL_HEIGHT &&
2122 src_w <= SC_MAX_PIXEL_WIDTH &&
2123 dst_h <= SC_MAX_PIXEL_HEIGHT &&
2124 dst_w <= SC_MAX_PIXEL_WIDTH)
2125 return 0;
2126
2127 return -1;
2128 }
2129
vpe_return_all_buffers(struct vpe_ctx * ctx,struct vb2_queue * q,enum vb2_buffer_state state)2130 static void vpe_return_all_buffers(struct vpe_ctx *ctx, struct vb2_queue *q,
2131 enum vb2_buffer_state state)
2132 {
2133 struct vb2_v4l2_buffer *vb;
2134 unsigned long flags;
2135
2136 for (;;) {
2137 if (V4L2_TYPE_IS_OUTPUT(q->type))
2138 vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
2139 else
2140 vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
2141 if (!vb)
2142 break;
2143 spin_lock_irqsave(&ctx->dev->lock, flags);
2144 v4l2_m2m_buf_done(vb, state);
2145 spin_unlock_irqrestore(&ctx->dev->lock, flags);
2146 }
2147
2148 /*
2149 * Cleanup the in-transit vb2 buffers that have been
2150 * removed from their respective queue already but for
2151 * which procecessing has not been completed yet.
2152 */
2153 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
2154 spin_lock_irqsave(&ctx->dev->lock, flags);
2155
2156 if (ctx->src_vbs[2])
2157 v4l2_m2m_buf_done(ctx->src_vbs[2], state);
2158
2159 if (ctx->src_vbs[1] && (ctx->src_vbs[1] != ctx->src_vbs[2]))
2160 v4l2_m2m_buf_done(ctx->src_vbs[1], state);
2161
2162 if (ctx->src_vbs[0] &&
2163 (ctx->src_vbs[0] != ctx->src_vbs[1]) &&
2164 (ctx->src_vbs[0] != ctx->src_vbs[2]))
2165 v4l2_m2m_buf_done(ctx->src_vbs[0], state);
2166
2167 ctx->src_vbs[2] = NULL;
2168 ctx->src_vbs[1] = NULL;
2169 ctx->src_vbs[0] = NULL;
2170
2171 spin_unlock_irqrestore(&ctx->dev->lock, flags);
2172 } else {
2173 if (ctx->dst_vb) {
2174 spin_lock_irqsave(&ctx->dev->lock, flags);
2175
2176 v4l2_m2m_buf_done(ctx->dst_vb, state);
2177 ctx->dst_vb = NULL;
2178 spin_unlock_irqrestore(&ctx->dev->lock, flags);
2179 }
2180 }
2181 }
2182
vpe_start_streaming(struct vb2_queue * q,unsigned int count)2183 static int vpe_start_streaming(struct vb2_queue *q, unsigned int count)
2184 {
2185 struct vpe_ctx *ctx = vb2_get_drv_priv(q);
2186
2187 /* Check any of the size exceed maximum scaling sizes */
2188 if (check_srcdst_sizes(ctx)) {
2189 vpe_err(ctx->dev,
2190 "Conversion setup failed, check source and destination parameters\n"
2191 );
2192 vpe_return_all_buffers(ctx, q, VB2_BUF_STATE_QUEUED);
2193 return -EINVAL;
2194 }
2195
2196 if (ctx->deinterlacing)
2197 config_edi_input_mode(ctx, 0x0);
2198
2199 if (ctx->sequence != 0)
2200 set_srcdst_params(ctx);
2201
2202 return 0;
2203 }
2204
vpe_stop_streaming(struct vb2_queue * q)2205 static void vpe_stop_streaming(struct vb2_queue *q)
2206 {
2207 struct vpe_ctx *ctx = vb2_get_drv_priv(q);
2208
2209 vpe_dump_regs(ctx->dev);
2210 vpdma_dump_regs(ctx->dev->vpdma);
2211
2212 vpe_return_all_buffers(ctx, q, VB2_BUF_STATE_ERROR);
2213 }
2214
2215 static const struct vb2_ops vpe_qops = {
2216 .queue_setup = vpe_queue_setup,
2217 .buf_prepare = vpe_buf_prepare,
2218 .buf_queue = vpe_buf_queue,
2219 .wait_prepare = vb2_ops_wait_prepare,
2220 .wait_finish = vb2_ops_wait_finish,
2221 .start_streaming = vpe_start_streaming,
2222 .stop_streaming = vpe_stop_streaming,
2223 };
2224
queue_init(void * priv,struct vb2_queue * src_vq,struct vb2_queue * dst_vq)2225 static int queue_init(void *priv, struct vb2_queue *src_vq,
2226 struct vb2_queue *dst_vq)
2227 {
2228 struct vpe_ctx *ctx = priv;
2229 struct vpe_dev *dev = ctx->dev;
2230 int ret;
2231
2232 memset(src_vq, 0, sizeof(*src_vq));
2233 src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
2234 src_vq->io_modes = VB2_MMAP | VB2_DMABUF;
2235 src_vq->drv_priv = ctx;
2236 src_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
2237 src_vq->ops = &vpe_qops;
2238 src_vq->mem_ops = &vb2_dma_contig_memops;
2239 src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2240 src_vq->lock = &dev->dev_mutex;
2241 src_vq->dev = dev->v4l2_dev.dev;
2242
2243 ret = vb2_queue_init(src_vq);
2244 if (ret)
2245 return ret;
2246
2247 memset(dst_vq, 0, sizeof(*dst_vq));
2248 dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
2249 dst_vq->io_modes = VB2_MMAP | VB2_DMABUF;
2250 dst_vq->drv_priv = ctx;
2251 dst_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
2252 dst_vq->ops = &vpe_qops;
2253 dst_vq->mem_ops = &vb2_dma_contig_memops;
2254 dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2255 dst_vq->lock = &dev->dev_mutex;
2256 dst_vq->dev = dev->v4l2_dev.dev;
2257
2258 return vb2_queue_init(dst_vq);
2259 }
2260
2261 static const struct v4l2_ctrl_config vpe_bufs_per_job = {
2262 .ops = &vpe_ctrl_ops,
2263 .id = V4L2_CID_VPE_BUFS_PER_JOB,
2264 .name = "Buffers Per Transaction",
2265 .type = V4L2_CTRL_TYPE_INTEGER,
2266 .def = VPE_DEF_BUFS_PER_JOB,
2267 .min = 1,
2268 .max = VIDEO_MAX_FRAME,
2269 .step = 1,
2270 };
2271
2272 /*
2273 * File operations
2274 */
vpe_open(struct file * file)2275 static int vpe_open(struct file *file)
2276 {
2277 struct vpe_dev *dev = video_drvdata(file);
2278 struct vpe_q_data *s_q_data;
2279 struct v4l2_ctrl_handler *hdl;
2280 struct vpe_ctx *ctx;
2281 int ret;
2282
2283 vpe_dbg(dev, "vpe_open\n");
2284
2285 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2286 if (!ctx)
2287 return -ENOMEM;
2288
2289 ctx->dev = dev;
2290
2291 if (mutex_lock_interruptible(&dev->dev_mutex)) {
2292 ret = -ERESTARTSYS;
2293 goto free_ctx;
2294 }
2295
2296 ret = vpdma_create_desc_list(&ctx->desc_list, VPE_DESC_LIST_SIZE,
2297 VPDMA_LIST_TYPE_NORMAL);
2298 if (ret != 0)
2299 goto unlock;
2300
2301 ret = vpdma_alloc_desc_buf(&ctx->mmr_adb, sizeof(struct vpe_mmr_adb));
2302 if (ret != 0)
2303 goto free_desc_list;
2304
2305 ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_h, SC_COEF_SRAM_SIZE);
2306 if (ret != 0)
2307 goto free_mmr_adb;
2308
2309 ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_v, SC_COEF_SRAM_SIZE);
2310 if (ret != 0)
2311 goto free_sc_h;
2312
2313 init_adb_hdrs(ctx);
2314
2315 v4l2_fh_init(&ctx->fh, video_devdata(file));
2316 file->private_data = &ctx->fh;
2317
2318 hdl = &ctx->hdl;
2319 v4l2_ctrl_handler_init(hdl, 1);
2320 v4l2_ctrl_new_custom(hdl, &vpe_bufs_per_job, NULL);
2321 if (hdl->error) {
2322 ret = hdl->error;
2323 goto exit_fh;
2324 }
2325 ctx->fh.ctrl_handler = hdl;
2326 v4l2_ctrl_handler_setup(hdl);
2327
2328 s_q_data = &ctx->q_data[Q_DATA_SRC];
2329 s_q_data->fmt = __find_format(V4L2_PIX_FMT_YUYV);
2330 s_q_data->width = 1920;
2331 s_q_data->height = 1080;
2332 s_q_data->nplanes = 1;
2333 s_q_data->bytesperline[VPE_LUMA] = (s_q_data->width *
2334 s_q_data->fmt->vpdma_fmt[VPE_LUMA]->depth) >> 3;
2335 s_q_data->sizeimage[VPE_LUMA] = (s_q_data->bytesperline[VPE_LUMA] *
2336 s_q_data->height);
2337 s_q_data->colorspace = V4L2_COLORSPACE_REC709;
2338 s_q_data->field = V4L2_FIELD_NONE;
2339 s_q_data->c_rect.left = 0;
2340 s_q_data->c_rect.top = 0;
2341 s_q_data->c_rect.width = s_q_data->width;
2342 s_q_data->c_rect.height = s_q_data->height;
2343 s_q_data->flags = 0;
2344
2345 ctx->q_data[Q_DATA_DST] = *s_q_data;
2346
2347 set_dei_shadow_registers(ctx);
2348 set_src_registers(ctx);
2349 set_dst_registers(ctx);
2350 ret = set_srcdst_params(ctx);
2351 if (ret)
2352 goto exit_fh;
2353
2354 ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(dev->m2m_dev, ctx, &queue_init);
2355
2356 if (IS_ERR(ctx->fh.m2m_ctx)) {
2357 ret = PTR_ERR(ctx->fh.m2m_ctx);
2358 goto exit_fh;
2359 }
2360
2361 v4l2_fh_add(&ctx->fh);
2362
2363 /*
2364 * for now, just report the creation of the first instance, we can later
2365 * optimize the driver to enable or disable clocks when the first
2366 * instance is created or the last instance released
2367 */
2368 if (atomic_inc_return(&dev->num_instances) == 1)
2369 vpe_dbg(dev, "first instance created\n");
2370
2371 ctx->bufs_per_job = VPE_DEF_BUFS_PER_JOB;
2372
2373 ctx->load_mmrs = true;
2374
2375 vpe_dbg(dev, "created instance %p, m2m_ctx: %p\n",
2376 ctx, ctx->fh.m2m_ctx);
2377
2378 mutex_unlock(&dev->dev_mutex);
2379
2380 return 0;
2381 exit_fh:
2382 v4l2_ctrl_handler_free(hdl);
2383 v4l2_fh_exit(&ctx->fh);
2384 vpdma_free_desc_buf(&ctx->sc_coeff_v);
2385 free_sc_h:
2386 vpdma_free_desc_buf(&ctx->sc_coeff_h);
2387 free_mmr_adb:
2388 vpdma_free_desc_buf(&ctx->mmr_adb);
2389 free_desc_list:
2390 vpdma_free_desc_list(&ctx->desc_list);
2391 unlock:
2392 mutex_unlock(&dev->dev_mutex);
2393 free_ctx:
2394 kfree(ctx);
2395 return ret;
2396 }
2397
vpe_release(struct file * file)2398 static int vpe_release(struct file *file)
2399 {
2400 struct vpe_dev *dev = video_drvdata(file);
2401 struct vpe_ctx *ctx = file2ctx(file);
2402
2403 vpe_dbg(dev, "releasing instance %p\n", ctx);
2404
2405 mutex_lock(&dev->dev_mutex);
2406 free_mv_buffers(ctx);
2407
2408 vpdma_unmap_desc_buf(dev->vpdma, &ctx->desc_list.buf);
2409 vpdma_unmap_desc_buf(dev->vpdma, &ctx->mmr_adb);
2410 vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_h);
2411 vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_v);
2412
2413 vpdma_free_desc_list(&ctx->desc_list);
2414 vpdma_free_desc_buf(&ctx->mmr_adb);
2415
2416 vpdma_free_desc_buf(&ctx->sc_coeff_v);
2417 vpdma_free_desc_buf(&ctx->sc_coeff_h);
2418
2419 v4l2_fh_del(&ctx->fh);
2420 v4l2_fh_exit(&ctx->fh);
2421 v4l2_ctrl_handler_free(&ctx->hdl);
2422 v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
2423
2424 kfree(ctx);
2425
2426 /*
2427 * for now, just report the release of the last instance, we can later
2428 * optimize the driver to enable or disable clocks when the first
2429 * instance is created or the last instance released
2430 */
2431 if (atomic_dec_return(&dev->num_instances) == 0)
2432 vpe_dbg(dev, "last instance released\n");
2433
2434 mutex_unlock(&dev->dev_mutex);
2435
2436 return 0;
2437 }
2438
2439 static const struct v4l2_file_operations vpe_fops = {
2440 .owner = THIS_MODULE,
2441 .open = vpe_open,
2442 .release = vpe_release,
2443 .poll = v4l2_m2m_fop_poll,
2444 .unlocked_ioctl = video_ioctl2,
2445 .mmap = v4l2_m2m_fop_mmap,
2446 };
2447
2448 static const struct video_device vpe_videodev = {
2449 .name = VPE_MODULE_NAME,
2450 .fops = &vpe_fops,
2451 .ioctl_ops = &vpe_ioctl_ops,
2452 .minor = -1,
2453 .release = video_device_release_empty,
2454 .vfl_dir = VFL_DIR_M2M,
2455 };
2456
2457 static const struct v4l2_m2m_ops m2m_ops = {
2458 .device_run = device_run,
2459 .job_ready = job_ready,
2460 .job_abort = job_abort,
2461 .lock = vpe_lock,
2462 .unlock = vpe_unlock,
2463 };
2464
vpe_runtime_get(struct platform_device * pdev)2465 static int vpe_runtime_get(struct platform_device *pdev)
2466 {
2467 int r;
2468
2469 dev_dbg(&pdev->dev, "vpe_runtime_get\n");
2470
2471 r = pm_runtime_get_sync(&pdev->dev);
2472 WARN_ON(r < 0);
2473 return r < 0 ? r : 0;
2474 }
2475
vpe_runtime_put(struct platform_device * pdev)2476 static void vpe_runtime_put(struct platform_device *pdev)
2477 {
2478
2479 int r;
2480
2481 dev_dbg(&pdev->dev, "vpe_runtime_put\n");
2482
2483 r = pm_runtime_put_sync(&pdev->dev);
2484 WARN_ON(r < 0 && r != -ENOSYS);
2485 }
2486
vpe_fw_cb(struct platform_device * pdev)2487 static void vpe_fw_cb(struct platform_device *pdev)
2488 {
2489 struct vpe_dev *dev = platform_get_drvdata(pdev);
2490 struct video_device *vfd;
2491 int ret;
2492
2493 vfd = &dev->vfd;
2494 *vfd = vpe_videodev;
2495 vfd->lock = &dev->dev_mutex;
2496 vfd->v4l2_dev = &dev->v4l2_dev;
2497
2498 ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0);
2499 if (ret) {
2500 vpe_err(dev, "Failed to register video device\n");
2501
2502 vpe_set_clock_enable(dev, 0);
2503 vpe_runtime_put(pdev);
2504 pm_runtime_disable(&pdev->dev);
2505 v4l2_m2m_release(dev->m2m_dev);
2506 v4l2_device_unregister(&dev->v4l2_dev);
2507
2508 return;
2509 }
2510
2511 video_set_drvdata(vfd, dev);
2512 snprintf(vfd->name, sizeof(vfd->name), "%s", vpe_videodev.name);
2513 dev_info(dev->v4l2_dev.dev, "Device registered as /dev/video%d\n",
2514 vfd->num);
2515 }
2516
vpe_probe(struct platform_device * pdev)2517 static int vpe_probe(struct platform_device *pdev)
2518 {
2519 struct vpe_dev *dev;
2520 int ret, irq, func;
2521
2522 dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
2523 if (!dev)
2524 return -ENOMEM;
2525
2526 spin_lock_init(&dev->lock);
2527
2528 ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev);
2529 if (ret)
2530 return ret;
2531
2532 atomic_set(&dev->num_instances, 0);
2533 mutex_init(&dev->dev_mutex);
2534
2535 dev->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2536 "vpe_top");
2537 /*
2538 * HACK: we get resource info from device tree in the form of a list of
2539 * VPE sub blocks, the driver currently uses only the base of vpe_top
2540 * for register access, the driver should be changed later to access
2541 * registers based on the sub block base addresses
2542 */
2543 dev->base = devm_ioremap(&pdev->dev, dev->res->start, SZ_32K);
2544 if (!dev->base) {
2545 ret = -ENOMEM;
2546 goto v4l2_dev_unreg;
2547 }
2548
2549 irq = platform_get_irq(pdev, 0);
2550 ret = devm_request_irq(&pdev->dev, irq, vpe_irq, 0, VPE_MODULE_NAME,
2551 dev);
2552 if (ret)
2553 goto v4l2_dev_unreg;
2554
2555 platform_set_drvdata(pdev, dev);
2556
2557 dev->m2m_dev = v4l2_m2m_init(&m2m_ops);
2558 if (IS_ERR(dev->m2m_dev)) {
2559 vpe_err(dev, "Failed to init mem2mem device\n");
2560 ret = PTR_ERR(dev->m2m_dev);
2561 goto v4l2_dev_unreg;
2562 }
2563
2564 pm_runtime_enable(&pdev->dev);
2565
2566 ret = vpe_runtime_get(pdev);
2567 if (ret)
2568 goto rel_m2m;
2569
2570 /* Perform clk enable followed by reset */
2571 vpe_set_clock_enable(dev, 1);
2572
2573 vpe_top_reset(dev);
2574
2575 func = read_field_reg(dev, VPE_PID, VPE_PID_FUNC_MASK,
2576 VPE_PID_FUNC_SHIFT);
2577 vpe_dbg(dev, "VPE PID function %x\n", func);
2578
2579 vpe_top_vpdma_reset(dev);
2580
2581 dev->sc = sc_create(pdev, "sc");
2582 if (IS_ERR(dev->sc)) {
2583 ret = PTR_ERR(dev->sc);
2584 goto runtime_put;
2585 }
2586
2587 dev->csc = csc_create(pdev, "csc");
2588 if (IS_ERR(dev->csc)) {
2589 ret = PTR_ERR(dev->csc);
2590 goto runtime_put;
2591 }
2592
2593 dev->vpdma = &dev->vpdma_data;
2594 ret = vpdma_create(pdev, dev->vpdma, vpe_fw_cb);
2595 if (ret)
2596 goto runtime_put;
2597
2598 return 0;
2599
2600 runtime_put:
2601 vpe_runtime_put(pdev);
2602 rel_m2m:
2603 pm_runtime_disable(&pdev->dev);
2604 v4l2_m2m_release(dev->m2m_dev);
2605 v4l2_dev_unreg:
2606 v4l2_device_unregister(&dev->v4l2_dev);
2607
2608 return ret;
2609 }
2610
vpe_remove(struct platform_device * pdev)2611 static int vpe_remove(struct platform_device *pdev)
2612 {
2613 struct vpe_dev *dev = platform_get_drvdata(pdev);
2614
2615 v4l2_info(&dev->v4l2_dev, "Removing " VPE_MODULE_NAME);
2616
2617 v4l2_m2m_release(dev->m2m_dev);
2618 video_unregister_device(&dev->vfd);
2619 v4l2_device_unregister(&dev->v4l2_dev);
2620
2621 vpe_set_clock_enable(dev, 0);
2622 vpe_runtime_put(pdev);
2623 pm_runtime_disable(&pdev->dev);
2624
2625 return 0;
2626 }
2627
2628 #if defined(CONFIG_OF)
2629 static const struct of_device_id vpe_of_match[] = {
2630 {
2631 .compatible = "ti,vpe",
2632 },
2633 {},
2634 };
2635 MODULE_DEVICE_TABLE(of, vpe_of_match);
2636 #endif
2637
2638 static struct platform_driver vpe_pdrv = {
2639 .probe = vpe_probe,
2640 .remove = vpe_remove,
2641 .driver = {
2642 .name = VPE_MODULE_NAME,
2643 .of_match_table = of_match_ptr(vpe_of_match),
2644 },
2645 };
2646
2647 module_platform_driver(vpe_pdrv);
2648
2649 MODULE_DESCRIPTION("TI VPE driver");
2650 MODULE_AUTHOR("Dale Farnsworth, <dale@farnsworth.org>");
2651 MODULE_LICENSE("GPL");
2652