1 /*
2 * ov534-ov7xxx gspca driver
3 *
4 * Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it>
5 * Copyright (C) 2008 Jim Paris <jim@jtan.com>
6 * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr
7 *
8 * Based on a prototype written by Mark Ferrell <majortrips@gmail.com>
9 * USB protocol reverse engineered by Jim Paris <jim@jtan.com>
10 * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/
11 *
12 * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr
13 * PS3 Eye camera - brightness, contrast, awb, agc, aec controls
14 * added by Max Thrun <bear24rw@gmail.com>
15 * PS3 Eye camera - FPS range extended by Joseph Howse
16 * <josephhowse@nummist.com> http://nummist.com
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
21 * any later version.
22 *
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #define MODULE_NAME "ov534"
32
33 #include "gspca.h"
34
35 #include <linux/fixp-arith.h>
36 #include <media/v4l2-ctrls.h>
37
38 #define OV534_REG_ADDRESS 0xf1 /* sensor address */
39 #define OV534_REG_SUBADDR 0xf2
40 #define OV534_REG_WRITE 0xf3
41 #define OV534_REG_READ 0xf4
42 #define OV534_REG_OPERATION 0xf5
43 #define OV534_REG_STATUS 0xf6
44
45 #define OV534_OP_WRITE_3 0x37
46 #define OV534_OP_WRITE_2 0x33
47 #define OV534_OP_READ_2 0xf9
48
49 #define CTRL_TIMEOUT 500
50 #define DEFAULT_FRAME_RATE 30
51
52 MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>");
53 MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver");
54 MODULE_LICENSE("GPL");
55
56 /* specific webcam descriptor */
57 struct sd {
58 struct gspca_dev gspca_dev; /* !! must be the first item */
59
60 struct v4l2_ctrl_handler ctrl_handler;
61 struct v4l2_ctrl *hue;
62 struct v4l2_ctrl *saturation;
63 struct v4l2_ctrl *brightness;
64 struct v4l2_ctrl *contrast;
65 struct { /* gain control cluster */
66 struct v4l2_ctrl *autogain;
67 struct v4l2_ctrl *gain;
68 };
69 struct v4l2_ctrl *autowhitebalance;
70 struct { /* exposure control cluster */
71 struct v4l2_ctrl *autoexposure;
72 struct v4l2_ctrl *exposure;
73 };
74 struct v4l2_ctrl *sharpness;
75 struct v4l2_ctrl *hflip;
76 struct v4l2_ctrl *vflip;
77 struct v4l2_ctrl *plfreq;
78
79 __u32 last_pts;
80 u16 last_fid;
81 u8 frame_rate;
82
83 u8 sensor;
84 };
85 enum sensors {
86 SENSOR_OV767x,
87 SENSOR_OV772x,
88 NSENSORS
89 };
90
91 static int sd_start(struct gspca_dev *gspca_dev);
92 static void sd_stopN(struct gspca_dev *gspca_dev);
93
94
95 static const struct v4l2_pix_format ov772x_mode[] = {
96 {320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
97 .bytesperline = 320 * 2,
98 .sizeimage = 320 * 240 * 2,
99 .colorspace = V4L2_COLORSPACE_SRGB,
100 .priv = 1},
101 {640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
102 .bytesperline = 640 * 2,
103 .sizeimage = 640 * 480 * 2,
104 .colorspace = V4L2_COLORSPACE_SRGB,
105 .priv = 0},
106 };
107 static const struct v4l2_pix_format ov767x_mode[] = {
108 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
109 .bytesperline = 320,
110 .sizeimage = 320 * 240 * 3 / 8 + 590,
111 .colorspace = V4L2_COLORSPACE_JPEG},
112 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
113 .bytesperline = 640,
114 .sizeimage = 640 * 480 * 3 / 8 + 590,
115 .colorspace = V4L2_COLORSPACE_JPEG},
116 };
117
118 static const u8 qvga_rates[] = {187, 150, 137, 125, 100, 75, 60, 50, 37, 30};
119 static const u8 vga_rates[] = {60, 50, 40, 30, 15};
120
121 static const struct framerates ov772x_framerates[] = {
122 { /* 320x240 */
123 .rates = qvga_rates,
124 .nrates = ARRAY_SIZE(qvga_rates),
125 },
126 { /* 640x480 */
127 .rates = vga_rates,
128 .nrates = ARRAY_SIZE(vga_rates),
129 },
130 };
131
132 struct reg_array {
133 const u8 (*val)[2];
134 int len;
135 };
136
137 static const u8 bridge_init_767x[][2] = {
138 /* comments from the ms-win file apollo7670.set */
139 /* str1 */
140 {0xf1, 0x42},
141 {0x88, 0xf8},
142 {0x89, 0xff},
143 {0x76, 0x03},
144 {0x92, 0x03},
145 {0x95, 0x10},
146 {0xe2, 0x00},
147 {0xe7, 0x3e},
148 {0x8d, 0x1c},
149 {0x8e, 0x00},
150 {0x8f, 0x00},
151 {0x1f, 0x00},
152 {0xc3, 0xf9},
153 {0x89, 0xff},
154 {0x88, 0xf8},
155 {0x76, 0x03},
156 {0x92, 0x01},
157 {0x93, 0x18},
158 {0x1c, 0x00},
159 {0x1d, 0x48},
160 {0x1d, 0x00},
161 {0x1d, 0xff},
162 {0x1d, 0x02},
163 {0x1d, 0x58},
164 {0x1d, 0x00},
165 {0x1c, 0x0a},
166 {0x1d, 0x0a},
167 {0x1d, 0x0e},
168 {0xc0, 0x50}, /* HSize 640 */
169 {0xc1, 0x3c}, /* VSize 480 */
170 {0x34, 0x05}, /* enable Audio Suspend mode */
171 {0xc2, 0x0c}, /* Input YUV */
172 {0xc3, 0xf9}, /* enable PRE */
173 {0x34, 0x05}, /* enable Audio Suspend mode */
174 {0xe7, 0x2e}, /* this solves failure of "SuspendResumeTest" */
175 {0x31, 0xf9}, /* enable 1.8V Suspend */
176 {0x35, 0x02}, /* turn on JPEG */
177 {0xd9, 0x10},
178 {0x25, 0x42}, /* GPIO[8]:Input */
179 {0x94, 0x11}, /* If the default setting is loaded when
180 * system boots up, this flag is closed here */
181 };
182 static const u8 sensor_init_767x[][2] = {
183 {0x12, 0x80},
184 {0x11, 0x03},
185 {0x3a, 0x04},
186 {0x12, 0x00},
187 {0x17, 0x13},
188 {0x18, 0x01},
189 {0x32, 0xb6},
190 {0x19, 0x02},
191 {0x1a, 0x7a},
192 {0x03, 0x0a},
193 {0x0c, 0x00},
194 {0x3e, 0x00},
195 {0x70, 0x3a},
196 {0x71, 0x35},
197 {0x72, 0x11},
198 {0x73, 0xf0},
199 {0xa2, 0x02},
200 {0x7a, 0x2a}, /* set Gamma=1.6 below */
201 {0x7b, 0x12},
202 {0x7c, 0x1d},
203 {0x7d, 0x2d},
204 {0x7e, 0x45},
205 {0x7f, 0x50},
206 {0x80, 0x59},
207 {0x81, 0x62},
208 {0x82, 0x6b},
209 {0x83, 0x73},
210 {0x84, 0x7b},
211 {0x85, 0x8a},
212 {0x86, 0x98},
213 {0x87, 0xb2},
214 {0x88, 0xca},
215 {0x89, 0xe0},
216 {0x13, 0xe0},
217 {0x00, 0x00},
218 {0x10, 0x00},
219 {0x0d, 0x40},
220 {0x14, 0x38}, /* gain max 16x */
221 {0xa5, 0x05},
222 {0xab, 0x07},
223 {0x24, 0x95},
224 {0x25, 0x33},
225 {0x26, 0xe3},
226 {0x9f, 0x78},
227 {0xa0, 0x68},
228 {0xa1, 0x03},
229 {0xa6, 0xd8},
230 {0xa7, 0xd8},
231 {0xa8, 0xf0},
232 {0xa9, 0x90},
233 {0xaa, 0x94},
234 {0x13, 0xe5},
235 {0x0e, 0x61},
236 {0x0f, 0x4b},
237 {0x16, 0x02},
238 {0x21, 0x02},
239 {0x22, 0x91},
240 {0x29, 0x07},
241 {0x33, 0x0b},
242 {0x35, 0x0b},
243 {0x37, 0x1d},
244 {0x38, 0x71},
245 {0x39, 0x2a},
246 {0x3c, 0x78},
247 {0x4d, 0x40},
248 {0x4e, 0x20},
249 {0x69, 0x00},
250 {0x6b, 0x4a},
251 {0x74, 0x10},
252 {0x8d, 0x4f},
253 {0x8e, 0x00},
254 {0x8f, 0x00},
255 {0x90, 0x00},
256 {0x91, 0x00},
257 {0x96, 0x00},
258 {0x9a, 0x80},
259 {0xb0, 0x84},
260 {0xb1, 0x0c},
261 {0xb2, 0x0e},
262 {0xb3, 0x82},
263 {0xb8, 0x0a},
264 {0x43, 0x0a},
265 {0x44, 0xf0},
266 {0x45, 0x34},
267 {0x46, 0x58},
268 {0x47, 0x28},
269 {0x48, 0x3a},
270 {0x59, 0x88},
271 {0x5a, 0x88},
272 {0x5b, 0x44},
273 {0x5c, 0x67},
274 {0x5d, 0x49},
275 {0x5e, 0x0e},
276 {0x6c, 0x0a},
277 {0x6d, 0x55},
278 {0x6e, 0x11},
279 {0x6f, 0x9f},
280 {0x6a, 0x40},
281 {0x01, 0x40},
282 {0x02, 0x40},
283 {0x13, 0xe7},
284 {0x4f, 0x80},
285 {0x50, 0x80},
286 {0x51, 0x00},
287 {0x52, 0x22},
288 {0x53, 0x5e},
289 {0x54, 0x80},
290 {0x58, 0x9e},
291 {0x41, 0x08},
292 {0x3f, 0x00},
293 {0x75, 0x04},
294 {0x76, 0xe1},
295 {0x4c, 0x00},
296 {0x77, 0x01},
297 {0x3d, 0xc2},
298 {0x4b, 0x09},
299 {0xc9, 0x60},
300 {0x41, 0x38}, /* jfm: auto sharpness + auto de-noise */
301 {0x56, 0x40},
302 {0x34, 0x11},
303 {0x3b, 0xc2},
304 {0xa4, 0x8a}, /* Night mode trigger point */
305 {0x96, 0x00},
306 {0x97, 0x30},
307 {0x98, 0x20},
308 {0x99, 0x20},
309 {0x9a, 0x84},
310 {0x9b, 0x29},
311 {0x9c, 0x03},
312 {0x9d, 0x4c},
313 {0x9e, 0x3f},
314 {0x78, 0x04},
315 {0x79, 0x01},
316 {0xc8, 0xf0},
317 {0x79, 0x0f},
318 {0xc8, 0x00},
319 {0x79, 0x10},
320 {0xc8, 0x7e},
321 {0x79, 0x0a},
322 {0xc8, 0x80},
323 {0x79, 0x0b},
324 {0xc8, 0x01},
325 {0x79, 0x0c},
326 {0xc8, 0x0f},
327 {0x79, 0x0d},
328 {0xc8, 0x20},
329 {0x79, 0x09},
330 {0xc8, 0x80},
331 {0x79, 0x02},
332 {0xc8, 0xc0},
333 {0x79, 0x03},
334 {0xc8, 0x20},
335 {0x79, 0x26},
336 };
337 static const u8 bridge_start_vga_767x[][2] = {
338 /* str59 JPG */
339 {0x94, 0xaa},
340 {0xf1, 0x42},
341 {0xe5, 0x04},
342 {0xc0, 0x50},
343 {0xc1, 0x3c},
344 {0xc2, 0x0c},
345 {0x35, 0x02}, /* turn on JPEG */
346 {0xd9, 0x10},
347 {0xda, 0x00}, /* for higher clock rate(30fps) */
348 {0x34, 0x05}, /* enable Audio Suspend mode */
349 {0xc3, 0xf9}, /* enable PRE */
350 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */
351 {0x8d, 0x1c}, /* output YUV */
352 /* {0x34, 0x05}, * enable Audio Suspend mode (?) */
353 {0x50, 0x00}, /* H/V divider=0 */
354 {0x51, 0xa0}, /* input H=640/4 */
355 {0x52, 0x3c}, /* input V=480/4 */
356 {0x53, 0x00}, /* offset X=0 */
357 {0x54, 0x00}, /* offset Y=0 */
358 {0x55, 0x00}, /* H/V size[8]=0 */
359 {0x57, 0x00}, /* H-size[9]=0 */
360 {0x5c, 0x00}, /* output size[9:8]=0 */
361 {0x5a, 0xa0}, /* output H=640/4 */
362 {0x5b, 0x78}, /* output V=480/4 */
363 {0x1c, 0x0a},
364 {0x1d, 0x0a},
365 {0x94, 0x11},
366 };
367 static const u8 sensor_start_vga_767x[][2] = {
368 {0x11, 0x01},
369 {0x1e, 0x04},
370 {0x19, 0x02},
371 {0x1a, 0x7a},
372 };
373 static const u8 bridge_start_qvga_767x[][2] = {
374 /* str86 JPG */
375 {0x94, 0xaa},
376 {0xf1, 0x42},
377 {0xe5, 0x04},
378 {0xc0, 0x80},
379 {0xc1, 0x60},
380 {0xc2, 0x0c},
381 {0x35, 0x02}, /* turn on JPEG */
382 {0xd9, 0x10},
383 {0xc0, 0x50}, /* CIF HSize 640 */
384 {0xc1, 0x3c}, /* CIF VSize 480 */
385 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */
386 {0x8d, 0x1c}, /* output YUV */
387 {0x34, 0x05}, /* enable Audio Suspend mode */
388 {0xc2, 0x4c}, /* output YUV and Enable DCW */
389 {0xc3, 0xf9}, /* enable PRE */
390 {0x1c, 0x00}, /* indirect addressing */
391 {0x1d, 0x48}, /* output YUV422 */
392 {0x50, 0x89}, /* H/V divider=/2; plus DCW AVG */
393 {0x51, 0xa0}, /* DCW input H=640/4 */
394 {0x52, 0x78}, /* DCW input V=480/4 */
395 {0x53, 0x00}, /* offset X=0 */
396 {0x54, 0x00}, /* offset Y=0 */
397 {0x55, 0x00}, /* H/V size[8]=0 */
398 {0x57, 0x00}, /* H-size[9]=0 */
399 {0x5c, 0x00}, /* DCW output size[9:8]=0 */
400 {0x5a, 0x50}, /* DCW output H=320/4 */
401 {0x5b, 0x3c}, /* DCW output V=240/4 */
402 {0x1c, 0x0a},
403 {0x1d, 0x0a},
404 {0x94, 0x11},
405 };
406 static const u8 sensor_start_qvga_767x[][2] = {
407 {0x11, 0x01},
408 {0x1e, 0x04},
409 {0x19, 0x02},
410 {0x1a, 0x7a},
411 };
412
413 static const u8 bridge_init_772x[][2] = {
414 { 0xc2, 0x0c },
415 { 0x88, 0xf8 },
416 { 0xc3, 0x69 },
417 { 0x89, 0xff },
418 { 0x76, 0x03 },
419 { 0x92, 0x01 },
420 { 0x93, 0x18 },
421 { 0x94, 0x10 },
422 { 0x95, 0x10 },
423 { 0xe2, 0x00 },
424 { 0xe7, 0x3e },
425
426 { 0x96, 0x00 },
427
428 { 0x97, 0x20 },
429 { 0x97, 0x20 },
430 { 0x97, 0x20 },
431 { 0x97, 0x0a },
432 { 0x97, 0x3f },
433 { 0x97, 0x4a },
434 { 0x97, 0x20 },
435 { 0x97, 0x15 },
436 { 0x97, 0x0b },
437
438 { 0x8e, 0x40 },
439 { 0x1f, 0x81 },
440 { 0x34, 0x05 },
441 { 0xe3, 0x04 },
442 { 0x88, 0x00 },
443 { 0x89, 0x00 },
444 { 0x76, 0x00 },
445 { 0xe7, 0x2e },
446 { 0x31, 0xf9 },
447 { 0x25, 0x42 },
448 { 0x21, 0xf0 },
449
450 { 0x1c, 0x00 },
451 { 0x1d, 0x40 },
452 { 0x1d, 0x02 }, /* payload size 0x0200 * 4 = 2048 bytes */
453 { 0x1d, 0x00 }, /* payload size */
454
455 { 0x1d, 0x02 }, /* frame size 0x025800 * 4 = 614400 */
456 { 0x1d, 0x58 }, /* frame size */
457 { 0x1d, 0x00 }, /* frame size */
458
459 { 0x1c, 0x0a },
460 { 0x1d, 0x08 }, /* turn on UVC header */
461 { 0x1d, 0x0e }, /* .. */
462
463 { 0x8d, 0x1c },
464 { 0x8e, 0x80 },
465 { 0xe5, 0x04 },
466
467 { 0xc0, 0x50 },
468 { 0xc1, 0x3c },
469 { 0xc2, 0x0c },
470 };
471 static const u8 sensor_init_772x[][2] = {
472 { 0x12, 0x80 },
473 { 0x11, 0x01 },
474 /*fixme: better have a delay?*/
475 { 0x11, 0x01 },
476 { 0x11, 0x01 },
477 { 0x11, 0x01 },
478 { 0x11, 0x01 },
479 { 0x11, 0x01 },
480 { 0x11, 0x01 },
481 { 0x11, 0x01 },
482 { 0x11, 0x01 },
483 { 0x11, 0x01 },
484 { 0x11, 0x01 },
485
486 { 0x3d, 0x03 },
487 { 0x17, 0x26 },
488 { 0x18, 0xa0 },
489 { 0x19, 0x07 },
490 { 0x1a, 0xf0 },
491 { 0x32, 0x00 },
492 { 0x29, 0xa0 },
493 { 0x2c, 0xf0 },
494 { 0x65, 0x20 },
495 { 0x11, 0x01 },
496 { 0x42, 0x7f },
497 { 0x63, 0xaa }, /* AWB - was e0 */
498 { 0x64, 0xff },
499 { 0x66, 0x00 },
500 { 0x13, 0xf0 }, /* com8 */
501 { 0x0d, 0x41 },
502 { 0x0f, 0xc5 },
503 { 0x14, 0x11 },
504
505 { 0x22, 0x7f },
506 { 0x23, 0x03 },
507 { 0x24, 0x40 },
508 { 0x25, 0x30 },
509 { 0x26, 0xa1 },
510 { 0x2a, 0x00 },
511 { 0x2b, 0x00 },
512 { 0x6b, 0xaa },
513 { 0x13, 0xff }, /* AWB */
514
515 { 0x90, 0x05 },
516 { 0x91, 0x01 },
517 { 0x92, 0x03 },
518 { 0x93, 0x00 },
519 { 0x94, 0x60 },
520 { 0x95, 0x3c },
521 { 0x96, 0x24 },
522 { 0x97, 0x1e },
523 { 0x98, 0x62 },
524 { 0x99, 0x80 },
525 { 0x9a, 0x1e },
526 { 0x9b, 0x08 },
527 { 0x9c, 0x20 },
528 { 0x9e, 0x81 },
529
530 { 0xa6, 0x07 },
531 { 0x7e, 0x0c },
532 { 0x7f, 0x16 },
533 { 0x80, 0x2a },
534 { 0x81, 0x4e },
535 { 0x82, 0x61 },
536 { 0x83, 0x6f },
537 { 0x84, 0x7b },
538 { 0x85, 0x86 },
539 { 0x86, 0x8e },
540 { 0x87, 0x97 },
541 { 0x88, 0xa4 },
542 { 0x89, 0xaf },
543 { 0x8a, 0xc5 },
544 { 0x8b, 0xd7 },
545 { 0x8c, 0xe8 },
546 { 0x8d, 0x20 },
547
548 { 0x0c, 0x90 },
549
550 { 0x2b, 0x00 },
551 { 0x22, 0x7f },
552 { 0x23, 0x03 },
553 { 0x11, 0x01 },
554 { 0x0c, 0xd0 },
555 { 0x64, 0xff },
556 { 0x0d, 0x41 },
557
558 { 0x14, 0x41 },
559 { 0x0e, 0xcd },
560 { 0xac, 0xbf },
561 { 0x8e, 0x00 }, /* De-noise threshold */
562 { 0x0c, 0xd0 }
563 };
564 static const u8 bridge_start_vga_772x[][2] = {
565 {0x1c, 0x00},
566 {0x1d, 0x40},
567 {0x1d, 0x02},
568 {0x1d, 0x00},
569 {0x1d, 0x02},
570 {0x1d, 0x58},
571 {0x1d, 0x00},
572 {0xc0, 0x50},
573 {0xc1, 0x3c},
574 };
575 static const u8 sensor_start_vga_772x[][2] = {
576 {0x12, 0x00},
577 {0x17, 0x26},
578 {0x18, 0xa0},
579 {0x19, 0x07},
580 {0x1a, 0xf0},
581 {0x29, 0xa0},
582 {0x2c, 0xf0},
583 {0x65, 0x20},
584 };
585 static const u8 bridge_start_qvga_772x[][2] = {
586 {0x1c, 0x00},
587 {0x1d, 0x40},
588 {0x1d, 0x02},
589 {0x1d, 0x00},
590 {0x1d, 0x01},
591 {0x1d, 0x4b},
592 {0x1d, 0x00},
593 {0xc0, 0x28},
594 {0xc1, 0x1e},
595 };
596 static const u8 sensor_start_qvga_772x[][2] = {
597 {0x12, 0x40},
598 {0x17, 0x3f},
599 {0x18, 0x50},
600 {0x19, 0x03},
601 {0x1a, 0x78},
602 {0x29, 0x50},
603 {0x2c, 0x78},
604 {0x65, 0x2f},
605 };
606
ov534_reg_write(struct gspca_dev * gspca_dev,u16 reg,u8 val)607 static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val)
608 {
609 struct usb_device *udev = gspca_dev->dev;
610 int ret;
611
612 if (gspca_dev->usb_err < 0)
613 return;
614
615 PDEBUG(D_USBO, "SET 01 0000 %04x %02x", reg, val);
616 gspca_dev->usb_buf[0] = val;
617 ret = usb_control_msg(udev,
618 usb_sndctrlpipe(udev, 0),
619 0x01,
620 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
621 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
622 if (ret < 0) {
623 pr_err("write failed %d\n", ret);
624 gspca_dev->usb_err = ret;
625 }
626 }
627
ov534_reg_read(struct gspca_dev * gspca_dev,u16 reg)628 static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg)
629 {
630 struct usb_device *udev = gspca_dev->dev;
631 int ret;
632
633 if (gspca_dev->usb_err < 0)
634 return 0;
635 ret = usb_control_msg(udev,
636 usb_rcvctrlpipe(udev, 0),
637 0x01,
638 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
639 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
640 PDEBUG(D_USBI, "GET 01 0000 %04x %02x", reg, gspca_dev->usb_buf[0]);
641 if (ret < 0) {
642 pr_err("read failed %d\n", ret);
643 gspca_dev->usb_err = ret;
644 /*
645 * Make sure the result is zeroed to avoid uninitialized
646 * values.
647 */
648 gspca_dev->usb_buf[0] = 0;
649 }
650 return gspca_dev->usb_buf[0];
651 }
652
653 /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7.
654 * (direction and output)? */
ov534_set_led(struct gspca_dev * gspca_dev,int status)655 static void ov534_set_led(struct gspca_dev *gspca_dev, int status)
656 {
657 u8 data;
658
659 PDEBUG(D_CONF, "led status: %d", status);
660
661 data = ov534_reg_read(gspca_dev, 0x21);
662 data |= 0x80;
663 ov534_reg_write(gspca_dev, 0x21, data);
664
665 data = ov534_reg_read(gspca_dev, 0x23);
666 if (status)
667 data |= 0x80;
668 else
669 data &= ~0x80;
670
671 ov534_reg_write(gspca_dev, 0x23, data);
672
673 if (!status) {
674 data = ov534_reg_read(gspca_dev, 0x21);
675 data &= ~0x80;
676 ov534_reg_write(gspca_dev, 0x21, data);
677 }
678 }
679
sccb_check_status(struct gspca_dev * gspca_dev)680 static int sccb_check_status(struct gspca_dev *gspca_dev)
681 {
682 u8 data;
683 int i;
684
685 for (i = 0; i < 5; i++) {
686 msleep(10);
687 data = ov534_reg_read(gspca_dev, OV534_REG_STATUS);
688
689 switch (data) {
690 case 0x00:
691 return 1;
692 case 0x04:
693 return 0;
694 case 0x03:
695 break;
696 default:
697 PERR("sccb status 0x%02x, attempt %d/5",
698 data, i + 1);
699 }
700 }
701 return 0;
702 }
703
sccb_reg_write(struct gspca_dev * gspca_dev,u8 reg,u8 val)704 static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val)
705 {
706 PDEBUG(D_USBO, "sccb write: %02x %02x", reg, val);
707 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
708 ov534_reg_write(gspca_dev, OV534_REG_WRITE, val);
709 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3);
710
711 if (!sccb_check_status(gspca_dev)) {
712 pr_err("sccb_reg_write failed\n");
713 gspca_dev->usb_err = -EIO;
714 }
715 }
716
sccb_reg_read(struct gspca_dev * gspca_dev,u16 reg)717 static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg)
718 {
719 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
720 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2);
721 if (!sccb_check_status(gspca_dev))
722 pr_err("sccb_reg_read failed 1\n");
723
724 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2);
725 if (!sccb_check_status(gspca_dev))
726 pr_err("sccb_reg_read failed 2\n");
727
728 return ov534_reg_read(gspca_dev, OV534_REG_READ);
729 }
730
731 /* output a bridge sequence (reg - val) */
reg_w_array(struct gspca_dev * gspca_dev,const u8 (* data)[2],int len)732 static void reg_w_array(struct gspca_dev *gspca_dev,
733 const u8 (*data)[2], int len)
734 {
735 while (--len >= 0) {
736 ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]);
737 data++;
738 }
739 }
740
741 /* output a sensor sequence (reg - val) */
sccb_w_array(struct gspca_dev * gspca_dev,const u8 (* data)[2],int len)742 static void sccb_w_array(struct gspca_dev *gspca_dev,
743 const u8 (*data)[2], int len)
744 {
745 while (--len >= 0) {
746 if ((*data)[0] != 0xff) {
747 sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]);
748 } else {
749 sccb_reg_read(gspca_dev, (*data)[1]);
750 sccb_reg_write(gspca_dev, 0xff, 0x00);
751 }
752 data++;
753 }
754 }
755
756 /* ov772x specific controls */
set_frame_rate(struct gspca_dev * gspca_dev)757 static void set_frame_rate(struct gspca_dev *gspca_dev)
758 {
759 struct sd *sd = (struct sd *) gspca_dev;
760 int i;
761 struct rate_s {
762 u8 fps;
763 u8 r11;
764 u8 r0d;
765 u8 re5;
766 };
767 const struct rate_s *r;
768 static const struct rate_s rate_0[] = { /* 640x480 */
769 {60, 0x01, 0xc1, 0x04},
770 {50, 0x01, 0x41, 0x02},
771 {40, 0x02, 0xc1, 0x04},
772 {30, 0x04, 0x81, 0x02},
773 {15, 0x03, 0x41, 0x04},
774 };
775 static const struct rate_s rate_1[] = { /* 320x240 */
776 /* {205, 0x01, 0xc1, 0x02}, * 205 FPS: video is partly corrupt */
777 {187, 0x01, 0x81, 0x02}, /* 187 FPS or below: video is valid */
778 {150, 0x01, 0xc1, 0x04},
779 {137, 0x02, 0xc1, 0x02},
780 {125, 0x02, 0x81, 0x02},
781 {100, 0x02, 0xc1, 0x04},
782 {75, 0x03, 0xc1, 0x04},
783 {60, 0x04, 0xc1, 0x04},
784 {50, 0x02, 0x41, 0x04},
785 {37, 0x03, 0x41, 0x04},
786 {30, 0x04, 0x41, 0x04},
787 };
788
789 if (sd->sensor != SENSOR_OV772x)
790 return;
791 if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) {
792 r = rate_0;
793 i = ARRAY_SIZE(rate_0);
794 } else {
795 r = rate_1;
796 i = ARRAY_SIZE(rate_1);
797 }
798 while (--i > 0) {
799 if (sd->frame_rate >= r->fps)
800 break;
801 r++;
802 }
803
804 sccb_reg_write(gspca_dev, 0x11, r->r11);
805 sccb_reg_write(gspca_dev, 0x0d, r->r0d);
806 ov534_reg_write(gspca_dev, 0xe5, r->re5);
807
808 PDEBUG(D_PROBE, "frame_rate: %d", r->fps);
809 }
810
sethue(struct gspca_dev * gspca_dev,s32 val)811 static void sethue(struct gspca_dev *gspca_dev, s32 val)
812 {
813 struct sd *sd = (struct sd *) gspca_dev;
814
815 if (sd->sensor == SENSOR_OV767x) {
816 /* TBD */
817 } else {
818 s16 huesin;
819 s16 huecos;
820
821 /* According to the datasheet the registers expect HUESIN and
822 * HUECOS to be the result of the trigonometric functions,
823 * scaled by 0x80.
824 *
825 * The 0x7fff here represents the maximum absolute value
826 * returned byt fixp_sin and fixp_cos, so the scaling will
827 * consider the result like in the interval [-1.0, 1.0].
828 */
829 huesin = fixp_sin16(val) * 0x80 / 0x7fff;
830 huecos = fixp_cos16(val) * 0x80 / 0x7fff;
831
832 if (huesin < 0) {
833 sccb_reg_write(gspca_dev, 0xab,
834 sccb_reg_read(gspca_dev, 0xab) | 0x2);
835 huesin = -huesin;
836 } else {
837 sccb_reg_write(gspca_dev, 0xab,
838 sccb_reg_read(gspca_dev, 0xab) & ~0x2);
839
840 }
841 sccb_reg_write(gspca_dev, 0xa9, (u8)huecos);
842 sccb_reg_write(gspca_dev, 0xaa, (u8)huesin);
843 }
844 }
845
setsaturation(struct gspca_dev * gspca_dev,s32 val)846 static void setsaturation(struct gspca_dev *gspca_dev, s32 val)
847 {
848 struct sd *sd = (struct sd *) gspca_dev;
849
850 if (sd->sensor == SENSOR_OV767x) {
851 int i;
852 static u8 color_tb[][6] = {
853 {0x42, 0x42, 0x00, 0x11, 0x30, 0x41},
854 {0x52, 0x52, 0x00, 0x16, 0x3c, 0x52},
855 {0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66},
856 {0x80, 0x80, 0x00, 0x22, 0x5e, 0x80},
857 {0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a},
858 {0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8},
859 {0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd},
860 };
861
862 for (i = 0; i < ARRAY_SIZE(color_tb[0]); i++)
863 sccb_reg_write(gspca_dev, 0x4f + i, color_tb[val][i]);
864 } else {
865 sccb_reg_write(gspca_dev, 0xa7, val); /* U saturation */
866 sccb_reg_write(gspca_dev, 0xa8, val); /* V saturation */
867 }
868 }
869
setbrightness(struct gspca_dev * gspca_dev,s32 val)870 static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
871 {
872 struct sd *sd = (struct sd *) gspca_dev;
873
874 if (sd->sensor == SENSOR_OV767x) {
875 if (val < 0)
876 val = 0x80 - val;
877 sccb_reg_write(gspca_dev, 0x55, val); /* bright */
878 } else {
879 sccb_reg_write(gspca_dev, 0x9b, val);
880 }
881 }
882
setcontrast(struct gspca_dev * gspca_dev,s32 val)883 static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
884 {
885 struct sd *sd = (struct sd *) gspca_dev;
886
887 if (sd->sensor == SENSOR_OV767x)
888 sccb_reg_write(gspca_dev, 0x56, val); /* contras */
889 else
890 sccb_reg_write(gspca_dev, 0x9c, val);
891 }
892
setgain(struct gspca_dev * gspca_dev,s32 val)893 static void setgain(struct gspca_dev *gspca_dev, s32 val)
894 {
895 switch (val & 0x30) {
896 case 0x00:
897 val &= 0x0f;
898 break;
899 case 0x10:
900 val &= 0x0f;
901 val |= 0x30;
902 break;
903 case 0x20:
904 val &= 0x0f;
905 val |= 0x70;
906 break;
907 default:
908 /* case 0x30: */
909 val &= 0x0f;
910 val |= 0xf0;
911 break;
912 }
913 sccb_reg_write(gspca_dev, 0x00, val);
914 }
915
getgain(struct gspca_dev * gspca_dev)916 static s32 getgain(struct gspca_dev *gspca_dev)
917 {
918 return sccb_reg_read(gspca_dev, 0x00);
919 }
920
setexposure(struct gspca_dev * gspca_dev,s32 val)921 static void setexposure(struct gspca_dev *gspca_dev, s32 val)
922 {
923 struct sd *sd = (struct sd *) gspca_dev;
924
925 if (sd->sensor == SENSOR_OV767x) {
926
927 /* set only aec[9:2] */
928 sccb_reg_write(gspca_dev, 0x10, val); /* aech */
929 } else {
930
931 /* 'val' is one byte and represents half of the exposure value
932 * we are going to set into registers, a two bytes value:
933 *
934 * MSB: ((u16) val << 1) >> 8 == val >> 7
935 * LSB: ((u16) val << 1) & 0xff == val << 1
936 */
937 sccb_reg_write(gspca_dev, 0x08, val >> 7);
938 sccb_reg_write(gspca_dev, 0x10, val << 1);
939 }
940 }
941
getexposure(struct gspca_dev * gspca_dev)942 static s32 getexposure(struct gspca_dev *gspca_dev)
943 {
944 struct sd *sd = (struct sd *) gspca_dev;
945
946 if (sd->sensor == SENSOR_OV767x) {
947 /* get only aec[9:2] */
948 return sccb_reg_read(gspca_dev, 0x10); /* aech */
949 } else {
950 u8 hi = sccb_reg_read(gspca_dev, 0x08);
951 u8 lo = sccb_reg_read(gspca_dev, 0x10);
952 return (hi << 8 | lo) >> 1;
953 }
954 }
955
setagc(struct gspca_dev * gspca_dev,s32 val)956 static void setagc(struct gspca_dev *gspca_dev, s32 val)
957 {
958 if (val) {
959 sccb_reg_write(gspca_dev, 0x13,
960 sccb_reg_read(gspca_dev, 0x13) | 0x04);
961 sccb_reg_write(gspca_dev, 0x64,
962 sccb_reg_read(gspca_dev, 0x64) | 0x03);
963 } else {
964 sccb_reg_write(gspca_dev, 0x13,
965 sccb_reg_read(gspca_dev, 0x13) & ~0x04);
966 sccb_reg_write(gspca_dev, 0x64,
967 sccb_reg_read(gspca_dev, 0x64) & ~0x03);
968 }
969 }
970
setawb(struct gspca_dev * gspca_dev,s32 val)971 static void setawb(struct gspca_dev *gspca_dev, s32 val)
972 {
973 struct sd *sd = (struct sd *) gspca_dev;
974
975 if (val) {
976 sccb_reg_write(gspca_dev, 0x13,
977 sccb_reg_read(gspca_dev, 0x13) | 0x02);
978 if (sd->sensor == SENSOR_OV772x)
979 sccb_reg_write(gspca_dev, 0x63,
980 sccb_reg_read(gspca_dev, 0x63) | 0xc0);
981 } else {
982 sccb_reg_write(gspca_dev, 0x13,
983 sccb_reg_read(gspca_dev, 0x13) & ~0x02);
984 if (sd->sensor == SENSOR_OV772x)
985 sccb_reg_write(gspca_dev, 0x63,
986 sccb_reg_read(gspca_dev, 0x63) & ~0xc0);
987 }
988 }
989
setaec(struct gspca_dev * gspca_dev,s32 val)990 static void setaec(struct gspca_dev *gspca_dev, s32 val)
991 {
992 struct sd *sd = (struct sd *) gspca_dev;
993 u8 data;
994
995 data = sd->sensor == SENSOR_OV767x ?
996 0x05 : /* agc + aec */
997 0x01; /* agc */
998 switch (val) {
999 case V4L2_EXPOSURE_AUTO:
1000 sccb_reg_write(gspca_dev, 0x13,
1001 sccb_reg_read(gspca_dev, 0x13) | data);
1002 break;
1003 case V4L2_EXPOSURE_MANUAL:
1004 sccb_reg_write(gspca_dev, 0x13,
1005 sccb_reg_read(gspca_dev, 0x13) & ~data);
1006 break;
1007 }
1008 }
1009
setsharpness(struct gspca_dev * gspca_dev,s32 val)1010 static void setsharpness(struct gspca_dev *gspca_dev, s32 val)
1011 {
1012 sccb_reg_write(gspca_dev, 0x91, val); /* Auto de-noise threshold */
1013 sccb_reg_write(gspca_dev, 0x8e, val); /* De-noise threshold */
1014 }
1015
sethvflip(struct gspca_dev * gspca_dev,s32 hflip,s32 vflip)1016 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
1017 {
1018 struct sd *sd = (struct sd *) gspca_dev;
1019 u8 val;
1020
1021 if (sd->sensor == SENSOR_OV767x) {
1022 val = sccb_reg_read(gspca_dev, 0x1e); /* mvfp */
1023 val &= ~0x30;
1024 if (hflip)
1025 val |= 0x20;
1026 if (vflip)
1027 val |= 0x10;
1028 sccb_reg_write(gspca_dev, 0x1e, val);
1029 } else {
1030 val = sccb_reg_read(gspca_dev, 0x0c);
1031 val &= ~0xc0;
1032 if (hflip == 0)
1033 val |= 0x40;
1034 if (vflip == 0)
1035 val |= 0x80;
1036 sccb_reg_write(gspca_dev, 0x0c, val);
1037 }
1038 }
1039
setlightfreq(struct gspca_dev * gspca_dev,s32 val)1040 static void setlightfreq(struct gspca_dev *gspca_dev, s32 val)
1041 {
1042 struct sd *sd = (struct sd *) gspca_dev;
1043
1044 val = val ? 0x9e : 0x00;
1045 if (sd->sensor == SENSOR_OV767x) {
1046 sccb_reg_write(gspca_dev, 0x2a, 0x00);
1047 if (val)
1048 val = 0x9d; /* insert dummy to 25fps for 50Hz */
1049 }
1050 sccb_reg_write(gspca_dev, 0x2b, val);
1051 }
1052
1053
1054 /* this function is called at probe time */
sd_config(struct gspca_dev * gspca_dev,const struct usb_device_id * id)1055 static int sd_config(struct gspca_dev *gspca_dev,
1056 const struct usb_device_id *id)
1057 {
1058 struct sd *sd = (struct sd *) gspca_dev;
1059 struct cam *cam;
1060
1061 cam = &gspca_dev->cam;
1062
1063 cam->cam_mode = ov772x_mode;
1064 cam->nmodes = ARRAY_SIZE(ov772x_mode);
1065
1066 sd->frame_rate = DEFAULT_FRAME_RATE;
1067
1068 return 0;
1069 }
1070
ov534_g_volatile_ctrl(struct v4l2_ctrl * ctrl)1071 static int ov534_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1072 {
1073 struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1074 struct gspca_dev *gspca_dev = &sd->gspca_dev;
1075
1076 switch (ctrl->id) {
1077 case V4L2_CID_AUTOGAIN:
1078 gspca_dev->usb_err = 0;
1079 if (ctrl->val && sd->gain && gspca_dev->streaming)
1080 sd->gain->val = getgain(gspca_dev);
1081 return gspca_dev->usb_err;
1082
1083 case V4L2_CID_EXPOSURE_AUTO:
1084 gspca_dev->usb_err = 0;
1085 if (ctrl->val == V4L2_EXPOSURE_AUTO && sd->exposure &&
1086 gspca_dev->streaming)
1087 sd->exposure->val = getexposure(gspca_dev);
1088 return gspca_dev->usb_err;
1089 }
1090 return -EINVAL;
1091 }
1092
ov534_s_ctrl(struct v4l2_ctrl * ctrl)1093 static int ov534_s_ctrl(struct v4l2_ctrl *ctrl)
1094 {
1095 struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1096 struct gspca_dev *gspca_dev = &sd->gspca_dev;
1097
1098 gspca_dev->usb_err = 0;
1099 if (!gspca_dev->streaming)
1100 return 0;
1101
1102 switch (ctrl->id) {
1103 case V4L2_CID_HUE:
1104 sethue(gspca_dev, ctrl->val);
1105 break;
1106 case V4L2_CID_SATURATION:
1107 setsaturation(gspca_dev, ctrl->val);
1108 break;
1109 case V4L2_CID_BRIGHTNESS:
1110 setbrightness(gspca_dev, ctrl->val);
1111 break;
1112 case V4L2_CID_CONTRAST:
1113 setcontrast(gspca_dev, ctrl->val);
1114 break;
1115 case V4L2_CID_AUTOGAIN:
1116 /* case V4L2_CID_GAIN: */
1117 setagc(gspca_dev, ctrl->val);
1118 if (!gspca_dev->usb_err && !ctrl->val && sd->gain)
1119 setgain(gspca_dev, sd->gain->val);
1120 break;
1121 case V4L2_CID_AUTO_WHITE_BALANCE:
1122 setawb(gspca_dev, ctrl->val);
1123 break;
1124 case V4L2_CID_EXPOSURE_AUTO:
1125 /* case V4L2_CID_EXPOSURE: */
1126 setaec(gspca_dev, ctrl->val);
1127 if (!gspca_dev->usb_err && ctrl->val == V4L2_EXPOSURE_MANUAL &&
1128 sd->exposure)
1129 setexposure(gspca_dev, sd->exposure->val);
1130 break;
1131 case V4L2_CID_SHARPNESS:
1132 setsharpness(gspca_dev, ctrl->val);
1133 break;
1134 case V4L2_CID_HFLIP:
1135 sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
1136 break;
1137 case V4L2_CID_VFLIP:
1138 sethvflip(gspca_dev, sd->hflip->val, ctrl->val);
1139 break;
1140 case V4L2_CID_POWER_LINE_FREQUENCY:
1141 setlightfreq(gspca_dev, ctrl->val);
1142 break;
1143 }
1144 return gspca_dev->usb_err;
1145 }
1146
1147 static const struct v4l2_ctrl_ops ov534_ctrl_ops = {
1148 .g_volatile_ctrl = ov534_g_volatile_ctrl,
1149 .s_ctrl = ov534_s_ctrl,
1150 };
1151
sd_init_controls(struct gspca_dev * gspca_dev)1152 static int sd_init_controls(struct gspca_dev *gspca_dev)
1153 {
1154 struct sd *sd = (struct sd *) gspca_dev;
1155 struct v4l2_ctrl_handler *hdl = &sd->ctrl_handler;
1156 /* parameters with different values between the supported sensors */
1157 int saturation_min;
1158 int saturation_max;
1159 int saturation_def;
1160 int brightness_min;
1161 int brightness_max;
1162 int brightness_def;
1163 int contrast_max;
1164 int contrast_def;
1165 int exposure_min;
1166 int exposure_max;
1167 int exposure_def;
1168 int hflip_def;
1169
1170 if (sd->sensor == SENSOR_OV767x) {
1171 saturation_min = 0,
1172 saturation_max = 6,
1173 saturation_def = 3,
1174 brightness_min = -127;
1175 brightness_max = 127;
1176 brightness_def = 0;
1177 contrast_max = 0x80;
1178 contrast_def = 0x40;
1179 exposure_min = 0x08;
1180 exposure_max = 0x60;
1181 exposure_def = 0x13;
1182 hflip_def = 1;
1183 } else {
1184 saturation_min = 0,
1185 saturation_max = 255,
1186 saturation_def = 64,
1187 brightness_min = 0;
1188 brightness_max = 255;
1189 brightness_def = 0;
1190 contrast_max = 255;
1191 contrast_def = 32;
1192 exposure_min = 0;
1193 exposure_max = 255;
1194 exposure_def = 120;
1195 hflip_def = 0;
1196 }
1197
1198 gspca_dev->vdev.ctrl_handler = hdl;
1199
1200 v4l2_ctrl_handler_init(hdl, 13);
1201
1202 if (sd->sensor == SENSOR_OV772x)
1203 sd->hue = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1204 V4L2_CID_HUE, -90, 90, 1, 0);
1205
1206 sd->saturation = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1207 V4L2_CID_SATURATION, saturation_min, saturation_max, 1,
1208 saturation_def);
1209 sd->brightness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1210 V4L2_CID_BRIGHTNESS, brightness_min, brightness_max, 1,
1211 brightness_def);
1212 sd->contrast = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1213 V4L2_CID_CONTRAST, 0, contrast_max, 1, contrast_def);
1214
1215 if (sd->sensor == SENSOR_OV772x) {
1216 sd->autogain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1217 V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
1218 sd->gain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1219 V4L2_CID_GAIN, 0, 63, 1, 20);
1220 }
1221
1222 sd->autoexposure = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1223 V4L2_CID_EXPOSURE_AUTO,
1224 V4L2_EXPOSURE_MANUAL, 0,
1225 V4L2_EXPOSURE_AUTO);
1226 sd->exposure = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1227 V4L2_CID_EXPOSURE, exposure_min, exposure_max, 1,
1228 exposure_def);
1229
1230 sd->autowhitebalance = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1231 V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1);
1232
1233 if (sd->sensor == SENSOR_OV772x)
1234 sd->sharpness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1235 V4L2_CID_SHARPNESS, 0, 63, 1, 0);
1236
1237 sd->hflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1238 V4L2_CID_HFLIP, 0, 1, 1, hflip_def);
1239 sd->vflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1240 V4L2_CID_VFLIP, 0, 1, 1, 0);
1241 sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1242 V4L2_CID_POWER_LINE_FREQUENCY,
1243 V4L2_CID_POWER_LINE_FREQUENCY_50HZ, 0,
1244 V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);
1245
1246 if (hdl->error) {
1247 pr_err("Could not initialize controls\n");
1248 return hdl->error;
1249 }
1250
1251 if (sd->sensor == SENSOR_OV772x)
1252 v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, true);
1253
1254 v4l2_ctrl_auto_cluster(2, &sd->autoexposure, V4L2_EXPOSURE_MANUAL,
1255 true);
1256
1257 return 0;
1258 }
1259
1260 /* this function is called at probe and resume time */
sd_init(struct gspca_dev * gspca_dev)1261 static int sd_init(struct gspca_dev *gspca_dev)
1262 {
1263 struct sd *sd = (struct sd *) gspca_dev;
1264 u16 sensor_id;
1265 static const struct reg_array bridge_init[NSENSORS] = {
1266 [SENSOR_OV767x] = {bridge_init_767x, ARRAY_SIZE(bridge_init_767x)},
1267 [SENSOR_OV772x] = {bridge_init_772x, ARRAY_SIZE(bridge_init_772x)},
1268 };
1269 static const struct reg_array sensor_init[NSENSORS] = {
1270 [SENSOR_OV767x] = {sensor_init_767x, ARRAY_SIZE(sensor_init_767x)},
1271 [SENSOR_OV772x] = {sensor_init_772x, ARRAY_SIZE(sensor_init_772x)},
1272 };
1273
1274 /* reset bridge */
1275 ov534_reg_write(gspca_dev, 0xe7, 0x3a);
1276 ov534_reg_write(gspca_dev, 0xe0, 0x08);
1277 msleep(100);
1278
1279 /* initialize the sensor address */
1280 ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42);
1281
1282 /* reset sensor */
1283 sccb_reg_write(gspca_dev, 0x12, 0x80);
1284 msleep(10);
1285
1286 /* probe the sensor */
1287 sccb_reg_read(gspca_dev, 0x0a);
1288 sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8;
1289 sccb_reg_read(gspca_dev, 0x0b);
1290 sensor_id |= sccb_reg_read(gspca_dev, 0x0b);
1291 PDEBUG(D_PROBE, "Sensor ID: %04x", sensor_id);
1292
1293 if ((sensor_id & 0xfff0) == 0x7670) {
1294 sd->sensor = SENSOR_OV767x;
1295 gspca_dev->cam.cam_mode = ov767x_mode;
1296 gspca_dev->cam.nmodes = ARRAY_SIZE(ov767x_mode);
1297 } else {
1298 sd->sensor = SENSOR_OV772x;
1299 gspca_dev->cam.bulk = 1;
1300 gspca_dev->cam.bulk_size = 16384;
1301 gspca_dev->cam.bulk_nurbs = 2;
1302 gspca_dev->cam.mode_framerates = ov772x_framerates;
1303 }
1304
1305 /* initialize */
1306 reg_w_array(gspca_dev, bridge_init[sd->sensor].val,
1307 bridge_init[sd->sensor].len);
1308 ov534_set_led(gspca_dev, 1);
1309 sccb_w_array(gspca_dev, sensor_init[sd->sensor].val,
1310 sensor_init[sd->sensor].len);
1311
1312 sd_stopN(gspca_dev);
1313 /* set_frame_rate(gspca_dev); */
1314
1315 return gspca_dev->usb_err;
1316 }
1317
sd_start(struct gspca_dev * gspca_dev)1318 static int sd_start(struct gspca_dev *gspca_dev)
1319 {
1320 struct sd *sd = (struct sd *) gspca_dev;
1321 int mode;
1322 static const struct reg_array bridge_start[NSENSORS][2] = {
1323 [SENSOR_OV767x] = {{bridge_start_qvga_767x,
1324 ARRAY_SIZE(bridge_start_qvga_767x)},
1325 {bridge_start_vga_767x,
1326 ARRAY_SIZE(bridge_start_vga_767x)}},
1327 [SENSOR_OV772x] = {{bridge_start_qvga_772x,
1328 ARRAY_SIZE(bridge_start_qvga_772x)},
1329 {bridge_start_vga_772x,
1330 ARRAY_SIZE(bridge_start_vga_772x)}},
1331 };
1332 static const struct reg_array sensor_start[NSENSORS][2] = {
1333 [SENSOR_OV767x] = {{sensor_start_qvga_767x,
1334 ARRAY_SIZE(sensor_start_qvga_767x)},
1335 {sensor_start_vga_767x,
1336 ARRAY_SIZE(sensor_start_vga_767x)}},
1337 [SENSOR_OV772x] = {{sensor_start_qvga_772x,
1338 ARRAY_SIZE(sensor_start_qvga_772x)},
1339 {sensor_start_vga_772x,
1340 ARRAY_SIZE(sensor_start_vga_772x)}},
1341 };
1342
1343 /* (from ms-win trace) */
1344 if (sd->sensor == SENSOR_OV767x)
1345 sccb_reg_write(gspca_dev, 0x1e, 0x04);
1346 /* black sun enable ? */
1347
1348 mode = gspca_dev->curr_mode; /* 0: 320x240, 1: 640x480 */
1349 reg_w_array(gspca_dev, bridge_start[sd->sensor][mode].val,
1350 bridge_start[sd->sensor][mode].len);
1351 sccb_w_array(gspca_dev, sensor_start[sd->sensor][mode].val,
1352 sensor_start[sd->sensor][mode].len);
1353
1354 set_frame_rate(gspca_dev);
1355
1356 if (sd->hue)
1357 sethue(gspca_dev, v4l2_ctrl_g_ctrl(sd->hue));
1358 setsaturation(gspca_dev, v4l2_ctrl_g_ctrl(sd->saturation));
1359 if (sd->autogain)
1360 setagc(gspca_dev, v4l2_ctrl_g_ctrl(sd->autogain));
1361 setawb(gspca_dev, v4l2_ctrl_g_ctrl(sd->autowhitebalance));
1362 setaec(gspca_dev, v4l2_ctrl_g_ctrl(sd->autoexposure));
1363 if (sd->gain)
1364 setgain(gspca_dev, v4l2_ctrl_g_ctrl(sd->gain));
1365 setexposure(gspca_dev, v4l2_ctrl_g_ctrl(sd->exposure));
1366 setbrightness(gspca_dev, v4l2_ctrl_g_ctrl(sd->brightness));
1367 setcontrast(gspca_dev, v4l2_ctrl_g_ctrl(sd->contrast));
1368 if (sd->sharpness)
1369 setsharpness(gspca_dev, v4l2_ctrl_g_ctrl(sd->sharpness));
1370 sethvflip(gspca_dev, v4l2_ctrl_g_ctrl(sd->hflip),
1371 v4l2_ctrl_g_ctrl(sd->vflip));
1372 setlightfreq(gspca_dev, v4l2_ctrl_g_ctrl(sd->plfreq));
1373
1374 ov534_set_led(gspca_dev, 1);
1375 ov534_reg_write(gspca_dev, 0xe0, 0x00);
1376 return gspca_dev->usb_err;
1377 }
1378
sd_stopN(struct gspca_dev * gspca_dev)1379 static void sd_stopN(struct gspca_dev *gspca_dev)
1380 {
1381 ov534_reg_write(gspca_dev, 0xe0, 0x09);
1382 ov534_set_led(gspca_dev, 0);
1383 }
1384
1385 /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */
1386 #define UVC_STREAM_EOH (1 << 7)
1387 #define UVC_STREAM_ERR (1 << 6)
1388 #define UVC_STREAM_STI (1 << 5)
1389 #define UVC_STREAM_RES (1 << 4)
1390 #define UVC_STREAM_SCR (1 << 3)
1391 #define UVC_STREAM_PTS (1 << 2)
1392 #define UVC_STREAM_EOF (1 << 1)
1393 #define UVC_STREAM_FID (1 << 0)
1394
sd_pkt_scan(struct gspca_dev * gspca_dev,u8 * data,int len)1395 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
1396 u8 *data, int len)
1397 {
1398 struct sd *sd = (struct sd *) gspca_dev;
1399 __u32 this_pts;
1400 u16 this_fid;
1401 int remaining_len = len;
1402 int payload_len;
1403
1404 payload_len = gspca_dev->cam.bulk ? 2048 : 2040;
1405 do {
1406 len = min(remaining_len, payload_len);
1407
1408 /* Payloads are prefixed with a UVC-style header. We
1409 consider a frame to start when the FID toggles, or the PTS
1410 changes. A frame ends when EOF is set, and we've received
1411 the correct number of bytes. */
1412
1413 /* Verify UVC header. Header length is always 12 */
1414 if (data[0] != 12 || len < 12) {
1415 PDEBUG(D_PACK, "bad header");
1416 goto discard;
1417 }
1418
1419 /* Check errors */
1420 if (data[1] & UVC_STREAM_ERR) {
1421 PDEBUG(D_PACK, "payload error");
1422 goto discard;
1423 }
1424
1425 /* Extract PTS and FID */
1426 if (!(data[1] & UVC_STREAM_PTS)) {
1427 PDEBUG(D_PACK, "PTS not present");
1428 goto discard;
1429 }
1430 this_pts = (data[5] << 24) | (data[4] << 16)
1431 | (data[3] << 8) | data[2];
1432 this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0;
1433
1434 /* If PTS or FID has changed, start a new frame. */
1435 if (this_pts != sd->last_pts || this_fid != sd->last_fid) {
1436 if (gspca_dev->last_packet_type == INTER_PACKET)
1437 gspca_frame_add(gspca_dev, LAST_PACKET,
1438 NULL, 0);
1439 sd->last_pts = this_pts;
1440 sd->last_fid = this_fid;
1441 gspca_frame_add(gspca_dev, FIRST_PACKET,
1442 data + 12, len - 12);
1443 /* If this packet is marked as EOF, end the frame */
1444 } else if (data[1] & UVC_STREAM_EOF) {
1445 sd->last_pts = 0;
1446 if (gspca_dev->pixfmt.pixelformat == V4L2_PIX_FMT_YUYV
1447 && gspca_dev->image_len + len - 12 !=
1448 gspca_dev->pixfmt.width *
1449 gspca_dev->pixfmt.height * 2) {
1450 PDEBUG(D_PACK, "wrong sized frame");
1451 goto discard;
1452 }
1453 gspca_frame_add(gspca_dev, LAST_PACKET,
1454 data + 12, len - 12);
1455 } else {
1456
1457 /* Add the data from this payload */
1458 gspca_frame_add(gspca_dev, INTER_PACKET,
1459 data + 12, len - 12);
1460 }
1461
1462 /* Done this payload */
1463 goto scan_next;
1464
1465 discard:
1466 /* Discard data until a new frame starts. */
1467 gspca_dev->last_packet_type = DISCARD_PACKET;
1468
1469 scan_next:
1470 remaining_len -= len;
1471 data += len;
1472 } while (remaining_len > 0);
1473 }
1474
1475 /* get stream parameters (framerate) */
sd_get_streamparm(struct gspca_dev * gspca_dev,struct v4l2_streamparm * parm)1476 static void sd_get_streamparm(struct gspca_dev *gspca_dev,
1477 struct v4l2_streamparm *parm)
1478 {
1479 struct v4l2_captureparm *cp = &parm->parm.capture;
1480 struct v4l2_fract *tpf = &cp->timeperframe;
1481 struct sd *sd = (struct sd *) gspca_dev;
1482
1483 cp->capability |= V4L2_CAP_TIMEPERFRAME;
1484 tpf->numerator = 1;
1485 tpf->denominator = sd->frame_rate;
1486 }
1487
1488 /* set stream parameters (framerate) */
sd_set_streamparm(struct gspca_dev * gspca_dev,struct v4l2_streamparm * parm)1489 static void sd_set_streamparm(struct gspca_dev *gspca_dev,
1490 struct v4l2_streamparm *parm)
1491 {
1492 struct v4l2_captureparm *cp = &parm->parm.capture;
1493 struct v4l2_fract *tpf = &cp->timeperframe;
1494 struct sd *sd = (struct sd *) gspca_dev;
1495
1496 if (tpf->numerator == 0 || tpf->denominator == 0)
1497 sd->frame_rate = DEFAULT_FRAME_RATE;
1498 else
1499 sd->frame_rate = tpf->denominator / tpf->numerator;
1500
1501 if (gspca_dev->streaming)
1502 set_frame_rate(gspca_dev);
1503
1504 /* Return the actual framerate */
1505 tpf->numerator = 1;
1506 tpf->denominator = sd->frame_rate;
1507 }
1508
1509 /* sub-driver description */
1510 static const struct sd_desc sd_desc = {
1511 .name = MODULE_NAME,
1512 .config = sd_config,
1513 .init = sd_init,
1514 .init_controls = sd_init_controls,
1515 .start = sd_start,
1516 .stopN = sd_stopN,
1517 .pkt_scan = sd_pkt_scan,
1518 .get_streamparm = sd_get_streamparm,
1519 .set_streamparm = sd_set_streamparm,
1520 };
1521
1522 /* -- module initialisation -- */
1523 static const struct usb_device_id device_table[] = {
1524 {USB_DEVICE(0x1415, 0x2000)},
1525 {USB_DEVICE(0x06f8, 0x3002)},
1526 {}
1527 };
1528
1529 MODULE_DEVICE_TABLE(usb, device_table);
1530
1531 /* -- device connect -- */
sd_probe(struct usb_interface * intf,const struct usb_device_id * id)1532 static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id)
1533 {
1534 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1535 THIS_MODULE);
1536 }
1537
1538 static struct usb_driver sd_driver = {
1539 .name = MODULE_NAME,
1540 .id_table = device_table,
1541 .probe = sd_probe,
1542 .disconnect = gspca_disconnect,
1543 #ifdef CONFIG_PM
1544 .suspend = gspca_suspend,
1545 .resume = gspca_resume,
1546 .reset_resume = gspca_resume,
1547 #endif
1548 };
1549
1550 module_usb_driver(sd_driver);
1551