• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is for all the tests related to logic bugs (e.g. bad dereferences,
4  * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
5  * lockups) along with other things that don't fit well into existing LKDTM
6  * test source files.
7  */
8 #include "lkdtm.h"
9 #include <linux/list.h>
10 #include <linux/sched.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/task_stack.h>
13 #include <linux/uaccess.h>
14 
15 struct lkdtm_list {
16 	struct list_head node;
17 };
18 
19 /*
20  * Make sure our attempts to over run the kernel stack doesn't trigger
21  * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
22  * recurse past the end of THREAD_SIZE by default.
23  */
24 #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
25 #define REC_STACK_SIZE (CONFIG_FRAME_WARN / 2)
26 #else
27 #define REC_STACK_SIZE (THREAD_SIZE / 8)
28 #endif
29 #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
30 
31 static int recur_count = REC_NUM_DEFAULT;
32 
33 static DEFINE_SPINLOCK(lock_me_up);
34 
recursive_loop(int remaining)35 static int recursive_loop(int remaining)
36 {
37 	char buf[REC_STACK_SIZE];
38 
39 	/* Make sure compiler does not optimize this away. */
40 	memset(buf, (remaining & 0xff) | 0x1, REC_STACK_SIZE);
41 	if (!remaining)
42 		return 0;
43 	else
44 		return recursive_loop(remaining - 1);
45 }
46 
47 /* If the depth is negative, use the default, otherwise keep parameter. */
lkdtm_bugs_init(int * recur_param)48 void __init lkdtm_bugs_init(int *recur_param)
49 {
50 	if (*recur_param < 0)
51 		*recur_param = recur_count;
52 	else
53 		recur_count = *recur_param;
54 }
55 
lkdtm_PANIC(void)56 void lkdtm_PANIC(void)
57 {
58 	panic("dumptest");
59 }
60 
lkdtm_BUG(void)61 void lkdtm_BUG(void)
62 {
63 	BUG();
64 }
65 
lkdtm_WARNING(void)66 void lkdtm_WARNING(void)
67 {
68 	WARN_ON(1);
69 }
70 
lkdtm_EXCEPTION(void)71 void lkdtm_EXCEPTION(void)
72 {
73 	*((volatile int *) 0) = 0;
74 }
75 
lkdtm_LOOP(void)76 void lkdtm_LOOP(void)
77 {
78 	for (;;)
79 		;
80 }
81 
lkdtm_OVERFLOW(void)82 void lkdtm_OVERFLOW(void)
83 {
84 	(void) recursive_loop(recur_count);
85 }
86 
__lkdtm_CORRUPT_STACK(void * stack)87 static noinline void __lkdtm_CORRUPT_STACK(void *stack)
88 {
89 	memset(stack, '\xff', 64);
90 }
91 
92 /* This should trip the stack canary, not corrupt the return address. */
lkdtm_CORRUPT_STACK(void)93 noinline void lkdtm_CORRUPT_STACK(void)
94 {
95 	/* Use default char array length that triggers stack protection. */
96 	char data[8] __aligned(sizeof(void *));
97 
98 	__lkdtm_CORRUPT_STACK(&data);
99 
100 	pr_info("Corrupted stack containing char array ...\n");
101 }
102 
103 /* Same as above but will only get a canary with -fstack-protector-strong */
lkdtm_CORRUPT_STACK_STRONG(void)104 noinline void lkdtm_CORRUPT_STACK_STRONG(void)
105 {
106 	union {
107 		unsigned short shorts[4];
108 		unsigned long *ptr;
109 	} data __aligned(sizeof(void *));
110 
111 	__lkdtm_CORRUPT_STACK(&data);
112 
113 	pr_info("Corrupted stack containing union ...\n");
114 }
115 
lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)116 void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
117 {
118 	static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
119 	u32 *p;
120 	u32 val = 0x12345678;
121 
122 	p = (u32 *)(data + 1);
123 	if (*p == 0)
124 		val = 0x87654321;
125 	*p = val;
126 }
127 
lkdtm_SOFTLOCKUP(void)128 void lkdtm_SOFTLOCKUP(void)
129 {
130 	preempt_disable();
131 	for (;;)
132 		cpu_relax();
133 }
134 
lkdtm_HARDLOCKUP(void)135 void lkdtm_HARDLOCKUP(void)
136 {
137 	local_irq_disable();
138 	for (;;)
139 		cpu_relax();
140 }
141 
lkdtm_SPINLOCKUP(void)142 void lkdtm_SPINLOCKUP(void)
143 {
144 	/* Must be called twice to trigger. */
145 	spin_lock(&lock_me_up);
146 	/* Let sparse know we intended to exit holding the lock. */
147 	__release(&lock_me_up);
148 }
149 
lkdtm_HUNG_TASK(void)150 void lkdtm_HUNG_TASK(void)
151 {
152 	set_current_state(TASK_UNINTERRUPTIBLE);
153 	schedule();
154 }
155 
lkdtm_CORRUPT_LIST_ADD(void)156 void lkdtm_CORRUPT_LIST_ADD(void)
157 {
158 	/*
159 	 * Initially, an empty list via LIST_HEAD:
160 	 *	test_head.next = &test_head
161 	 *	test_head.prev = &test_head
162 	 */
163 	LIST_HEAD(test_head);
164 	struct lkdtm_list good, bad;
165 	void *target[2] = { };
166 	void *redirection = &target;
167 
168 	pr_info("attempting good list addition\n");
169 
170 	/*
171 	 * Adding to the list performs these actions:
172 	 *	test_head.next->prev = &good.node
173 	 *	good.node.next = test_head.next
174 	 *	good.node.prev = test_head
175 	 *	test_head.next = good.node
176 	 */
177 	list_add(&good.node, &test_head);
178 
179 	pr_info("attempting corrupted list addition\n");
180 	/*
181 	 * In simulating this "write what where" primitive, the "what" is
182 	 * the address of &bad.node, and the "where" is the address held
183 	 * by "redirection".
184 	 */
185 	test_head.next = redirection;
186 	list_add(&bad.node, &test_head);
187 
188 	if (target[0] == NULL && target[1] == NULL)
189 		pr_err("Overwrite did not happen, but no BUG?!\n");
190 	else
191 		pr_err("list_add() corruption not detected!\n");
192 }
193 
lkdtm_CORRUPT_LIST_DEL(void)194 void lkdtm_CORRUPT_LIST_DEL(void)
195 {
196 	LIST_HEAD(test_head);
197 	struct lkdtm_list item;
198 	void *target[2] = { };
199 	void *redirection = &target;
200 
201 	list_add(&item.node, &test_head);
202 
203 	pr_info("attempting good list removal\n");
204 	list_del(&item.node);
205 
206 	pr_info("attempting corrupted list removal\n");
207 	list_add(&item.node, &test_head);
208 
209 	/* As with the list_add() test above, this corrupts "next". */
210 	item.node.next = redirection;
211 	list_del(&item.node);
212 
213 	if (target[0] == NULL && target[1] == NULL)
214 		pr_err("Overwrite did not happen, but no BUG?!\n");
215 	else
216 		pr_err("list_del() corruption not detected!\n");
217 }
218 
219 /* Test if unbalanced set_fs(KERNEL_DS)/set_fs(USER_DS) check exists. */
lkdtm_CORRUPT_USER_DS(void)220 void lkdtm_CORRUPT_USER_DS(void)
221 {
222 	pr_info("setting bad task size limit\n");
223 	set_fs(KERNEL_DS);
224 
225 	/* Make sure we do not keep running with a KERNEL_DS! */
226 	force_sig(SIGKILL, current);
227 }
228 
229 /* Test that VMAP_STACK is actually allocating with a leading guard page */
lkdtm_STACK_GUARD_PAGE_LEADING(void)230 void lkdtm_STACK_GUARD_PAGE_LEADING(void)
231 {
232 	const unsigned char *stack = task_stack_page(current);
233 	const unsigned char *ptr = stack - 1;
234 	volatile unsigned char byte;
235 
236 	pr_info("attempting bad read from page below current stack\n");
237 
238 	byte = *ptr;
239 
240 	pr_err("FAIL: accessed page before stack!\n");
241 }
242 
243 /* Test that VMAP_STACK is actually allocating with a trailing guard page */
lkdtm_STACK_GUARD_PAGE_TRAILING(void)244 void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
245 {
246 	const unsigned char *stack = task_stack_page(current);
247 	const unsigned char *ptr = stack + THREAD_SIZE;
248 	volatile unsigned char byte;
249 
250 	pr_info("attempting bad read from page above current stack\n");
251 
252 	byte = *ptr;
253 
254 	pr_err("FAIL: accessed page after stack!\n");
255 }
256