1 /*
2 * Synopsys DesignWare Multimedia Card Interface driver
3 * (Based on NXP driver for lpc 31xx)
4 *
5 * Copyright (C) 2009 NXP Semiconductors
6 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/iopoll.h>
23 #include <linux/ioport.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/seq_file.h>
28 #include <linux/slab.h>
29 #include <linux/stat.h>
30 #include <linux/delay.h>
31 #include <linux/irq.h>
32 #include <linux/mmc/card.h>
33 #include <linux/mmc/host.h>
34 #include <linux/mmc/mmc.h>
35 #include <linux/mmc/sd.h>
36 #include <linux/mmc/sdio.h>
37 #include <linux/bitops.h>
38 #include <linux/regulator/consumer.h>
39 #include <linux/of.h>
40 #include <linux/of_gpio.h>
41 #include <linux/mmc/slot-gpio.h>
42
43 #include "dw_mmc.h"
44
45 /* Common flag combinations */
46 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
47 SDMMC_INT_HTO | SDMMC_INT_SBE | \
48 SDMMC_INT_EBE | SDMMC_INT_HLE)
49 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
50 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
51 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
52 DW_MCI_CMD_ERROR_FLAGS)
53 #define DW_MCI_SEND_STATUS 1
54 #define DW_MCI_RECV_STATUS 2
55 #define DW_MCI_DMA_THRESHOLD 16
56
57 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
58 #define DW_MCI_FREQ_MIN 100000 /* unit: HZ */
59
60 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
61 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
62 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
63 SDMMC_IDMAC_INT_TI)
64
65 #define DESC_RING_BUF_SZ PAGE_SIZE
66
67 struct idmac_desc_64addr {
68 u32 des0; /* Control Descriptor */
69 #define IDMAC_OWN_CLR64(x) \
70 !((x) & cpu_to_le32(IDMAC_DES0_OWN))
71
72 u32 des1; /* Reserved */
73
74 u32 des2; /*Buffer sizes */
75 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
76 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
77 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
78
79 u32 des3; /* Reserved */
80
81 u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/
82 u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/
83
84 u32 des6; /* Lower 32-bits of Next Descriptor Address */
85 u32 des7; /* Upper 32-bits of Next Descriptor Address */
86 };
87
88 struct idmac_desc {
89 __le32 des0; /* Control Descriptor */
90 #define IDMAC_DES0_DIC BIT(1)
91 #define IDMAC_DES0_LD BIT(2)
92 #define IDMAC_DES0_FD BIT(3)
93 #define IDMAC_DES0_CH BIT(4)
94 #define IDMAC_DES0_ER BIT(5)
95 #define IDMAC_DES0_CES BIT(30)
96 #define IDMAC_DES0_OWN BIT(31)
97
98 __le32 des1; /* Buffer sizes */
99 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
100 ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
101
102 __le32 des2; /* buffer 1 physical address */
103
104 __le32 des3; /* buffer 2 physical address */
105 };
106
107 /* Each descriptor can transfer up to 4KB of data in chained mode */
108 #define DW_MCI_DESC_DATA_LENGTH 0x1000
109
110 #if defined(CONFIG_DEBUG_FS)
dw_mci_req_show(struct seq_file * s,void * v)111 static int dw_mci_req_show(struct seq_file *s, void *v)
112 {
113 struct dw_mci_slot *slot = s->private;
114 struct mmc_request *mrq;
115 struct mmc_command *cmd;
116 struct mmc_command *stop;
117 struct mmc_data *data;
118
119 /* Make sure we get a consistent snapshot */
120 spin_lock_bh(&slot->host->lock);
121 mrq = slot->mrq;
122
123 if (mrq) {
124 cmd = mrq->cmd;
125 data = mrq->data;
126 stop = mrq->stop;
127
128 if (cmd)
129 seq_printf(s,
130 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
131 cmd->opcode, cmd->arg, cmd->flags,
132 cmd->resp[0], cmd->resp[1], cmd->resp[2],
133 cmd->resp[2], cmd->error);
134 if (data)
135 seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
136 data->bytes_xfered, data->blocks,
137 data->blksz, data->flags, data->error);
138 if (stop)
139 seq_printf(s,
140 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
141 stop->opcode, stop->arg, stop->flags,
142 stop->resp[0], stop->resp[1], stop->resp[2],
143 stop->resp[2], stop->error);
144 }
145
146 spin_unlock_bh(&slot->host->lock);
147
148 return 0;
149 }
150
dw_mci_req_open(struct inode * inode,struct file * file)151 static int dw_mci_req_open(struct inode *inode, struct file *file)
152 {
153 return single_open(file, dw_mci_req_show, inode->i_private);
154 }
155
156 static const struct file_operations dw_mci_req_fops = {
157 .owner = THIS_MODULE,
158 .open = dw_mci_req_open,
159 .read = seq_read,
160 .llseek = seq_lseek,
161 .release = single_release,
162 };
163
dw_mci_regs_show(struct seq_file * s,void * v)164 static int dw_mci_regs_show(struct seq_file *s, void *v)
165 {
166 struct dw_mci *host = s->private;
167
168 pm_runtime_get_sync(host->dev);
169
170 seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
171 seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
172 seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
173 seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
174 seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
175 seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
176
177 pm_runtime_put_autosuspend(host->dev);
178
179 return 0;
180 }
181
dw_mci_regs_open(struct inode * inode,struct file * file)182 static int dw_mci_regs_open(struct inode *inode, struct file *file)
183 {
184 return single_open(file, dw_mci_regs_show, inode->i_private);
185 }
186
187 static const struct file_operations dw_mci_regs_fops = {
188 .owner = THIS_MODULE,
189 .open = dw_mci_regs_open,
190 .read = seq_read,
191 .llseek = seq_lseek,
192 .release = single_release,
193 };
194
dw_mci_init_debugfs(struct dw_mci_slot * slot)195 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
196 {
197 struct mmc_host *mmc = slot->mmc;
198 struct dw_mci *host = slot->host;
199 struct dentry *root;
200 struct dentry *node;
201
202 root = mmc->debugfs_root;
203 if (!root)
204 return;
205
206 node = debugfs_create_file("regs", S_IRUSR, root, host,
207 &dw_mci_regs_fops);
208 if (!node)
209 goto err;
210
211 node = debugfs_create_file("req", S_IRUSR, root, slot,
212 &dw_mci_req_fops);
213 if (!node)
214 goto err;
215
216 node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
217 if (!node)
218 goto err;
219
220 node = debugfs_create_x32("pending_events", S_IRUSR, root,
221 (u32 *)&host->pending_events);
222 if (!node)
223 goto err;
224
225 node = debugfs_create_x32("completed_events", S_IRUSR, root,
226 (u32 *)&host->completed_events);
227 if (!node)
228 goto err;
229
230 return;
231
232 err:
233 dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
234 }
235 #endif /* defined(CONFIG_DEBUG_FS) */
236
dw_mci_ctrl_reset(struct dw_mci * host,u32 reset)237 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
238 {
239 u32 ctrl;
240
241 ctrl = mci_readl(host, CTRL);
242 ctrl |= reset;
243 mci_writel(host, CTRL, ctrl);
244
245 /* wait till resets clear */
246 if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
247 !(ctrl & reset),
248 1, 500 * USEC_PER_MSEC)) {
249 dev_err(host->dev,
250 "Timeout resetting block (ctrl reset %#x)\n",
251 ctrl & reset);
252 return false;
253 }
254
255 return true;
256 }
257
dw_mci_wait_while_busy(struct dw_mci * host,u32 cmd_flags)258 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
259 {
260 u32 status;
261
262 /*
263 * Databook says that before issuing a new data transfer command
264 * we need to check to see if the card is busy. Data transfer commands
265 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
266 *
267 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
268 * expected.
269 */
270 if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
271 !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
272 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
273 status,
274 !(status & SDMMC_STATUS_BUSY),
275 10, 500 * USEC_PER_MSEC))
276 dev_err(host->dev, "Busy; trying anyway\n");
277 }
278 }
279
mci_send_cmd(struct dw_mci_slot * slot,u32 cmd,u32 arg)280 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
281 {
282 struct dw_mci *host = slot->host;
283 unsigned int cmd_status = 0;
284
285 mci_writel(host, CMDARG, arg);
286 wmb(); /* drain writebuffer */
287 dw_mci_wait_while_busy(host, cmd);
288 mci_writel(host, CMD, SDMMC_CMD_START | cmd);
289
290 if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
291 !(cmd_status & SDMMC_CMD_START),
292 1, 500 * USEC_PER_MSEC))
293 dev_err(&slot->mmc->class_dev,
294 "Timeout sending command (cmd %#x arg %#x status %#x)\n",
295 cmd, arg, cmd_status);
296 }
297
dw_mci_prepare_command(struct mmc_host * mmc,struct mmc_command * cmd)298 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
299 {
300 struct dw_mci_slot *slot = mmc_priv(mmc);
301 struct dw_mci *host = slot->host;
302 u32 cmdr;
303
304 cmd->error = -EINPROGRESS;
305 cmdr = cmd->opcode;
306
307 if (cmd->opcode == MMC_STOP_TRANSMISSION ||
308 cmd->opcode == MMC_GO_IDLE_STATE ||
309 cmd->opcode == MMC_GO_INACTIVE_STATE ||
310 (cmd->opcode == SD_IO_RW_DIRECT &&
311 ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
312 cmdr |= SDMMC_CMD_STOP;
313 else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
314 cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
315
316 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
317 u32 clk_en_a;
318
319 /* Special bit makes CMD11 not die */
320 cmdr |= SDMMC_CMD_VOLT_SWITCH;
321
322 /* Change state to continue to handle CMD11 weirdness */
323 WARN_ON(slot->host->state != STATE_SENDING_CMD);
324 slot->host->state = STATE_SENDING_CMD11;
325
326 /*
327 * We need to disable low power mode (automatic clock stop)
328 * while doing voltage switch so we don't confuse the card,
329 * since stopping the clock is a specific part of the UHS
330 * voltage change dance.
331 *
332 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
333 * unconditionally turned back on in dw_mci_setup_bus() if it's
334 * ever called with a non-zero clock. That shouldn't happen
335 * until the voltage change is all done.
336 */
337 clk_en_a = mci_readl(host, CLKENA);
338 clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
339 mci_writel(host, CLKENA, clk_en_a);
340 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
341 SDMMC_CMD_PRV_DAT_WAIT, 0);
342 }
343
344 if (cmd->flags & MMC_RSP_PRESENT) {
345 /* We expect a response, so set this bit */
346 cmdr |= SDMMC_CMD_RESP_EXP;
347 if (cmd->flags & MMC_RSP_136)
348 cmdr |= SDMMC_CMD_RESP_LONG;
349 }
350
351 if (cmd->flags & MMC_RSP_CRC)
352 cmdr |= SDMMC_CMD_RESP_CRC;
353
354 if (cmd->data) {
355 cmdr |= SDMMC_CMD_DAT_EXP;
356 if (cmd->data->flags & MMC_DATA_WRITE)
357 cmdr |= SDMMC_CMD_DAT_WR;
358 }
359
360 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
361 cmdr |= SDMMC_CMD_USE_HOLD_REG;
362
363 return cmdr;
364 }
365
dw_mci_prep_stop_abort(struct dw_mci * host,struct mmc_command * cmd)366 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
367 {
368 struct mmc_command *stop;
369 u32 cmdr;
370
371 if (!cmd->data)
372 return 0;
373
374 stop = &host->stop_abort;
375 cmdr = cmd->opcode;
376 memset(stop, 0, sizeof(struct mmc_command));
377
378 if (cmdr == MMC_READ_SINGLE_BLOCK ||
379 cmdr == MMC_READ_MULTIPLE_BLOCK ||
380 cmdr == MMC_WRITE_BLOCK ||
381 cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
382 cmdr == MMC_SEND_TUNING_BLOCK ||
383 cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
384 stop->opcode = MMC_STOP_TRANSMISSION;
385 stop->arg = 0;
386 stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
387 } else if (cmdr == SD_IO_RW_EXTENDED) {
388 stop->opcode = SD_IO_RW_DIRECT;
389 stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
390 ((cmd->arg >> 28) & 0x7);
391 stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
392 } else {
393 return 0;
394 }
395
396 cmdr = stop->opcode | SDMMC_CMD_STOP |
397 SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
398
399 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
400 cmdr |= SDMMC_CMD_USE_HOLD_REG;
401
402 return cmdr;
403 }
404
dw_mci_set_cto(struct dw_mci * host)405 static inline void dw_mci_set_cto(struct dw_mci *host)
406 {
407 unsigned int cto_clks;
408 unsigned int cto_div;
409 unsigned int cto_ms;
410 unsigned long irqflags;
411
412 cto_clks = mci_readl(host, TMOUT) & 0xff;
413 cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
414 if (cto_div == 0)
415 cto_div = 1;
416
417 cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div,
418 host->bus_hz);
419
420 /* add a bit spare time */
421 cto_ms += 10;
422
423 /*
424 * The durations we're working with are fairly short so we have to be
425 * extra careful about synchronization here. Specifically in hardware a
426 * command timeout is _at most_ 5.1 ms, so that means we expect an
427 * interrupt (either command done or timeout) to come rather quickly
428 * after the mci_writel. ...but just in case we have a long interrupt
429 * latency let's add a bit of paranoia.
430 *
431 * In general we'll assume that at least an interrupt will be asserted
432 * in hardware by the time the cto_timer runs. ...and if it hasn't
433 * been asserted in hardware by that time then we'll assume it'll never
434 * come.
435 */
436 spin_lock_irqsave(&host->irq_lock, irqflags);
437 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
438 mod_timer(&host->cto_timer,
439 jiffies + msecs_to_jiffies(cto_ms) + 1);
440 spin_unlock_irqrestore(&host->irq_lock, irqflags);
441 }
442
dw_mci_start_command(struct dw_mci * host,struct mmc_command * cmd,u32 cmd_flags)443 static void dw_mci_start_command(struct dw_mci *host,
444 struct mmc_command *cmd, u32 cmd_flags)
445 {
446 host->cmd = cmd;
447 dev_vdbg(host->dev,
448 "start command: ARGR=0x%08x CMDR=0x%08x\n",
449 cmd->arg, cmd_flags);
450
451 mci_writel(host, CMDARG, cmd->arg);
452 wmb(); /* drain writebuffer */
453 dw_mci_wait_while_busy(host, cmd_flags);
454
455 mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
456
457 /* response expected command only */
458 if (cmd_flags & SDMMC_CMD_RESP_EXP)
459 dw_mci_set_cto(host);
460 }
461
send_stop_abort(struct dw_mci * host,struct mmc_data * data)462 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
463 {
464 struct mmc_command *stop = &host->stop_abort;
465
466 dw_mci_start_command(host, stop, host->stop_cmdr);
467 }
468
469 /* DMA interface functions */
dw_mci_stop_dma(struct dw_mci * host)470 static void dw_mci_stop_dma(struct dw_mci *host)
471 {
472 if (host->using_dma) {
473 host->dma_ops->stop(host);
474 host->dma_ops->cleanup(host);
475 }
476
477 /* Data transfer was stopped by the interrupt handler */
478 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
479 }
480
dw_mci_dma_cleanup(struct dw_mci * host)481 static void dw_mci_dma_cleanup(struct dw_mci *host)
482 {
483 struct mmc_data *data = host->data;
484
485 if (data && data->host_cookie == COOKIE_MAPPED) {
486 dma_unmap_sg(host->dev,
487 data->sg,
488 data->sg_len,
489 mmc_get_dma_dir(data));
490 data->host_cookie = COOKIE_UNMAPPED;
491 }
492 }
493
dw_mci_idmac_reset(struct dw_mci * host)494 static void dw_mci_idmac_reset(struct dw_mci *host)
495 {
496 u32 bmod = mci_readl(host, BMOD);
497 /* Software reset of DMA */
498 bmod |= SDMMC_IDMAC_SWRESET;
499 mci_writel(host, BMOD, bmod);
500 }
501
dw_mci_idmac_stop_dma(struct dw_mci * host)502 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
503 {
504 u32 temp;
505
506 /* Disable and reset the IDMAC interface */
507 temp = mci_readl(host, CTRL);
508 temp &= ~SDMMC_CTRL_USE_IDMAC;
509 temp |= SDMMC_CTRL_DMA_RESET;
510 mci_writel(host, CTRL, temp);
511
512 /* Stop the IDMAC running */
513 temp = mci_readl(host, BMOD);
514 temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
515 temp |= SDMMC_IDMAC_SWRESET;
516 mci_writel(host, BMOD, temp);
517 }
518
dw_mci_dmac_complete_dma(void * arg)519 static void dw_mci_dmac_complete_dma(void *arg)
520 {
521 struct dw_mci *host = arg;
522 struct mmc_data *data = host->data;
523
524 dev_vdbg(host->dev, "DMA complete\n");
525
526 if ((host->use_dma == TRANS_MODE_EDMAC) &&
527 data && (data->flags & MMC_DATA_READ))
528 /* Invalidate cache after read */
529 dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
530 data->sg,
531 data->sg_len,
532 DMA_FROM_DEVICE);
533
534 host->dma_ops->cleanup(host);
535
536 /*
537 * If the card was removed, data will be NULL. No point in trying to
538 * send the stop command or waiting for NBUSY in this case.
539 */
540 if (data) {
541 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
542 tasklet_schedule(&host->tasklet);
543 }
544 }
545
dw_mci_idmac_init(struct dw_mci * host)546 static int dw_mci_idmac_init(struct dw_mci *host)
547 {
548 int i;
549
550 if (host->dma_64bit_address == 1) {
551 struct idmac_desc_64addr *p;
552 /* Number of descriptors in the ring buffer */
553 host->ring_size =
554 DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
555
556 /* Forward link the descriptor list */
557 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
558 i++, p++) {
559 p->des6 = (host->sg_dma +
560 (sizeof(struct idmac_desc_64addr) *
561 (i + 1))) & 0xffffffff;
562
563 p->des7 = (u64)(host->sg_dma +
564 (sizeof(struct idmac_desc_64addr) *
565 (i + 1))) >> 32;
566 /* Initialize reserved and buffer size fields to "0" */
567 p->des0 = 0;
568 p->des1 = 0;
569 p->des2 = 0;
570 p->des3 = 0;
571 }
572
573 /* Set the last descriptor as the end-of-ring descriptor */
574 p->des6 = host->sg_dma & 0xffffffff;
575 p->des7 = (u64)host->sg_dma >> 32;
576 p->des0 = IDMAC_DES0_ER;
577
578 } else {
579 struct idmac_desc *p;
580 /* Number of descriptors in the ring buffer */
581 host->ring_size =
582 DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
583
584 /* Forward link the descriptor list */
585 for (i = 0, p = host->sg_cpu;
586 i < host->ring_size - 1;
587 i++, p++) {
588 p->des3 = cpu_to_le32(host->sg_dma +
589 (sizeof(struct idmac_desc) * (i + 1)));
590 p->des0 = 0;
591 p->des1 = 0;
592 }
593
594 /* Set the last descriptor as the end-of-ring descriptor */
595 p->des3 = cpu_to_le32(host->sg_dma);
596 p->des0 = cpu_to_le32(IDMAC_DES0_ER);
597 }
598
599 dw_mci_idmac_reset(host);
600
601 if (host->dma_64bit_address == 1) {
602 /* Mask out interrupts - get Tx & Rx complete only */
603 mci_writel(host, IDSTS64, IDMAC_INT_CLR);
604 mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
605 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
606
607 /* Set the descriptor base address */
608 mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
609 mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
610
611 } else {
612 /* Mask out interrupts - get Tx & Rx complete only */
613 mci_writel(host, IDSTS, IDMAC_INT_CLR);
614 mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
615 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
616
617 /* Set the descriptor base address */
618 mci_writel(host, DBADDR, host->sg_dma);
619 }
620
621 return 0;
622 }
623
dw_mci_prepare_desc64(struct dw_mci * host,struct mmc_data * data,unsigned int sg_len)624 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
625 struct mmc_data *data,
626 unsigned int sg_len)
627 {
628 unsigned int desc_len;
629 struct idmac_desc_64addr *desc_first, *desc_last, *desc;
630 u32 val;
631 int i;
632
633 desc_first = desc_last = desc = host->sg_cpu;
634
635 for (i = 0; i < sg_len; i++) {
636 unsigned int length = sg_dma_len(&data->sg[i]);
637
638 u64 mem_addr = sg_dma_address(&data->sg[i]);
639
640 for ( ; length ; desc++) {
641 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
642 length : DW_MCI_DESC_DATA_LENGTH;
643
644 length -= desc_len;
645
646 /*
647 * Wait for the former clear OWN bit operation
648 * of IDMAC to make sure that this descriptor
649 * isn't still owned by IDMAC as IDMAC's write
650 * ops and CPU's read ops are asynchronous.
651 */
652 if (readl_poll_timeout_atomic(&desc->des0, val,
653 !(val & IDMAC_DES0_OWN),
654 10, 100 * USEC_PER_MSEC))
655 goto err_own_bit;
656
657 /*
658 * Set the OWN bit and disable interrupts
659 * for this descriptor
660 */
661 desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
662 IDMAC_DES0_CH;
663
664 /* Buffer length */
665 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
666
667 /* Physical address to DMA to/from */
668 desc->des4 = mem_addr & 0xffffffff;
669 desc->des5 = mem_addr >> 32;
670
671 /* Update physical address for the next desc */
672 mem_addr += desc_len;
673
674 /* Save pointer to the last descriptor */
675 desc_last = desc;
676 }
677 }
678
679 /* Set first descriptor */
680 desc_first->des0 |= IDMAC_DES0_FD;
681
682 /* Set last descriptor */
683 desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
684 desc_last->des0 |= IDMAC_DES0_LD;
685
686 return 0;
687 err_own_bit:
688 /* restore the descriptor chain as it's polluted */
689 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
690 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
691 dw_mci_idmac_init(host);
692 return -EINVAL;
693 }
694
695
dw_mci_prepare_desc32(struct dw_mci * host,struct mmc_data * data,unsigned int sg_len)696 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
697 struct mmc_data *data,
698 unsigned int sg_len)
699 {
700 unsigned int desc_len;
701 struct idmac_desc *desc_first, *desc_last, *desc;
702 u32 val;
703 int i;
704
705 desc_first = desc_last = desc = host->sg_cpu;
706
707 for (i = 0; i < sg_len; i++) {
708 unsigned int length = sg_dma_len(&data->sg[i]);
709
710 u32 mem_addr = sg_dma_address(&data->sg[i]);
711
712 for ( ; length ; desc++) {
713 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
714 length : DW_MCI_DESC_DATA_LENGTH;
715
716 length -= desc_len;
717
718 /*
719 * Wait for the former clear OWN bit operation
720 * of IDMAC to make sure that this descriptor
721 * isn't still owned by IDMAC as IDMAC's write
722 * ops and CPU's read ops are asynchronous.
723 */
724 if (readl_poll_timeout_atomic(&desc->des0, val,
725 IDMAC_OWN_CLR64(val),
726 10,
727 100 * USEC_PER_MSEC))
728 goto err_own_bit;
729
730 /*
731 * Set the OWN bit and disable interrupts
732 * for this descriptor
733 */
734 desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
735 IDMAC_DES0_DIC |
736 IDMAC_DES0_CH);
737
738 /* Buffer length */
739 IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
740
741 /* Physical address to DMA to/from */
742 desc->des2 = cpu_to_le32(mem_addr);
743
744 /* Update physical address for the next desc */
745 mem_addr += desc_len;
746
747 /* Save pointer to the last descriptor */
748 desc_last = desc;
749 }
750 }
751
752 /* Set first descriptor */
753 desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
754
755 /* Set last descriptor */
756 desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
757 IDMAC_DES0_DIC));
758 desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
759
760 return 0;
761 err_own_bit:
762 /* restore the descriptor chain as it's polluted */
763 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
764 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
765 dw_mci_idmac_init(host);
766 return -EINVAL;
767 }
768
dw_mci_idmac_start_dma(struct dw_mci * host,unsigned int sg_len)769 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
770 {
771 u32 temp;
772 int ret;
773
774 if (host->dma_64bit_address == 1)
775 ret = dw_mci_prepare_desc64(host, host->data, sg_len);
776 else
777 ret = dw_mci_prepare_desc32(host, host->data, sg_len);
778
779 if (ret)
780 goto out;
781
782 /* drain writebuffer */
783 wmb();
784
785 /* Make sure to reset DMA in case we did PIO before this */
786 dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
787 dw_mci_idmac_reset(host);
788
789 /* Select IDMAC interface */
790 temp = mci_readl(host, CTRL);
791 temp |= SDMMC_CTRL_USE_IDMAC;
792 mci_writel(host, CTRL, temp);
793
794 /* drain writebuffer */
795 wmb();
796
797 /* Enable the IDMAC */
798 temp = mci_readl(host, BMOD);
799 temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
800 mci_writel(host, BMOD, temp);
801
802 /* Start it running */
803 mci_writel(host, PLDMND, 1);
804
805 out:
806 return ret;
807 }
808
809 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
810 .init = dw_mci_idmac_init,
811 .start = dw_mci_idmac_start_dma,
812 .stop = dw_mci_idmac_stop_dma,
813 .complete = dw_mci_dmac_complete_dma,
814 .cleanup = dw_mci_dma_cleanup,
815 };
816
dw_mci_edmac_stop_dma(struct dw_mci * host)817 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
818 {
819 dmaengine_terminate_async(host->dms->ch);
820 }
821
dw_mci_edmac_start_dma(struct dw_mci * host,unsigned int sg_len)822 static int dw_mci_edmac_start_dma(struct dw_mci *host,
823 unsigned int sg_len)
824 {
825 struct dma_slave_config cfg;
826 struct dma_async_tx_descriptor *desc = NULL;
827 struct scatterlist *sgl = host->data->sg;
828 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
829 u32 sg_elems = host->data->sg_len;
830 u32 fifoth_val;
831 u32 fifo_offset = host->fifo_reg - host->regs;
832 int ret = 0;
833
834 /* Set external dma config: burst size, burst width */
835 cfg.dst_addr = host->phy_regs + fifo_offset;
836 cfg.src_addr = cfg.dst_addr;
837 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
838 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
839
840 /* Match burst msize with external dma config */
841 fifoth_val = mci_readl(host, FIFOTH);
842 cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
843 cfg.src_maxburst = cfg.dst_maxburst;
844
845 if (host->data->flags & MMC_DATA_WRITE)
846 cfg.direction = DMA_MEM_TO_DEV;
847 else
848 cfg.direction = DMA_DEV_TO_MEM;
849
850 ret = dmaengine_slave_config(host->dms->ch, &cfg);
851 if (ret) {
852 dev_err(host->dev, "Failed to config edmac.\n");
853 return -EBUSY;
854 }
855
856 desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
857 sg_len, cfg.direction,
858 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
859 if (!desc) {
860 dev_err(host->dev, "Can't prepare slave sg.\n");
861 return -EBUSY;
862 }
863
864 /* Set dw_mci_dmac_complete_dma as callback */
865 desc->callback = dw_mci_dmac_complete_dma;
866 desc->callback_param = (void *)host;
867 dmaengine_submit(desc);
868
869 /* Flush cache before write */
870 if (host->data->flags & MMC_DATA_WRITE)
871 dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
872 sg_elems, DMA_TO_DEVICE);
873
874 dma_async_issue_pending(host->dms->ch);
875
876 return 0;
877 }
878
dw_mci_edmac_init(struct dw_mci * host)879 static int dw_mci_edmac_init(struct dw_mci *host)
880 {
881 /* Request external dma channel */
882 host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
883 if (!host->dms)
884 return -ENOMEM;
885
886 host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
887 if (!host->dms->ch) {
888 dev_err(host->dev, "Failed to get external DMA channel.\n");
889 kfree(host->dms);
890 host->dms = NULL;
891 return -ENXIO;
892 }
893
894 return 0;
895 }
896
dw_mci_edmac_exit(struct dw_mci * host)897 static void dw_mci_edmac_exit(struct dw_mci *host)
898 {
899 if (host->dms) {
900 if (host->dms->ch) {
901 dma_release_channel(host->dms->ch);
902 host->dms->ch = NULL;
903 }
904 kfree(host->dms);
905 host->dms = NULL;
906 }
907 }
908
909 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
910 .init = dw_mci_edmac_init,
911 .exit = dw_mci_edmac_exit,
912 .start = dw_mci_edmac_start_dma,
913 .stop = dw_mci_edmac_stop_dma,
914 .complete = dw_mci_dmac_complete_dma,
915 .cleanup = dw_mci_dma_cleanup,
916 };
917
dw_mci_pre_dma_transfer(struct dw_mci * host,struct mmc_data * data,int cookie)918 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
919 struct mmc_data *data,
920 int cookie)
921 {
922 struct scatterlist *sg;
923 unsigned int i, sg_len;
924
925 if (data->host_cookie == COOKIE_PRE_MAPPED)
926 return data->sg_len;
927
928 /*
929 * We don't do DMA on "complex" transfers, i.e. with
930 * non-word-aligned buffers or lengths. Also, we don't bother
931 * with all the DMA setup overhead for short transfers.
932 */
933 if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
934 return -EINVAL;
935
936 if (data->blksz & 3)
937 return -EINVAL;
938
939 for_each_sg(data->sg, sg, data->sg_len, i) {
940 if (sg->offset & 3 || sg->length & 3)
941 return -EINVAL;
942 }
943
944 sg_len = dma_map_sg(host->dev,
945 data->sg,
946 data->sg_len,
947 mmc_get_dma_dir(data));
948 if (sg_len == 0)
949 return -EINVAL;
950
951 data->host_cookie = cookie;
952
953 return sg_len;
954 }
955
dw_mci_pre_req(struct mmc_host * mmc,struct mmc_request * mrq)956 static void dw_mci_pre_req(struct mmc_host *mmc,
957 struct mmc_request *mrq)
958 {
959 struct dw_mci_slot *slot = mmc_priv(mmc);
960 struct mmc_data *data = mrq->data;
961
962 if (!slot->host->use_dma || !data)
963 return;
964
965 /* This data might be unmapped at this time */
966 data->host_cookie = COOKIE_UNMAPPED;
967
968 if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
969 COOKIE_PRE_MAPPED) < 0)
970 data->host_cookie = COOKIE_UNMAPPED;
971 }
972
dw_mci_post_req(struct mmc_host * mmc,struct mmc_request * mrq,int err)973 static void dw_mci_post_req(struct mmc_host *mmc,
974 struct mmc_request *mrq,
975 int err)
976 {
977 struct dw_mci_slot *slot = mmc_priv(mmc);
978 struct mmc_data *data = mrq->data;
979
980 if (!slot->host->use_dma || !data)
981 return;
982
983 if (data->host_cookie != COOKIE_UNMAPPED)
984 dma_unmap_sg(slot->host->dev,
985 data->sg,
986 data->sg_len,
987 mmc_get_dma_dir(data));
988 data->host_cookie = COOKIE_UNMAPPED;
989 }
990
dw_mci_get_cd(struct mmc_host * mmc)991 static int dw_mci_get_cd(struct mmc_host *mmc)
992 {
993 int present;
994 struct dw_mci_slot *slot = mmc_priv(mmc);
995 struct dw_mci *host = slot->host;
996 int gpio_cd = mmc_gpio_get_cd(mmc);
997
998 /* Use platform get_cd function, else try onboard card detect */
999 if (((mmc->caps & MMC_CAP_NEEDS_POLL)
1000 || !mmc_card_is_removable(mmc))) {
1001 present = 1;
1002
1003 if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
1004 if (mmc->caps & MMC_CAP_NEEDS_POLL) {
1005 dev_info(&mmc->class_dev,
1006 "card is polling.\n");
1007 } else {
1008 dev_info(&mmc->class_dev,
1009 "card is non-removable.\n");
1010 }
1011 set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1012 }
1013
1014 return present;
1015 } else if (gpio_cd >= 0)
1016 present = gpio_cd;
1017 else
1018 present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
1019 == 0 ? 1 : 0;
1020
1021 spin_lock_bh(&host->lock);
1022 if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
1023 dev_dbg(&mmc->class_dev, "card is present\n");
1024 else if (!present &&
1025 !test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
1026 dev_dbg(&mmc->class_dev, "card is not present\n");
1027 spin_unlock_bh(&host->lock);
1028
1029 return present;
1030 }
1031
dw_mci_adjust_fifoth(struct dw_mci * host,struct mmc_data * data)1032 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
1033 {
1034 unsigned int blksz = data->blksz;
1035 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
1036 u32 fifo_width = 1 << host->data_shift;
1037 u32 blksz_depth = blksz / fifo_width, fifoth_val;
1038 u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
1039 int idx = ARRAY_SIZE(mszs) - 1;
1040
1041 /* pio should ship this scenario */
1042 if (!host->use_dma)
1043 return;
1044
1045 tx_wmark = (host->fifo_depth) / 2;
1046 tx_wmark_invers = host->fifo_depth - tx_wmark;
1047
1048 /*
1049 * MSIZE is '1',
1050 * if blksz is not a multiple of the FIFO width
1051 */
1052 if (blksz % fifo_width)
1053 goto done;
1054
1055 do {
1056 if (!((blksz_depth % mszs[idx]) ||
1057 (tx_wmark_invers % mszs[idx]))) {
1058 msize = idx;
1059 rx_wmark = mszs[idx] - 1;
1060 break;
1061 }
1062 } while (--idx > 0);
1063 /*
1064 * If idx is '0', it won't be tried
1065 * Thus, initial values are uesed
1066 */
1067 done:
1068 fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1069 mci_writel(host, FIFOTH, fifoth_val);
1070 }
1071
dw_mci_ctrl_thld(struct dw_mci * host,struct mmc_data * data)1072 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1073 {
1074 unsigned int blksz = data->blksz;
1075 u32 blksz_depth, fifo_depth;
1076 u16 thld_size;
1077 u8 enable;
1078
1079 /*
1080 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1081 * in the FIFO region, so we really shouldn't access it).
1082 */
1083 if (host->verid < DW_MMC_240A ||
1084 (host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1085 return;
1086
1087 /*
1088 * Card write Threshold is introduced since 2.80a
1089 * It's used when HS400 mode is enabled.
1090 */
1091 if (data->flags & MMC_DATA_WRITE &&
1092 host->timing != MMC_TIMING_MMC_HS400)
1093 goto disable;
1094
1095 if (data->flags & MMC_DATA_WRITE)
1096 enable = SDMMC_CARD_WR_THR_EN;
1097 else
1098 enable = SDMMC_CARD_RD_THR_EN;
1099
1100 if (host->timing != MMC_TIMING_MMC_HS200 &&
1101 host->timing != MMC_TIMING_UHS_SDR104 &&
1102 host->timing != MMC_TIMING_MMC_HS400)
1103 goto disable;
1104
1105 blksz_depth = blksz / (1 << host->data_shift);
1106 fifo_depth = host->fifo_depth;
1107
1108 if (blksz_depth > fifo_depth)
1109 goto disable;
1110
1111 /*
1112 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1113 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
1114 * Currently just choose blksz.
1115 */
1116 thld_size = blksz;
1117 mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1118 return;
1119
1120 disable:
1121 mci_writel(host, CDTHRCTL, 0);
1122 }
1123
dw_mci_submit_data_dma(struct dw_mci * host,struct mmc_data * data)1124 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1125 {
1126 unsigned long irqflags;
1127 int sg_len;
1128 u32 temp;
1129
1130 host->using_dma = 0;
1131
1132 /* If we don't have a channel, we can't do DMA */
1133 if (!host->use_dma)
1134 return -ENODEV;
1135
1136 sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1137 if (sg_len < 0) {
1138 host->dma_ops->stop(host);
1139 return sg_len;
1140 }
1141
1142 host->using_dma = 1;
1143
1144 if (host->use_dma == TRANS_MODE_IDMAC)
1145 dev_vdbg(host->dev,
1146 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1147 (unsigned long)host->sg_cpu,
1148 (unsigned long)host->sg_dma,
1149 sg_len);
1150
1151 /*
1152 * Decide the MSIZE and RX/TX Watermark.
1153 * If current block size is same with previous size,
1154 * no need to update fifoth.
1155 */
1156 if (host->prev_blksz != data->blksz)
1157 dw_mci_adjust_fifoth(host, data);
1158
1159 /* Enable the DMA interface */
1160 temp = mci_readl(host, CTRL);
1161 temp |= SDMMC_CTRL_DMA_ENABLE;
1162 mci_writel(host, CTRL, temp);
1163
1164 /* Disable RX/TX IRQs, let DMA handle it */
1165 spin_lock_irqsave(&host->irq_lock, irqflags);
1166 temp = mci_readl(host, INTMASK);
1167 temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1168 mci_writel(host, INTMASK, temp);
1169 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1170
1171 if (host->dma_ops->start(host, sg_len)) {
1172 host->dma_ops->stop(host);
1173 /* We can't do DMA, try PIO for this one */
1174 dev_dbg(host->dev,
1175 "%s: fall back to PIO mode for current transfer\n",
1176 __func__);
1177 return -ENODEV;
1178 }
1179
1180 return 0;
1181 }
1182
dw_mci_submit_data(struct dw_mci * host,struct mmc_data * data)1183 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1184 {
1185 unsigned long irqflags;
1186 int flags = SG_MITER_ATOMIC;
1187 u32 temp;
1188
1189 data->error = -EINPROGRESS;
1190
1191 WARN_ON(host->data);
1192 host->sg = NULL;
1193 host->data = data;
1194
1195 if (data->flags & MMC_DATA_READ)
1196 host->dir_status = DW_MCI_RECV_STATUS;
1197 else
1198 host->dir_status = DW_MCI_SEND_STATUS;
1199
1200 dw_mci_ctrl_thld(host, data);
1201
1202 if (dw_mci_submit_data_dma(host, data)) {
1203 if (host->data->flags & MMC_DATA_READ)
1204 flags |= SG_MITER_TO_SG;
1205 else
1206 flags |= SG_MITER_FROM_SG;
1207
1208 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1209 host->sg = data->sg;
1210 host->part_buf_start = 0;
1211 host->part_buf_count = 0;
1212
1213 mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1214
1215 spin_lock_irqsave(&host->irq_lock, irqflags);
1216 temp = mci_readl(host, INTMASK);
1217 temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1218 mci_writel(host, INTMASK, temp);
1219 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1220
1221 temp = mci_readl(host, CTRL);
1222 temp &= ~SDMMC_CTRL_DMA_ENABLE;
1223 mci_writel(host, CTRL, temp);
1224
1225 /*
1226 * Use the initial fifoth_val for PIO mode. If wm_algined
1227 * is set, we set watermark same as data size.
1228 * If next issued data may be transfered by DMA mode,
1229 * prev_blksz should be invalidated.
1230 */
1231 if (host->wm_aligned)
1232 dw_mci_adjust_fifoth(host, data);
1233 else
1234 mci_writel(host, FIFOTH, host->fifoth_val);
1235 host->prev_blksz = 0;
1236 } else {
1237 /*
1238 * Keep the current block size.
1239 * It will be used to decide whether to update
1240 * fifoth register next time.
1241 */
1242 host->prev_blksz = data->blksz;
1243 }
1244 }
1245
dw_mci_setup_bus(struct dw_mci_slot * slot,bool force_clkinit)1246 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1247 {
1248 struct dw_mci *host = slot->host;
1249 unsigned int clock = slot->clock;
1250 u32 div;
1251 u32 clk_en_a;
1252 u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1253
1254 /* We must continue to set bit 28 in CMD until the change is complete */
1255 if (host->state == STATE_WAITING_CMD11_DONE)
1256 sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1257
1258 slot->mmc->actual_clock = 0;
1259
1260 if (!clock) {
1261 mci_writel(host, CLKENA, 0);
1262 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1263 } else if (clock != host->current_speed || force_clkinit) {
1264 div = host->bus_hz / clock;
1265 if (host->bus_hz % clock && host->bus_hz > clock)
1266 /*
1267 * move the + 1 after the divide to prevent
1268 * over-clocking the card.
1269 */
1270 div += 1;
1271
1272 div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1273
1274 if ((clock != slot->__clk_old &&
1275 !test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1276 force_clkinit) {
1277 /* Silent the verbose log if calling from PM context */
1278 if (!force_clkinit)
1279 dev_info(&slot->mmc->class_dev,
1280 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1281 slot->id, host->bus_hz, clock,
1282 div ? ((host->bus_hz / div) >> 1) :
1283 host->bus_hz, div);
1284
1285 /*
1286 * If card is polling, display the message only
1287 * one time at boot time.
1288 */
1289 if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1290 slot->mmc->f_min == clock)
1291 set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1292 }
1293
1294 /* disable clock */
1295 mci_writel(host, CLKENA, 0);
1296 mci_writel(host, CLKSRC, 0);
1297
1298 /* inform CIU */
1299 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1300
1301 /* set clock to desired speed */
1302 mci_writel(host, CLKDIV, div);
1303
1304 /* inform CIU */
1305 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1306
1307 /* enable clock; only low power if no SDIO */
1308 clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1309 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1310 clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1311 mci_writel(host, CLKENA, clk_en_a);
1312
1313 /* inform CIU */
1314 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1315
1316 /* keep the last clock value that was requested from core */
1317 slot->__clk_old = clock;
1318 slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) :
1319 host->bus_hz;
1320 }
1321
1322 host->current_speed = clock;
1323
1324 /* Set the current slot bus width */
1325 mci_writel(host, CTYPE, (slot->ctype << slot->id));
1326 }
1327
__dw_mci_start_request(struct dw_mci * host,struct dw_mci_slot * slot,struct mmc_command * cmd)1328 static void __dw_mci_start_request(struct dw_mci *host,
1329 struct dw_mci_slot *slot,
1330 struct mmc_command *cmd)
1331 {
1332 struct mmc_request *mrq;
1333 struct mmc_data *data;
1334 u32 cmdflags;
1335
1336 mrq = slot->mrq;
1337
1338 host->mrq = mrq;
1339
1340 host->pending_events = 0;
1341 host->completed_events = 0;
1342 host->cmd_status = 0;
1343 host->data_status = 0;
1344 host->dir_status = 0;
1345
1346 data = cmd->data;
1347 if (data) {
1348 mci_writel(host, TMOUT, 0xFFFFFFFF);
1349 mci_writel(host, BYTCNT, data->blksz*data->blocks);
1350 mci_writel(host, BLKSIZ, data->blksz);
1351 }
1352
1353 cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1354
1355 /* this is the first command, send the initialization clock */
1356 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1357 cmdflags |= SDMMC_CMD_INIT;
1358
1359 if (data) {
1360 dw_mci_submit_data(host, data);
1361 wmb(); /* drain writebuffer */
1362 }
1363
1364 dw_mci_start_command(host, cmd, cmdflags);
1365
1366 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1367 unsigned long irqflags;
1368
1369 /*
1370 * Databook says to fail after 2ms w/ no response, but evidence
1371 * shows that sometimes the cmd11 interrupt takes over 130ms.
1372 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1373 * is just about to roll over.
1374 *
1375 * We do this whole thing under spinlock and only if the
1376 * command hasn't already completed (indicating the the irq
1377 * already ran so we don't want the timeout).
1378 */
1379 spin_lock_irqsave(&host->irq_lock, irqflags);
1380 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1381 mod_timer(&host->cmd11_timer,
1382 jiffies + msecs_to_jiffies(500) + 1);
1383 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1384 }
1385
1386 host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1387 }
1388
dw_mci_start_request(struct dw_mci * host,struct dw_mci_slot * slot)1389 static void dw_mci_start_request(struct dw_mci *host,
1390 struct dw_mci_slot *slot)
1391 {
1392 struct mmc_request *mrq = slot->mrq;
1393 struct mmc_command *cmd;
1394
1395 cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1396 __dw_mci_start_request(host, slot, cmd);
1397 }
1398
1399 /* must be called with host->lock held */
dw_mci_queue_request(struct dw_mci * host,struct dw_mci_slot * slot,struct mmc_request * mrq)1400 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1401 struct mmc_request *mrq)
1402 {
1403 dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1404 host->state);
1405
1406 slot->mrq = mrq;
1407
1408 if (host->state == STATE_WAITING_CMD11_DONE) {
1409 dev_warn(&slot->mmc->class_dev,
1410 "Voltage change didn't complete\n");
1411 /*
1412 * this case isn't expected to happen, so we can
1413 * either crash here or just try to continue on
1414 * in the closest possible state
1415 */
1416 host->state = STATE_IDLE;
1417 }
1418
1419 if (host->state == STATE_IDLE) {
1420 host->state = STATE_SENDING_CMD;
1421 dw_mci_start_request(host, slot);
1422 } else {
1423 list_add_tail(&slot->queue_node, &host->queue);
1424 }
1425 }
1426
dw_mci_request(struct mmc_host * mmc,struct mmc_request * mrq)1427 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1428 {
1429 struct dw_mci_slot *slot = mmc_priv(mmc);
1430 struct dw_mci *host = slot->host;
1431
1432 WARN_ON(slot->mrq);
1433
1434 /*
1435 * The check for card presence and queueing of the request must be
1436 * atomic, otherwise the card could be removed in between and the
1437 * request wouldn't fail until another card was inserted.
1438 */
1439
1440 if (!dw_mci_get_cd(mmc)) {
1441 mrq->cmd->error = -ENOMEDIUM;
1442 mmc_request_done(mmc, mrq);
1443 return;
1444 }
1445
1446 spin_lock_bh(&host->lock);
1447
1448 dw_mci_queue_request(host, slot, mrq);
1449
1450 spin_unlock_bh(&host->lock);
1451 }
1452
dw_mci_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)1453 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1454 {
1455 struct dw_mci_slot *slot = mmc_priv(mmc);
1456 const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1457 u32 regs;
1458 int ret;
1459
1460 switch (ios->bus_width) {
1461 case MMC_BUS_WIDTH_4:
1462 slot->ctype = SDMMC_CTYPE_4BIT;
1463 break;
1464 case MMC_BUS_WIDTH_8:
1465 slot->ctype = SDMMC_CTYPE_8BIT;
1466 break;
1467 default:
1468 /* set default 1 bit mode */
1469 slot->ctype = SDMMC_CTYPE_1BIT;
1470 }
1471
1472 regs = mci_readl(slot->host, UHS_REG);
1473
1474 /* DDR mode set */
1475 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1476 ios->timing == MMC_TIMING_UHS_DDR50 ||
1477 ios->timing == MMC_TIMING_MMC_HS400)
1478 regs |= ((0x1 << slot->id) << 16);
1479 else
1480 regs &= ~((0x1 << slot->id) << 16);
1481
1482 mci_writel(slot->host, UHS_REG, regs);
1483 slot->host->timing = ios->timing;
1484
1485 /*
1486 * Use mirror of ios->clock to prevent race with mmc
1487 * core ios update when finding the minimum.
1488 */
1489 slot->clock = ios->clock;
1490
1491 if (drv_data && drv_data->set_ios)
1492 drv_data->set_ios(slot->host, ios);
1493
1494 switch (ios->power_mode) {
1495 case MMC_POWER_UP:
1496 if (!IS_ERR(mmc->supply.vmmc)) {
1497 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1498 ios->vdd);
1499 if (ret) {
1500 dev_err(slot->host->dev,
1501 "failed to enable vmmc regulator\n");
1502 /*return, if failed turn on vmmc*/
1503 return;
1504 }
1505 }
1506 set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1507 regs = mci_readl(slot->host, PWREN);
1508 regs |= (1 << slot->id);
1509 mci_writel(slot->host, PWREN, regs);
1510 break;
1511 case MMC_POWER_ON:
1512 if (!slot->host->vqmmc_enabled) {
1513 if (!IS_ERR(mmc->supply.vqmmc)) {
1514 ret = regulator_enable(mmc->supply.vqmmc);
1515 if (ret < 0)
1516 dev_err(slot->host->dev,
1517 "failed to enable vqmmc\n");
1518 else
1519 slot->host->vqmmc_enabled = true;
1520
1521 } else {
1522 /* Keep track so we don't reset again */
1523 slot->host->vqmmc_enabled = true;
1524 }
1525
1526 /* Reset our state machine after powering on */
1527 dw_mci_ctrl_reset(slot->host,
1528 SDMMC_CTRL_ALL_RESET_FLAGS);
1529 }
1530
1531 /* Adjust clock / bus width after power is up */
1532 dw_mci_setup_bus(slot, false);
1533
1534 break;
1535 case MMC_POWER_OFF:
1536 /* Turn clock off before power goes down */
1537 dw_mci_setup_bus(slot, false);
1538
1539 if (!IS_ERR(mmc->supply.vmmc))
1540 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1541
1542 if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1543 regulator_disable(mmc->supply.vqmmc);
1544 slot->host->vqmmc_enabled = false;
1545
1546 regs = mci_readl(slot->host, PWREN);
1547 regs &= ~(1 << slot->id);
1548 mci_writel(slot->host, PWREN, regs);
1549 break;
1550 default:
1551 break;
1552 }
1553
1554 if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1555 slot->host->state = STATE_IDLE;
1556 }
1557
dw_mci_card_busy(struct mmc_host * mmc)1558 static int dw_mci_card_busy(struct mmc_host *mmc)
1559 {
1560 struct dw_mci_slot *slot = mmc_priv(mmc);
1561 u32 status;
1562
1563 /*
1564 * Check the busy bit which is low when DAT[3:0]
1565 * (the data lines) are 0000
1566 */
1567 status = mci_readl(slot->host, STATUS);
1568
1569 return !!(status & SDMMC_STATUS_BUSY);
1570 }
1571
dw_mci_switch_voltage(struct mmc_host * mmc,struct mmc_ios * ios)1572 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1573 {
1574 struct dw_mci_slot *slot = mmc_priv(mmc);
1575 struct dw_mci *host = slot->host;
1576 const struct dw_mci_drv_data *drv_data = host->drv_data;
1577 u32 uhs;
1578 u32 v18 = SDMMC_UHS_18V << slot->id;
1579 int ret;
1580
1581 if (drv_data && drv_data->switch_voltage)
1582 return drv_data->switch_voltage(mmc, ios);
1583
1584 /*
1585 * Program the voltage. Note that some instances of dw_mmc may use
1586 * the UHS_REG for this. For other instances (like exynos) the UHS_REG
1587 * does no harm but you need to set the regulator directly. Try both.
1588 */
1589 uhs = mci_readl(host, UHS_REG);
1590 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1591 uhs &= ~v18;
1592 else
1593 uhs |= v18;
1594
1595 if (!IS_ERR(mmc->supply.vqmmc)) {
1596 ret = mmc_regulator_set_vqmmc(mmc, ios);
1597
1598 if (ret) {
1599 dev_dbg(&mmc->class_dev,
1600 "Regulator set error %d - %s V\n",
1601 ret, uhs & v18 ? "1.8" : "3.3");
1602 return ret;
1603 }
1604 }
1605 mci_writel(host, UHS_REG, uhs);
1606
1607 return 0;
1608 }
1609
dw_mci_get_ro(struct mmc_host * mmc)1610 static int dw_mci_get_ro(struct mmc_host *mmc)
1611 {
1612 int read_only;
1613 struct dw_mci_slot *slot = mmc_priv(mmc);
1614 int gpio_ro = mmc_gpio_get_ro(mmc);
1615
1616 /* Use platform get_ro function, else try on board write protect */
1617 if (gpio_ro >= 0)
1618 read_only = gpio_ro;
1619 else
1620 read_only =
1621 mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1622
1623 dev_dbg(&mmc->class_dev, "card is %s\n",
1624 read_only ? "read-only" : "read-write");
1625
1626 return read_only;
1627 }
1628
dw_mci_hw_reset(struct mmc_host * mmc)1629 static void dw_mci_hw_reset(struct mmc_host *mmc)
1630 {
1631 struct dw_mci_slot *slot = mmc_priv(mmc);
1632 struct dw_mci *host = slot->host;
1633 int reset;
1634
1635 if (host->use_dma == TRANS_MODE_IDMAC)
1636 dw_mci_idmac_reset(host);
1637
1638 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1639 SDMMC_CTRL_FIFO_RESET))
1640 return;
1641
1642 /*
1643 * According to eMMC spec, card reset procedure:
1644 * tRstW >= 1us: RST_n pulse width
1645 * tRSCA >= 200us: RST_n to Command time
1646 * tRSTH >= 1us: RST_n high period
1647 */
1648 reset = mci_readl(host, RST_N);
1649 reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1650 mci_writel(host, RST_N, reset);
1651 usleep_range(1, 2);
1652 reset |= SDMMC_RST_HWACTIVE << slot->id;
1653 mci_writel(host, RST_N, reset);
1654 usleep_range(200, 300);
1655 }
1656
dw_mci_init_card(struct mmc_host * mmc,struct mmc_card * card)1657 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1658 {
1659 struct dw_mci_slot *slot = mmc_priv(mmc);
1660 struct dw_mci *host = slot->host;
1661
1662 /*
1663 * Low power mode will stop the card clock when idle. According to the
1664 * description of the CLKENA register we should disable low power mode
1665 * for SDIO cards if we need SDIO interrupts to work.
1666 */
1667 if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1668 const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1669 u32 clk_en_a_old;
1670 u32 clk_en_a;
1671
1672 clk_en_a_old = mci_readl(host, CLKENA);
1673
1674 if (card->type == MMC_TYPE_SDIO ||
1675 card->type == MMC_TYPE_SD_COMBO) {
1676 set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1677 clk_en_a = clk_en_a_old & ~clken_low_pwr;
1678 } else {
1679 clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1680 clk_en_a = clk_en_a_old | clken_low_pwr;
1681 }
1682
1683 if (clk_en_a != clk_en_a_old) {
1684 mci_writel(host, CLKENA, clk_en_a);
1685 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1686 SDMMC_CMD_PRV_DAT_WAIT, 0);
1687 }
1688 }
1689 }
1690
__dw_mci_enable_sdio_irq(struct dw_mci_slot * slot,int enb)1691 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1692 {
1693 struct dw_mci *host = slot->host;
1694 unsigned long irqflags;
1695 u32 int_mask;
1696
1697 spin_lock_irqsave(&host->irq_lock, irqflags);
1698
1699 /* Enable/disable Slot Specific SDIO interrupt */
1700 int_mask = mci_readl(host, INTMASK);
1701 if (enb)
1702 int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1703 else
1704 int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1705 mci_writel(host, INTMASK, int_mask);
1706
1707 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1708 }
1709
dw_mci_enable_sdio_irq(struct mmc_host * mmc,int enb)1710 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1711 {
1712 struct dw_mci_slot *slot = mmc_priv(mmc);
1713 struct dw_mci *host = slot->host;
1714
1715 __dw_mci_enable_sdio_irq(slot, enb);
1716
1717 /* Avoid runtime suspending the device when SDIO IRQ is enabled */
1718 if (enb)
1719 pm_runtime_get_noresume(host->dev);
1720 else
1721 pm_runtime_put_noidle(host->dev);
1722 }
1723
dw_mci_ack_sdio_irq(struct mmc_host * mmc)1724 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1725 {
1726 struct dw_mci_slot *slot = mmc_priv(mmc);
1727
1728 __dw_mci_enable_sdio_irq(slot, 1);
1729 }
1730
dw_mci_execute_tuning(struct mmc_host * mmc,u32 opcode)1731 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1732 {
1733 struct dw_mci_slot *slot = mmc_priv(mmc);
1734 struct dw_mci *host = slot->host;
1735 const struct dw_mci_drv_data *drv_data = host->drv_data;
1736 int err = -EINVAL;
1737
1738 if (drv_data && drv_data->execute_tuning)
1739 err = drv_data->execute_tuning(slot, opcode);
1740 return err;
1741 }
1742
dw_mci_prepare_hs400_tuning(struct mmc_host * mmc,struct mmc_ios * ios)1743 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1744 struct mmc_ios *ios)
1745 {
1746 struct dw_mci_slot *slot = mmc_priv(mmc);
1747 struct dw_mci *host = slot->host;
1748 const struct dw_mci_drv_data *drv_data = host->drv_data;
1749
1750 if (drv_data && drv_data->prepare_hs400_tuning)
1751 return drv_data->prepare_hs400_tuning(host, ios);
1752
1753 return 0;
1754 }
1755
dw_mci_reset(struct dw_mci * host)1756 static bool dw_mci_reset(struct dw_mci *host)
1757 {
1758 u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1759 bool ret = false;
1760 u32 status = 0;
1761
1762 /*
1763 * Resetting generates a block interrupt, hence setting
1764 * the scatter-gather pointer to NULL.
1765 */
1766 if (host->sg) {
1767 sg_miter_stop(&host->sg_miter);
1768 host->sg = NULL;
1769 }
1770
1771 if (host->use_dma)
1772 flags |= SDMMC_CTRL_DMA_RESET;
1773
1774 if (dw_mci_ctrl_reset(host, flags)) {
1775 /*
1776 * In all cases we clear the RAWINTS
1777 * register to clear any interrupts.
1778 */
1779 mci_writel(host, RINTSTS, 0xFFFFFFFF);
1780
1781 if (!host->use_dma) {
1782 ret = true;
1783 goto ciu_out;
1784 }
1785
1786 /* Wait for dma_req to be cleared */
1787 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1788 status,
1789 !(status & SDMMC_STATUS_DMA_REQ),
1790 1, 500 * USEC_PER_MSEC)) {
1791 dev_err(host->dev,
1792 "%s: Timeout waiting for dma_req to be cleared\n",
1793 __func__);
1794 goto ciu_out;
1795 }
1796
1797 /* when using DMA next we reset the fifo again */
1798 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1799 goto ciu_out;
1800 } else {
1801 /* if the controller reset bit did clear, then set clock regs */
1802 if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1803 dev_err(host->dev,
1804 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1805 __func__);
1806 goto ciu_out;
1807 }
1808 }
1809
1810 if (host->use_dma == TRANS_MODE_IDMAC)
1811 /* It is also required that we reinit idmac */
1812 dw_mci_idmac_init(host);
1813
1814 ret = true;
1815
1816 ciu_out:
1817 /* After a CTRL reset we need to have CIU set clock registers */
1818 mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1819
1820 return ret;
1821 }
1822
1823 static const struct mmc_host_ops dw_mci_ops = {
1824 .request = dw_mci_request,
1825 .pre_req = dw_mci_pre_req,
1826 .post_req = dw_mci_post_req,
1827 .set_ios = dw_mci_set_ios,
1828 .get_ro = dw_mci_get_ro,
1829 .get_cd = dw_mci_get_cd,
1830 .hw_reset = dw_mci_hw_reset,
1831 .enable_sdio_irq = dw_mci_enable_sdio_irq,
1832 .ack_sdio_irq = dw_mci_ack_sdio_irq,
1833 .execute_tuning = dw_mci_execute_tuning,
1834 .card_busy = dw_mci_card_busy,
1835 .start_signal_voltage_switch = dw_mci_switch_voltage,
1836 .init_card = dw_mci_init_card,
1837 .prepare_hs400_tuning = dw_mci_prepare_hs400_tuning,
1838 };
1839
dw_mci_request_end(struct dw_mci * host,struct mmc_request * mrq)1840 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1841 __releases(&host->lock)
1842 __acquires(&host->lock)
1843 {
1844 struct dw_mci_slot *slot;
1845 struct mmc_host *prev_mmc = host->slot->mmc;
1846
1847 WARN_ON(host->cmd || host->data);
1848
1849 host->slot->mrq = NULL;
1850 host->mrq = NULL;
1851 if (!list_empty(&host->queue)) {
1852 slot = list_entry(host->queue.next,
1853 struct dw_mci_slot, queue_node);
1854 list_del(&slot->queue_node);
1855 dev_vdbg(host->dev, "list not empty: %s is next\n",
1856 mmc_hostname(slot->mmc));
1857 host->state = STATE_SENDING_CMD;
1858 dw_mci_start_request(host, slot);
1859 } else {
1860 dev_vdbg(host->dev, "list empty\n");
1861
1862 if (host->state == STATE_SENDING_CMD11)
1863 host->state = STATE_WAITING_CMD11_DONE;
1864 else
1865 host->state = STATE_IDLE;
1866 }
1867
1868 spin_unlock(&host->lock);
1869 mmc_request_done(prev_mmc, mrq);
1870 spin_lock(&host->lock);
1871 }
1872
dw_mci_command_complete(struct dw_mci * host,struct mmc_command * cmd)1873 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1874 {
1875 u32 status = host->cmd_status;
1876
1877 host->cmd_status = 0;
1878
1879 /* Read the response from the card (up to 16 bytes) */
1880 if (cmd->flags & MMC_RSP_PRESENT) {
1881 if (cmd->flags & MMC_RSP_136) {
1882 cmd->resp[3] = mci_readl(host, RESP0);
1883 cmd->resp[2] = mci_readl(host, RESP1);
1884 cmd->resp[1] = mci_readl(host, RESP2);
1885 cmd->resp[0] = mci_readl(host, RESP3);
1886 } else {
1887 cmd->resp[0] = mci_readl(host, RESP0);
1888 cmd->resp[1] = 0;
1889 cmd->resp[2] = 0;
1890 cmd->resp[3] = 0;
1891 }
1892 }
1893
1894 if (status & SDMMC_INT_RTO)
1895 cmd->error = -ETIMEDOUT;
1896 else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1897 cmd->error = -EILSEQ;
1898 else if (status & SDMMC_INT_RESP_ERR)
1899 cmd->error = -EIO;
1900 else
1901 cmd->error = 0;
1902
1903 return cmd->error;
1904 }
1905
dw_mci_data_complete(struct dw_mci * host,struct mmc_data * data)1906 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1907 {
1908 u32 status = host->data_status;
1909
1910 if (status & DW_MCI_DATA_ERROR_FLAGS) {
1911 if (status & SDMMC_INT_DRTO) {
1912 data->error = -ETIMEDOUT;
1913 } else if (status & SDMMC_INT_DCRC) {
1914 data->error = -EILSEQ;
1915 } else if (status & SDMMC_INT_EBE) {
1916 if (host->dir_status ==
1917 DW_MCI_SEND_STATUS) {
1918 /*
1919 * No data CRC status was returned.
1920 * The number of bytes transferred
1921 * will be exaggerated in PIO mode.
1922 */
1923 data->bytes_xfered = 0;
1924 data->error = -ETIMEDOUT;
1925 } else if (host->dir_status ==
1926 DW_MCI_RECV_STATUS) {
1927 data->error = -EILSEQ;
1928 }
1929 } else {
1930 /* SDMMC_INT_SBE is included */
1931 data->error = -EILSEQ;
1932 }
1933
1934 dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1935
1936 /*
1937 * After an error, there may be data lingering
1938 * in the FIFO
1939 */
1940 dw_mci_reset(host);
1941 } else {
1942 data->bytes_xfered = data->blocks * data->blksz;
1943 data->error = 0;
1944 }
1945
1946 return data->error;
1947 }
1948
dw_mci_set_drto(struct dw_mci * host)1949 static void dw_mci_set_drto(struct dw_mci *host)
1950 {
1951 unsigned int drto_clks;
1952 unsigned int drto_div;
1953 unsigned int drto_ms;
1954
1955 drto_clks = mci_readl(host, TMOUT) >> 8;
1956 drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
1957 if (drto_div == 0)
1958 drto_div = 1;
1959
1960 drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div,
1961 host->bus_hz);
1962
1963 /* add a bit spare time */
1964 drto_ms += 10;
1965
1966 mod_timer(&host->dto_timer, jiffies + msecs_to_jiffies(drto_ms));
1967 }
1968
dw_mci_clear_pending_cmd_complete(struct dw_mci * host)1969 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
1970 {
1971 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1972 return false;
1973
1974 /*
1975 * Really be certain that the timer has stopped. This is a bit of
1976 * paranoia and could only really happen if we had really bad
1977 * interrupt latency and the interrupt routine and timeout were
1978 * running concurrently so that the del_timer() in the interrupt
1979 * handler couldn't run.
1980 */
1981 WARN_ON(del_timer_sync(&host->cto_timer));
1982 clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
1983
1984 return true;
1985 }
1986
dw_mci_tasklet_func(unsigned long priv)1987 static void dw_mci_tasklet_func(unsigned long priv)
1988 {
1989 struct dw_mci *host = (struct dw_mci *)priv;
1990 struct mmc_data *data;
1991 struct mmc_command *cmd;
1992 struct mmc_request *mrq;
1993 enum dw_mci_state state;
1994 enum dw_mci_state prev_state;
1995 unsigned int err;
1996
1997 spin_lock(&host->lock);
1998
1999 state = host->state;
2000 data = host->data;
2001 mrq = host->mrq;
2002
2003 do {
2004 prev_state = state;
2005
2006 switch (state) {
2007 case STATE_IDLE:
2008 case STATE_WAITING_CMD11_DONE:
2009 break;
2010
2011 case STATE_SENDING_CMD11:
2012 case STATE_SENDING_CMD:
2013 if (!dw_mci_clear_pending_cmd_complete(host))
2014 break;
2015
2016 cmd = host->cmd;
2017 host->cmd = NULL;
2018 set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
2019 err = dw_mci_command_complete(host, cmd);
2020 if (cmd == mrq->sbc && !err) {
2021 prev_state = state = STATE_SENDING_CMD;
2022 __dw_mci_start_request(host, host->slot,
2023 mrq->cmd);
2024 goto unlock;
2025 }
2026
2027 if (cmd->data && err) {
2028 /*
2029 * During UHS tuning sequence, sending the stop
2030 * command after the response CRC error would
2031 * throw the system into a confused state
2032 * causing all future tuning phases to report
2033 * failure.
2034 *
2035 * In such case controller will move into a data
2036 * transfer state after a response error or
2037 * response CRC error. Let's let that finish
2038 * before trying to send a stop, so we'll go to
2039 * STATE_SENDING_DATA.
2040 *
2041 * Although letting the data transfer take place
2042 * will waste a bit of time (we already know
2043 * the command was bad), it can't cause any
2044 * errors since it's possible it would have
2045 * taken place anyway if this tasklet got
2046 * delayed. Allowing the transfer to take place
2047 * avoids races and keeps things simple.
2048 */
2049 if (err != -ETIMEDOUT) {
2050 state = STATE_SENDING_DATA;
2051 continue;
2052 }
2053
2054 dw_mci_stop_dma(host);
2055 send_stop_abort(host, data);
2056 state = STATE_SENDING_STOP;
2057 break;
2058 }
2059
2060 if (!cmd->data || err) {
2061 dw_mci_request_end(host, mrq);
2062 goto unlock;
2063 }
2064
2065 prev_state = state = STATE_SENDING_DATA;
2066 /* fall through */
2067
2068 case STATE_SENDING_DATA:
2069 /*
2070 * We could get a data error and never a transfer
2071 * complete so we'd better check for it here.
2072 *
2073 * Note that we don't really care if we also got a
2074 * transfer complete; stopping the DMA and sending an
2075 * abort won't hurt.
2076 */
2077 if (test_and_clear_bit(EVENT_DATA_ERROR,
2078 &host->pending_events)) {
2079 dw_mci_stop_dma(host);
2080 if (!(host->data_status & (SDMMC_INT_DRTO |
2081 SDMMC_INT_EBE)))
2082 send_stop_abort(host, data);
2083 state = STATE_DATA_ERROR;
2084 break;
2085 }
2086
2087 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2088 &host->pending_events)) {
2089 /*
2090 * If all data-related interrupts don't come
2091 * within the given time in reading data state.
2092 */
2093 if (host->dir_status == DW_MCI_RECV_STATUS)
2094 dw_mci_set_drto(host);
2095 break;
2096 }
2097
2098 set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2099
2100 /*
2101 * Handle an EVENT_DATA_ERROR that might have shown up
2102 * before the transfer completed. This might not have
2103 * been caught by the check above because the interrupt
2104 * could have gone off between the previous check and
2105 * the check for transfer complete.
2106 *
2107 * Technically this ought not be needed assuming we
2108 * get a DATA_COMPLETE eventually (we'll notice the
2109 * error and end the request), but it shouldn't hurt.
2110 *
2111 * This has the advantage of sending the stop command.
2112 */
2113 if (test_and_clear_bit(EVENT_DATA_ERROR,
2114 &host->pending_events)) {
2115 dw_mci_stop_dma(host);
2116 if (!(host->data_status & (SDMMC_INT_DRTO |
2117 SDMMC_INT_EBE)))
2118 send_stop_abort(host, data);
2119 state = STATE_DATA_ERROR;
2120 break;
2121 }
2122 prev_state = state = STATE_DATA_BUSY;
2123
2124 /* fall through */
2125
2126 case STATE_DATA_BUSY:
2127 if (!test_and_clear_bit(EVENT_DATA_COMPLETE,
2128 &host->pending_events)) {
2129 /*
2130 * If data error interrupt comes but data over
2131 * interrupt doesn't come within the given time.
2132 * in reading data state.
2133 */
2134 if (host->dir_status == DW_MCI_RECV_STATUS)
2135 dw_mci_set_drto(host);
2136 break;
2137 }
2138
2139 host->data = NULL;
2140 set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2141 err = dw_mci_data_complete(host, data);
2142
2143 if (!err) {
2144 if (!data->stop || mrq->sbc) {
2145 if (mrq->sbc && data->stop)
2146 data->stop->error = 0;
2147 dw_mci_request_end(host, mrq);
2148 goto unlock;
2149 }
2150
2151 /* stop command for open-ended transfer*/
2152 if (data->stop)
2153 send_stop_abort(host, data);
2154 } else {
2155 /*
2156 * If we don't have a command complete now we'll
2157 * never get one since we just reset everything;
2158 * better end the request.
2159 *
2160 * If we do have a command complete we'll fall
2161 * through to the SENDING_STOP command and
2162 * everything will be peachy keen.
2163 */
2164 if (!test_bit(EVENT_CMD_COMPLETE,
2165 &host->pending_events)) {
2166 host->cmd = NULL;
2167 dw_mci_request_end(host, mrq);
2168 goto unlock;
2169 }
2170 }
2171
2172 /*
2173 * If err has non-zero,
2174 * stop-abort command has been already issued.
2175 */
2176 prev_state = state = STATE_SENDING_STOP;
2177
2178 /* fall through */
2179
2180 case STATE_SENDING_STOP:
2181 if (!dw_mci_clear_pending_cmd_complete(host))
2182 break;
2183
2184 /* CMD error in data command */
2185 if (mrq->cmd->error && mrq->data)
2186 dw_mci_reset(host);
2187
2188 host->cmd = NULL;
2189 host->data = NULL;
2190
2191 if (!mrq->sbc && mrq->stop)
2192 dw_mci_command_complete(host, mrq->stop);
2193 else
2194 host->cmd_status = 0;
2195
2196 dw_mci_request_end(host, mrq);
2197 goto unlock;
2198
2199 case STATE_DATA_ERROR:
2200 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2201 &host->pending_events))
2202 break;
2203
2204 state = STATE_DATA_BUSY;
2205 break;
2206 }
2207 } while (state != prev_state);
2208
2209 host->state = state;
2210 unlock:
2211 spin_unlock(&host->lock);
2212
2213 }
2214
2215 /* push final bytes to part_buf, only use during push */
dw_mci_set_part_bytes(struct dw_mci * host,void * buf,int cnt)2216 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2217 {
2218 memcpy((void *)&host->part_buf, buf, cnt);
2219 host->part_buf_count = cnt;
2220 }
2221
2222 /* append bytes to part_buf, only use during push */
dw_mci_push_part_bytes(struct dw_mci * host,void * buf,int cnt)2223 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2224 {
2225 cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2226 memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2227 host->part_buf_count += cnt;
2228 return cnt;
2229 }
2230
2231 /* pull first bytes from part_buf, only use during pull */
dw_mci_pull_part_bytes(struct dw_mci * host,void * buf,int cnt)2232 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2233 {
2234 cnt = min_t(int, cnt, host->part_buf_count);
2235 if (cnt) {
2236 memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2237 cnt);
2238 host->part_buf_count -= cnt;
2239 host->part_buf_start += cnt;
2240 }
2241 return cnt;
2242 }
2243
2244 /* pull final bytes from the part_buf, assuming it's just been filled */
dw_mci_pull_final_bytes(struct dw_mci * host,void * buf,int cnt)2245 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2246 {
2247 memcpy(buf, &host->part_buf, cnt);
2248 host->part_buf_start = cnt;
2249 host->part_buf_count = (1 << host->data_shift) - cnt;
2250 }
2251
dw_mci_push_data16(struct dw_mci * host,void * buf,int cnt)2252 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2253 {
2254 struct mmc_data *data = host->data;
2255 int init_cnt = cnt;
2256
2257 /* try and push anything in the part_buf */
2258 if (unlikely(host->part_buf_count)) {
2259 int len = dw_mci_push_part_bytes(host, buf, cnt);
2260
2261 buf += len;
2262 cnt -= len;
2263 if (host->part_buf_count == 2) {
2264 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2265 host->part_buf_count = 0;
2266 }
2267 }
2268 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2269 if (unlikely((unsigned long)buf & 0x1)) {
2270 while (cnt >= 2) {
2271 u16 aligned_buf[64];
2272 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2273 int items = len >> 1;
2274 int i;
2275 /* memcpy from input buffer into aligned buffer */
2276 memcpy(aligned_buf, buf, len);
2277 buf += len;
2278 cnt -= len;
2279 /* push data from aligned buffer into fifo */
2280 for (i = 0; i < items; ++i)
2281 mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2282 }
2283 } else
2284 #endif
2285 {
2286 u16 *pdata = buf;
2287
2288 for (; cnt >= 2; cnt -= 2)
2289 mci_fifo_writew(host->fifo_reg, *pdata++);
2290 buf = pdata;
2291 }
2292 /* put anything remaining in the part_buf */
2293 if (cnt) {
2294 dw_mci_set_part_bytes(host, buf, cnt);
2295 /* Push data if we have reached the expected data length */
2296 if ((data->bytes_xfered + init_cnt) ==
2297 (data->blksz * data->blocks))
2298 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2299 }
2300 }
2301
dw_mci_pull_data16(struct dw_mci * host,void * buf,int cnt)2302 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2303 {
2304 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2305 if (unlikely((unsigned long)buf & 0x1)) {
2306 while (cnt >= 2) {
2307 /* pull data from fifo into aligned buffer */
2308 u16 aligned_buf[64];
2309 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2310 int items = len >> 1;
2311 int i;
2312
2313 for (i = 0; i < items; ++i)
2314 aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2315 /* memcpy from aligned buffer into output buffer */
2316 memcpy(buf, aligned_buf, len);
2317 buf += len;
2318 cnt -= len;
2319 }
2320 } else
2321 #endif
2322 {
2323 u16 *pdata = buf;
2324
2325 for (; cnt >= 2; cnt -= 2)
2326 *pdata++ = mci_fifo_readw(host->fifo_reg);
2327 buf = pdata;
2328 }
2329 if (cnt) {
2330 host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2331 dw_mci_pull_final_bytes(host, buf, cnt);
2332 }
2333 }
2334
dw_mci_push_data32(struct dw_mci * host,void * buf,int cnt)2335 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2336 {
2337 struct mmc_data *data = host->data;
2338 int init_cnt = cnt;
2339
2340 /* try and push anything in the part_buf */
2341 if (unlikely(host->part_buf_count)) {
2342 int len = dw_mci_push_part_bytes(host, buf, cnt);
2343
2344 buf += len;
2345 cnt -= len;
2346 if (host->part_buf_count == 4) {
2347 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2348 host->part_buf_count = 0;
2349 }
2350 }
2351 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2352 if (unlikely((unsigned long)buf & 0x3)) {
2353 while (cnt >= 4) {
2354 u32 aligned_buf[32];
2355 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2356 int items = len >> 2;
2357 int i;
2358 /* memcpy from input buffer into aligned buffer */
2359 memcpy(aligned_buf, buf, len);
2360 buf += len;
2361 cnt -= len;
2362 /* push data from aligned buffer into fifo */
2363 for (i = 0; i < items; ++i)
2364 mci_fifo_writel(host->fifo_reg, aligned_buf[i]);
2365 }
2366 } else
2367 #endif
2368 {
2369 u32 *pdata = buf;
2370
2371 for (; cnt >= 4; cnt -= 4)
2372 mci_fifo_writel(host->fifo_reg, *pdata++);
2373 buf = pdata;
2374 }
2375 /* put anything remaining in the part_buf */
2376 if (cnt) {
2377 dw_mci_set_part_bytes(host, buf, cnt);
2378 /* Push data if we have reached the expected data length */
2379 if ((data->bytes_xfered + init_cnt) ==
2380 (data->blksz * data->blocks))
2381 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2382 }
2383 }
2384
dw_mci_pull_data32(struct dw_mci * host,void * buf,int cnt)2385 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2386 {
2387 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2388 if (unlikely((unsigned long)buf & 0x3)) {
2389 while (cnt >= 4) {
2390 /* pull data from fifo into aligned buffer */
2391 u32 aligned_buf[32];
2392 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2393 int items = len >> 2;
2394 int i;
2395
2396 for (i = 0; i < items; ++i)
2397 aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2398 /* memcpy from aligned buffer into output buffer */
2399 memcpy(buf, aligned_buf, len);
2400 buf += len;
2401 cnt -= len;
2402 }
2403 } else
2404 #endif
2405 {
2406 u32 *pdata = buf;
2407
2408 for (; cnt >= 4; cnt -= 4)
2409 *pdata++ = mci_fifo_readl(host->fifo_reg);
2410 buf = pdata;
2411 }
2412 if (cnt) {
2413 host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2414 dw_mci_pull_final_bytes(host, buf, cnt);
2415 }
2416 }
2417
dw_mci_push_data64(struct dw_mci * host,void * buf,int cnt)2418 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2419 {
2420 struct mmc_data *data = host->data;
2421 int init_cnt = cnt;
2422
2423 /* try and push anything in the part_buf */
2424 if (unlikely(host->part_buf_count)) {
2425 int len = dw_mci_push_part_bytes(host, buf, cnt);
2426
2427 buf += len;
2428 cnt -= len;
2429
2430 if (host->part_buf_count == 8) {
2431 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2432 host->part_buf_count = 0;
2433 }
2434 }
2435 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2436 if (unlikely((unsigned long)buf & 0x7)) {
2437 while (cnt >= 8) {
2438 u64 aligned_buf[16];
2439 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2440 int items = len >> 3;
2441 int i;
2442 /* memcpy from input buffer into aligned buffer */
2443 memcpy(aligned_buf, buf, len);
2444 buf += len;
2445 cnt -= len;
2446 /* push data from aligned buffer into fifo */
2447 for (i = 0; i < items; ++i)
2448 mci_fifo_writeq(host->fifo_reg, aligned_buf[i]);
2449 }
2450 } else
2451 #endif
2452 {
2453 u64 *pdata = buf;
2454
2455 for (; cnt >= 8; cnt -= 8)
2456 mci_fifo_writeq(host->fifo_reg, *pdata++);
2457 buf = pdata;
2458 }
2459 /* put anything remaining in the part_buf */
2460 if (cnt) {
2461 dw_mci_set_part_bytes(host, buf, cnt);
2462 /* Push data if we have reached the expected data length */
2463 if ((data->bytes_xfered + init_cnt) ==
2464 (data->blksz * data->blocks))
2465 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2466 }
2467 }
2468
dw_mci_pull_data64(struct dw_mci * host,void * buf,int cnt)2469 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2470 {
2471 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2472 if (unlikely((unsigned long)buf & 0x7)) {
2473 while (cnt >= 8) {
2474 /* pull data from fifo into aligned buffer */
2475 u64 aligned_buf[16];
2476 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2477 int items = len >> 3;
2478 int i;
2479
2480 for (i = 0; i < items; ++i)
2481 aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2482
2483 /* memcpy from aligned buffer into output buffer */
2484 memcpy(buf, aligned_buf, len);
2485 buf += len;
2486 cnt -= len;
2487 }
2488 } else
2489 #endif
2490 {
2491 u64 *pdata = buf;
2492
2493 for (; cnt >= 8; cnt -= 8)
2494 *pdata++ = mci_fifo_readq(host->fifo_reg);
2495 buf = pdata;
2496 }
2497 if (cnt) {
2498 host->part_buf = mci_fifo_readq(host->fifo_reg);
2499 dw_mci_pull_final_bytes(host, buf, cnt);
2500 }
2501 }
2502
dw_mci_pull_data(struct dw_mci * host,void * buf,int cnt)2503 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2504 {
2505 int len;
2506
2507 /* get remaining partial bytes */
2508 len = dw_mci_pull_part_bytes(host, buf, cnt);
2509 if (unlikely(len == cnt))
2510 return;
2511 buf += len;
2512 cnt -= len;
2513
2514 /* get the rest of the data */
2515 host->pull_data(host, buf, cnt);
2516 }
2517
dw_mci_read_data_pio(struct dw_mci * host,bool dto)2518 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2519 {
2520 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2521 void *buf;
2522 unsigned int offset;
2523 struct mmc_data *data = host->data;
2524 int shift = host->data_shift;
2525 u32 status;
2526 unsigned int len;
2527 unsigned int remain, fcnt;
2528
2529 do {
2530 if (!sg_miter_next(sg_miter))
2531 goto done;
2532
2533 host->sg = sg_miter->piter.sg;
2534 buf = sg_miter->addr;
2535 remain = sg_miter->length;
2536 offset = 0;
2537
2538 do {
2539 fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2540 << shift) + host->part_buf_count;
2541 len = min(remain, fcnt);
2542 if (!len)
2543 break;
2544 dw_mci_pull_data(host, (void *)(buf + offset), len);
2545 data->bytes_xfered += len;
2546 offset += len;
2547 remain -= len;
2548 } while (remain);
2549
2550 sg_miter->consumed = offset;
2551 status = mci_readl(host, MINTSTS);
2552 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2553 /* if the RXDR is ready read again */
2554 } while ((status & SDMMC_INT_RXDR) ||
2555 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2556
2557 if (!remain) {
2558 if (!sg_miter_next(sg_miter))
2559 goto done;
2560 sg_miter->consumed = 0;
2561 }
2562 sg_miter_stop(sg_miter);
2563 return;
2564
2565 done:
2566 sg_miter_stop(sg_miter);
2567 host->sg = NULL;
2568 smp_wmb(); /* drain writebuffer */
2569 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2570 }
2571
dw_mci_write_data_pio(struct dw_mci * host)2572 static void dw_mci_write_data_pio(struct dw_mci *host)
2573 {
2574 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2575 void *buf;
2576 unsigned int offset;
2577 struct mmc_data *data = host->data;
2578 int shift = host->data_shift;
2579 u32 status;
2580 unsigned int len;
2581 unsigned int fifo_depth = host->fifo_depth;
2582 unsigned int remain, fcnt;
2583
2584 do {
2585 if (!sg_miter_next(sg_miter))
2586 goto done;
2587
2588 host->sg = sg_miter->piter.sg;
2589 buf = sg_miter->addr;
2590 remain = sg_miter->length;
2591 offset = 0;
2592
2593 do {
2594 fcnt = ((fifo_depth -
2595 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2596 << shift) - host->part_buf_count;
2597 len = min(remain, fcnt);
2598 if (!len)
2599 break;
2600 host->push_data(host, (void *)(buf + offset), len);
2601 data->bytes_xfered += len;
2602 offset += len;
2603 remain -= len;
2604 } while (remain);
2605
2606 sg_miter->consumed = offset;
2607 status = mci_readl(host, MINTSTS);
2608 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2609 } while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2610
2611 if (!remain) {
2612 if (!sg_miter_next(sg_miter))
2613 goto done;
2614 sg_miter->consumed = 0;
2615 }
2616 sg_miter_stop(sg_miter);
2617 return;
2618
2619 done:
2620 sg_miter_stop(sg_miter);
2621 host->sg = NULL;
2622 smp_wmb(); /* drain writebuffer */
2623 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2624 }
2625
dw_mci_cmd_interrupt(struct dw_mci * host,u32 status)2626 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2627 {
2628 del_timer(&host->cto_timer);
2629
2630 if (!host->cmd_status)
2631 host->cmd_status = status;
2632
2633 smp_wmb(); /* drain writebuffer */
2634
2635 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2636 tasklet_schedule(&host->tasklet);
2637 }
2638
dw_mci_handle_cd(struct dw_mci * host)2639 static void dw_mci_handle_cd(struct dw_mci *host)
2640 {
2641 struct dw_mci_slot *slot = host->slot;
2642
2643 if (slot->mmc->ops->card_event)
2644 slot->mmc->ops->card_event(slot->mmc);
2645 mmc_detect_change(slot->mmc,
2646 msecs_to_jiffies(host->pdata->detect_delay_ms));
2647 }
2648
dw_mci_interrupt(int irq,void * dev_id)2649 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2650 {
2651 struct dw_mci *host = dev_id;
2652 u32 pending;
2653 struct dw_mci_slot *slot = host->slot;
2654 unsigned long irqflags;
2655
2656 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2657
2658 if (pending) {
2659 /* Check volt switch first, since it can look like an error */
2660 if ((host->state == STATE_SENDING_CMD11) &&
2661 (pending & SDMMC_INT_VOLT_SWITCH)) {
2662 mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2663 pending &= ~SDMMC_INT_VOLT_SWITCH;
2664
2665 /*
2666 * Hold the lock; we know cmd11_timer can't be kicked
2667 * off after the lock is released, so safe to delete.
2668 */
2669 spin_lock_irqsave(&host->irq_lock, irqflags);
2670 dw_mci_cmd_interrupt(host, pending);
2671 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2672
2673 del_timer(&host->cmd11_timer);
2674 }
2675
2676 if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2677 spin_lock_irqsave(&host->irq_lock, irqflags);
2678
2679 del_timer(&host->cto_timer);
2680 mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2681 host->cmd_status = pending;
2682 smp_wmb(); /* drain writebuffer */
2683 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2684
2685 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2686 }
2687
2688 if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2689 /* if there is an error report DATA_ERROR */
2690 mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2691 host->data_status = pending;
2692 smp_wmb(); /* drain writebuffer */
2693 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2694 tasklet_schedule(&host->tasklet);
2695 }
2696
2697 if (pending & SDMMC_INT_DATA_OVER) {
2698 del_timer(&host->dto_timer);
2699
2700 mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2701 if (!host->data_status)
2702 host->data_status = pending;
2703 smp_wmb(); /* drain writebuffer */
2704 if (host->dir_status == DW_MCI_RECV_STATUS) {
2705 if (host->sg != NULL)
2706 dw_mci_read_data_pio(host, true);
2707 }
2708 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2709 tasklet_schedule(&host->tasklet);
2710 }
2711
2712 if (pending & SDMMC_INT_RXDR) {
2713 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2714 if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2715 dw_mci_read_data_pio(host, false);
2716 }
2717
2718 if (pending & SDMMC_INT_TXDR) {
2719 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2720 if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2721 dw_mci_write_data_pio(host);
2722 }
2723
2724 if (pending & SDMMC_INT_CMD_DONE) {
2725 spin_lock_irqsave(&host->irq_lock, irqflags);
2726
2727 mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2728 dw_mci_cmd_interrupt(host, pending);
2729
2730 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2731 }
2732
2733 if (pending & SDMMC_INT_CD) {
2734 mci_writel(host, RINTSTS, SDMMC_INT_CD);
2735 dw_mci_handle_cd(host);
2736 }
2737
2738 if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2739 mci_writel(host, RINTSTS,
2740 SDMMC_INT_SDIO(slot->sdio_id));
2741 __dw_mci_enable_sdio_irq(slot, 0);
2742 sdio_signal_irq(slot->mmc);
2743 }
2744
2745 }
2746
2747 if (host->use_dma != TRANS_MODE_IDMAC)
2748 return IRQ_HANDLED;
2749
2750 /* Handle IDMA interrupts */
2751 if (host->dma_64bit_address == 1) {
2752 pending = mci_readl(host, IDSTS64);
2753 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2754 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2755 SDMMC_IDMAC_INT_RI);
2756 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2757 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2758 host->dma_ops->complete((void *)host);
2759 }
2760 } else {
2761 pending = mci_readl(host, IDSTS);
2762 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2763 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2764 SDMMC_IDMAC_INT_RI);
2765 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2766 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2767 host->dma_ops->complete((void *)host);
2768 }
2769 }
2770
2771 return IRQ_HANDLED;
2772 }
2773
dw_mci_init_slot_caps(struct dw_mci_slot * slot)2774 static int dw_mci_init_slot_caps(struct dw_mci_slot *slot)
2775 {
2776 struct dw_mci *host = slot->host;
2777 const struct dw_mci_drv_data *drv_data = host->drv_data;
2778 struct mmc_host *mmc = slot->mmc;
2779 int ctrl_id;
2780
2781 if (host->pdata->caps)
2782 mmc->caps = host->pdata->caps;
2783
2784 /*
2785 * Support MMC_CAP_ERASE by default.
2786 * It needs to use trim/discard/erase commands.
2787 */
2788 mmc->caps |= MMC_CAP_ERASE;
2789
2790 if (host->pdata->pm_caps)
2791 mmc->pm_caps = host->pdata->pm_caps;
2792
2793 if (host->dev->of_node) {
2794 ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2795 if (ctrl_id < 0)
2796 ctrl_id = 0;
2797 } else {
2798 ctrl_id = to_platform_device(host->dev)->id;
2799 }
2800
2801 if (drv_data && drv_data->caps) {
2802 if (ctrl_id >= drv_data->num_caps) {
2803 dev_err(host->dev, "invalid controller id %d\n",
2804 ctrl_id);
2805 return -EINVAL;
2806 }
2807 mmc->caps |= drv_data->caps[ctrl_id];
2808 }
2809
2810 if (host->pdata->caps2)
2811 mmc->caps2 = host->pdata->caps2;
2812
2813 /* Process SDIO IRQs through the sdio_irq_work. */
2814 if (mmc->caps & MMC_CAP_SDIO_IRQ)
2815 mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2816
2817 return 0;
2818 }
2819
dw_mci_init_slot(struct dw_mci * host)2820 static int dw_mci_init_slot(struct dw_mci *host)
2821 {
2822 struct mmc_host *mmc;
2823 struct dw_mci_slot *slot;
2824 int ret;
2825 u32 freq[2];
2826
2827 mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2828 if (!mmc)
2829 return -ENOMEM;
2830
2831 slot = mmc_priv(mmc);
2832 slot->id = 0;
2833 slot->sdio_id = host->sdio_id0 + slot->id;
2834 slot->mmc = mmc;
2835 slot->host = host;
2836 host->slot = slot;
2837
2838 mmc->ops = &dw_mci_ops;
2839 if (device_property_read_u32_array(host->dev, "clock-freq-min-max",
2840 freq, 2)) {
2841 mmc->f_min = DW_MCI_FREQ_MIN;
2842 mmc->f_max = DW_MCI_FREQ_MAX;
2843 } else {
2844 dev_info(host->dev,
2845 "'clock-freq-min-max' property was deprecated.\n");
2846 mmc->f_min = freq[0];
2847 mmc->f_max = freq[1];
2848 }
2849
2850 /*if there are external regulators, get them*/
2851 ret = mmc_regulator_get_supply(mmc);
2852 if (ret == -EPROBE_DEFER)
2853 goto err_host_allocated;
2854
2855 if (!mmc->ocr_avail)
2856 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2857
2858 ret = mmc_of_parse(mmc);
2859 if (ret)
2860 goto err_host_allocated;
2861
2862 ret = dw_mci_init_slot_caps(slot);
2863 if (ret)
2864 goto err_host_allocated;
2865
2866 /* Useful defaults if platform data is unset. */
2867 if (host->use_dma == TRANS_MODE_IDMAC) {
2868 mmc->max_segs = host->ring_size;
2869 mmc->max_blk_size = 65535;
2870 mmc->max_seg_size = 0x1000;
2871 mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2872 mmc->max_blk_count = mmc->max_req_size / 512;
2873 } else if (host->use_dma == TRANS_MODE_EDMAC) {
2874 mmc->max_segs = 64;
2875 mmc->max_blk_size = 65535;
2876 mmc->max_blk_count = 65535;
2877 mmc->max_req_size =
2878 mmc->max_blk_size * mmc->max_blk_count;
2879 mmc->max_seg_size = mmc->max_req_size;
2880 } else {
2881 /* TRANS_MODE_PIO */
2882 mmc->max_segs = 64;
2883 mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2884 mmc->max_blk_count = 512;
2885 mmc->max_req_size = mmc->max_blk_size *
2886 mmc->max_blk_count;
2887 mmc->max_seg_size = mmc->max_req_size;
2888 }
2889
2890 dw_mci_get_cd(mmc);
2891
2892 ret = mmc_add_host(mmc);
2893 if (ret)
2894 goto err_host_allocated;
2895
2896 #if defined(CONFIG_DEBUG_FS)
2897 dw_mci_init_debugfs(slot);
2898 #endif
2899
2900 return 0;
2901
2902 err_host_allocated:
2903 mmc_free_host(mmc);
2904 return ret;
2905 }
2906
dw_mci_cleanup_slot(struct dw_mci_slot * slot)2907 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
2908 {
2909 /* Debugfs stuff is cleaned up by mmc core */
2910 mmc_remove_host(slot->mmc);
2911 slot->host->slot = NULL;
2912 mmc_free_host(slot->mmc);
2913 }
2914
dw_mci_init_dma(struct dw_mci * host)2915 static void dw_mci_init_dma(struct dw_mci *host)
2916 {
2917 int addr_config;
2918 struct device *dev = host->dev;
2919
2920 /*
2921 * Check tansfer mode from HCON[17:16]
2922 * Clear the ambiguous description of dw_mmc databook:
2923 * 2b'00: No DMA Interface -> Actually means using Internal DMA block
2924 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2925 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2926 * 2b'11: Non DW DMA Interface -> pio only
2927 * Compared to DesignWare DMA Interface, Generic DMA Interface has a
2928 * simpler request/acknowledge handshake mechanism and both of them
2929 * are regarded as external dma master for dw_mmc.
2930 */
2931 host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2932 if (host->use_dma == DMA_INTERFACE_IDMA) {
2933 host->use_dma = TRANS_MODE_IDMAC;
2934 } else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2935 host->use_dma == DMA_INTERFACE_GDMA) {
2936 host->use_dma = TRANS_MODE_EDMAC;
2937 } else {
2938 goto no_dma;
2939 }
2940
2941 /* Determine which DMA interface to use */
2942 if (host->use_dma == TRANS_MODE_IDMAC) {
2943 /*
2944 * Check ADDR_CONFIG bit in HCON to find
2945 * IDMAC address bus width
2946 */
2947 addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2948
2949 if (addr_config == 1) {
2950 /* host supports IDMAC in 64-bit address mode */
2951 host->dma_64bit_address = 1;
2952 dev_info(host->dev,
2953 "IDMAC supports 64-bit address mode.\n");
2954 if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2955 dma_set_coherent_mask(host->dev,
2956 DMA_BIT_MASK(64));
2957 } else {
2958 /* host supports IDMAC in 32-bit address mode */
2959 host->dma_64bit_address = 0;
2960 dev_info(host->dev,
2961 "IDMAC supports 32-bit address mode.\n");
2962 }
2963
2964 /* Alloc memory for sg translation */
2965 host->sg_cpu = dmam_alloc_coherent(host->dev,
2966 DESC_RING_BUF_SZ,
2967 &host->sg_dma, GFP_KERNEL);
2968 if (!host->sg_cpu) {
2969 dev_err(host->dev,
2970 "%s: could not alloc DMA memory\n",
2971 __func__);
2972 goto no_dma;
2973 }
2974
2975 host->dma_ops = &dw_mci_idmac_ops;
2976 dev_info(host->dev, "Using internal DMA controller.\n");
2977 } else {
2978 /* TRANS_MODE_EDMAC: check dma bindings again */
2979 if ((device_property_read_string_array(dev, "dma-names",
2980 NULL, 0) < 0) ||
2981 !device_property_present(dev, "dmas")) {
2982 goto no_dma;
2983 }
2984 host->dma_ops = &dw_mci_edmac_ops;
2985 dev_info(host->dev, "Using external DMA controller.\n");
2986 }
2987
2988 if (host->dma_ops->init && host->dma_ops->start &&
2989 host->dma_ops->stop && host->dma_ops->cleanup) {
2990 if (host->dma_ops->init(host)) {
2991 dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2992 __func__);
2993 goto no_dma;
2994 }
2995 } else {
2996 dev_err(host->dev, "DMA initialization not found.\n");
2997 goto no_dma;
2998 }
2999
3000 return;
3001
3002 no_dma:
3003 dev_info(host->dev, "Using PIO mode.\n");
3004 host->use_dma = TRANS_MODE_PIO;
3005 }
3006
dw_mci_cmd11_timer(unsigned long arg)3007 static void dw_mci_cmd11_timer(unsigned long arg)
3008 {
3009 struct dw_mci *host = (struct dw_mci *)arg;
3010
3011 if (host->state != STATE_SENDING_CMD11) {
3012 dev_warn(host->dev, "Unexpected CMD11 timeout\n");
3013 return;
3014 }
3015
3016 host->cmd_status = SDMMC_INT_RTO;
3017 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3018 tasklet_schedule(&host->tasklet);
3019 }
3020
dw_mci_cto_timer(unsigned long arg)3021 static void dw_mci_cto_timer(unsigned long arg)
3022 {
3023 struct dw_mci *host = (struct dw_mci *)arg;
3024 unsigned long irqflags;
3025 u32 pending;
3026
3027 spin_lock_irqsave(&host->irq_lock, irqflags);
3028
3029 /*
3030 * If somehow we have very bad interrupt latency it's remotely possible
3031 * that the timer could fire while the interrupt is still pending or
3032 * while the interrupt is midway through running. Let's be paranoid
3033 * and detect those two cases. Note that this is paranoia is somewhat
3034 * justified because in this function we don't actually cancel the
3035 * pending command in the controller--we just assume it will never come.
3036 */
3037 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3038 if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
3039 /* The interrupt should fire; no need to act but we can warn */
3040 dev_warn(host->dev, "Unexpected interrupt latency\n");
3041 goto exit;
3042 }
3043 if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
3044 /* Presumably interrupt handler couldn't delete the timer */
3045 dev_warn(host->dev, "CTO timeout when already completed\n");
3046 goto exit;
3047 }
3048
3049 /*
3050 * Continued paranoia to make sure we're in the state we expect.
3051 * This paranoia isn't really justified but it seems good to be safe.
3052 */
3053 switch (host->state) {
3054 case STATE_SENDING_CMD11:
3055 case STATE_SENDING_CMD:
3056 case STATE_SENDING_STOP:
3057 /*
3058 * If CMD_DONE interrupt does NOT come in sending command
3059 * state, we should notify the driver to terminate current
3060 * transfer and report a command timeout to the core.
3061 */
3062 host->cmd_status = SDMMC_INT_RTO;
3063 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3064 tasklet_schedule(&host->tasklet);
3065 break;
3066 default:
3067 dev_warn(host->dev, "Unexpected command timeout, state %d\n",
3068 host->state);
3069 break;
3070 }
3071
3072 exit:
3073 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3074 }
3075
dw_mci_dto_timer(unsigned long arg)3076 static void dw_mci_dto_timer(unsigned long arg)
3077 {
3078 struct dw_mci *host = (struct dw_mci *)arg;
3079
3080 switch (host->state) {
3081 case STATE_SENDING_DATA:
3082 case STATE_DATA_BUSY:
3083 /*
3084 * If DTO interrupt does NOT come in sending data state,
3085 * we should notify the driver to terminate current transfer
3086 * and report a data timeout to the core.
3087 */
3088 host->data_status = SDMMC_INT_DRTO;
3089 set_bit(EVENT_DATA_ERROR, &host->pending_events);
3090 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
3091 tasklet_schedule(&host->tasklet);
3092 break;
3093 default:
3094 break;
3095 }
3096 }
3097
3098 #ifdef CONFIG_OF
dw_mci_parse_dt(struct dw_mci * host)3099 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3100 {
3101 struct dw_mci_board *pdata;
3102 struct device *dev = host->dev;
3103 const struct dw_mci_drv_data *drv_data = host->drv_data;
3104 int ret;
3105 u32 clock_frequency;
3106
3107 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3108 if (!pdata)
3109 return ERR_PTR(-ENOMEM);
3110
3111 /* find reset controller when exist */
3112 pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
3113 if (IS_ERR(pdata->rstc)) {
3114 if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER)
3115 return ERR_PTR(-EPROBE_DEFER);
3116 }
3117
3118 /* find out number of slots supported */
3119 if (!device_property_read_u32(dev, "num-slots", &pdata->num_slots))
3120 dev_info(dev, "'num-slots' was deprecated.\n");
3121
3122 if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
3123 dev_info(dev,
3124 "fifo-depth property not found, using value of FIFOTH register as default\n");
3125
3126 device_property_read_u32(dev, "card-detect-delay",
3127 &pdata->detect_delay_ms);
3128
3129 device_property_read_u32(dev, "data-addr", &host->data_addr_override);
3130
3131 if (device_property_present(dev, "fifo-watermark-aligned"))
3132 host->wm_aligned = true;
3133
3134 if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
3135 pdata->bus_hz = clock_frequency;
3136
3137 if (drv_data && drv_data->parse_dt) {
3138 ret = drv_data->parse_dt(host);
3139 if (ret)
3140 return ERR_PTR(ret);
3141 }
3142
3143 return pdata;
3144 }
3145
3146 #else /* CONFIG_OF */
dw_mci_parse_dt(struct dw_mci * host)3147 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3148 {
3149 return ERR_PTR(-EINVAL);
3150 }
3151 #endif /* CONFIG_OF */
3152
dw_mci_enable_cd(struct dw_mci * host)3153 static void dw_mci_enable_cd(struct dw_mci *host)
3154 {
3155 unsigned long irqflags;
3156 u32 temp;
3157
3158 /*
3159 * No need for CD if all slots have a non-error GPIO
3160 * as well as broken card detection is found.
3161 */
3162 if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3163 return;
3164
3165 if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3166 spin_lock_irqsave(&host->irq_lock, irqflags);
3167 temp = mci_readl(host, INTMASK);
3168 temp |= SDMMC_INT_CD;
3169 mci_writel(host, INTMASK, temp);
3170 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3171 }
3172 }
3173
dw_mci_probe(struct dw_mci * host)3174 int dw_mci_probe(struct dw_mci *host)
3175 {
3176 const struct dw_mci_drv_data *drv_data = host->drv_data;
3177 int width, i, ret = 0;
3178 u32 fifo_size;
3179
3180 if (!host->pdata) {
3181 host->pdata = dw_mci_parse_dt(host);
3182 if (PTR_ERR(host->pdata) == -EPROBE_DEFER) {
3183 return -EPROBE_DEFER;
3184 } else if (IS_ERR(host->pdata)) {
3185 dev_err(host->dev, "platform data not available\n");
3186 return -EINVAL;
3187 }
3188 }
3189
3190 host->biu_clk = devm_clk_get(host->dev, "biu");
3191 if (IS_ERR(host->biu_clk)) {
3192 dev_dbg(host->dev, "biu clock not available\n");
3193 } else {
3194 ret = clk_prepare_enable(host->biu_clk);
3195 if (ret) {
3196 dev_err(host->dev, "failed to enable biu clock\n");
3197 return ret;
3198 }
3199 }
3200
3201 host->ciu_clk = devm_clk_get(host->dev, "ciu");
3202 if (IS_ERR(host->ciu_clk)) {
3203 dev_dbg(host->dev, "ciu clock not available\n");
3204 host->bus_hz = host->pdata->bus_hz;
3205 } else {
3206 ret = clk_prepare_enable(host->ciu_clk);
3207 if (ret) {
3208 dev_err(host->dev, "failed to enable ciu clock\n");
3209 goto err_clk_biu;
3210 }
3211
3212 if (host->pdata->bus_hz) {
3213 ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3214 if (ret)
3215 dev_warn(host->dev,
3216 "Unable to set bus rate to %uHz\n",
3217 host->pdata->bus_hz);
3218 }
3219 host->bus_hz = clk_get_rate(host->ciu_clk);
3220 }
3221
3222 if (!host->bus_hz) {
3223 dev_err(host->dev,
3224 "Platform data must supply bus speed\n");
3225 ret = -ENODEV;
3226 goto err_clk_ciu;
3227 }
3228
3229 if (!IS_ERR(host->pdata->rstc)) {
3230 reset_control_assert(host->pdata->rstc);
3231 usleep_range(10, 50);
3232 reset_control_deassert(host->pdata->rstc);
3233 }
3234
3235 if (drv_data && drv_data->init) {
3236 ret = drv_data->init(host);
3237 if (ret) {
3238 dev_err(host->dev,
3239 "implementation specific init failed\n");
3240 goto err_clk_ciu;
3241 }
3242 }
3243
3244 setup_timer(&host->cmd11_timer,
3245 dw_mci_cmd11_timer, (unsigned long)host);
3246
3247 setup_timer(&host->cto_timer,
3248 dw_mci_cto_timer, (unsigned long)host);
3249
3250 setup_timer(&host->dto_timer,
3251 dw_mci_dto_timer, (unsigned long)host);
3252
3253 spin_lock_init(&host->lock);
3254 spin_lock_init(&host->irq_lock);
3255 INIT_LIST_HEAD(&host->queue);
3256
3257 /*
3258 * Get the host data width - this assumes that HCON has been set with
3259 * the correct values.
3260 */
3261 i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3262 if (!i) {
3263 host->push_data = dw_mci_push_data16;
3264 host->pull_data = dw_mci_pull_data16;
3265 width = 16;
3266 host->data_shift = 1;
3267 } else if (i == 2) {
3268 host->push_data = dw_mci_push_data64;
3269 host->pull_data = dw_mci_pull_data64;
3270 width = 64;
3271 host->data_shift = 3;
3272 } else {
3273 /* Check for a reserved value, and warn if it is */
3274 WARN((i != 1),
3275 "HCON reports a reserved host data width!\n"
3276 "Defaulting to 32-bit access.\n");
3277 host->push_data = dw_mci_push_data32;
3278 host->pull_data = dw_mci_pull_data32;
3279 width = 32;
3280 host->data_shift = 2;
3281 }
3282
3283 /* Reset all blocks */
3284 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3285 ret = -ENODEV;
3286 goto err_clk_ciu;
3287 }
3288
3289 host->dma_ops = host->pdata->dma_ops;
3290 dw_mci_init_dma(host);
3291
3292 /* Clear the interrupts for the host controller */
3293 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3294 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3295
3296 /* Put in max timeout */
3297 mci_writel(host, TMOUT, 0xFFFFFFFF);
3298
3299 /*
3300 * FIFO threshold settings RxMark = fifo_size / 2 - 1,
3301 * Tx Mark = fifo_size / 2 DMA Size = 8
3302 */
3303 if (!host->pdata->fifo_depth) {
3304 /*
3305 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3306 * have been overwritten by the bootloader, just like we're
3307 * about to do, so if you know the value for your hardware, you
3308 * should put it in the platform data.
3309 */
3310 fifo_size = mci_readl(host, FIFOTH);
3311 fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3312 } else {
3313 fifo_size = host->pdata->fifo_depth;
3314 }
3315 host->fifo_depth = fifo_size;
3316 host->fifoth_val =
3317 SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3318 mci_writel(host, FIFOTH, host->fifoth_val);
3319
3320 /* disable clock to CIU */
3321 mci_writel(host, CLKENA, 0);
3322 mci_writel(host, CLKSRC, 0);
3323
3324 /*
3325 * In 2.40a spec, Data offset is changed.
3326 * Need to check the version-id and set data-offset for DATA register.
3327 */
3328 host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3329 dev_info(host->dev, "Version ID is %04x\n", host->verid);
3330
3331 if (host->data_addr_override)
3332 host->fifo_reg = host->regs + host->data_addr_override;
3333 else if (host->verid < DW_MMC_240A)
3334 host->fifo_reg = host->regs + DATA_OFFSET;
3335 else
3336 host->fifo_reg = host->regs + DATA_240A_OFFSET;
3337
3338 tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3339 ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3340 host->irq_flags, "dw-mci", host);
3341 if (ret)
3342 goto err_dmaunmap;
3343
3344 /*
3345 * Enable interrupts for command done, data over, data empty,
3346 * receive ready and error such as transmit, receive timeout, crc error
3347 */
3348 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3349 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3350 DW_MCI_ERROR_FLAGS);
3351 /* Enable mci interrupt */
3352 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3353
3354 dev_info(host->dev,
3355 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3356 host->irq, width, fifo_size);
3357
3358 /* We need at least one slot to succeed */
3359 ret = dw_mci_init_slot(host);
3360 if (ret) {
3361 dev_dbg(host->dev, "slot %d init failed\n", i);
3362 goto err_dmaunmap;
3363 }
3364
3365 /* Now that slots are all setup, we can enable card detect */
3366 dw_mci_enable_cd(host);
3367
3368 return 0;
3369
3370 err_dmaunmap:
3371 if (host->use_dma && host->dma_ops->exit)
3372 host->dma_ops->exit(host);
3373
3374 if (!IS_ERR(host->pdata->rstc))
3375 reset_control_assert(host->pdata->rstc);
3376
3377 err_clk_ciu:
3378 clk_disable_unprepare(host->ciu_clk);
3379
3380 err_clk_biu:
3381 clk_disable_unprepare(host->biu_clk);
3382
3383 return ret;
3384 }
3385 EXPORT_SYMBOL(dw_mci_probe);
3386
dw_mci_remove(struct dw_mci * host)3387 void dw_mci_remove(struct dw_mci *host)
3388 {
3389 dev_dbg(host->dev, "remove slot\n");
3390 if (host->slot)
3391 dw_mci_cleanup_slot(host->slot);
3392
3393 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3394 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3395
3396 /* disable clock to CIU */
3397 mci_writel(host, CLKENA, 0);
3398 mci_writel(host, CLKSRC, 0);
3399
3400 if (host->use_dma && host->dma_ops->exit)
3401 host->dma_ops->exit(host);
3402
3403 if (!IS_ERR(host->pdata->rstc))
3404 reset_control_assert(host->pdata->rstc);
3405
3406 clk_disable_unprepare(host->ciu_clk);
3407 clk_disable_unprepare(host->biu_clk);
3408 }
3409 EXPORT_SYMBOL(dw_mci_remove);
3410
3411
3412
3413 #ifdef CONFIG_PM
dw_mci_runtime_suspend(struct device * dev)3414 int dw_mci_runtime_suspend(struct device *dev)
3415 {
3416 struct dw_mci *host = dev_get_drvdata(dev);
3417
3418 if (host->use_dma && host->dma_ops->exit)
3419 host->dma_ops->exit(host);
3420
3421 clk_disable_unprepare(host->ciu_clk);
3422
3423 if (host->slot &&
3424 (mmc_can_gpio_cd(host->slot->mmc) ||
3425 !mmc_card_is_removable(host->slot->mmc)))
3426 clk_disable_unprepare(host->biu_clk);
3427
3428 return 0;
3429 }
3430 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3431
dw_mci_runtime_resume(struct device * dev)3432 int dw_mci_runtime_resume(struct device *dev)
3433 {
3434 int ret = 0;
3435 struct dw_mci *host = dev_get_drvdata(dev);
3436
3437 if (host->slot &&
3438 (mmc_can_gpio_cd(host->slot->mmc) ||
3439 !mmc_card_is_removable(host->slot->mmc))) {
3440 ret = clk_prepare_enable(host->biu_clk);
3441 if (ret)
3442 return ret;
3443 }
3444
3445 ret = clk_prepare_enable(host->ciu_clk);
3446 if (ret)
3447 goto err;
3448
3449 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3450 clk_disable_unprepare(host->ciu_clk);
3451 ret = -ENODEV;
3452 goto err;
3453 }
3454
3455 if (host->use_dma && host->dma_ops->init)
3456 host->dma_ops->init(host);
3457
3458 /*
3459 * Restore the initial value at FIFOTH register
3460 * And Invalidate the prev_blksz with zero
3461 */
3462 mci_writel(host, FIFOTH, host->fifoth_val);
3463 host->prev_blksz = 0;
3464
3465 /* Put in max timeout */
3466 mci_writel(host, TMOUT, 0xFFFFFFFF);
3467
3468 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3469 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3470 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3471 DW_MCI_ERROR_FLAGS);
3472 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3473
3474
3475 if (host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3476 dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3477
3478 /* Force setup bus to guarantee available clock output */
3479 dw_mci_setup_bus(host->slot, true);
3480
3481 /* Now that slots are all setup, we can enable card detect */
3482 dw_mci_enable_cd(host);
3483
3484 return 0;
3485
3486 err:
3487 if (host->slot &&
3488 (mmc_can_gpio_cd(host->slot->mmc) ||
3489 !mmc_card_is_removable(host->slot->mmc)))
3490 clk_disable_unprepare(host->biu_clk);
3491
3492 return ret;
3493 }
3494 EXPORT_SYMBOL(dw_mci_runtime_resume);
3495 #endif /* CONFIG_PM */
3496
dw_mci_init(void)3497 static int __init dw_mci_init(void)
3498 {
3499 pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3500 return 0;
3501 }
3502
dw_mci_exit(void)3503 static void __exit dw_mci_exit(void)
3504 {
3505 }
3506
3507 module_init(dw_mci_init);
3508 module_exit(dw_mci_exit);
3509
3510 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3511 MODULE_AUTHOR("NXP Semiconductor VietNam");
3512 MODULE_AUTHOR("Imagination Technologies Ltd");
3513 MODULE_LICENSE("GPL v2");
3514