• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * mmc_spi.c - Access SD/MMC cards through SPI master controllers
3  *
4  * (C) Copyright 2005, Intec Automation,
5  *		Mike Lavender (mike@steroidmicros)
6  * (C) Copyright 2006-2007, David Brownell
7  * (C) Copyright 2007, Axis Communications,
8  *		Hans-Peter Nilsson (hp@axis.com)
9  * (C) Copyright 2007, ATRON electronic GmbH,
10  *		Jan Nikitenko <jan.nikitenko@gmail.com>
11  *
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  */
27 #include <linux/sched.h>
28 #include <linux/delay.h>
29 #include <linux/slab.h>
30 #include <linux/module.h>
31 #include <linux/bio.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/crc7.h>
34 #include <linux/crc-itu-t.h>
35 #include <linux/scatterlist.h>
36 
37 #include <linux/mmc/host.h>
38 #include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
39 #include <linux/mmc/slot-gpio.h>
40 
41 #include <linux/spi/spi.h>
42 #include <linux/spi/mmc_spi.h>
43 
44 #include <asm/unaligned.h>
45 
46 
47 /* NOTES:
48  *
49  * - For now, we won't try to interoperate with a real mmc/sd/sdio
50  *   controller, although some of them do have hardware support for
51  *   SPI protocol.  The main reason for such configs would be mmc-ish
52  *   cards like DataFlash, which don't support that "native" protocol.
53  *
54  *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
55  *   switch between driver stacks, and in any case if "native" mode
56  *   is available, it will be faster and hence preferable.
57  *
58  * - MMC depends on a different chipselect management policy than the
59  *   SPI interface currently supports for shared bus segments:  it needs
60  *   to issue multiple spi_message requests with the chipselect active,
61  *   using the results of one message to decide the next one to issue.
62  *
63  *   Pending updates to the programming interface, this driver expects
64  *   that it not share the bus with other drivers (precluding conflicts).
65  *
66  * - We tell the controller to keep the chipselect active from the
67  *   beginning of an mmc_host_ops.request until the end.  So beware
68  *   of SPI controller drivers that mis-handle the cs_change flag!
69  *
70  *   However, many cards seem OK with chipselect flapping up/down
71  *   during that time ... at least on unshared bus segments.
72  */
73 
74 
75 /*
76  * Local protocol constants, internal to data block protocols.
77  */
78 
79 /* Response tokens used to ack each block written: */
80 #define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
81 #define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
82 #define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
83 #define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
84 
85 /* Read and write blocks start with these tokens and end with crc;
86  * on error, read tokens act like a subset of R2_SPI_* values.
87  */
88 #define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
89 #define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
90 #define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
91 
92 #define MMC_SPI_BLOCKSIZE	512
93 
94 
95 /* These fixed timeouts come from the latest SD specs, which say to ignore
96  * the CSD values.  The R1B value is for card erase (e.g. the "I forgot the
97  * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
98  * reads which takes nowhere near that long.  Older cards may be able to use
99  * shorter timeouts ... but why bother?
100  */
101 #define r1b_timeout		(HZ * 3)
102 
103 /* One of the critical speed parameters is the amount of data which may
104  * be transferred in one command. If this value is too low, the SD card
105  * controller has to do multiple partial block writes (argggh!). With
106  * today (2008) SD cards there is little speed gain if we transfer more
107  * than 64 KBytes at a time. So use this value until there is any indication
108  * that we should do more here.
109  */
110 #define MMC_SPI_BLOCKSATONCE	128
111 
112 /****************************************************************************/
113 
114 /*
115  * Local Data Structures
116  */
117 
118 /* "scratch" is per-{command,block} data exchanged with the card */
119 struct scratch {
120 	u8			status[29];
121 	u8			data_token;
122 	__be16			crc_val;
123 };
124 
125 struct mmc_spi_host {
126 	struct mmc_host		*mmc;
127 	struct spi_device	*spi;
128 
129 	unsigned char		power_mode;
130 	u16			powerup_msecs;
131 
132 	struct mmc_spi_platform_data	*pdata;
133 
134 	/* for bulk data transfers */
135 	struct spi_transfer	token, t, crc, early_status;
136 	struct spi_message	m;
137 
138 	/* for status readback */
139 	struct spi_transfer	status;
140 	struct spi_message	readback;
141 
142 	/* underlying DMA-aware controller, or null */
143 	struct device		*dma_dev;
144 
145 	/* buffer used for commands and for message "overhead" */
146 	struct scratch		*data;
147 	dma_addr_t		data_dma;
148 
149 	/* Specs say to write ones most of the time, even when the card
150 	 * has no need to read its input data; and many cards won't care.
151 	 * This is our source of those ones.
152 	 */
153 	void			*ones;
154 	dma_addr_t		ones_dma;
155 };
156 
157 
158 /****************************************************************************/
159 
160 /*
161  * MMC-over-SPI protocol glue, used by the MMC stack interface
162  */
163 
mmc_cs_off(struct mmc_spi_host * host)164 static inline int mmc_cs_off(struct mmc_spi_host *host)
165 {
166 	/* chipselect will always be inactive after setup() */
167 	return spi_setup(host->spi);
168 }
169 
170 static int
mmc_spi_readbytes(struct mmc_spi_host * host,unsigned len)171 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
172 {
173 	int status;
174 
175 	if (len > sizeof(*host->data)) {
176 		WARN_ON(1);
177 		return -EIO;
178 	}
179 
180 	host->status.len = len;
181 
182 	if (host->dma_dev)
183 		dma_sync_single_for_device(host->dma_dev,
184 				host->data_dma, sizeof(*host->data),
185 				DMA_FROM_DEVICE);
186 
187 	status = spi_sync_locked(host->spi, &host->readback);
188 
189 	if (host->dma_dev)
190 		dma_sync_single_for_cpu(host->dma_dev,
191 				host->data_dma, sizeof(*host->data),
192 				DMA_FROM_DEVICE);
193 
194 	return status;
195 }
196 
mmc_spi_skip(struct mmc_spi_host * host,unsigned long timeout,unsigned n,u8 byte)197 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
198 			unsigned n, u8 byte)
199 {
200 	u8		*cp = host->data->status;
201 	unsigned long start = jiffies;
202 
203 	while (1) {
204 		int		status;
205 		unsigned	i;
206 
207 		status = mmc_spi_readbytes(host, n);
208 		if (status < 0)
209 			return status;
210 
211 		for (i = 0; i < n; i++) {
212 			if (cp[i] != byte)
213 				return cp[i];
214 		}
215 
216 		if (time_is_before_jiffies(start + timeout))
217 			break;
218 
219 		/* If we need long timeouts, we may release the CPU.
220 		 * We use jiffies here because we want to have a relation
221 		 * between elapsed time and the blocking of the scheduler.
222 		 */
223 		if (time_is_before_jiffies(start+1))
224 			schedule();
225 	}
226 	return -ETIMEDOUT;
227 }
228 
229 static inline int
mmc_spi_wait_unbusy(struct mmc_spi_host * host,unsigned long timeout)230 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
231 {
232 	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
233 }
234 
mmc_spi_readtoken(struct mmc_spi_host * host,unsigned long timeout)235 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
236 {
237 	return mmc_spi_skip(host, timeout, 1, 0xff);
238 }
239 
240 
241 /*
242  * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
243  * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
244  * R2_SPI bits ... for SEND_STATUS, or after data read errors.
245  *
246  * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
247  * newer cards R7 (IF_COND).
248  */
249 
maptype(struct mmc_command * cmd)250 static char *maptype(struct mmc_command *cmd)
251 {
252 	switch (mmc_spi_resp_type(cmd)) {
253 	case MMC_RSP_SPI_R1:	return "R1";
254 	case MMC_RSP_SPI_R1B:	return "R1B";
255 	case MMC_RSP_SPI_R2:	return "R2/R5";
256 	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
257 	default:		return "?";
258 	}
259 }
260 
261 /* return zero, else negative errno after setting cmd->error */
mmc_spi_response_get(struct mmc_spi_host * host,struct mmc_command * cmd,int cs_on)262 static int mmc_spi_response_get(struct mmc_spi_host *host,
263 		struct mmc_command *cmd, int cs_on)
264 {
265 	u8	*cp = host->data->status;
266 	u8	*end = cp + host->t.len;
267 	int	value = 0;
268 	int	bitshift;
269 	u8 	leftover = 0;
270 	unsigned short rotator;
271 	int 	i;
272 	char	tag[32];
273 
274 	snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
275 		cmd->opcode, maptype(cmd));
276 
277 	/* Except for data block reads, the whole response will already
278 	 * be stored in the scratch buffer.  It's somewhere after the
279 	 * command and the first byte we read after it.  We ignore that
280 	 * first byte.  After STOP_TRANSMISSION command it may include
281 	 * two data bits, but otherwise it's all ones.
282 	 */
283 	cp += 8;
284 	while (cp < end && *cp == 0xff)
285 		cp++;
286 
287 	/* Data block reads (R1 response types) may need more data... */
288 	if (cp == end) {
289 		cp = host->data->status;
290 		end = cp+1;
291 
292 		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
293 		 * status byte ... and we already scanned 2 bytes.
294 		 *
295 		 * REVISIT block read paths use nasty byte-at-a-time I/O
296 		 * so it can always DMA directly into the target buffer.
297 		 * It'd probably be better to memcpy() the first chunk and
298 		 * avoid extra i/o calls...
299 		 *
300 		 * Note we check for more than 8 bytes, because in practice,
301 		 * some SD cards are slow...
302 		 */
303 		for (i = 2; i < 16; i++) {
304 			value = mmc_spi_readbytes(host, 1);
305 			if (value < 0)
306 				goto done;
307 			if (*cp != 0xff)
308 				goto checkstatus;
309 		}
310 		value = -ETIMEDOUT;
311 		goto done;
312 	}
313 
314 checkstatus:
315 	bitshift = 0;
316 	if (*cp & 0x80)	{
317 		/* Houston, we have an ugly card with a bit-shifted response */
318 		rotator = *cp++ << 8;
319 		/* read the next byte */
320 		if (cp == end) {
321 			value = mmc_spi_readbytes(host, 1);
322 			if (value < 0)
323 				goto done;
324 			cp = host->data->status;
325 			end = cp+1;
326 		}
327 		rotator |= *cp++;
328 		while (rotator & 0x8000) {
329 			bitshift++;
330 			rotator <<= 1;
331 		}
332 		cmd->resp[0] = rotator >> 8;
333 		leftover = rotator;
334 	} else {
335 		cmd->resp[0] = *cp++;
336 	}
337 	cmd->error = 0;
338 
339 	/* Status byte: the entire seven-bit R1 response.  */
340 	if (cmd->resp[0] != 0) {
341 		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
342 				& cmd->resp[0])
343 			value = -EFAULT; /* Bad address */
344 		else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
345 			value = -ENOSYS; /* Function not implemented */
346 		else if (R1_SPI_COM_CRC & cmd->resp[0])
347 			value = -EILSEQ; /* Illegal byte sequence */
348 		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
349 				& cmd->resp[0])
350 			value = -EIO;    /* I/O error */
351 		/* else R1_SPI_IDLE, "it's resetting" */
352 	}
353 
354 	switch (mmc_spi_resp_type(cmd)) {
355 
356 	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
357 	 * and less-common stuff like various erase operations.
358 	 */
359 	case MMC_RSP_SPI_R1B:
360 		/* maybe we read all the busy tokens already */
361 		while (cp < end && *cp == 0)
362 			cp++;
363 		if (cp == end)
364 			mmc_spi_wait_unbusy(host, r1b_timeout);
365 		break;
366 
367 	/* SPI R2 == R1 + second status byte; SEND_STATUS
368 	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
369 	 */
370 	case MMC_RSP_SPI_R2:
371 		/* read the next byte */
372 		if (cp == end) {
373 			value = mmc_spi_readbytes(host, 1);
374 			if (value < 0)
375 				goto done;
376 			cp = host->data->status;
377 			end = cp+1;
378 		}
379 		if (bitshift) {
380 			rotator = leftover << 8;
381 			rotator |= *cp << bitshift;
382 			cmd->resp[0] |= (rotator & 0xFF00);
383 		} else {
384 			cmd->resp[0] |= *cp << 8;
385 		}
386 		break;
387 
388 	/* SPI R3, R4, or R7 == R1 + 4 bytes */
389 	case MMC_RSP_SPI_R3:
390 		rotator = leftover << 8;
391 		cmd->resp[1] = 0;
392 		for (i = 0; i < 4; i++) {
393 			cmd->resp[1] <<= 8;
394 			/* read the next byte */
395 			if (cp == end) {
396 				value = mmc_spi_readbytes(host, 1);
397 				if (value < 0)
398 					goto done;
399 				cp = host->data->status;
400 				end = cp+1;
401 			}
402 			if (bitshift) {
403 				rotator |= *cp++ << bitshift;
404 				cmd->resp[1] |= (rotator >> 8);
405 				rotator <<= 8;
406 			} else {
407 				cmd->resp[1] |= *cp++;
408 			}
409 		}
410 		break;
411 
412 	/* SPI R1 == just one status byte */
413 	case MMC_RSP_SPI_R1:
414 		break;
415 
416 	default:
417 		dev_dbg(&host->spi->dev, "bad response type %04x\n",
418 				mmc_spi_resp_type(cmd));
419 		if (value >= 0)
420 			value = -EINVAL;
421 		goto done;
422 	}
423 
424 	if (value < 0)
425 		dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
426 			tag, cmd->resp[0], cmd->resp[1]);
427 
428 	/* disable chipselect on errors and some success cases */
429 	if (value >= 0 && cs_on)
430 		return value;
431 done:
432 	if (value < 0)
433 		cmd->error = value;
434 	mmc_cs_off(host);
435 	return value;
436 }
437 
438 /* Issue command and read its response.
439  * Returns zero on success, negative for error.
440  *
441  * On error, caller must cope with mmc core retry mechanism.  That
442  * means immediate low-level resubmit, which affects the bus lock...
443  */
444 static int
mmc_spi_command_send(struct mmc_spi_host * host,struct mmc_request * mrq,struct mmc_command * cmd,int cs_on)445 mmc_spi_command_send(struct mmc_spi_host *host,
446 		struct mmc_request *mrq,
447 		struct mmc_command *cmd, int cs_on)
448 {
449 	struct scratch		*data = host->data;
450 	u8			*cp = data->status;
451 	int			status;
452 	struct spi_transfer	*t;
453 
454 	/* We can handle most commands (except block reads) in one full
455 	 * duplex I/O operation before either starting the next transfer
456 	 * (data block or command) or else deselecting the card.
457 	 *
458 	 * First, write 7 bytes:
459 	 *  - an all-ones byte to ensure the card is ready
460 	 *  - opcode byte (plus start and transmission bits)
461 	 *  - four bytes of big-endian argument
462 	 *  - crc7 (plus end bit) ... always computed, it's cheap
463 	 *
464 	 * We init the whole buffer to all-ones, which is what we need
465 	 * to write while we're reading (later) response data.
466 	 */
467 	memset(cp, 0xff, sizeof(data->status));
468 
469 	cp[1] = 0x40 | cmd->opcode;
470 	put_unaligned_be32(cmd->arg, cp+2);
471 	cp[6] = crc7_be(0, cp+1, 5) | 0x01;
472 	cp += 7;
473 
474 	/* Then, read up to 13 bytes (while writing all-ones):
475 	 *  - N(CR) (== 1..8) bytes of all-ones
476 	 *  - status byte (for all response types)
477 	 *  - the rest of the response, either:
478 	 *      + nothing, for R1 or R1B responses
479 	 *	+ second status byte, for R2 responses
480 	 *	+ four data bytes, for R3 and R7 responses
481 	 *
482 	 * Finally, read some more bytes ... in the nice cases we know in
483 	 * advance how many, and reading 1 more is always OK:
484 	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
485 	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
486 	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
487 	 *
488 	 * So in those cases one full duplex I/O of at most 21 bytes will
489 	 * handle the whole command, leaving the card ready to receive a
490 	 * data block or new command.  We do that whenever we can, shaving
491 	 * CPU and IRQ costs (especially when using DMA or FIFOs).
492 	 *
493 	 * There are two other cases, where it's not generally practical
494 	 * to rely on a single I/O:
495 	 *
496 	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
497 	 *
498 	 *    In this case we can *try* to fit it into one I/O, then
499 	 *    maybe read more data later.
500 	 *
501 	 *  - Data block reads are more troublesome, since a variable
502 	 *    number of padding bytes precede the token and data.
503 	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
504 	 *      + N(AC) (== 1..many) bytes of all-ones
505 	 *
506 	 *    In this case we currently only have minimal speedups here:
507 	 *    when N(CR) == 1 we can avoid I/O in response_get().
508 	 */
509 	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
510 		cp += 2;	/* min(N(CR)) + status */
511 		/* R1 */
512 	} else {
513 		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
514 		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
515 			cp++;
516 		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
517 			cp += 4;
518 		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
519 			cp = data->status + sizeof(data->status);
520 		/* else:  R1 (most commands) */
521 	}
522 
523 	dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
524 		cmd->opcode, maptype(cmd));
525 
526 	/* send command, leaving chipselect active */
527 	spi_message_init(&host->m);
528 
529 	t = &host->t;
530 	memset(t, 0, sizeof(*t));
531 	t->tx_buf = t->rx_buf = data->status;
532 	t->tx_dma = t->rx_dma = host->data_dma;
533 	t->len = cp - data->status;
534 	t->cs_change = 1;
535 	spi_message_add_tail(t, &host->m);
536 
537 	if (host->dma_dev) {
538 		host->m.is_dma_mapped = 1;
539 		dma_sync_single_for_device(host->dma_dev,
540 				host->data_dma, sizeof(*host->data),
541 				DMA_BIDIRECTIONAL);
542 	}
543 	status = spi_sync_locked(host->spi, &host->m);
544 
545 	if (host->dma_dev)
546 		dma_sync_single_for_cpu(host->dma_dev,
547 				host->data_dma, sizeof(*host->data),
548 				DMA_BIDIRECTIONAL);
549 	if (status < 0) {
550 		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
551 		cmd->error = status;
552 		return status;
553 	}
554 
555 	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
556 	return mmc_spi_response_get(host, cmd, cs_on);
557 }
558 
559 /* Build data message with up to four separate transfers.  For TX, we
560  * start by writing the data token.  And in most cases, we finish with
561  * a status transfer.
562  *
563  * We always provide TX data for data and CRC.  The MMC/SD protocol
564  * requires us to write ones; but Linux defaults to writing zeroes;
565  * so we explicitly initialize it to all ones on RX paths.
566  *
567  * We also handle DMA mapping, so the underlying SPI controller does
568  * not need to (re)do it for each message.
569  */
570 static void
mmc_spi_setup_data_message(struct mmc_spi_host * host,int multiple,enum dma_data_direction direction)571 mmc_spi_setup_data_message(
572 	struct mmc_spi_host	*host,
573 	int			multiple,
574 	enum dma_data_direction	direction)
575 {
576 	struct spi_transfer	*t;
577 	struct scratch		*scratch = host->data;
578 	dma_addr_t		dma = host->data_dma;
579 
580 	spi_message_init(&host->m);
581 	if (dma)
582 		host->m.is_dma_mapped = 1;
583 
584 	/* for reads, readblock() skips 0xff bytes before finding
585 	 * the token; for writes, this transfer issues that token.
586 	 */
587 	if (direction == DMA_TO_DEVICE) {
588 		t = &host->token;
589 		memset(t, 0, sizeof(*t));
590 		t->len = 1;
591 		if (multiple)
592 			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
593 		else
594 			scratch->data_token = SPI_TOKEN_SINGLE;
595 		t->tx_buf = &scratch->data_token;
596 		if (dma)
597 			t->tx_dma = dma + offsetof(struct scratch, data_token);
598 		spi_message_add_tail(t, &host->m);
599 	}
600 
601 	/* Body of transfer is buffer, then CRC ...
602 	 * either TX-only, or RX with TX-ones.
603 	 */
604 	t = &host->t;
605 	memset(t, 0, sizeof(*t));
606 	t->tx_buf = host->ones;
607 	t->tx_dma = host->ones_dma;
608 	/* length and actual buffer info are written later */
609 	spi_message_add_tail(t, &host->m);
610 
611 	t = &host->crc;
612 	memset(t, 0, sizeof(*t));
613 	t->len = 2;
614 	if (direction == DMA_TO_DEVICE) {
615 		/* the actual CRC may get written later */
616 		t->tx_buf = &scratch->crc_val;
617 		if (dma)
618 			t->tx_dma = dma + offsetof(struct scratch, crc_val);
619 	} else {
620 		t->tx_buf = host->ones;
621 		t->tx_dma = host->ones_dma;
622 		t->rx_buf = &scratch->crc_val;
623 		if (dma)
624 			t->rx_dma = dma + offsetof(struct scratch, crc_val);
625 	}
626 	spi_message_add_tail(t, &host->m);
627 
628 	/*
629 	 * A single block read is followed by N(EC) [0+] all-ones bytes
630 	 * before deselect ... don't bother.
631 	 *
632 	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
633 	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
634 	 * collect that single byte, so readblock() doesn't need to.
635 	 *
636 	 * For a write, the one-byte data response follows immediately, then
637 	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
638 	 * Then single block reads may deselect, and multiblock ones issue
639 	 * the next token (next data block, or STOP_TRAN).  We can try to
640 	 * minimize I/O ops by using a single read to collect end-of-busy.
641 	 */
642 	if (multiple || direction == DMA_TO_DEVICE) {
643 		t = &host->early_status;
644 		memset(t, 0, sizeof(*t));
645 		t->len = (direction == DMA_TO_DEVICE)
646 				? sizeof(scratch->status)
647 				: 1;
648 		t->tx_buf = host->ones;
649 		t->tx_dma = host->ones_dma;
650 		t->rx_buf = scratch->status;
651 		if (dma)
652 			t->rx_dma = dma + offsetof(struct scratch, status);
653 		t->cs_change = 1;
654 		spi_message_add_tail(t, &host->m);
655 	}
656 }
657 
658 /*
659  * Write one block:
660  *  - caller handled preceding N(WR) [1+] all-ones bytes
661  *  - data block
662  *	+ token
663  *	+ data bytes
664  *	+ crc16
665  *  - an all-ones byte ... card writes a data-response byte
666  *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
667  *
668  * Return negative errno, else success.
669  */
670 static int
mmc_spi_writeblock(struct mmc_spi_host * host,struct spi_transfer * t,unsigned long timeout)671 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
672 	unsigned long timeout)
673 {
674 	struct spi_device	*spi = host->spi;
675 	int			status, i;
676 	struct scratch		*scratch = host->data;
677 	u32			pattern;
678 
679 	if (host->mmc->use_spi_crc)
680 		scratch->crc_val = cpu_to_be16(
681 				crc_itu_t(0, t->tx_buf, t->len));
682 	if (host->dma_dev)
683 		dma_sync_single_for_device(host->dma_dev,
684 				host->data_dma, sizeof(*scratch),
685 				DMA_BIDIRECTIONAL);
686 
687 	status = spi_sync_locked(spi, &host->m);
688 
689 	if (status != 0) {
690 		dev_dbg(&spi->dev, "write error (%d)\n", status);
691 		return status;
692 	}
693 
694 	if (host->dma_dev)
695 		dma_sync_single_for_cpu(host->dma_dev,
696 				host->data_dma, sizeof(*scratch),
697 				DMA_BIDIRECTIONAL);
698 
699 	/*
700 	 * Get the transmission data-response reply.  It must follow
701 	 * immediately after the data block we transferred.  This reply
702 	 * doesn't necessarily tell whether the write operation succeeded;
703 	 * it just says if the transmission was ok and whether *earlier*
704 	 * writes succeeded; see the standard.
705 	 *
706 	 * In practice, there are (even modern SDHC-)cards which are late
707 	 * in sending the response, and miss the time frame by a few bits,
708 	 * so we have to cope with this situation and check the response
709 	 * bit-by-bit. Arggh!!!
710 	 */
711 	pattern = get_unaligned_be32(scratch->status);
712 
713 	/* First 3 bit of pattern are undefined */
714 	pattern |= 0xE0000000;
715 
716 	/* left-adjust to leading 0 bit */
717 	while (pattern & 0x80000000)
718 		pattern <<= 1;
719 	/* right-adjust for pattern matching. Code is in bit 4..0 now. */
720 	pattern >>= 27;
721 
722 	switch (pattern) {
723 	case SPI_RESPONSE_ACCEPTED:
724 		status = 0;
725 		break;
726 	case SPI_RESPONSE_CRC_ERR:
727 		/* host shall then issue MMC_STOP_TRANSMISSION */
728 		status = -EILSEQ;
729 		break;
730 	case SPI_RESPONSE_WRITE_ERR:
731 		/* host shall then issue MMC_STOP_TRANSMISSION,
732 		 * and should MMC_SEND_STATUS to sort it out
733 		 */
734 		status = -EIO;
735 		break;
736 	default:
737 		status = -EPROTO;
738 		break;
739 	}
740 	if (status != 0) {
741 		dev_dbg(&spi->dev, "write error %02x (%d)\n",
742 			scratch->status[0], status);
743 		return status;
744 	}
745 
746 	t->tx_buf += t->len;
747 	if (host->dma_dev)
748 		t->tx_dma += t->len;
749 
750 	/* Return when not busy.  If we didn't collect that status yet,
751 	 * we'll need some more I/O.
752 	 */
753 	for (i = 4; i < sizeof(scratch->status); i++) {
754 		/* card is non-busy if the most recent bit is 1 */
755 		if (scratch->status[i] & 0x01)
756 			return 0;
757 	}
758 	return mmc_spi_wait_unbusy(host, timeout);
759 }
760 
761 /*
762  * Read one block:
763  *  - skip leading all-ones bytes ... either
764  *      + N(AC) [1..f(clock,CSD)] usually, else
765  *      + N(CX) [0..8] when reading CSD or CID
766  *  - data block
767  *	+ token ... if error token, no data or crc
768  *	+ data bytes
769  *	+ crc16
770  *
771  * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
772  * before dropping chipselect.
773  *
774  * For multiblock reads, caller either reads the next block or issues a
775  * STOP_TRANSMISSION command.
776  */
777 static int
mmc_spi_readblock(struct mmc_spi_host * host,struct spi_transfer * t,unsigned long timeout)778 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
779 	unsigned long timeout)
780 {
781 	struct spi_device	*spi = host->spi;
782 	int			status;
783 	struct scratch		*scratch = host->data;
784 	unsigned int 		bitshift;
785 	u8			leftover;
786 
787 	/* At least one SD card sends an all-zeroes byte when N(CX)
788 	 * applies, before the all-ones bytes ... just cope with that.
789 	 */
790 	status = mmc_spi_readbytes(host, 1);
791 	if (status < 0)
792 		return status;
793 	status = scratch->status[0];
794 	if (status == 0xff || status == 0)
795 		status = mmc_spi_readtoken(host, timeout);
796 
797 	if (status < 0) {
798 		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
799 		return status;
800 	}
801 
802 	/* The token may be bit-shifted...
803 	 * the first 0-bit precedes the data stream.
804 	 */
805 	bitshift = 7;
806 	while (status & 0x80) {
807 		status <<= 1;
808 		bitshift--;
809 	}
810 	leftover = status << 1;
811 
812 	if (host->dma_dev) {
813 		dma_sync_single_for_device(host->dma_dev,
814 				host->data_dma, sizeof(*scratch),
815 				DMA_BIDIRECTIONAL);
816 		dma_sync_single_for_device(host->dma_dev,
817 				t->rx_dma, t->len,
818 				DMA_FROM_DEVICE);
819 	}
820 
821 	status = spi_sync_locked(spi, &host->m);
822 	if (status < 0) {
823 		dev_dbg(&spi->dev, "read error %d\n", status);
824 		return status;
825 	}
826 
827 	if (host->dma_dev) {
828 		dma_sync_single_for_cpu(host->dma_dev,
829 				host->data_dma, sizeof(*scratch),
830 				DMA_BIDIRECTIONAL);
831 		dma_sync_single_for_cpu(host->dma_dev,
832 				t->rx_dma, t->len,
833 				DMA_FROM_DEVICE);
834 	}
835 
836 	if (bitshift) {
837 		/* Walk through the data and the crc and do
838 		 * all the magic to get byte-aligned data.
839 		 */
840 		u8 *cp = t->rx_buf;
841 		unsigned int len;
842 		unsigned int bitright = 8 - bitshift;
843 		u8 temp;
844 		for (len = t->len; len; len--) {
845 			temp = *cp;
846 			*cp++ = leftover | (temp >> bitshift);
847 			leftover = temp << bitright;
848 		}
849 		cp = (u8 *) &scratch->crc_val;
850 		temp = *cp;
851 		*cp++ = leftover | (temp >> bitshift);
852 		leftover = temp << bitright;
853 		temp = *cp;
854 		*cp = leftover | (temp >> bitshift);
855 	}
856 
857 	if (host->mmc->use_spi_crc) {
858 		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
859 
860 		be16_to_cpus(&scratch->crc_val);
861 		if (scratch->crc_val != crc) {
862 			dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
863 					"computed=0x%04x len=%d\n",
864 					scratch->crc_val, crc, t->len);
865 			return -EILSEQ;
866 		}
867 	}
868 
869 	t->rx_buf += t->len;
870 	if (host->dma_dev)
871 		t->rx_dma += t->len;
872 
873 	return 0;
874 }
875 
876 /*
877  * An MMC/SD data stage includes one or more blocks, optional CRCs,
878  * and inline handshaking.  That handhaking makes it unlike most
879  * other SPI protocol stacks.
880  */
881 static void
mmc_spi_data_do(struct mmc_spi_host * host,struct mmc_command * cmd,struct mmc_data * data,u32 blk_size)882 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
883 		struct mmc_data *data, u32 blk_size)
884 {
885 	struct spi_device	*spi = host->spi;
886 	struct device		*dma_dev = host->dma_dev;
887 	struct spi_transfer	*t;
888 	enum dma_data_direction	direction;
889 	struct scatterlist	*sg;
890 	unsigned		n_sg;
891 	int			multiple = (data->blocks > 1);
892 	u32			clock_rate;
893 	unsigned long		timeout;
894 
895 	direction = mmc_get_dma_dir(data);
896 	mmc_spi_setup_data_message(host, multiple, direction);
897 	t = &host->t;
898 
899 	if (t->speed_hz)
900 		clock_rate = t->speed_hz;
901 	else
902 		clock_rate = spi->max_speed_hz;
903 
904 	timeout = data->timeout_ns +
905 		  data->timeout_clks * 1000000 / clock_rate;
906 	timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
907 
908 	/* Handle scatterlist segments one at a time, with synch for
909 	 * each 512-byte block
910 	 */
911 	for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
912 		int			status = 0;
913 		dma_addr_t		dma_addr = 0;
914 		void			*kmap_addr;
915 		unsigned		length = sg->length;
916 		enum dma_data_direction	dir = direction;
917 
918 		/* set up dma mapping for controller drivers that might
919 		 * use DMA ... though they may fall back to PIO
920 		 */
921 		if (dma_dev) {
922 			/* never invalidate whole *shared* pages ... */
923 			if ((sg->offset != 0 || length != PAGE_SIZE)
924 					&& dir == DMA_FROM_DEVICE)
925 				dir = DMA_BIDIRECTIONAL;
926 
927 			dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
928 						PAGE_SIZE, dir);
929 			if (dma_mapping_error(dma_dev, dma_addr)) {
930 				data->error = -EFAULT;
931 				break;
932 			}
933 			if (direction == DMA_TO_DEVICE)
934 				t->tx_dma = dma_addr + sg->offset;
935 			else
936 				t->rx_dma = dma_addr + sg->offset;
937 		}
938 
939 		/* allow pio too; we don't allow highmem */
940 		kmap_addr = kmap(sg_page(sg));
941 		if (direction == DMA_TO_DEVICE)
942 			t->tx_buf = kmap_addr + sg->offset;
943 		else
944 			t->rx_buf = kmap_addr + sg->offset;
945 
946 		/* transfer each block, and update request status */
947 		while (length) {
948 			t->len = min(length, blk_size);
949 
950 			dev_dbg(&host->spi->dev,
951 				"    mmc_spi: %s block, %d bytes\n",
952 				(direction == DMA_TO_DEVICE)
953 				? "write"
954 				: "read",
955 				t->len);
956 
957 			if (direction == DMA_TO_DEVICE)
958 				status = mmc_spi_writeblock(host, t, timeout);
959 			else
960 				status = mmc_spi_readblock(host, t, timeout);
961 			if (status < 0)
962 				break;
963 
964 			data->bytes_xfered += t->len;
965 			length -= t->len;
966 
967 			if (!multiple)
968 				break;
969 		}
970 
971 		/* discard mappings */
972 		if (direction == DMA_FROM_DEVICE)
973 			flush_kernel_dcache_page(sg_page(sg));
974 		kunmap(sg_page(sg));
975 		if (dma_dev)
976 			dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
977 
978 		if (status < 0) {
979 			data->error = status;
980 			dev_dbg(&spi->dev, "%s status %d\n",
981 				(direction == DMA_TO_DEVICE)
982 					? "write" : "read",
983 				status);
984 			break;
985 		}
986 	}
987 
988 	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
989 	 * can be issued before multiblock writes.  Unlike its more widely
990 	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
991 	 * that can affect the STOP_TRAN logic.   Complete (and current)
992 	 * MMC specs should sort that out before Linux starts using CMD23.
993 	 */
994 	if (direction == DMA_TO_DEVICE && multiple) {
995 		struct scratch	*scratch = host->data;
996 		int		tmp;
997 		const unsigned	statlen = sizeof(scratch->status);
998 
999 		dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
1000 
1001 		/* Tweak the per-block message we set up earlier by morphing
1002 		 * it to hold single buffer with the token followed by some
1003 		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
1004 		 * "not busy any longer" status, and leave chip selected.
1005 		 */
1006 		INIT_LIST_HEAD(&host->m.transfers);
1007 		list_add(&host->early_status.transfer_list,
1008 				&host->m.transfers);
1009 
1010 		memset(scratch->status, 0xff, statlen);
1011 		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
1012 
1013 		host->early_status.tx_buf = host->early_status.rx_buf;
1014 		host->early_status.tx_dma = host->early_status.rx_dma;
1015 		host->early_status.len = statlen;
1016 
1017 		if (host->dma_dev)
1018 			dma_sync_single_for_device(host->dma_dev,
1019 					host->data_dma, sizeof(*scratch),
1020 					DMA_BIDIRECTIONAL);
1021 
1022 		tmp = spi_sync_locked(spi, &host->m);
1023 
1024 		if (host->dma_dev)
1025 			dma_sync_single_for_cpu(host->dma_dev,
1026 					host->data_dma, sizeof(*scratch),
1027 					DMA_BIDIRECTIONAL);
1028 
1029 		if (tmp < 0) {
1030 			if (!data->error)
1031 				data->error = tmp;
1032 			return;
1033 		}
1034 
1035 		/* Ideally we collected "not busy" status with one I/O,
1036 		 * avoiding wasteful byte-at-a-time scanning... but more
1037 		 * I/O is often needed.
1038 		 */
1039 		for (tmp = 2; tmp < statlen; tmp++) {
1040 			if (scratch->status[tmp] != 0)
1041 				return;
1042 		}
1043 		tmp = mmc_spi_wait_unbusy(host, timeout);
1044 		if (tmp < 0 && !data->error)
1045 			data->error = tmp;
1046 	}
1047 }
1048 
1049 /****************************************************************************/
1050 
1051 /*
1052  * MMC driver implementation -- the interface to the MMC stack
1053  */
1054 
mmc_spi_request(struct mmc_host * mmc,struct mmc_request * mrq)1055 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1056 {
1057 	struct mmc_spi_host	*host = mmc_priv(mmc);
1058 	int			status = -EINVAL;
1059 	int			crc_retry = 5;
1060 	struct mmc_command	stop;
1061 
1062 #ifdef DEBUG
1063 	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
1064 	{
1065 		struct mmc_command	*cmd;
1066 		int			invalid = 0;
1067 
1068 		cmd = mrq->cmd;
1069 		if (!mmc_spi_resp_type(cmd)) {
1070 			dev_dbg(&host->spi->dev, "bogus command\n");
1071 			cmd->error = -EINVAL;
1072 			invalid = 1;
1073 		}
1074 
1075 		cmd = mrq->stop;
1076 		if (cmd && !mmc_spi_resp_type(cmd)) {
1077 			dev_dbg(&host->spi->dev, "bogus STOP command\n");
1078 			cmd->error = -EINVAL;
1079 			invalid = 1;
1080 		}
1081 
1082 		if (invalid) {
1083 			dump_stack();
1084 			mmc_request_done(host->mmc, mrq);
1085 			return;
1086 		}
1087 	}
1088 #endif
1089 
1090 	/* request exclusive bus access */
1091 	spi_bus_lock(host->spi->master);
1092 
1093 crc_recover:
1094 	/* issue command; then optionally data and stop */
1095 	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1096 	if (status == 0 && mrq->data) {
1097 		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1098 
1099 		/*
1100 		 * The SPI bus is not always reliable for large data transfers.
1101 		 * If an occasional crc error is reported by the SD device with
1102 		 * data read/write over SPI, it may be recovered by repeating
1103 		 * the last SD command again. The retry count is set to 5 to
1104 		 * ensure the driver passes stress tests.
1105 		 */
1106 		if (mrq->data->error == -EILSEQ && crc_retry) {
1107 			stop.opcode = MMC_STOP_TRANSMISSION;
1108 			stop.arg = 0;
1109 			stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1110 			status = mmc_spi_command_send(host, mrq, &stop, 0);
1111 			crc_retry--;
1112 			mrq->data->error = 0;
1113 			goto crc_recover;
1114 		}
1115 
1116 		if (mrq->stop)
1117 			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1118 		else
1119 			mmc_cs_off(host);
1120 	}
1121 
1122 	/* release the bus */
1123 	spi_bus_unlock(host->spi->master);
1124 
1125 	mmc_request_done(host->mmc, mrq);
1126 }
1127 
1128 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1129  *
1130  * NOTE that here we can't know that the card has just been powered up;
1131  * not all MMC/SD sockets support power switching.
1132  *
1133  * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1134  * this doesn't seem to do the right thing at all...
1135  */
mmc_spi_initsequence(struct mmc_spi_host * host)1136 static void mmc_spi_initsequence(struct mmc_spi_host *host)
1137 {
1138 	/* Try to be very sure any previous command has completed;
1139 	 * wait till not-busy, skip debris from any old commands.
1140 	 */
1141 	mmc_spi_wait_unbusy(host, r1b_timeout);
1142 	mmc_spi_readbytes(host, 10);
1143 
1144 	/*
1145 	 * Do a burst with chipselect active-high.  We need to do this to
1146 	 * meet the requirement of 74 clock cycles with both chipselect
1147 	 * and CMD (MOSI) high before CMD0 ... after the card has been
1148 	 * powered up to Vdd(min), and so is ready to take commands.
1149 	 *
1150 	 * Some cards are particularly needy of this (e.g. Viking "SD256")
1151 	 * while most others don't seem to care.
1152 	 *
1153 	 * Note that this is one of the places MMC/SD plays games with the
1154 	 * SPI protocol.  Another is that when chipselect is released while
1155 	 * the card returns BUSY status, the clock must issue several cycles
1156 	 * with chipselect high before the card will stop driving its output.
1157 	 *
1158 	 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1159 	 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1160 	 * inverted by gpiolib, so if we want to ascertain to drive it high
1161 	 * we should toggle the default with an XOR as we do here.
1162 	 */
1163 	host->spi->mode ^= SPI_CS_HIGH;
1164 	if (spi_setup(host->spi) != 0) {
1165 		/* Just warn; most cards work without it. */
1166 		dev_warn(&host->spi->dev,
1167 				"can't change chip-select polarity\n");
1168 		host->spi->mode ^= SPI_CS_HIGH;
1169 	} else {
1170 		mmc_spi_readbytes(host, 18);
1171 
1172 		host->spi->mode ^= SPI_CS_HIGH;
1173 		if (spi_setup(host->spi) != 0) {
1174 			/* Wot, we can't get the same setup we had before? */
1175 			dev_err(&host->spi->dev,
1176 					"can't restore chip-select polarity\n");
1177 		}
1178 	}
1179 }
1180 
mmc_powerstring(u8 power_mode)1181 static char *mmc_powerstring(u8 power_mode)
1182 {
1183 	switch (power_mode) {
1184 	case MMC_POWER_OFF: return "off";
1185 	case MMC_POWER_UP:  return "up";
1186 	case MMC_POWER_ON:  return "on";
1187 	}
1188 	return "?";
1189 }
1190 
mmc_spi_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)1191 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1192 {
1193 	struct mmc_spi_host *host = mmc_priv(mmc);
1194 
1195 	if (host->power_mode != ios->power_mode) {
1196 		int		canpower;
1197 
1198 		canpower = host->pdata && host->pdata->setpower;
1199 
1200 		dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1201 				mmc_powerstring(ios->power_mode),
1202 				ios->vdd,
1203 				canpower ? ", can switch" : "");
1204 
1205 		/* switch power on/off if possible, accounting for
1206 		 * max 250msec powerup time if needed.
1207 		 */
1208 		if (canpower) {
1209 			switch (ios->power_mode) {
1210 			case MMC_POWER_OFF:
1211 			case MMC_POWER_UP:
1212 				host->pdata->setpower(&host->spi->dev,
1213 						ios->vdd);
1214 				if (ios->power_mode == MMC_POWER_UP)
1215 					msleep(host->powerup_msecs);
1216 			}
1217 		}
1218 
1219 		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
1220 		if (ios->power_mode == MMC_POWER_ON)
1221 			mmc_spi_initsequence(host);
1222 
1223 		/* If powering down, ground all card inputs to avoid power
1224 		 * delivery from data lines!  On a shared SPI bus, this
1225 		 * will probably be temporary; 6.4.2 of the simplified SD
1226 		 * spec says this must last at least 1msec.
1227 		 *
1228 		 *   - Clock low means CPOL 0, e.g. mode 0
1229 		 *   - MOSI low comes from writing zero
1230 		 *   - Chipselect is usually active low...
1231 		 */
1232 		if (canpower && ios->power_mode == MMC_POWER_OFF) {
1233 			int mres;
1234 			u8 nullbyte = 0;
1235 
1236 			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1237 			mres = spi_setup(host->spi);
1238 			if (mres < 0)
1239 				dev_dbg(&host->spi->dev,
1240 					"switch to SPI mode 0 failed\n");
1241 
1242 			if (spi_write(host->spi, &nullbyte, 1) < 0)
1243 				dev_dbg(&host->spi->dev,
1244 					"put spi signals to low failed\n");
1245 
1246 			/*
1247 			 * Now clock should be low due to spi mode 0;
1248 			 * MOSI should be low because of written 0x00;
1249 			 * chipselect should be low (it is active low)
1250 			 * power supply is off, so now MMC is off too!
1251 			 *
1252 			 * FIXME no, chipselect can be high since the
1253 			 * device is inactive and SPI_CS_HIGH is clear...
1254 			 */
1255 			msleep(10);
1256 			if (mres == 0) {
1257 				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1258 				mres = spi_setup(host->spi);
1259 				if (mres < 0)
1260 					dev_dbg(&host->spi->dev,
1261 						"switch back to SPI mode 3"
1262 						" failed\n");
1263 			}
1264 		}
1265 
1266 		host->power_mode = ios->power_mode;
1267 	}
1268 
1269 	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1270 		int		status;
1271 
1272 		host->spi->max_speed_hz = ios->clock;
1273 		status = spi_setup(host->spi);
1274 		dev_dbg(&host->spi->dev,
1275 			"mmc_spi:  clock to %d Hz, %d\n",
1276 			host->spi->max_speed_hz, status);
1277 	}
1278 }
1279 
1280 static const struct mmc_host_ops mmc_spi_ops = {
1281 	.request	= mmc_spi_request,
1282 	.set_ios	= mmc_spi_set_ios,
1283 	.get_ro		= mmc_gpio_get_ro,
1284 	.get_cd		= mmc_gpio_get_cd,
1285 };
1286 
1287 
1288 /****************************************************************************/
1289 
1290 /*
1291  * SPI driver implementation
1292  */
1293 
1294 static irqreturn_t
mmc_spi_detect_irq(int irq,void * mmc)1295 mmc_spi_detect_irq(int irq, void *mmc)
1296 {
1297 	struct mmc_spi_host *host = mmc_priv(mmc);
1298 	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1299 
1300 	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1301 	return IRQ_HANDLED;
1302 }
1303 
mmc_spi_probe(struct spi_device * spi)1304 static int mmc_spi_probe(struct spi_device *spi)
1305 {
1306 	void			*ones;
1307 	struct mmc_host		*mmc;
1308 	struct mmc_spi_host	*host;
1309 	int			status;
1310 	bool			has_ro = false;
1311 
1312 	/* We rely on full duplex transfers, mostly to reduce
1313 	 * per-transfer overheads (by making fewer transfers).
1314 	 */
1315 	if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1316 		return -EINVAL;
1317 
1318 	/* MMC and SD specs only seem to care that sampling is on the
1319 	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1320 	 * should be legit.  We'll use mode 0 since the steady state is 0,
1321 	 * which is appropriate for hotplugging, unless the platform data
1322 	 * specify mode 3 (if hardware is not compatible to mode 0).
1323 	 */
1324 	if (spi->mode != SPI_MODE_3)
1325 		spi->mode = SPI_MODE_0;
1326 	spi->bits_per_word = 8;
1327 
1328 	status = spi_setup(spi);
1329 	if (status < 0) {
1330 		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1331 				spi->mode, spi->max_speed_hz / 1000,
1332 				status);
1333 		return status;
1334 	}
1335 
1336 	/* We need a supply of ones to transmit.  This is the only time
1337 	 * the CPU touches these, so cache coherency isn't a concern.
1338 	 *
1339 	 * NOTE if many systems use more than one MMC-over-SPI connector
1340 	 * it'd save some memory to share this.  That's evidently rare.
1341 	 */
1342 	status = -ENOMEM;
1343 	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1344 	if (!ones)
1345 		goto nomem;
1346 	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1347 
1348 	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1349 	if (!mmc)
1350 		goto nomem;
1351 
1352 	mmc->ops = &mmc_spi_ops;
1353 	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1354 	mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1355 	mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1356 	mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1357 
1358 	mmc->caps = MMC_CAP_SPI;
1359 
1360 	/* SPI doesn't need the lowspeed device identification thing for
1361 	 * MMC or SD cards, since it never comes up in open drain mode.
1362 	 * That's good; some SPI masters can't handle very low speeds!
1363 	 *
1364 	 * However, low speed SDIO cards need not handle over 400 KHz;
1365 	 * that's the only reason not to use a few MHz for f_min (until
1366 	 * the upper layer reads the target frequency from the CSD).
1367 	 */
1368 	mmc->f_min = 400000;
1369 	mmc->f_max = spi->max_speed_hz;
1370 
1371 	host = mmc_priv(mmc);
1372 	host->mmc = mmc;
1373 	host->spi = spi;
1374 
1375 	host->ones = ones;
1376 
1377 	/* Platform data is used to hook up things like card sensing
1378 	 * and power switching gpios.
1379 	 */
1380 	host->pdata = mmc_spi_get_pdata(spi);
1381 	if (host->pdata)
1382 		mmc->ocr_avail = host->pdata->ocr_mask;
1383 	if (!mmc->ocr_avail) {
1384 		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1385 		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1386 	}
1387 	if (host->pdata && host->pdata->setpower) {
1388 		host->powerup_msecs = host->pdata->powerup_msecs;
1389 		if (!host->powerup_msecs || host->powerup_msecs > 250)
1390 			host->powerup_msecs = 250;
1391 	}
1392 
1393 	dev_set_drvdata(&spi->dev, mmc);
1394 
1395 	/* preallocate dma buffers */
1396 	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1397 	if (!host->data)
1398 		goto fail_nobuf1;
1399 
1400 	if (spi->master->dev.parent->dma_mask) {
1401 		struct device	*dev = spi->master->dev.parent;
1402 
1403 		host->dma_dev = dev;
1404 		host->ones_dma = dma_map_single(dev, ones,
1405 				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1406 		if (dma_mapping_error(dev, host->ones_dma))
1407 			goto fail_ones_dma;
1408 		host->data_dma = dma_map_single(dev, host->data,
1409 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1410 		if (dma_mapping_error(dev, host->data_dma))
1411 			goto fail_data_dma;
1412 
1413 		dma_sync_single_for_cpu(host->dma_dev,
1414 				host->data_dma, sizeof(*host->data),
1415 				DMA_BIDIRECTIONAL);
1416 	}
1417 
1418 	/* setup message for status/busy readback */
1419 	spi_message_init(&host->readback);
1420 	host->readback.is_dma_mapped = (host->dma_dev != NULL);
1421 
1422 	spi_message_add_tail(&host->status, &host->readback);
1423 	host->status.tx_buf = host->ones;
1424 	host->status.tx_dma = host->ones_dma;
1425 	host->status.rx_buf = &host->data->status;
1426 	host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1427 	host->status.cs_change = 1;
1428 
1429 	/* register card detect irq */
1430 	if (host->pdata && host->pdata->init) {
1431 		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1432 		if (status != 0)
1433 			goto fail_glue_init;
1434 	}
1435 
1436 	/* pass platform capabilities, if any */
1437 	if (host->pdata) {
1438 		mmc->caps |= host->pdata->caps;
1439 		mmc->caps2 |= host->pdata->caps2;
1440 	}
1441 
1442 	status = mmc_add_host(mmc);
1443 	if (status != 0)
1444 		goto fail_add_host;
1445 
1446 	if (host->pdata && host->pdata->flags & MMC_SPI_USE_CD_GPIO) {
1447 		status = mmc_gpio_request_cd(mmc, host->pdata->cd_gpio,
1448 					     host->pdata->cd_debounce);
1449 		if (status != 0)
1450 			goto fail_add_host;
1451 
1452 		/* The platform has a CD GPIO signal that may support
1453 		 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1454 		 * if polling is needed or not.
1455 		 */
1456 		mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1457 		mmc_gpiod_request_cd_irq(mmc);
1458 	}
1459 	mmc_detect_change(mmc, 0);
1460 
1461 	if (host->pdata && host->pdata->flags & MMC_SPI_USE_RO_GPIO) {
1462 		has_ro = true;
1463 		status = mmc_gpio_request_ro(mmc, host->pdata->ro_gpio);
1464 		if (status != 0)
1465 			goto fail_add_host;
1466 	}
1467 
1468 	dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1469 			dev_name(&mmc->class_dev),
1470 			host->dma_dev ? "" : ", no DMA",
1471 			has_ro ? "" : ", no WP",
1472 			(host->pdata && host->pdata->setpower)
1473 				? "" : ", no poweroff",
1474 			(mmc->caps & MMC_CAP_NEEDS_POLL)
1475 				? ", cd polling" : "");
1476 	return 0;
1477 
1478 fail_add_host:
1479 	mmc_remove_host (mmc);
1480 fail_glue_init:
1481 	if (host->dma_dev)
1482 		dma_unmap_single(host->dma_dev, host->data_dma,
1483 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1484 fail_data_dma:
1485 	if (host->dma_dev)
1486 		dma_unmap_single(host->dma_dev, host->ones_dma,
1487 				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1488 fail_ones_dma:
1489 	kfree(host->data);
1490 
1491 fail_nobuf1:
1492 	mmc_free_host(mmc);
1493 	mmc_spi_put_pdata(spi);
1494 	dev_set_drvdata(&spi->dev, NULL);
1495 
1496 nomem:
1497 	kfree(ones);
1498 	return status;
1499 }
1500 
1501 
mmc_spi_remove(struct spi_device * spi)1502 static int mmc_spi_remove(struct spi_device *spi)
1503 {
1504 	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
1505 	struct mmc_spi_host	*host;
1506 
1507 	if (mmc) {
1508 		host = mmc_priv(mmc);
1509 
1510 		/* prevent new mmc_detect_change() calls */
1511 		if (host->pdata && host->pdata->exit)
1512 			host->pdata->exit(&spi->dev, mmc);
1513 
1514 		mmc_remove_host(mmc);
1515 
1516 		if (host->dma_dev) {
1517 			dma_unmap_single(host->dma_dev, host->ones_dma,
1518 				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1519 			dma_unmap_single(host->dma_dev, host->data_dma,
1520 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1521 		}
1522 
1523 		kfree(host->data);
1524 		kfree(host->ones);
1525 
1526 		spi->max_speed_hz = mmc->f_max;
1527 		mmc_free_host(mmc);
1528 		mmc_spi_put_pdata(spi);
1529 		dev_set_drvdata(&spi->dev, NULL);
1530 	}
1531 	return 0;
1532 }
1533 
1534 static const struct of_device_id mmc_spi_of_match_table[] = {
1535 	{ .compatible = "mmc-spi-slot", },
1536 	{},
1537 };
1538 MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1539 
1540 static struct spi_driver mmc_spi_driver = {
1541 	.driver = {
1542 		.name =		"mmc_spi",
1543 		.of_match_table = mmc_spi_of_match_table,
1544 	},
1545 	.probe =	mmc_spi_probe,
1546 	.remove =	mmc_spi_remove,
1547 };
1548 
1549 module_spi_driver(mmc_spi_driver);
1550 
1551 MODULE_AUTHOR("Mike Lavender, David Brownell, "
1552 		"Hans-Peter Nilsson, Jan Nikitenko");
1553 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1554 MODULE_LICENSE("GPL");
1555 MODULE_ALIAS("spi:mmc_spi");
1556