• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * NAND Flash Controller Device Driver
3  * Copyright © 2009-2010, Intel Corporation and its suppliers.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  *
18  */
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/wait.h>
23 #include <linux/mutex.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/module.h>
26 #include <linux/slab.h>
27 
28 #include "denali.h"
29 
30 MODULE_LICENSE("GPL");
31 
32 #define DENALI_NAND_NAME    "denali-nand"
33 
34 /* Host Data/Command Interface */
35 #define DENALI_HOST_ADDR	0x00
36 #define DENALI_HOST_DATA	0x10
37 
38 #define DENALI_MAP00		(0 << 26)	/* direct access to buffer */
39 #define DENALI_MAP01		(1 << 26)	/* read/write pages in PIO */
40 #define DENALI_MAP10		(2 << 26)	/* high-level control plane */
41 #define DENALI_MAP11		(3 << 26)	/* direct controller access */
42 
43 /* MAP11 access cycle type */
44 #define DENALI_MAP11_CMD	((DENALI_MAP11) | 0)	/* command cycle */
45 #define DENALI_MAP11_ADDR	((DENALI_MAP11) | 1)	/* address cycle */
46 #define DENALI_MAP11_DATA	((DENALI_MAP11) | 2)	/* data cycle */
47 
48 /* MAP10 commands */
49 #define DENALI_ERASE		0x01
50 
51 #define DENALI_BANK(denali)	((denali)->active_bank << 24)
52 
53 #define DENALI_INVALID_BANK	-1
54 #define DENALI_NR_BANKS		4
55 
56 /*
57  * The bus interface clock, clk_x, is phase aligned with the core clock.  The
58  * clk_x is an integral multiple N of the core clk.  The value N is configured
59  * at IP delivery time, and its available value is 4, 5, or 6.  We need to align
60  * to the largest value to make it work with any possible configuration.
61  */
62 #define DENALI_CLK_X_MULT	6
63 
64 /*
65  * this macro allows us to convert from an MTD structure to our own
66  * device context (denali) structure.
67  */
mtd_to_denali(struct mtd_info * mtd)68 static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
69 {
70 	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
71 }
72 
denali_host_write(struct denali_nand_info * denali,uint32_t addr,uint32_t data)73 static void denali_host_write(struct denali_nand_info *denali,
74 			      uint32_t addr, uint32_t data)
75 {
76 	iowrite32(addr, denali->host + DENALI_HOST_ADDR);
77 	iowrite32(data, denali->host + DENALI_HOST_DATA);
78 }
79 
80 /*
81  * Use the configuration feature register to determine the maximum number of
82  * banks that the hardware supports.
83  */
detect_max_banks(struct denali_nand_info * denali)84 static void detect_max_banks(struct denali_nand_info *denali)
85 {
86 	uint32_t features = ioread32(denali->reg + FEATURES);
87 
88 	denali->max_banks = 1 << (features & FEATURES__N_BANKS);
89 
90 	/* the encoding changed from rev 5.0 to 5.1 */
91 	if (denali->revision < 0x0501)
92 		denali->max_banks <<= 1;
93 }
94 
denali_enable_irq(struct denali_nand_info * denali)95 static void denali_enable_irq(struct denali_nand_info *denali)
96 {
97 	int i;
98 
99 	for (i = 0; i < DENALI_NR_BANKS; i++)
100 		iowrite32(U32_MAX, denali->reg + INTR_EN(i));
101 	iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE);
102 }
103 
denali_disable_irq(struct denali_nand_info * denali)104 static void denali_disable_irq(struct denali_nand_info *denali)
105 {
106 	int i;
107 
108 	for (i = 0; i < DENALI_NR_BANKS; i++)
109 		iowrite32(0, denali->reg + INTR_EN(i));
110 	iowrite32(0, denali->reg + GLOBAL_INT_ENABLE);
111 }
112 
denali_clear_irq(struct denali_nand_info * denali,int bank,uint32_t irq_status)113 static void denali_clear_irq(struct denali_nand_info *denali,
114 			     int bank, uint32_t irq_status)
115 {
116 	/* write one to clear bits */
117 	iowrite32(irq_status, denali->reg + INTR_STATUS(bank));
118 }
119 
denali_clear_irq_all(struct denali_nand_info * denali)120 static void denali_clear_irq_all(struct denali_nand_info *denali)
121 {
122 	int i;
123 
124 	for (i = 0; i < DENALI_NR_BANKS; i++)
125 		denali_clear_irq(denali, i, U32_MAX);
126 }
127 
denali_isr(int irq,void * dev_id)128 static irqreturn_t denali_isr(int irq, void *dev_id)
129 {
130 	struct denali_nand_info *denali = dev_id;
131 	irqreturn_t ret = IRQ_NONE;
132 	uint32_t irq_status;
133 	int i;
134 
135 	spin_lock(&denali->irq_lock);
136 
137 	for (i = 0; i < DENALI_NR_BANKS; i++) {
138 		irq_status = ioread32(denali->reg + INTR_STATUS(i));
139 		if (irq_status)
140 			ret = IRQ_HANDLED;
141 
142 		denali_clear_irq(denali, i, irq_status);
143 
144 		if (i != denali->active_bank)
145 			continue;
146 
147 		denali->irq_status |= irq_status;
148 
149 		if (denali->irq_status & denali->irq_mask)
150 			complete(&denali->complete);
151 	}
152 
153 	spin_unlock(&denali->irq_lock);
154 
155 	return ret;
156 }
157 
denali_reset_irq(struct denali_nand_info * denali)158 static void denali_reset_irq(struct denali_nand_info *denali)
159 {
160 	unsigned long flags;
161 
162 	spin_lock_irqsave(&denali->irq_lock, flags);
163 	denali->irq_status = 0;
164 	denali->irq_mask = 0;
165 	spin_unlock_irqrestore(&denali->irq_lock, flags);
166 }
167 
denali_wait_for_irq(struct denali_nand_info * denali,uint32_t irq_mask)168 static uint32_t denali_wait_for_irq(struct denali_nand_info *denali,
169 				    uint32_t irq_mask)
170 {
171 	unsigned long time_left, flags;
172 	uint32_t irq_status;
173 
174 	spin_lock_irqsave(&denali->irq_lock, flags);
175 
176 	irq_status = denali->irq_status;
177 
178 	if (irq_mask & irq_status) {
179 		/* return immediately if the IRQ has already happened. */
180 		spin_unlock_irqrestore(&denali->irq_lock, flags);
181 		return irq_status;
182 	}
183 
184 	denali->irq_mask = irq_mask;
185 	reinit_completion(&denali->complete);
186 	spin_unlock_irqrestore(&denali->irq_lock, flags);
187 
188 	time_left = wait_for_completion_timeout(&denali->complete,
189 						msecs_to_jiffies(1000));
190 	if (!time_left) {
191 		dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
192 			denali->irq_mask);
193 		return 0;
194 	}
195 
196 	return denali->irq_status;
197 }
198 
denali_check_irq(struct denali_nand_info * denali)199 static uint32_t denali_check_irq(struct denali_nand_info *denali)
200 {
201 	unsigned long flags;
202 	uint32_t irq_status;
203 
204 	spin_lock_irqsave(&denali->irq_lock, flags);
205 	irq_status = denali->irq_status;
206 	spin_unlock_irqrestore(&denali->irq_lock, flags);
207 
208 	return irq_status;
209 }
210 
211 /*
212  * This helper function setups the registers for ECC and whether or not
213  * the spare area will be transferred.
214  */
setup_ecc_for_xfer(struct denali_nand_info * denali,bool ecc_en,bool transfer_spare)215 static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
216 				bool transfer_spare)
217 {
218 	int ecc_en_flag, transfer_spare_flag;
219 
220 	/* set ECC, transfer spare bits if needed */
221 	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
222 	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
223 
224 	/* Enable spare area/ECC per user's request. */
225 	iowrite32(ecc_en_flag, denali->reg + ECC_ENABLE);
226 	iowrite32(transfer_spare_flag, denali->reg + TRANSFER_SPARE_REG);
227 }
228 
denali_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)229 static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
230 {
231 	struct denali_nand_info *denali = mtd_to_denali(mtd);
232 	int i;
233 
234 	iowrite32(DENALI_MAP11_DATA | DENALI_BANK(denali),
235 		  denali->host + DENALI_HOST_ADDR);
236 
237 	for (i = 0; i < len; i++)
238 		buf[i] = ioread32(denali->host + DENALI_HOST_DATA);
239 }
240 
denali_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)241 static void denali_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
242 {
243 	struct denali_nand_info *denali = mtd_to_denali(mtd);
244 	int i;
245 
246 	iowrite32(DENALI_MAP11_DATA | DENALI_BANK(denali),
247 		  denali->host + DENALI_HOST_ADDR);
248 
249 	for (i = 0; i < len; i++)
250 		iowrite32(buf[i], denali->host + DENALI_HOST_DATA);
251 }
252 
denali_read_buf16(struct mtd_info * mtd,uint8_t * buf,int len)253 static void denali_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
254 {
255 	struct denali_nand_info *denali = mtd_to_denali(mtd);
256 	uint16_t *buf16 = (uint16_t *)buf;
257 	int i;
258 
259 	iowrite32(DENALI_MAP11_DATA | DENALI_BANK(denali),
260 		  denali->host + DENALI_HOST_ADDR);
261 
262 	for (i = 0; i < len / 2; i++)
263 		buf16[i] = ioread32(denali->host + DENALI_HOST_DATA);
264 }
265 
denali_write_buf16(struct mtd_info * mtd,const uint8_t * buf,int len)266 static void denali_write_buf16(struct mtd_info *mtd, const uint8_t *buf,
267 			       int len)
268 {
269 	struct denali_nand_info *denali = mtd_to_denali(mtd);
270 	const uint16_t *buf16 = (const uint16_t *)buf;
271 	int i;
272 
273 	iowrite32(DENALI_MAP11_DATA | DENALI_BANK(denali),
274 		  denali->host + DENALI_HOST_ADDR);
275 
276 	for (i = 0; i < len / 2; i++)
277 		iowrite32(buf16[i], denali->host + DENALI_HOST_DATA);
278 }
279 
denali_read_byte(struct mtd_info * mtd)280 static uint8_t denali_read_byte(struct mtd_info *mtd)
281 {
282 	uint8_t byte;
283 
284 	denali_read_buf(mtd, &byte, 1);
285 
286 	return byte;
287 }
288 
denali_write_byte(struct mtd_info * mtd,uint8_t byte)289 static void denali_write_byte(struct mtd_info *mtd, uint8_t byte)
290 {
291 	denali_write_buf(mtd, &byte, 1);
292 }
293 
denali_read_word(struct mtd_info * mtd)294 static uint16_t denali_read_word(struct mtd_info *mtd)
295 {
296 	uint16_t word;
297 
298 	denali_read_buf16(mtd, (uint8_t *)&word, 2);
299 
300 	return word;
301 }
302 
denali_cmd_ctrl(struct mtd_info * mtd,int dat,unsigned int ctrl)303 static void denali_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
304 {
305 	struct denali_nand_info *denali = mtd_to_denali(mtd);
306 	uint32_t type;
307 
308 	if (ctrl & NAND_CLE)
309 		type = DENALI_MAP11_CMD;
310 	else if (ctrl & NAND_ALE)
311 		type = DENALI_MAP11_ADDR;
312 	else
313 		return;
314 
315 	/*
316 	 * Some commands are followed by chip->dev_ready or chip->waitfunc.
317 	 * irq_status must be cleared here to catch the R/B# interrupt later.
318 	 */
319 	if (ctrl & NAND_CTRL_CHANGE)
320 		denali_reset_irq(denali);
321 
322 	denali_host_write(denali, DENALI_BANK(denali) | type, dat);
323 }
324 
denali_dev_ready(struct mtd_info * mtd)325 static int denali_dev_ready(struct mtd_info *mtd)
326 {
327 	struct denali_nand_info *denali = mtd_to_denali(mtd);
328 
329 	return !!(denali_check_irq(denali) & INTR__INT_ACT);
330 }
331 
denali_check_erased_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,unsigned long uncor_ecc_flags,unsigned int max_bitflips)332 static int denali_check_erased_page(struct mtd_info *mtd,
333 				    struct nand_chip *chip, uint8_t *buf,
334 				    unsigned long uncor_ecc_flags,
335 				    unsigned int max_bitflips)
336 {
337 	uint8_t *ecc_code = chip->buffers->ecccode;
338 	int ecc_steps = chip->ecc.steps;
339 	int ecc_size = chip->ecc.size;
340 	int ecc_bytes = chip->ecc.bytes;
341 	int i, ret, stat;
342 
343 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
344 					 chip->ecc.total);
345 	if (ret)
346 		return ret;
347 
348 	for (i = 0; i < ecc_steps; i++) {
349 		if (!(uncor_ecc_flags & BIT(i)))
350 			continue;
351 
352 		stat = nand_check_erased_ecc_chunk(buf, ecc_size,
353 						  ecc_code, ecc_bytes,
354 						  NULL, 0,
355 						  chip->ecc.strength);
356 		if (stat < 0) {
357 			mtd->ecc_stats.failed++;
358 		} else {
359 			mtd->ecc_stats.corrected += stat;
360 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
361 		}
362 
363 		buf += ecc_size;
364 		ecc_code += ecc_bytes;
365 	}
366 
367 	return max_bitflips;
368 }
369 
denali_hw_ecc_fixup(struct mtd_info * mtd,struct denali_nand_info * denali,unsigned long * uncor_ecc_flags)370 static int denali_hw_ecc_fixup(struct mtd_info *mtd,
371 			       struct denali_nand_info *denali,
372 			       unsigned long *uncor_ecc_flags)
373 {
374 	struct nand_chip *chip = mtd_to_nand(mtd);
375 	int bank = denali->active_bank;
376 	uint32_t ecc_cor;
377 	unsigned int max_bitflips;
378 
379 	ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank));
380 	ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
381 
382 	if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
383 		/*
384 		 * This flag is set when uncorrectable error occurs at least in
385 		 * one ECC sector.  We can not know "how many sectors", or
386 		 * "which sector(s)".  We need erase-page check for all sectors.
387 		 */
388 		*uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
389 		return 0;
390 	}
391 
392 	max_bitflips = ecc_cor & ECC_COR_INFO__MAX_ERRORS;
393 
394 	/*
395 	 * The register holds the maximum of per-sector corrected bitflips.
396 	 * This is suitable for the return value of the ->read_page() callback.
397 	 * Unfortunately, we can not know the total number of corrected bits in
398 	 * the page.  Increase the stats by max_bitflips. (compromised solution)
399 	 */
400 	mtd->ecc_stats.corrected += max_bitflips;
401 
402 	return max_bitflips;
403 }
404 
405 #define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
406 #define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
407 #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
408 #define ECC_ERROR_UNCORRECTABLE(x) ((x) & ERR_CORRECTION_INFO__ERROR_TYPE)
409 #define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
410 #define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
411 
denali_sw_ecc_fixup(struct mtd_info * mtd,struct denali_nand_info * denali,unsigned long * uncor_ecc_flags,uint8_t * buf)412 static int denali_sw_ecc_fixup(struct mtd_info *mtd,
413 			       struct denali_nand_info *denali,
414 			       unsigned long *uncor_ecc_flags, uint8_t *buf)
415 {
416 	unsigned int ecc_size = denali->nand.ecc.size;
417 	unsigned int bitflips = 0;
418 	unsigned int max_bitflips = 0;
419 	uint32_t err_addr, err_cor_info;
420 	unsigned int err_byte, err_sector, err_device;
421 	uint8_t err_cor_value;
422 	unsigned int prev_sector = 0;
423 	uint32_t irq_status;
424 
425 	denali_reset_irq(denali);
426 
427 	do {
428 		err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS);
429 		err_sector = ECC_SECTOR(err_addr);
430 		err_byte = ECC_BYTE(err_addr);
431 
432 		err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO);
433 		err_cor_value = ECC_CORRECTION_VALUE(err_cor_info);
434 		err_device = ECC_ERR_DEVICE(err_cor_info);
435 
436 		/* reset the bitflip counter when crossing ECC sector */
437 		if (err_sector != prev_sector)
438 			bitflips = 0;
439 
440 		if (ECC_ERROR_UNCORRECTABLE(err_cor_info)) {
441 			/*
442 			 * Check later if this is a real ECC error, or
443 			 * an erased sector.
444 			 */
445 			*uncor_ecc_flags |= BIT(err_sector);
446 		} else if (err_byte < ecc_size) {
447 			/*
448 			 * If err_byte is larger than ecc_size, means error
449 			 * happened in OOB, so we ignore it. It's no need for
450 			 * us to correct it err_device is represented the NAND
451 			 * error bits are happened in if there are more than
452 			 * one NAND connected.
453 			 */
454 			int offset;
455 			unsigned int flips_in_byte;
456 
457 			offset = (err_sector * ecc_size + err_byte) *
458 					denali->devs_per_cs + err_device;
459 
460 			/* correct the ECC error */
461 			flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
462 			buf[offset] ^= err_cor_value;
463 			mtd->ecc_stats.corrected += flips_in_byte;
464 			bitflips += flips_in_byte;
465 
466 			max_bitflips = max(max_bitflips, bitflips);
467 		}
468 
469 		prev_sector = err_sector;
470 	} while (!ECC_LAST_ERR(err_cor_info));
471 
472 	/*
473 	 * Once handle all ecc errors, controller will trigger a
474 	 * ECC_TRANSACTION_DONE interrupt, so here just wait for
475 	 * a while for this interrupt
476 	 */
477 	irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
478 	if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
479 		return -EIO;
480 
481 	return max_bitflips;
482 }
483 
484 /* programs the controller to either enable/disable DMA transfers */
denali_enable_dma(struct denali_nand_info * denali,bool en)485 static void denali_enable_dma(struct denali_nand_info *denali, bool en)
486 {
487 	iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->reg + DMA_ENABLE);
488 	ioread32(denali->reg + DMA_ENABLE);
489 }
490 
denali_setup_dma64(struct denali_nand_info * denali,dma_addr_t dma_addr,int page,int write)491 static void denali_setup_dma64(struct denali_nand_info *denali,
492 			       dma_addr_t dma_addr, int page, int write)
493 {
494 	uint32_t mode;
495 	const int page_count = 1;
496 
497 	mode = DENALI_MAP10 | DENALI_BANK(denali) | page;
498 
499 	/* DMA is a three step process */
500 
501 	/*
502 	 * 1. setup transfer type, interrupt when complete,
503 	 *    burst len = 64 bytes, the number of pages
504 	 */
505 	denali_host_write(denali, mode,
506 			  0x01002000 | (64 << 16) | (write << 8) | page_count);
507 
508 	/* 2. set memory low address */
509 	denali_host_write(denali, mode, dma_addr);
510 
511 	/* 3. set memory high address */
512 	denali_host_write(denali, mode, (uint64_t)dma_addr >> 32);
513 }
514 
denali_setup_dma32(struct denali_nand_info * denali,dma_addr_t dma_addr,int page,int write)515 static void denali_setup_dma32(struct denali_nand_info *denali,
516 			       dma_addr_t dma_addr, int page, int write)
517 {
518 	uint32_t mode;
519 	const int page_count = 1;
520 
521 	mode = DENALI_MAP10 | DENALI_BANK(denali);
522 
523 	/* DMA is a four step process */
524 
525 	/* 1. setup transfer type and # of pages */
526 	denali_host_write(denali, mode | page,
527 			  0x2000 | (write << 8) | page_count);
528 
529 	/* 2. set memory high address bits 23:8 */
530 	denali_host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
531 
532 	/* 3. set memory low address bits 23:8 */
533 	denali_host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
534 
535 	/* 4. interrupt when complete, burst len = 64 bytes */
536 	denali_host_write(denali, mode | 0x14000, 0x2400);
537 }
538 
denali_setup_dma(struct denali_nand_info * denali,dma_addr_t dma_addr,int page,int write)539 static void denali_setup_dma(struct denali_nand_info *denali,
540 			     dma_addr_t dma_addr, int page, int write)
541 {
542 	if (denali->caps & DENALI_CAP_DMA_64BIT)
543 		denali_setup_dma64(denali, dma_addr, page, write);
544 	else
545 		denali_setup_dma32(denali, dma_addr, page, write);
546 }
547 
denali_pio_read(struct denali_nand_info * denali,void * buf,size_t size,int page,int raw)548 static int denali_pio_read(struct denali_nand_info *denali, void *buf,
549 			   size_t size, int page, int raw)
550 {
551 	uint32_t addr = DENALI_BANK(denali) | page;
552 	uint32_t *buf32 = (uint32_t *)buf;
553 	uint32_t irq_status, ecc_err_mask;
554 	int i;
555 
556 	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
557 		ecc_err_mask = INTR__ECC_UNCOR_ERR;
558 	else
559 		ecc_err_mask = INTR__ECC_ERR;
560 
561 	denali_reset_irq(denali);
562 
563 	iowrite32(DENALI_MAP01 | addr, denali->host + DENALI_HOST_ADDR);
564 	for (i = 0; i < size / 4; i++)
565 		*buf32++ = ioread32(denali->host + DENALI_HOST_DATA);
566 
567 	irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
568 	if (!(irq_status & INTR__PAGE_XFER_INC))
569 		return -EIO;
570 
571 	if (irq_status & INTR__ERASED_PAGE)
572 		memset(buf, 0xff, size);
573 
574 	return irq_status & ecc_err_mask ? -EBADMSG : 0;
575 }
576 
denali_pio_write(struct denali_nand_info * denali,const void * buf,size_t size,int page,int raw)577 static int denali_pio_write(struct denali_nand_info *denali,
578 			    const void *buf, size_t size, int page, int raw)
579 {
580 	uint32_t addr = DENALI_BANK(denali) | page;
581 	const uint32_t *buf32 = (uint32_t *)buf;
582 	uint32_t irq_status;
583 	int i;
584 
585 	denali_reset_irq(denali);
586 
587 	iowrite32(DENALI_MAP01 | addr, denali->host + DENALI_HOST_ADDR);
588 	for (i = 0; i < size / 4; i++)
589 		iowrite32(*buf32++, denali->host + DENALI_HOST_DATA);
590 
591 	irq_status = denali_wait_for_irq(denali,
592 				INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL);
593 	if (!(irq_status & INTR__PROGRAM_COMP))
594 		return -EIO;
595 
596 	return 0;
597 }
598 
denali_pio_xfer(struct denali_nand_info * denali,void * buf,size_t size,int page,int raw,int write)599 static int denali_pio_xfer(struct denali_nand_info *denali, void *buf,
600 			   size_t size, int page, int raw, int write)
601 {
602 	if (write)
603 		return denali_pio_write(denali, buf, size, page, raw);
604 	else
605 		return denali_pio_read(denali, buf, size, page, raw);
606 }
607 
denali_dma_xfer(struct denali_nand_info * denali,void * buf,size_t size,int page,int raw,int write)608 static int denali_dma_xfer(struct denali_nand_info *denali, void *buf,
609 			   size_t size, int page, int raw, int write)
610 {
611 	dma_addr_t dma_addr;
612 	uint32_t irq_mask, irq_status, ecc_err_mask;
613 	enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
614 	int ret = 0;
615 
616 	dma_addr = dma_map_single(denali->dev, buf, size, dir);
617 	if (dma_mapping_error(denali->dev, dma_addr)) {
618 		dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
619 		return denali_pio_xfer(denali, buf, size, page, raw, write);
620 	}
621 
622 	if (write) {
623 		/*
624 		 * INTR__PROGRAM_COMP is never asserted for the DMA transfer.
625 		 * We can use INTR__DMA_CMD_COMP instead.  This flag is asserted
626 		 * when the page program is completed.
627 		 */
628 		irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
629 		ecc_err_mask = 0;
630 	} else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
631 		irq_mask = INTR__DMA_CMD_COMP;
632 		ecc_err_mask = INTR__ECC_UNCOR_ERR;
633 	} else {
634 		irq_mask = INTR__DMA_CMD_COMP;
635 		ecc_err_mask = INTR__ECC_ERR;
636 	}
637 
638 	denali_enable_dma(denali, true);
639 
640 	denali_reset_irq(denali);
641 	denali_setup_dma(denali, dma_addr, page, write);
642 
643 	/* wait for operation to complete */
644 	irq_status = denali_wait_for_irq(denali, irq_mask);
645 	if (!(irq_status & INTR__DMA_CMD_COMP))
646 		ret = -EIO;
647 	else if (irq_status & ecc_err_mask)
648 		ret = -EBADMSG;
649 
650 	denali_enable_dma(denali, false);
651 	dma_unmap_single(denali->dev, dma_addr, size, dir);
652 
653 	if (irq_status & INTR__ERASED_PAGE)
654 		memset(buf, 0xff, size);
655 
656 	return ret;
657 }
658 
denali_data_xfer(struct denali_nand_info * denali,void * buf,size_t size,int page,int raw,int write)659 static int denali_data_xfer(struct denali_nand_info *denali, void *buf,
660 			    size_t size, int page, int raw, int write)
661 {
662 	setup_ecc_for_xfer(denali, !raw, raw);
663 
664 	if (denali->dma_avail)
665 		return denali_dma_xfer(denali, buf, size, page, raw, write);
666 	else
667 		return denali_pio_xfer(denali, buf, size, page, raw, write);
668 }
669 
denali_oob_xfer(struct mtd_info * mtd,struct nand_chip * chip,int page,int write)670 static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip,
671 			    int page, int write)
672 {
673 	struct denali_nand_info *denali = mtd_to_denali(mtd);
674 	unsigned int start_cmd = write ? NAND_CMD_SEQIN : NAND_CMD_READ0;
675 	unsigned int rnd_cmd = write ? NAND_CMD_RNDIN : NAND_CMD_RNDOUT;
676 	int writesize = mtd->writesize;
677 	int oobsize = mtd->oobsize;
678 	uint8_t *bufpoi = chip->oob_poi;
679 	int ecc_steps = chip->ecc.steps;
680 	int ecc_size = chip->ecc.size;
681 	int ecc_bytes = chip->ecc.bytes;
682 	int oob_skip = denali->oob_skip_bytes;
683 	size_t size = writesize + oobsize;
684 	int i, pos, len;
685 
686 	/* BBM at the beginning of the OOB area */
687 	chip->cmdfunc(mtd, start_cmd, writesize, page);
688 	if (write)
689 		chip->write_buf(mtd, bufpoi, oob_skip);
690 	else
691 		chip->read_buf(mtd, bufpoi, oob_skip);
692 	bufpoi += oob_skip;
693 
694 	/* OOB ECC */
695 	for (i = 0; i < ecc_steps; i++) {
696 		pos = ecc_size + i * (ecc_size + ecc_bytes);
697 		len = ecc_bytes;
698 
699 		if (pos >= writesize)
700 			pos += oob_skip;
701 		else if (pos + len > writesize)
702 			len = writesize - pos;
703 
704 		chip->cmdfunc(mtd, rnd_cmd, pos, -1);
705 		if (write)
706 			chip->write_buf(mtd, bufpoi, len);
707 		else
708 			chip->read_buf(mtd, bufpoi, len);
709 		bufpoi += len;
710 		if (len < ecc_bytes) {
711 			len = ecc_bytes - len;
712 			chip->cmdfunc(mtd, rnd_cmd, writesize + oob_skip, -1);
713 			if (write)
714 				chip->write_buf(mtd, bufpoi, len);
715 			else
716 				chip->read_buf(mtd, bufpoi, len);
717 			bufpoi += len;
718 		}
719 	}
720 
721 	/* OOB free */
722 	len = oobsize - (bufpoi - chip->oob_poi);
723 	chip->cmdfunc(mtd, rnd_cmd, size - len, -1);
724 	if (write)
725 		chip->write_buf(mtd, bufpoi, len);
726 	else
727 		chip->read_buf(mtd, bufpoi, len);
728 }
729 
denali_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)730 static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
731 				uint8_t *buf, int oob_required, int page)
732 {
733 	struct denali_nand_info *denali = mtd_to_denali(mtd);
734 	int writesize = mtd->writesize;
735 	int oobsize = mtd->oobsize;
736 	int ecc_steps = chip->ecc.steps;
737 	int ecc_size = chip->ecc.size;
738 	int ecc_bytes = chip->ecc.bytes;
739 	void *dma_buf = denali->buf;
740 	int oob_skip = denali->oob_skip_bytes;
741 	size_t size = writesize + oobsize;
742 	int ret, i, pos, len;
743 
744 	ret = denali_data_xfer(denali, dma_buf, size, page, 1, 0);
745 	if (ret)
746 		return ret;
747 
748 	/* Arrange the buffer for syndrome payload/ecc layout */
749 	if (buf) {
750 		for (i = 0; i < ecc_steps; i++) {
751 			pos = i * (ecc_size + ecc_bytes);
752 			len = ecc_size;
753 
754 			if (pos >= writesize)
755 				pos += oob_skip;
756 			else if (pos + len > writesize)
757 				len = writesize - pos;
758 
759 			memcpy(buf, dma_buf + pos, len);
760 			buf += len;
761 			if (len < ecc_size) {
762 				len = ecc_size - len;
763 				memcpy(buf, dma_buf + writesize + oob_skip,
764 				       len);
765 				buf += len;
766 			}
767 		}
768 	}
769 
770 	if (oob_required) {
771 		uint8_t *oob = chip->oob_poi;
772 
773 		/* BBM at the beginning of the OOB area */
774 		memcpy(oob, dma_buf + writesize, oob_skip);
775 		oob += oob_skip;
776 
777 		/* OOB ECC */
778 		for (i = 0; i < ecc_steps; i++) {
779 			pos = ecc_size + i * (ecc_size + ecc_bytes);
780 			len = ecc_bytes;
781 
782 			if (pos >= writesize)
783 				pos += oob_skip;
784 			else if (pos + len > writesize)
785 				len = writesize - pos;
786 
787 			memcpy(oob, dma_buf + pos, len);
788 			oob += len;
789 			if (len < ecc_bytes) {
790 				len = ecc_bytes - len;
791 				memcpy(oob, dma_buf + writesize + oob_skip,
792 				       len);
793 				oob += len;
794 			}
795 		}
796 
797 		/* OOB free */
798 		len = oobsize - (oob - chip->oob_poi);
799 		memcpy(oob, dma_buf + size - len, len);
800 	}
801 
802 	return 0;
803 }
804 
denali_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)805 static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
806 			   int page)
807 {
808 	denali_oob_xfer(mtd, chip, page, 0);
809 
810 	return 0;
811 }
812 
denali_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)813 static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
814 			    int page)
815 {
816 	struct denali_nand_info *denali = mtd_to_denali(mtd);
817 	int status;
818 
819 	denali_reset_irq(denali);
820 
821 	denali_oob_xfer(mtd, chip, page, 1);
822 
823 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
824 	status = chip->waitfunc(mtd, chip);
825 
826 	return status & NAND_STATUS_FAIL ? -EIO : 0;
827 }
828 
denali_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)829 static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
830 			    uint8_t *buf, int oob_required, int page)
831 {
832 	struct denali_nand_info *denali = mtd_to_denali(mtd);
833 	unsigned long uncor_ecc_flags = 0;
834 	int stat = 0;
835 	int ret;
836 
837 	ret = denali_data_xfer(denali, buf, mtd->writesize, page, 0, 0);
838 	if (ret && ret != -EBADMSG)
839 		return ret;
840 
841 	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
842 		stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
843 	else if (ret == -EBADMSG)
844 		stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
845 
846 	if (stat < 0)
847 		return stat;
848 
849 	if (uncor_ecc_flags) {
850 		ret = denali_read_oob(mtd, chip, page);
851 		if (ret)
852 			return ret;
853 
854 		stat = denali_check_erased_page(mtd, chip, buf,
855 						uncor_ecc_flags, stat);
856 	}
857 
858 	return stat;
859 }
860 
denali_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)861 static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
862 				 const uint8_t *buf, int oob_required, int page)
863 {
864 	struct denali_nand_info *denali = mtd_to_denali(mtd);
865 	int writesize = mtd->writesize;
866 	int oobsize = mtd->oobsize;
867 	int ecc_steps = chip->ecc.steps;
868 	int ecc_size = chip->ecc.size;
869 	int ecc_bytes = chip->ecc.bytes;
870 	void *dma_buf = denali->buf;
871 	int oob_skip = denali->oob_skip_bytes;
872 	size_t size = writesize + oobsize;
873 	int i, pos, len;
874 
875 	/*
876 	 * Fill the buffer with 0xff first except the full page transfer.
877 	 * This simplifies the logic.
878 	 */
879 	if (!buf || !oob_required)
880 		memset(dma_buf, 0xff, size);
881 
882 	/* Arrange the buffer for syndrome payload/ecc layout */
883 	if (buf) {
884 		for (i = 0; i < ecc_steps; i++) {
885 			pos = i * (ecc_size + ecc_bytes);
886 			len = ecc_size;
887 
888 			if (pos >= writesize)
889 				pos += oob_skip;
890 			else if (pos + len > writesize)
891 				len = writesize - pos;
892 
893 			memcpy(dma_buf + pos, buf, len);
894 			buf += len;
895 			if (len < ecc_size) {
896 				len = ecc_size - len;
897 				memcpy(dma_buf + writesize + oob_skip, buf,
898 				       len);
899 				buf += len;
900 			}
901 		}
902 	}
903 
904 	if (oob_required) {
905 		const uint8_t *oob = chip->oob_poi;
906 
907 		/* BBM at the beginning of the OOB area */
908 		memcpy(dma_buf + writesize, oob, oob_skip);
909 		oob += oob_skip;
910 
911 		/* OOB ECC */
912 		for (i = 0; i < ecc_steps; i++) {
913 			pos = ecc_size + i * (ecc_size + ecc_bytes);
914 			len = ecc_bytes;
915 
916 			if (pos >= writesize)
917 				pos += oob_skip;
918 			else if (pos + len > writesize)
919 				len = writesize - pos;
920 
921 			memcpy(dma_buf + pos, oob, len);
922 			oob += len;
923 			if (len < ecc_bytes) {
924 				len = ecc_bytes - len;
925 				memcpy(dma_buf + writesize + oob_skip, oob,
926 				       len);
927 				oob += len;
928 			}
929 		}
930 
931 		/* OOB free */
932 		len = oobsize - (oob - chip->oob_poi);
933 		memcpy(dma_buf + size - len, oob, len);
934 	}
935 
936 	return denali_data_xfer(denali, dma_buf, size, page, 1, 1);
937 }
938 
denali_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)939 static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
940 			     const uint8_t *buf, int oob_required, int page)
941 {
942 	struct denali_nand_info *denali = mtd_to_denali(mtd);
943 
944 	return denali_data_xfer(denali, (void *)buf, mtd->writesize,
945 				page, 0, 1);
946 }
947 
denali_select_chip(struct mtd_info * mtd,int chip)948 static void denali_select_chip(struct mtd_info *mtd, int chip)
949 {
950 	struct denali_nand_info *denali = mtd_to_denali(mtd);
951 
952 	denali->active_bank = chip;
953 }
954 
denali_waitfunc(struct mtd_info * mtd,struct nand_chip * chip)955 static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
956 {
957 	struct denali_nand_info *denali = mtd_to_denali(mtd);
958 	uint32_t irq_status;
959 
960 	/* R/B# pin transitioned from low to high? */
961 	irq_status = denali_wait_for_irq(denali, INTR__INT_ACT);
962 
963 	return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL;
964 }
965 
denali_erase(struct mtd_info * mtd,int page)966 static int denali_erase(struct mtd_info *mtd, int page)
967 {
968 	struct denali_nand_info *denali = mtd_to_denali(mtd);
969 	uint32_t irq_status;
970 
971 	denali_reset_irq(denali);
972 
973 	denali_host_write(denali, DENALI_MAP10 | DENALI_BANK(denali) | page,
974 			  DENALI_ERASE);
975 
976 	/* wait for erase to complete or failure to occur */
977 	irq_status = denali_wait_for_irq(denali,
978 					 INTR__ERASE_COMP | INTR__ERASE_FAIL);
979 
980 	return irq_status & INTR__ERASE_COMP ? 0 : NAND_STATUS_FAIL;
981 }
982 
denali_setup_data_interface(struct mtd_info * mtd,int chipnr,const struct nand_data_interface * conf)983 static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
984 				       const struct nand_data_interface *conf)
985 {
986 	struct denali_nand_info *denali = mtd_to_denali(mtd);
987 	const struct nand_sdr_timings *timings;
988 	unsigned long t_clk;
989 	int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
990 	int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
991 	int addr_2_data_mask;
992 	uint32_t tmp;
993 
994 	timings = nand_get_sdr_timings(conf);
995 	if (IS_ERR(timings))
996 		return PTR_ERR(timings);
997 
998 	/* clk_x period in picoseconds */
999 	t_clk = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
1000 	if (!t_clk)
1001 		return -EINVAL;
1002 
1003 	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
1004 		return 0;
1005 
1006 	/* tREA -> ACC_CLKS */
1007 	acc_clks = DIV_ROUND_UP(timings->tREA_max, t_clk);
1008 	acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
1009 
1010 	tmp = ioread32(denali->reg + ACC_CLKS);
1011 	tmp &= ~ACC_CLKS__VALUE;
1012 	tmp |= acc_clks;
1013 	iowrite32(tmp, denali->reg + ACC_CLKS);
1014 
1015 	/* tRWH -> RE_2_WE */
1016 	re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_clk);
1017 	re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);
1018 
1019 	tmp = ioread32(denali->reg + RE_2_WE);
1020 	tmp &= ~RE_2_WE__VALUE;
1021 	tmp |= re_2_we;
1022 	iowrite32(tmp, denali->reg + RE_2_WE);
1023 
1024 	/* tRHZ -> RE_2_RE */
1025 	re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_clk);
1026 	re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);
1027 
1028 	tmp = ioread32(denali->reg + RE_2_RE);
1029 	tmp &= ~RE_2_RE__VALUE;
1030 	tmp |= re_2_re;
1031 	iowrite32(tmp, denali->reg + RE_2_RE);
1032 
1033 	/* tWHR -> WE_2_RE */
1034 	we_2_re = DIV_ROUND_UP(timings->tWHR_min, t_clk);
1035 	we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
1036 
1037 	tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
1038 	tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
1039 	tmp |= we_2_re;
1040 	iowrite32(tmp, denali->reg + TWHR2_AND_WE_2_RE);
1041 
1042 	/* tADL -> ADDR_2_DATA */
1043 
1044 	/* for older versions, ADDR_2_DATA is only 6 bit wide */
1045 	addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
1046 	if (denali->revision < 0x0501)
1047 		addr_2_data_mask >>= 1;
1048 
1049 	addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_clk);
1050 	addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
1051 
1052 	tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
1053 	tmp &= ~addr_2_data_mask;
1054 	tmp |= addr_2_data;
1055 	iowrite32(tmp, denali->reg + TCWAW_AND_ADDR_2_DATA);
1056 
1057 	/* tREH, tWH -> RDWR_EN_HI_CNT */
1058 	rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
1059 				  t_clk);
1060 	rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);
1061 
1062 	tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
1063 	tmp &= ~RDWR_EN_HI_CNT__VALUE;
1064 	tmp |= rdwr_en_hi;
1065 	iowrite32(tmp, denali->reg + RDWR_EN_HI_CNT);
1066 
1067 	/* tRP, tWP -> RDWR_EN_LO_CNT */
1068 	rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min),
1069 				  t_clk);
1070 	rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
1071 				     t_clk);
1072 	rdwr_en_lo_hi = max(rdwr_en_lo_hi, DENALI_CLK_X_MULT);
1073 	rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
1074 	rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);
1075 
1076 	tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
1077 	tmp &= ~RDWR_EN_LO_CNT__VALUE;
1078 	tmp |= rdwr_en_lo;
1079 	iowrite32(tmp, denali->reg + RDWR_EN_LO_CNT);
1080 
1081 	/* tCS, tCEA -> CS_SETUP_CNT */
1082 	cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_clk) - rdwr_en_lo,
1083 			(int)DIV_ROUND_UP(timings->tCEA_max, t_clk) - acc_clks,
1084 			0);
1085 	cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);
1086 
1087 	tmp = ioread32(denali->reg + CS_SETUP_CNT);
1088 	tmp &= ~CS_SETUP_CNT__VALUE;
1089 	tmp |= cs_setup;
1090 	iowrite32(tmp, denali->reg + CS_SETUP_CNT);
1091 
1092 	return 0;
1093 }
1094 
denali_reset_banks(struct denali_nand_info * denali)1095 static void denali_reset_banks(struct denali_nand_info *denali)
1096 {
1097 	u32 irq_status;
1098 	int i;
1099 
1100 	for (i = 0; i < denali->max_banks; i++) {
1101 		denali->active_bank = i;
1102 
1103 		denali_reset_irq(denali);
1104 
1105 		iowrite32(DEVICE_RESET__BANK(i),
1106 			  denali->reg + DEVICE_RESET);
1107 
1108 		irq_status = denali_wait_for_irq(denali,
1109 			INTR__RST_COMP | INTR__INT_ACT | INTR__TIME_OUT);
1110 		if (!(irq_status & INTR__INT_ACT))
1111 			break;
1112 	}
1113 
1114 	dev_dbg(denali->dev, "%d chips connected\n", i);
1115 	denali->max_banks = i;
1116 }
1117 
denali_hw_init(struct denali_nand_info * denali)1118 static void denali_hw_init(struct denali_nand_info *denali)
1119 {
1120 	/*
1121 	 * The REVISION register may not be reliable.  Platforms are allowed to
1122 	 * override it.
1123 	 */
1124 	if (!denali->revision)
1125 		denali->revision = swab16(ioread32(denali->reg + REVISION));
1126 
1127 	/*
1128 	 * tell driver how many bit controller will skip before
1129 	 * writing ECC code in OOB, this register may be already
1130 	 * set by firmware. So we read this value out.
1131 	 * if this value is 0, just let it be.
1132 	 */
1133 	denali->oob_skip_bytes = ioread32(denali->reg + SPARE_AREA_SKIP_BYTES);
1134 	detect_max_banks(denali);
1135 	iowrite32(0x0F, denali->reg + RB_PIN_ENABLED);
1136 	iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
1137 
1138 	iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
1139 
1140 	/* Should set value for these registers when init */
1141 	iowrite32(0, denali->reg + TWO_ROW_ADDR_CYCLES);
1142 	iowrite32(1, denali->reg + ECC_ENABLE);
1143 }
1144 
denali_calc_ecc_bytes(int step_size,int strength)1145 int denali_calc_ecc_bytes(int step_size, int strength)
1146 {
1147 	/* BCH code.  Denali requires ecc.bytes to be multiple of 2 */
1148 	return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
1149 }
1150 EXPORT_SYMBOL(denali_calc_ecc_bytes);
1151 
denali_ecc_setup(struct mtd_info * mtd,struct nand_chip * chip,struct denali_nand_info * denali)1152 static int denali_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip,
1153 			    struct denali_nand_info *denali)
1154 {
1155 	int oobavail = mtd->oobsize - denali->oob_skip_bytes;
1156 	int ret;
1157 
1158 	/*
1159 	 * If .size and .strength are already set (usually by DT),
1160 	 * check if they are supported by this controller.
1161 	 */
1162 	if (chip->ecc.size && chip->ecc.strength)
1163 		return nand_check_ecc_caps(chip, denali->ecc_caps, oobavail);
1164 
1165 	/*
1166 	 * We want .size and .strength closest to the chip's requirement
1167 	 * unless NAND_ECC_MAXIMIZE is requested.
1168 	 */
1169 	if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) {
1170 		ret = nand_match_ecc_req(chip, denali->ecc_caps, oobavail);
1171 		if (!ret)
1172 			return 0;
1173 	}
1174 
1175 	/* Max ECC strength is the last thing we can do */
1176 	return nand_maximize_ecc(chip, denali->ecc_caps, oobavail);
1177 }
1178 
denali_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1179 static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
1180 				struct mtd_oob_region *oobregion)
1181 {
1182 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1183 	struct nand_chip *chip = mtd_to_nand(mtd);
1184 
1185 	if (section)
1186 		return -ERANGE;
1187 
1188 	oobregion->offset = denali->oob_skip_bytes;
1189 	oobregion->length = chip->ecc.total;
1190 
1191 	return 0;
1192 }
1193 
denali_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1194 static int denali_ooblayout_free(struct mtd_info *mtd, int section,
1195 				 struct mtd_oob_region *oobregion)
1196 {
1197 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1198 	struct nand_chip *chip = mtd_to_nand(mtd);
1199 
1200 	if (section)
1201 		return -ERANGE;
1202 
1203 	oobregion->offset = chip->ecc.total + denali->oob_skip_bytes;
1204 	oobregion->length = mtd->oobsize - oobregion->offset;
1205 
1206 	return 0;
1207 }
1208 
1209 static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
1210 	.ecc = denali_ooblayout_ecc,
1211 	.free = denali_ooblayout_free,
1212 };
1213 
1214 /* initialize driver data structures */
denali_drv_init(struct denali_nand_info * denali)1215 static void denali_drv_init(struct denali_nand_info *denali)
1216 {
1217 	/*
1218 	 * the completion object will be used to notify
1219 	 * the callee that the interrupt is done
1220 	 */
1221 	init_completion(&denali->complete);
1222 
1223 	/*
1224 	 * the spinlock will be used to synchronize the ISR with any
1225 	 * element that might be access shared data (interrupt status)
1226 	 */
1227 	spin_lock_init(&denali->irq_lock);
1228 }
1229 
denali_multidev_fixup(struct denali_nand_info * denali)1230 static int denali_multidev_fixup(struct denali_nand_info *denali)
1231 {
1232 	struct nand_chip *chip = &denali->nand;
1233 	struct mtd_info *mtd = nand_to_mtd(chip);
1234 
1235 	/*
1236 	 * Support for multi device:
1237 	 * When the IP configuration is x16 capable and two x8 chips are
1238 	 * connected in parallel, DEVICES_CONNECTED should be set to 2.
1239 	 * In this case, the core framework knows nothing about this fact,
1240 	 * so we should tell it the _logical_ pagesize and anything necessary.
1241 	 */
1242 	denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED);
1243 
1244 	/*
1245 	 * On some SoCs, DEVICES_CONNECTED is not auto-detected.
1246 	 * For those, DEVICES_CONNECTED is left to 0.  Set 1 if it is the case.
1247 	 */
1248 	if (denali->devs_per_cs == 0) {
1249 		denali->devs_per_cs = 1;
1250 		iowrite32(1, denali->reg + DEVICES_CONNECTED);
1251 	}
1252 
1253 	if (denali->devs_per_cs == 1)
1254 		return 0;
1255 
1256 	if (denali->devs_per_cs != 2) {
1257 		dev_err(denali->dev, "unsupported number of devices %d\n",
1258 			denali->devs_per_cs);
1259 		return -EINVAL;
1260 	}
1261 
1262 	/* 2 chips in parallel */
1263 	mtd->size <<= 1;
1264 	mtd->erasesize <<= 1;
1265 	mtd->writesize <<= 1;
1266 	mtd->oobsize <<= 1;
1267 	chip->chipsize <<= 1;
1268 	chip->page_shift += 1;
1269 	chip->phys_erase_shift += 1;
1270 	chip->bbt_erase_shift += 1;
1271 	chip->chip_shift += 1;
1272 	chip->pagemask <<= 1;
1273 	chip->ecc.size <<= 1;
1274 	chip->ecc.bytes <<= 1;
1275 	chip->ecc.strength <<= 1;
1276 	denali->oob_skip_bytes <<= 1;
1277 
1278 	return 0;
1279 }
1280 
denali_init(struct denali_nand_info * denali)1281 int denali_init(struct denali_nand_info *denali)
1282 {
1283 	struct nand_chip *chip = &denali->nand;
1284 	struct mtd_info *mtd = nand_to_mtd(chip);
1285 	int ret;
1286 
1287 	mtd->dev.parent = denali->dev;
1288 	denali_hw_init(denali);
1289 	denali_drv_init(denali);
1290 
1291 	denali_clear_irq_all(denali);
1292 
1293 	/* Request IRQ after all the hardware initialization is finished */
1294 	ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
1295 			       IRQF_SHARED, DENALI_NAND_NAME, denali);
1296 	if (ret) {
1297 		dev_err(denali->dev, "Unable to request IRQ\n");
1298 		return ret;
1299 	}
1300 
1301 	denali_enable_irq(denali);
1302 	denali_reset_banks(denali);
1303 
1304 	denali->active_bank = DENALI_INVALID_BANK;
1305 
1306 	nand_set_flash_node(chip, denali->dev->of_node);
1307 	/* Fallback to the default name if DT did not give "label" property */
1308 	if (!mtd->name)
1309 		mtd->name = "denali-nand";
1310 
1311 	/* register the driver with the NAND core subsystem */
1312 	chip->select_chip = denali_select_chip;
1313 	chip->read_byte = denali_read_byte;
1314 	chip->write_byte = denali_write_byte;
1315 	chip->read_word = denali_read_word;
1316 	chip->cmd_ctrl = denali_cmd_ctrl;
1317 	chip->dev_ready = denali_dev_ready;
1318 	chip->waitfunc = denali_waitfunc;
1319 
1320 	/* clk rate info is needed for setup_data_interface */
1321 	if (denali->clk_x_rate)
1322 		chip->setup_data_interface = denali_setup_data_interface;
1323 
1324 	/*
1325 	 * scan for NAND devices attached to the controller
1326 	 * this is the first stage in a two step process to register
1327 	 * with the nand subsystem
1328 	 */
1329 	ret = nand_scan_ident(mtd, denali->max_banks, NULL);
1330 	if (ret)
1331 		goto disable_irq;
1332 
1333 	if (ioread32(denali->reg + FEATURES) & FEATURES__DMA)
1334 		denali->dma_avail = 1;
1335 
1336 	if (denali->dma_avail) {
1337 		int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32;
1338 
1339 		ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit));
1340 		if (ret) {
1341 			dev_info(denali->dev,
1342 				 "Failed to set DMA mask. Disabling DMA.\n");
1343 			denali->dma_avail = 0;
1344 		}
1345 	}
1346 
1347 	if (denali->dma_avail) {
1348 		chip->options |= NAND_USE_BOUNCE_BUFFER;
1349 		chip->buf_align = 16;
1350 	}
1351 
1352 	/*
1353 	 * second stage of the NAND scan
1354 	 * this stage requires information regarding ECC and
1355 	 * bad block management.
1356 	 */
1357 
1358 	chip->bbt_options |= NAND_BBT_USE_FLASH;
1359 	chip->bbt_options |= NAND_BBT_NO_OOB;
1360 
1361 	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
1362 
1363 	/* no subpage writes on denali */
1364 	chip->options |= NAND_NO_SUBPAGE_WRITE;
1365 
1366 	ret = denali_ecc_setup(mtd, chip, denali);
1367 	if (ret) {
1368 		dev_err(denali->dev, "Failed to setup ECC settings.\n");
1369 		goto disable_irq;
1370 	}
1371 
1372 	dev_dbg(denali->dev,
1373 		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
1374 		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
1375 
1376 	iowrite32(MAKE_ECC_CORRECTION(chip->ecc.strength, 1),
1377 		  denali->reg + ECC_CORRECTION);
1378 	iowrite32(mtd->erasesize / mtd->writesize,
1379 		  denali->reg + PAGES_PER_BLOCK);
1380 	iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
1381 		  denali->reg + DEVICE_WIDTH);
1382 	iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
1383 	iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
1384 
1385 	iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
1386 	iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
1387 	/* chip->ecc.steps is set by nand_scan_tail(); not available here */
1388 	iowrite32(mtd->writesize / chip->ecc.size,
1389 		  denali->reg + CFG_NUM_DATA_BLOCKS);
1390 
1391 	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
1392 
1393 	if (chip->options & NAND_BUSWIDTH_16) {
1394 		chip->read_buf = denali_read_buf16;
1395 		chip->write_buf = denali_write_buf16;
1396 	} else {
1397 		chip->read_buf = denali_read_buf;
1398 		chip->write_buf = denali_write_buf;
1399 	}
1400 	chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
1401 	chip->ecc.read_page = denali_read_page;
1402 	chip->ecc.read_page_raw = denali_read_page_raw;
1403 	chip->ecc.write_page = denali_write_page;
1404 	chip->ecc.write_page_raw = denali_write_page_raw;
1405 	chip->ecc.read_oob = denali_read_oob;
1406 	chip->ecc.write_oob = denali_write_oob;
1407 	chip->erase = denali_erase;
1408 
1409 	ret = denali_multidev_fixup(denali);
1410 	if (ret)
1411 		goto disable_irq;
1412 
1413 	/*
1414 	 * This buffer is DMA-mapped by denali_{read,write}_page_raw.  Do not
1415 	 * use devm_kmalloc() because the memory allocated by devm_ does not
1416 	 * guarantee DMA-safe alignment.
1417 	 */
1418 	denali->buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
1419 	if (!denali->buf) {
1420 		ret = -ENOMEM;
1421 		goto disable_irq;
1422 	}
1423 
1424 	ret = nand_scan_tail(mtd);
1425 	if (ret)
1426 		goto free_buf;
1427 
1428 	ret = mtd_device_register(mtd, NULL, 0);
1429 	if (ret) {
1430 		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
1431 		goto free_buf;
1432 	}
1433 	return 0;
1434 
1435 free_buf:
1436 	kfree(denali->buf);
1437 disable_irq:
1438 	denali_disable_irq(denali);
1439 
1440 	return ret;
1441 }
1442 EXPORT_SYMBOL(denali_init);
1443 
1444 /* driver exit point */
denali_remove(struct denali_nand_info * denali)1445 void denali_remove(struct denali_nand_info *denali)
1446 {
1447 	struct mtd_info *mtd = nand_to_mtd(&denali->nand);
1448 
1449 	nand_release(mtd);
1450 	kfree(denali->buf);
1451 	denali_disable_irq(denali);
1452 }
1453 EXPORT_SYMBOL(denali_remove);
1454