• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * drivers/mtd/nand/diskonchip.c
3  *
4  * (C) 2003 Red Hat, Inc.
5  * (C) 2004 Dan Brown <dan_brown@ieee.org>
6  * (C) 2004 Kalev Lember <kalev@smartlink.ee>
7  *
8  * Author: David Woodhouse <dwmw2@infradead.org>
9  * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10  * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
11  *
12  * Error correction code lifted from the old docecc code
13  * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14  * Copyright (C) 2000 Netgem S.A.
15  * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
16  *
17  * Interface to generic NAND code for M-Systems DiskOnChip devices
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23 #include <linux/delay.h>
24 #include <linux/rslib.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
27 #include <linux/io.h>
28 
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/rawnand.h>
31 #include <linux/mtd/doc2000.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/mtd/inftl.h>
34 #include <linux/module.h>
35 
36 /* Where to look for the devices? */
37 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
38 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
39 #endif
40 
41 static unsigned long doc_locations[] __initdata = {
42 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
43 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
44 	0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
45 	0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
46 	0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
47 	0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
48 	0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
49 #else
50 	0xc8000, 0xca000, 0xcc000, 0xce000,
51 	0xd0000, 0xd2000, 0xd4000, 0xd6000,
52 	0xd8000, 0xda000, 0xdc000, 0xde000,
53 	0xe0000, 0xe2000, 0xe4000, 0xe6000,
54 	0xe8000, 0xea000, 0xec000, 0xee000,
55 #endif
56 #endif
57 	0xffffffff };
58 
59 static struct mtd_info *doclist = NULL;
60 
61 struct doc_priv {
62 	void __iomem *virtadr;
63 	unsigned long physadr;
64 	u_char ChipID;
65 	u_char CDSNControl;
66 	int chips_per_floor;	/* The number of chips detected on each floor */
67 	int curfloor;
68 	int curchip;
69 	int mh0_page;
70 	int mh1_page;
71 	struct mtd_info *nextdoc;
72 
73 	/* Handle the last stage of initialization (BBT scan, partitioning) */
74 	int (*late_init)(struct mtd_info *mtd);
75 };
76 
77 /* This is the ecc value computed by the HW ecc generator upon writing an empty
78    page, one with all 0xff for data. */
79 static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
80 
81 #define INFTL_BBT_RESERVED_BLOCKS 4
82 
83 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
84 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
85 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
86 
87 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
88 			      unsigned int bitmask);
89 static void doc200x_select_chip(struct mtd_info *mtd, int chip);
90 
91 static int debug = 0;
92 module_param(debug, int, 0);
93 
94 static int try_dword = 1;
95 module_param(try_dword, int, 0);
96 
97 static int no_ecc_failures = 0;
98 module_param(no_ecc_failures, int, 0);
99 
100 static int no_autopart = 0;
101 module_param(no_autopart, int, 0);
102 
103 static int show_firmware_partition = 0;
104 module_param(show_firmware_partition, int, 0);
105 
106 #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
107 static int inftl_bbt_write = 1;
108 #else
109 static int inftl_bbt_write = 0;
110 #endif
111 module_param(inftl_bbt_write, int, 0);
112 
113 static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
114 module_param(doc_config_location, ulong, 0);
115 MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
116 
117 /* Sector size for HW ECC */
118 #define SECTOR_SIZE 512
119 /* The sector bytes are packed into NB_DATA 10 bit words */
120 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
121 /* Number of roots */
122 #define NROOTS 4
123 /* First consective root */
124 #define FCR 510
125 /* Number of symbols */
126 #define NN 1023
127 
128 /* the Reed Solomon control structure */
129 static struct rs_control *rs_decoder;
130 
131 /*
132  * The HW decoder in the DoC ASIC's provides us a error syndrome,
133  * which we must convert to a standard syndrome usable by the generic
134  * Reed-Solomon library code.
135  *
136  * Fabrice Bellard figured this out in the old docecc code. I added
137  * some comments, improved a minor bit and converted it to make use
138  * of the generic Reed-Solomon library. tglx
139  */
doc_ecc_decode(struct rs_control * rs,uint8_t * data,uint8_t * ecc)140 static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
141 {
142 	int i, j, nerr, errpos[8];
143 	uint8_t parity;
144 	uint16_t ds[4], s[5], tmp, errval[8], syn[4];
145 
146 	memset(syn, 0, sizeof(syn));
147 	/* Convert the ecc bytes into words */
148 	ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
149 	ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
150 	ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
151 	ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
152 	parity = ecc[1];
153 
154 	/* Initialize the syndrome buffer */
155 	for (i = 0; i < NROOTS; i++)
156 		s[i] = ds[0];
157 	/*
158 	 *  Evaluate
159 	 *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
160 	 *  where x = alpha^(FCR + i)
161 	 */
162 	for (j = 1; j < NROOTS; j++) {
163 		if (ds[j] == 0)
164 			continue;
165 		tmp = rs->index_of[ds[j]];
166 		for (i = 0; i < NROOTS; i++)
167 			s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
168 	}
169 
170 	/* Calc syn[i] = s[i] / alpha^(v + i) */
171 	for (i = 0; i < NROOTS; i++) {
172 		if (s[i])
173 			syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
174 	}
175 	/* Call the decoder library */
176 	nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
177 
178 	/* Incorrectable errors ? */
179 	if (nerr < 0)
180 		return nerr;
181 
182 	/*
183 	 * Correct the errors. The bitpositions are a bit of magic,
184 	 * but they are given by the design of the de/encoder circuit
185 	 * in the DoC ASIC's.
186 	 */
187 	for (i = 0; i < nerr; i++) {
188 		int index, bitpos, pos = 1015 - errpos[i];
189 		uint8_t val;
190 		if (pos >= NB_DATA && pos < 1019)
191 			continue;
192 		if (pos < NB_DATA) {
193 			/* extract bit position (MSB first) */
194 			pos = 10 * (NB_DATA - 1 - pos) - 6;
195 			/* now correct the following 10 bits. At most two bytes
196 			   can be modified since pos is even */
197 			index = (pos >> 3) ^ 1;
198 			bitpos = pos & 7;
199 			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
200 				val = (uint8_t) (errval[i] >> (2 + bitpos));
201 				parity ^= val;
202 				if (index < SECTOR_SIZE)
203 					data[index] ^= val;
204 			}
205 			index = ((pos >> 3) + 1) ^ 1;
206 			bitpos = (bitpos + 10) & 7;
207 			if (bitpos == 0)
208 				bitpos = 8;
209 			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
210 				val = (uint8_t) (errval[i] << (8 - bitpos));
211 				parity ^= val;
212 				if (index < SECTOR_SIZE)
213 					data[index] ^= val;
214 			}
215 		}
216 	}
217 	/* If the parity is wrong, no rescue possible */
218 	return parity ? -EBADMSG : nerr;
219 }
220 
DoC_Delay(struct doc_priv * doc,unsigned short cycles)221 static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
222 {
223 	volatile char dummy;
224 	int i;
225 
226 	for (i = 0; i < cycles; i++) {
227 		if (DoC_is_Millennium(doc))
228 			dummy = ReadDOC(doc->virtadr, NOP);
229 		else if (DoC_is_MillenniumPlus(doc))
230 			dummy = ReadDOC(doc->virtadr, Mplus_NOP);
231 		else
232 			dummy = ReadDOC(doc->virtadr, DOCStatus);
233 	}
234 
235 }
236 
237 #define CDSN_CTRL_FR_B_MASK	(CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
238 
239 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
_DoC_WaitReady(struct doc_priv * doc)240 static int _DoC_WaitReady(struct doc_priv *doc)
241 {
242 	void __iomem *docptr = doc->virtadr;
243 	unsigned long timeo = jiffies + (HZ * 10);
244 
245 	if (debug)
246 		printk("_DoC_WaitReady...\n");
247 	/* Out-of-line routine to wait for chip response */
248 	if (DoC_is_MillenniumPlus(doc)) {
249 		while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
250 			if (time_after(jiffies, timeo)) {
251 				printk("_DoC_WaitReady timed out.\n");
252 				return -EIO;
253 			}
254 			udelay(1);
255 			cond_resched();
256 		}
257 	} else {
258 		while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
259 			if (time_after(jiffies, timeo)) {
260 				printk("_DoC_WaitReady timed out.\n");
261 				return -EIO;
262 			}
263 			udelay(1);
264 			cond_resched();
265 		}
266 	}
267 
268 	return 0;
269 }
270 
DoC_WaitReady(struct doc_priv * doc)271 static inline int DoC_WaitReady(struct doc_priv *doc)
272 {
273 	void __iomem *docptr = doc->virtadr;
274 	int ret = 0;
275 
276 	if (DoC_is_MillenniumPlus(doc)) {
277 		DoC_Delay(doc, 4);
278 
279 		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
280 			/* Call the out-of-line routine to wait */
281 			ret = _DoC_WaitReady(doc);
282 	} else {
283 		DoC_Delay(doc, 4);
284 
285 		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
286 			/* Call the out-of-line routine to wait */
287 			ret = _DoC_WaitReady(doc);
288 		DoC_Delay(doc, 2);
289 	}
290 
291 	if (debug)
292 		printk("DoC_WaitReady OK\n");
293 	return ret;
294 }
295 
doc2000_write_byte(struct mtd_info * mtd,u_char datum)296 static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
297 {
298 	struct nand_chip *this = mtd_to_nand(mtd);
299 	struct doc_priv *doc = nand_get_controller_data(this);
300 	void __iomem *docptr = doc->virtadr;
301 
302 	if (debug)
303 		printk("write_byte %02x\n", datum);
304 	WriteDOC(datum, docptr, CDSNSlowIO);
305 	WriteDOC(datum, docptr, 2k_CDSN_IO);
306 }
307 
doc2000_read_byte(struct mtd_info * mtd)308 static u_char doc2000_read_byte(struct mtd_info *mtd)
309 {
310 	struct nand_chip *this = mtd_to_nand(mtd);
311 	struct doc_priv *doc = nand_get_controller_data(this);
312 	void __iomem *docptr = doc->virtadr;
313 	u_char ret;
314 
315 	ReadDOC(docptr, CDSNSlowIO);
316 	DoC_Delay(doc, 2);
317 	ret = ReadDOC(docptr, 2k_CDSN_IO);
318 	if (debug)
319 		printk("read_byte returns %02x\n", ret);
320 	return ret;
321 }
322 
doc2000_writebuf(struct mtd_info * mtd,const u_char * buf,int len)323 static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
324 {
325 	struct nand_chip *this = mtd_to_nand(mtd);
326 	struct doc_priv *doc = nand_get_controller_data(this);
327 	void __iomem *docptr = doc->virtadr;
328 	int i;
329 	if (debug)
330 		printk("writebuf of %d bytes: ", len);
331 	for (i = 0; i < len; i++) {
332 		WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
333 		if (debug && i < 16)
334 			printk("%02x ", buf[i]);
335 	}
336 	if (debug)
337 		printk("\n");
338 }
339 
doc2000_readbuf(struct mtd_info * mtd,u_char * buf,int len)340 static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
341 {
342 	struct nand_chip *this = mtd_to_nand(mtd);
343 	struct doc_priv *doc = nand_get_controller_data(this);
344 	void __iomem *docptr = doc->virtadr;
345 	int i;
346 
347 	if (debug)
348 		printk("readbuf of %d bytes: ", len);
349 
350 	for (i = 0; i < len; i++) {
351 		buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
352 	}
353 }
354 
doc2000_readbuf_dword(struct mtd_info * mtd,u_char * buf,int len)355 static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
356 {
357 	struct nand_chip *this = mtd_to_nand(mtd);
358 	struct doc_priv *doc = nand_get_controller_data(this);
359 	void __iomem *docptr = doc->virtadr;
360 	int i;
361 
362 	if (debug)
363 		printk("readbuf_dword of %d bytes: ", len);
364 
365 	if (unlikely((((unsigned long)buf) | len) & 3)) {
366 		for (i = 0; i < len; i++) {
367 			*(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
368 		}
369 	} else {
370 		for (i = 0; i < len; i += 4) {
371 			*(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
372 		}
373 	}
374 }
375 
doc200x_ident_chip(struct mtd_info * mtd,int nr)376 static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
377 {
378 	struct nand_chip *this = mtd_to_nand(mtd);
379 	struct doc_priv *doc = nand_get_controller_data(this);
380 	uint16_t ret;
381 
382 	doc200x_select_chip(mtd, nr);
383 	doc200x_hwcontrol(mtd, NAND_CMD_READID,
384 			  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
385 	doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
386 	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
387 
388 	/* We can't use dev_ready here, but at least we wait for the
389 	 * command to complete
390 	 */
391 	udelay(50);
392 
393 	ret = this->read_byte(mtd) << 8;
394 	ret |= this->read_byte(mtd);
395 
396 	if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
397 		/* First chip probe. See if we get same results by 32-bit access */
398 		union {
399 			uint32_t dword;
400 			uint8_t byte[4];
401 		} ident;
402 		void __iomem *docptr = doc->virtadr;
403 
404 		doc200x_hwcontrol(mtd, NAND_CMD_READID,
405 				  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
406 		doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
407 		doc200x_hwcontrol(mtd, NAND_CMD_NONE,
408 				  NAND_NCE | NAND_CTRL_CHANGE);
409 
410 		udelay(50);
411 
412 		ident.dword = readl(docptr + DoC_2k_CDSN_IO);
413 		if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
414 			printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
415 			this->read_buf = &doc2000_readbuf_dword;
416 		}
417 	}
418 
419 	return ret;
420 }
421 
doc2000_count_chips(struct mtd_info * mtd)422 static void __init doc2000_count_chips(struct mtd_info *mtd)
423 {
424 	struct nand_chip *this = mtd_to_nand(mtd);
425 	struct doc_priv *doc = nand_get_controller_data(this);
426 	uint16_t mfrid;
427 	int i;
428 
429 	/* Max 4 chips per floor on DiskOnChip 2000 */
430 	doc->chips_per_floor = 4;
431 
432 	/* Find out what the first chip is */
433 	mfrid = doc200x_ident_chip(mtd, 0);
434 
435 	/* Find how many chips in each floor. */
436 	for (i = 1; i < 4; i++) {
437 		if (doc200x_ident_chip(mtd, i) != mfrid)
438 			break;
439 	}
440 	doc->chips_per_floor = i;
441 	printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
442 }
443 
doc200x_wait(struct mtd_info * mtd,struct nand_chip * this)444 static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
445 {
446 	struct doc_priv *doc = nand_get_controller_data(this);
447 
448 	int status;
449 
450 	DoC_WaitReady(doc);
451 	this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
452 	DoC_WaitReady(doc);
453 	status = (int)this->read_byte(mtd);
454 
455 	return status;
456 }
457 
doc2001_write_byte(struct mtd_info * mtd,u_char datum)458 static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
459 {
460 	struct nand_chip *this = mtd_to_nand(mtd);
461 	struct doc_priv *doc = nand_get_controller_data(this);
462 	void __iomem *docptr = doc->virtadr;
463 
464 	WriteDOC(datum, docptr, CDSNSlowIO);
465 	WriteDOC(datum, docptr, Mil_CDSN_IO);
466 	WriteDOC(datum, docptr, WritePipeTerm);
467 }
468 
doc2001_read_byte(struct mtd_info * mtd)469 static u_char doc2001_read_byte(struct mtd_info *mtd)
470 {
471 	struct nand_chip *this = mtd_to_nand(mtd);
472 	struct doc_priv *doc = nand_get_controller_data(this);
473 	void __iomem *docptr = doc->virtadr;
474 
475 	//ReadDOC(docptr, CDSNSlowIO);
476 	/* 11.4.5 -- delay twice to allow extended length cycle */
477 	DoC_Delay(doc, 2);
478 	ReadDOC(docptr, ReadPipeInit);
479 	//return ReadDOC(docptr, Mil_CDSN_IO);
480 	return ReadDOC(docptr, LastDataRead);
481 }
482 
doc2001_writebuf(struct mtd_info * mtd,const u_char * buf,int len)483 static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
484 {
485 	struct nand_chip *this = mtd_to_nand(mtd);
486 	struct doc_priv *doc = nand_get_controller_data(this);
487 	void __iomem *docptr = doc->virtadr;
488 	int i;
489 
490 	for (i = 0; i < len; i++)
491 		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
492 	/* Terminate write pipeline */
493 	WriteDOC(0x00, docptr, WritePipeTerm);
494 }
495 
doc2001_readbuf(struct mtd_info * mtd,u_char * buf,int len)496 static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
497 {
498 	struct nand_chip *this = mtd_to_nand(mtd);
499 	struct doc_priv *doc = nand_get_controller_data(this);
500 	void __iomem *docptr = doc->virtadr;
501 	int i;
502 
503 	/* Start read pipeline */
504 	ReadDOC(docptr, ReadPipeInit);
505 
506 	for (i = 0; i < len - 1; i++)
507 		buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
508 
509 	/* Terminate read pipeline */
510 	buf[i] = ReadDOC(docptr, LastDataRead);
511 }
512 
doc2001plus_read_byte(struct mtd_info * mtd)513 static u_char doc2001plus_read_byte(struct mtd_info *mtd)
514 {
515 	struct nand_chip *this = mtd_to_nand(mtd);
516 	struct doc_priv *doc = nand_get_controller_data(this);
517 	void __iomem *docptr = doc->virtadr;
518 	u_char ret;
519 
520 	ReadDOC(docptr, Mplus_ReadPipeInit);
521 	ReadDOC(docptr, Mplus_ReadPipeInit);
522 	ret = ReadDOC(docptr, Mplus_LastDataRead);
523 	if (debug)
524 		printk("read_byte returns %02x\n", ret);
525 	return ret;
526 }
527 
doc2001plus_writebuf(struct mtd_info * mtd,const u_char * buf,int len)528 static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
529 {
530 	struct nand_chip *this = mtd_to_nand(mtd);
531 	struct doc_priv *doc = nand_get_controller_data(this);
532 	void __iomem *docptr = doc->virtadr;
533 	int i;
534 
535 	if (debug)
536 		printk("writebuf of %d bytes: ", len);
537 	for (i = 0; i < len; i++) {
538 		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
539 		if (debug && i < 16)
540 			printk("%02x ", buf[i]);
541 	}
542 	if (debug)
543 		printk("\n");
544 }
545 
doc2001plus_readbuf(struct mtd_info * mtd,u_char * buf,int len)546 static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
547 {
548 	struct nand_chip *this = mtd_to_nand(mtd);
549 	struct doc_priv *doc = nand_get_controller_data(this);
550 	void __iomem *docptr = doc->virtadr;
551 	int i;
552 
553 	if (debug)
554 		printk("readbuf of %d bytes: ", len);
555 
556 	/* Start read pipeline */
557 	ReadDOC(docptr, Mplus_ReadPipeInit);
558 	ReadDOC(docptr, Mplus_ReadPipeInit);
559 
560 	for (i = 0; i < len - 2; i++) {
561 		buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
562 		if (debug && i < 16)
563 			printk("%02x ", buf[i]);
564 	}
565 
566 	/* Terminate read pipeline */
567 	buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
568 	if (debug && i < 16)
569 		printk("%02x ", buf[len - 2]);
570 	buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
571 	if (debug && i < 16)
572 		printk("%02x ", buf[len - 1]);
573 	if (debug)
574 		printk("\n");
575 }
576 
doc2001plus_select_chip(struct mtd_info * mtd,int chip)577 static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
578 {
579 	struct nand_chip *this = mtd_to_nand(mtd);
580 	struct doc_priv *doc = nand_get_controller_data(this);
581 	void __iomem *docptr = doc->virtadr;
582 	int floor = 0;
583 
584 	if (debug)
585 		printk("select chip (%d)\n", chip);
586 
587 	if (chip == -1) {
588 		/* Disable flash internally */
589 		WriteDOC(0, docptr, Mplus_FlashSelect);
590 		return;
591 	}
592 
593 	floor = chip / doc->chips_per_floor;
594 	chip -= (floor * doc->chips_per_floor);
595 
596 	/* Assert ChipEnable and deassert WriteProtect */
597 	WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
598 	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
599 
600 	doc->curchip = chip;
601 	doc->curfloor = floor;
602 }
603 
doc200x_select_chip(struct mtd_info * mtd,int chip)604 static void doc200x_select_chip(struct mtd_info *mtd, int chip)
605 {
606 	struct nand_chip *this = mtd_to_nand(mtd);
607 	struct doc_priv *doc = nand_get_controller_data(this);
608 	void __iomem *docptr = doc->virtadr;
609 	int floor = 0;
610 
611 	if (debug)
612 		printk("select chip (%d)\n", chip);
613 
614 	if (chip == -1)
615 		return;
616 
617 	floor = chip / doc->chips_per_floor;
618 	chip -= (floor * doc->chips_per_floor);
619 
620 	/* 11.4.4 -- deassert CE before changing chip */
621 	doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
622 
623 	WriteDOC(floor, docptr, FloorSelect);
624 	WriteDOC(chip, docptr, CDSNDeviceSelect);
625 
626 	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
627 
628 	doc->curchip = chip;
629 	doc->curfloor = floor;
630 }
631 
632 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
633 
doc200x_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)634 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
635 			      unsigned int ctrl)
636 {
637 	struct nand_chip *this = mtd_to_nand(mtd);
638 	struct doc_priv *doc = nand_get_controller_data(this);
639 	void __iomem *docptr = doc->virtadr;
640 
641 	if (ctrl & NAND_CTRL_CHANGE) {
642 		doc->CDSNControl &= ~CDSN_CTRL_MSK;
643 		doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
644 		if (debug)
645 			printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
646 		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
647 		/* 11.4.3 -- 4 NOPs after CSDNControl write */
648 		DoC_Delay(doc, 4);
649 	}
650 	if (cmd != NAND_CMD_NONE) {
651 		if (DoC_is_2000(doc))
652 			doc2000_write_byte(mtd, cmd);
653 		else
654 			doc2001_write_byte(mtd, cmd);
655 	}
656 }
657 
doc2001plus_command(struct mtd_info * mtd,unsigned command,int column,int page_addr)658 static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
659 {
660 	struct nand_chip *this = mtd_to_nand(mtd);
661 	struct doc_priv *doc = nand_get_controller_data(this);
662 	void __iomem *docptr = doc->virtadr;
663 
664 	/*
665 	 * Must terminate write pipeline before sending any commands
666 	 * to the device.
667 	 */
668 	if (command == NAND_CMD_PAGEPROG) {
669 		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
670 		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
671 	}
672 
673 	/*
674 	 * Write out the command to the device.
675 	 */
676 	if (command == NAND_CMD_SEQIN) {
677 		int readcmd;
678 
679 		if (column >= mtd->writesize) {
680 			/* OOB area */
681 			column -= mtd->writesize;
682 			readcmd = NAND_CMD_READOOB;
683 		} else if (column < 256) {
684 			/* First 256 bytes --> READ0 */
685 			readcmd = NAND_CMD_READ0;
686 		} else {
687 			column -= 256;
688 			readcmd = NAND_CMD_READ1;
689 		}
690 		WriteDOC(readcmd, docptr, Mplus_FlashCmd);
691 	}
692 	WriteDOC(command, docptr, Mplus_FlashCmd);
693 	WriteDOC(0, docptr, Mplus_WritePipeTerm);
694 	WriteDOC(0, docptr, Mplus_WritePipeTerm);
695 
696 	if (column != -1 || page_addr != -1) {
697 		/* Serially input address */
698 		if (column != -1) {
699 			/* Adjust columns for 16 bit buswidth */
700 			if (this->options & NAND_BUSWIDTH_16 &&
701 					!nand_opcode_8bits(command))
702 				column >>= 1;
703 			WriteDOC(column, docptr, Mplus_FlashAddress);
704 		}
705 		if (page_addr != -1) {
706 			WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
707 			WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
708 			/* One more address cycle for higher density devices */
709 			if (this->chipsize & 0x0c000000) {
710 				WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
711 				printk("high density\n");
712 			}
713 		}
714 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
715 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
716 		/* deassert ALE */
717 		if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
718 		    command == NAND_CMD_READOOB || command == NAND_CMD_READID)
719 			WriteDOC(0, docptr, Mplus_FlashControl);
720 	}
721 
722 	/*
723 	 * program and erase have their own busy handlers
724 	 * status and sequential in needs no delay
725 	 */
726 	switch (command) {
727 
728 	case NAND_CMD_PAGEPROG:
729 	case NAND_CMD_ERASE1:
730 	case NAND_CMD_ERASE2:
731 	case NAND_CMD_SEQIN:
732 	case NAND_CMD_STATUS:
733 		return;
734 
735 	case NAND_CMD_RESET:
736 		if (this->dev_ready)
737 			break;
738 		udelay(this->chip_delay);
739 		WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
740 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
741 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
742 		while (!(this->read_byte(mtd) & 0x40)) ;
743 		return;
744 
745 		/* This applies to read commands */
746 	default:
747 		/*
748 		 * If we don't have access to the busy pin, we apply the given
749 		 * command delay
750 		 */
751 		if (!this->dev_ready) {
752 			udelay(this->chip_delay);
753 			return;
754 		}
755 	}
756 
757 	/* Apply this short delay always to ensure that we do wait tWB in
758 	 * any case on any machine. */
759 	ndelay(100);
760 	/* wait until command is processed */
761 	while (!this->dev_ready(mtd)) ;
762 }
763 
doc200x_dev_ready(struct mtd_info * mtd)764 static int doc200x_dev_ready(struct mtd_info *mtd)
765 {
766 	struct nand_chip *this = mtd_to_nand(mtd);
767 	struct doc_priv *doc = nand_get_controller_data(this);
768 	void __iomem *docptr = doc->virtadr;
769 
770 	if (DoC_is_MillenniumPlus(doc)) {
771 		/* 11.4.2 -- must NOP four times before checking FR/B# */
772 		DoC_Delay(doc, 4);
773 		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
774 			if (debug)
775 				printk("not ready\n");
776 			return 0;
777 		}
778 		if (debug)
779 			printk("was ready\n");
780 		return 1;
781 	} else {
782 		/* 11.4.2 -- must NOP four times before checking FR/B# */
783 		DoC_Delay(doc, 4);
784 		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
785 			if (debug)
786 				printk("not ready\n");
787 			return 0;
788 		}
789 		/* 11.4.2 -- Must NOP twice if it's ready */
790 		DoC_Delay(doc, 2);
791 		if (debug)
792 			printk("was ready\n");
793 		return 1;
794 	}
795 }
796 
doc200x_block_bad(struct mtd_info * mtd,loff_t ofs)797 static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs)
798 {
799 	/* This is our last resort if we couldn't find or create a BBT.  Just
800 	   pretend all blocks are good. */
801 	return 0;
802 }
803 
doc200x_enable_hwecc(struct mtd_info * mtd,int mode)804 static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
805 {
806 	struct nand_chip *this = mtd_to_nand(mtd);
807 	struct doc_priv *doc = nand_get_controller_data(this);
808 	void __iomem *docptr = doc->virtadr;
809 
810 	/* Prime the ECC engine */
811 	switch (mode) {
812 	case NAND_ECC_READ:
813 		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
814 		WriteDOC(DOC_ECC_EN, docptr, ECCConf);
815 		break;
816 	case NAND_ECC_WRITE:
817 		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
818 		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
819 		break;
820 	}
821 }
822 
doc2001plus_enable_hwecc(struct mtd_info * mtd,int mode)823 static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
824 {
825 	struct nand_chip *this = mtd_to_nand(mtd);
826 	struct doc_priv *doc = nand_get_controller_data(this);
827 	void __iomem *docptr = doc->virtadr;
828 
829 	/* Prime the ECC engine */
830 	switch (mode) {
831 	case NAND_ECC_READ:
832 		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
833 		WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
834 		break;
835 	case NAND_ECC_WRITE:
836 		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
837 		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
838 		break;
839 	}
840 }
841 
842 /* This code is only called on write */
doc200x_calculate_ecc(struct mtd_info * mtd,const u_char * dat,unsigned char * ecc_code)843 static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
844 {
845 	struct nand_chip *this = mtd_to_nand(mtd);
846 	struct doc_priv *doc = nand_get_controller_data(this);
847 	void __iomem *docptr = doc->virtadr;
848 	int i;
849 	int emptymatch = 1;
850 
851 	/* flush the pipeline */
852 	if (DoC_is_2000(doc)) {
853 		WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
854 		WriteDOC(0, docptr, 2k_CDSN_IO);
855 		WriteDOC(0, docptr, 2k_CDSN_IO);
856 		WriteDOC(0, docptr, 2k_CDSN_IO);
857 		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
858 	} else if (DoC_is_MillenniumPlus(doc)) {
859 		WriteDOC(0, docptr, Mplus_NOP);
860 		WriteDOC(0, docptr, Mplus_NOP);
861 		WriteDOC(0, docptr, Mplus_NOP);
862 	} else {
863 		WriteDOC(0, docptr, NOP);
864 		WriteDOC(0, docptr, NOP);
865 		WriteDOC(0, docptr, NOP);
866 	}
867 
868 	for (i = 0; i < 6; i++) {
869 		if (DoC_is_MillenniumPlus(doc))
870 			ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
871 		else
872 			ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
873 		if (ecc_code[i] != empty_write_ecc[i])
874 			emptymatch = 0;
875 	}
876 	if (DoC_is_MillenniumPlus(doc))
877 		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
878 	else
879 		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
880 #if 0
881 	/* If emptymatch=1, we might have an all-0xff data buffer.  Check. */
882 	if (emptymatch) {
883 		/* Note: this somewhat expensive test should not be triggered
884 		   often.  It could be optimized away by examining the data in
885 		   the writebuf routine, and remembering the result. */
886 		for (i = 0; i < 512; i++) {
887 			if (dat[i] == 0xff)
888 				continue;
889 			emptymatch = 0;
890 			break;
891 		}
892 	}
893 	/* If emptymatch still =1, we do have an all-0xff data buffer.
894 	   Return all-0xff ecc value instead of the computed one, so
895 	   it'll look just like a freshly-erased page. */
896 	if (emptymatch)
897 		memset(ecc_code, 0xff, 6);
898 #endif
899 	return 0;
900 }
901 
doc200x_correct_data(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * isnull)902 static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
903 				u_char *read_ecc, u_char *isnull)
904 {
905 	int i, ret = 0;
906 	struct nand_chip *this = mtd_to_nand(mtd);
907 	struct doc_priv *doc = nand_get_controller_data(this);
908 	void __iomem *docptr = doc->virtadr;
909 	uint8_t calc_ecc[6];
910 	volatile u_char dummy;
911 
912 	/* flush the pipeline */
913 	if (DoC_is_2000(doc)) {
914 		dummy = ReadDOC(docptr, 2k_ECCStatus);
915 		dummy = ReadDOC(docptr, 2k_ECCStatus);
916 		dummy = ReadDOC(docptr, 2k_ECCStatus);
917 	} else if (DoC_is_MillenniumPlus(doc)) {
918 		dummy = ReadDOC(docptr, Mplus_ECCConf);
919 		dummy = ReadDOC(docptr, Mplus_ECCConf);
920 		dummy = ReadDOC(docptr, Mplus_ECCConf);
921 	} else {
922 		dummy = ReadDOC(docptr, ECCConf);
923 		dummy = ReadDOC(docptr, ECCConf);
924 		dummy = ReadDOC(docptr, ECCConf);
925 	}
926 
927 	/* Error occurred ? */
928 	if (dummy & 0x80) {
929 		for (i = 0; i < 6; i++) {
930 			if (DoC_is_MillenniumPlus(doc))
931 				calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
932 			else
933 				calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
934 		}
935 
936 		ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
937 		if (ret > 0)
938 			printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
939 	}
940 	if (DoC_is_MillenniumPlus(doc))
941 		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
942 	else
943 		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
944 	if (no_ecc_failures && mtd_is_eccerr(ret)) {
945 		printk(KERN_ERR "suppressing ECC failure\n");
946 		ret = 0;
947 	}
948 	return ret;
949 }
950 
951 //u_char mydatabuf[528];
952 
doc200x_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)953 static int doc200x_ooblayout_ecc(struct mtd_info *mtd, int section,
954 				 struct mtd_oob_region *oobregion)
955 {
956 	if (section)
957 		return -ERANGE;
958 
959 	oobregion->offset = 0;
960 	oobregion->length = 6;
961 
962 	return 0;
963 }
964 
doc200x_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)965 static int doc200x_ooblayout_free(struct mtd_info *mtd, int section,
966 				  struct mtd_oob_region *oobregion)
967 {
968 	if (section > 1)
969 		return -ERANGE;
970 
971 	/*
972 	 * The strange out-of-order free bytes definition is a (possibly
973 	 * unneeded) attempt to retain compatibility.  It used to read:
974 	 *	.oobfree = { {8, 8} }
975 	 * Since that leaves two bytes unusable, it was changed.  But the
976 	 * following scheme might affect existing jffs2 installs by moving the
977 	 * cleanmarker:
978 	 *	.oobfree = { {6, 10} }
979 	 * jffs2 seems to handle the above gracefully, but the current scheme
980 	 * seems safer. The only problem with it is that any code retrieving
981 	 * free bytes position must be able to handle out-of-order segments.
982 	 */
983 	if (!section) {
984 		oobregion->offset = 8;
985 		oobregion->length = 8;
986 	} else {
987 		oobregion->offset = 6;
988 		oobregion->length = 2;
989 	}
990 
991 	return 0;
992 }
993 
994 static const struct mtd_ooblayout_ops doc200x_ooblayout_ops = {
995 	.ecc = doc200x_ooblayout_ecc,
996 	.free = doc200x_ooblayout_free,
997 };
998 
999 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1000    On successful return, buf will contain a copy of the media header for
1001    further processing.  id is the string to scan for, and will presumably be
1002    either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media
1003    header.  The page #s of the found media headers are placed in mh0_page and
1004    mh1_page in the DOC private structure. */
find_media_headers(struct mtd_info * mtd,u_char * buf,const char * id,int findmirror)1005 static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1006 {
1007 	struct nand_chip *this = mtd_to_nand(mtd);
1008 	struct doc_priv *doc = nand_get_controller_data(this);
1009 	unsigned offs;
1010 	int ret;
1011 	size_t retlen;
1012 
1013 	for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1014 		ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1015 		if (retlen != mtd->writesize)
1016 			continue;
1017 		if (ret) {
1018 			printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1019 		}
1020 		if (memcmp(buf, id, 6))
1021 			continue;
1022 		printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1023 		if (doc->mh0_page == -1) {
1024 			doc->mh0_page = offs >> this->page_shift;
1025 			if (!findmirror)
1026 				return 1;
1027 			continue;
1028 		}
1029 		doc->mh1_page = offs >> this->page_shift;
1030 		return 2;
1031 	}
1032 	if (doc->mh0_page == -1) {
1033 		printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1034 		return 0;
1035 	}
1036 	/* Only one mediaheader was found.  We want buf to contain a
1037 	   mediaheader on return, so we'll have to re-read the one we found. */
1038 	offs = doc->mh0_page << this->page_shift;
1039 	ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1040 	if (retlen != mtd->writesize) {
1041 		/* Insanity.  Give up. */
1042 		printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1043 		return 0;
1044 	}
1045 	return 1;
1046 }
1047 
nftl_partscan(struct mtd_info * mtd,struct mtd_partition * parts)1048 static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1049 {
1050 	struct nand_chip *this = mtd_to_nand(mtd);
1051 	struct doc_priv *doc = nand_get_controller_data(this);
1052 	int ret = 0;
1053 	u_char *buf;
1054 	struct NFTLMediaHeader *mh;
1055 	const unsigned psize = 1 << this->page_shift;
1056 	int numparts = 0;
1057 	unsigned blocks, maxblocks;
1058 	int offs, numheaders;
1059 
1060 	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1061 	if (!buf) {
1062 		return 0;
1063 	}
1064 	if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1065 		goto out;
1066 	mh = (struct NFTLMediaHeader *)buf;
1067 
1068 	le16_to_cpus(&mh->NumEraseUnits);
1069 	le16_to_cpus(&mh->FirstPhysicalEUN);
1070 	le32_to_cpus(&mh->FormattedSize);
1071 
1072 	printk(KERN_INFO "    DataOrgID        = %s\n"
1073 			 "    NumEraseUnits    = %d\n"
1074 			 "    FirstPhysicalEUN = %d\n"
1075 			 "    FormattedSize    = %d\n"
1076 			 "    UnitSizeFactor   = %d\n",
1077 		mh->DataOrgID, mh->NumEraseUnits,
1078 		mh->FirstPhysicalEUN, mh->FormattedSize,
1079 		mh->UnitSizeFactor);
1080 
1081 	blocks = mtd->size >> this->phys_erase_shift;
1082 	maxblocks = min(32768U, mtd->erasesize - psize);
1083 
1084 	if (mh->UnitSizeFactor == 0x00) {
1085 		/* Auto-determine UnitSizeFactor.  The constraints are:
1086 		   - There can be at most 32768 virtual blocks.
1087 		   - There can be at most (virtual block size - page size)
1088 		   virtual blocks (because MediaHeader+BBT must fit in 1).
1089 		 */
1090 		mh->UnitSizeFactor = 0xff;
1091 		while (blocks > maxblocks) {
1092 			blocks >>= 1;
1093 			maxblocks = min(32768U, (maxblocks << 1) + psize);
1094 			mh->UnitSizeFactor--;
1095 		}
1096 		printk(KERN_WARNING "UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1097 	}
1098 
1099 	/* NOTE: The lines below modify internal variables of the NAND and MTD
1100 	   layers; variables with have already been configured by nand_scan.
1101 	   Unfortunately, we didn't know before this point what these values
1102 	   should be.  Thus, this code is somewhat dependent on the exact
1103 	   implementation of the NAND layer.  */
1104 	if (mh->UnitSizeFactor != 0xff) {
1105 		this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1106 		mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1107 		printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1108 		blocks = mtd->size >> this->bbt_erase_shift;
1109 		maxblocks = min(32768U, mtd->erasesize - psize);
1110 	}
1111 
1112 	if (blocks > maxblocks) {
1113 		printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
1114 		goto out;
1115 	}
1116 
1117 	/* Skip past the media headers. */
1118 	offs = max(doc->mh0_page, doc->mh1_page);
1119 	offs <<= this->page_shift;
1120 	offs += mtd->erasesize;
1121 
1122 	if (show_firmware_partition == 1) {
1123 		parts[0].name = " DiskOnChip Firmware / Media Header partition";
1124 		parts[0].offset = 0;
1125 		parts[0].size = offs;
1126 		numparts = 1;
1127 	}
1128 
1129 	parts[numparts].name = " DiskOnChip BDTL partition";
1130 	parts[numparts].offset = offs;
1131 	parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1132 
1133 	offs += parts[numparts].size;
1134 	numparts++;
1135 
1136 	if (offs < mtd->size) {
1137 		parts[numparts].name = " DiskOnChip Remainder partition";
1138 		parts[numparts].offset = offs;
1139 		parts[numparts].size = mtd->size - offs;
1140 		numparts++;
1141 	}
1142 
1143 	ret = numparts;
1144  out:
1145 	kfree(buf);
1146 	return ret;
1147 }
1148 
1149 /* This is a stripped-down copy of the code in inftlmount.c */
inftl_partscan(struct mtd_info * mtd,struct mtd_partition * parts)1150 static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1151 {
1152 	struct nand_chip *this = mtd_to_nand(mtd);
1153 	struct doc_priv *doc = nand_get_controller_data(this);
1154 	int ret = 0;
1155 	u_char *buf;
1156 	struct INFTLMediaHeader *mh;
1157 	struct INFTLPartition *ip;
1158 	int numparts = 0;
1159 	int blocks;
1160 	int vshift, lastvunit = 0;
1161 	int i;
1162 	int end = mtd->size;
1163 
1164 	if (inftl_bbt_write)
1165 		end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1166 
1167 	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1168 	if (!buf) {
1169 		return 0;
1170 	}
1171 
1172 	if (!find_media_headers(mtd, buf, "BNAND", 0))
1173 		goto out;
1174 	doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1175 	mh = (struct INFTLMediaHeader *)buf;
1176 
1177 	le32_to_cpus(&mh->NoOfBootImageBlocks);
1178 	le32_to_cpus(&mh->NoOfBinaryPartitions);
1179 	le32_to_cpus(&mh->NoOfBDTLPartitions);
1180 	le32_to_cpus(&mh->BlockMultiplierBits);
1181 	le32_to_cpus(&mh->FormatFlags);
1182 	le32_to_cpus(&mh->PercentUsed);
1183 
1184 	printk(KERN_INFO "    bootRecordID          = %s\n"
1185 			 "    NoOfBootImageBlocks   = %d\n"
1186 			 "    NoOfBinaryPartitions  = %d\n"
1187 			 "    NoOfBDTLPartitions    = %d\n"
1188 			 "    BlockMultiplerBits    = %d\n"
1189 			 "    FormatFlgs            = %d\n"
1190 			 "    OsakVersion           = %d.%d.%d.%d\n"
1191 			 "    PercentUsed           = %d\n",
1192 		mh->bootRecordID, mh->NoOfBootImageBlocks,
1193 		mh->NoOfBinaryPartitions,
1194 		mh->NoOfBDTLPartitions,
1195 		mh->BlockMultiplierBits, mh->FormatFlags,
1196 		((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1197 		((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1198 		((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1199 		((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1200 		mh->PercentUsed);
1201 
1202 	vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1203 
1204 	blocks = mtd->size >> vshift;
1205 	if (blocks > 32768) {
1206 		printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
1207 		goto out;
1208 	}
1209 
1210 	blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1211 	if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1212 		printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
1213 		goto out;
1214 	}
1215 
1216 	/* Scan the partitions */
1217 	for (i = 0; (i < 4); i++) {
1218 		ip = &(mh->Partitions[i]);
1219 		le32_to_cpus(&ip->virtualUnits);
1220 		le32_to_cpus(&ip->firstUnit);
1221 		le32_to_cpus(&ip->lastUnit);
1222 		le32_to_cpus(&ip->flags);
1223 		le32_to_cpus(&ip->spareUnits);
1224 		le32_to_cpus(&ip->Reserved0);
1225 
1226 		printk(KERN_INFO	"    PARTITION[%d] ->\n"
1227 			"        virtualUnits    = %d\n"
1228 			"        firstUnit       = %d\n"
1229 			"        lastUnit        = %d\n"
1230 			"        flags           = 0x%x\n"
1231 			"        spareUnits      = %d\n",
1232 			i, ip->virtualUnits, ip->firstUnit,
1233 			ip->lastUnit, ip->flags,
1234 			ip->spareUnits);
1235 
1236 		if ((show_firmware_partition == 1) &&
1237 		    (i == 0) && (ip->firstUnit > 0)) {
1238 			parts[0].name = " DiskOnChip IPL / Media Header partition";
1239 			parts[0].offset = 0;
1240 			parts[0].size = mtd->erasesize * ip->firstUnit;
1241 			numparts = 1;
1242 		}
1243 
1244 		if (ip->flags & INFTL_BINARY)
1245 			parts[numparts].name = " DiskOnChip BDK partition";
1246 		else
1247 			parts[numparts].name = " DiskOnChip BDTL partition";
1248 		parts[numparts].offset = ip->firstUnit << vshift;
1249 		parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1250 		numparts++;
1251 		if (ip->lastUnit > lastvunit)
1252 			lastvunit = ip->lastUnit;
1253 		if (ip->flags & INFTL_LAST)
1254 			break;
1255 	}
1256 	lastvunit++;
1257 	if ((lastvunit << vshift) < end) {
1258 		parts[numparts].name = " DiskOnChip Remainder partition";
1259 		parts[numparts].offset = lastvunit << vshift;
1260 		parts[numparts].size = end - parts[numparts].offset;
1261 		numparts++;
1262 	}
1263 	ret = numparts;
1264  out:
1265 	kfree(buf);
1266 	return ret;
1267 }
1268 
nftl_scan_bbt(struct mtd_info * mtd)1269 static int __init nftl_scan_bbt(struct mtd_info *mtd)
1270 {
1271 	int ret, numparts;
1272 	struct nand_chip *this = mtd_to_nand(mtd);
1273 	struct doc_priv *doc = nand_get_controller_data(this);
1274 	struct mtd_partition parts[2];
1275 
1276 	memset((char *)parts, 0, sizeof(parts));
1277 	/* On NFTL, we have to find the media headers before we can read the
1278 	   BBTs, since they're stored in the media header eraseblocks. */
1279 	numparts = nftl_partscan(mtd, parts);
1280 	if (!numparts)
1281 		return -EIO;
1282 	this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1283 				NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1284 				NAND_BBT_VERSION;
1285 	this->bbt_td->veroffs = 7;
1286 	this->bbt_td->pages[0] = doc->mh0_page + 1;
1287 	if (doc->mh1_page != -1) {
1288 		this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1289 					NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1290 					NAND_BBT_VERSION;
1291 		this->bbt_md->veroffs = 7;
1292 		this->bbt_md->pages[0] = doc->mh1_page + 1;
1293 	} else {
1294 		this->bbt_md = NULL;
1295 	}
1296 
1297 	ret = this->scan_bbt(mtd);
1298 	if (ret)
1299 		return ret;
1300 
1301 	return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
1302 }
1303 
inftl_scan_bbt(struct mtd_info * mtd)1304 static int __init inftl_scan_bbt(struct mtd_info *mtd)
1305 {
1306 	int ret, numparts;
1307 	struct nand_chip *this = mtd_to_nand(mtd);
1308 	struct doc_priv *doc = nand_get_controller_data(this);
1309 	struct mtd_partition parts[5];
1310 
1311 	if (this->numchips > doc->chips_per_floor) {
1312 		printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1313 		return -EIO;
1314 	}
1315 
1316 	if (DoC_is_MillenniumPlus(doc)) {
1317 		this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1318 		if (inftl_bbt_write)
1319 			this->bbt_td->options |= NAND_BBT_WRITE;
1320 		this->bbt_td->pages[0] = 2;
1321 		this->bbt_md = NULL;
1322 	} else {
1323 		this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1324 		if (inftl_bbt_write)
1325 			this->bbt_td->options |= NAND_BBT_WRITE;
1326 		this->bbt_td->offs = 8;
1327 		this->bbt_td->len = 8;
1328 		this->bbt_td->veroffs = 7;
1329 		this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1330 		this->bbt_td->reserved_block_code = 0x01;
1331 		this->bbt_td->pattern = "MSYS_BBT";
1332 
1333 		this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1334 		if (inftl_bbt_write)
1335 			this->bbt_md->options |= NAND_BBT_WRITE;
1336 		this->bbt_md->offs = 8;
1337 		this->bbt_md->len = 8;
1338 		this->bbt_md->veroffs = 7;
1339 		this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1340 		this->bbt_md->reserved_block_code = 0x01;
1341 		this->bbt_md->pattern = "TBB_SYSM";
1342 	}
1343 
1344 	ret = this->scan_bbt(mtd);
1345 	if (ret)
1346 		return ret;
1347 
1348 	memset((char *)parts, 0, sizeof(parts));
1349 	numparts = inftl_partscan(mtd, parts);
1350 	/* At least for now, require the INFTL Media Header.  We could probably
1351 	   do without it for non-INFTL use, since all it gives us is
1352 	   autopartitioning, but I want to give it more thought. */
1353 	if (!numparts)
1354 		return -EIO;
1355 	return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
1356 }
1357 
doc2000_init(struct mtd_info * mtd)1358 static inline int __init doc2000_init(struct mtd_info *mtd)
1359 {
1360 	struct nand_chip *this = mtd_to_nand(mtd);
1361 	struct doc_priv *doc = nand_get_controller_data(this);
1362 
1363 	this->read_byte = doc2000_read_byte;
1364 	this->write_buf = doc2000_writebuf;
1365 	this->read_buf = doc2000_readbuf;
1366 	doc->late_init = nftl_scan_bbt;
1367 
1368 	doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1369 	doc2000_count_chips(mtd);
1370 	mtd->name = "DiskOnChip 2000 (NFTL Model)";
1371 	return (4 * doc->chips_per_floor);
1372 }
1373 
doc2001_init(struct mtd_info * mtd)1374 static inline int __init doc2001_init(struct mtd_info *mtd)
1375 {
1376 	struct nand_chip *this = mtd_to_nand(mtd);
1377 	struct doc_priv *doc = nand_get_controller_data(this);
1378 
1379 	this->read_byte = doc2001_read_byte;
1380 	this->write_buf = doc2001_writebuf;
1381 	this->read_buf = doc2001_readbuf;
1382 
1383 	ReadDOC(doc->virtadr, ChipID);
1384 	ReadDOC(doc->virtadr, ChipID);
1385 	ReadDOC(doc->virtadr, ChipID);
1386 	if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1387 		/* It's not a Millennium; it's one of the newer
1388 		   DiskOnChip 2000 units with a similar ASIC.
1389 		   Treat it like a Millennium, except that it
1390 		   can have multiple chips. */
1391 		doc2000_count_chips(mtd);
1392 		mtd->name = "DiskOnChip 2000 (INFTL Model)";
1393 		doc->late_init = inftl_scan_bbt;
1394 		return (4 * doc->chips_per_floor);
1395 	} else {
1396 		/* Bog-standard Millennium */
1397 		doc->chips_per_floor = 1;
1398 		mtd->name = "DiskOnChip Millennium";
1399 		doc->late_init = nftl_scan_bbt;
1400 		return 1;
1401 	}
1402 }
1403 
doc2001plus_init(struct mtd_info * mtd)1404 static inline int __init doc2001plus_init(struct mtd_info *mtd)
1405 {
1406 	struct nand_chip *this = mtd_to_nand(mtd);
1407 	struct doc_priv *doc = nand_get_controller_data(this);
1408 
1409 	this->read_byte = doc2001plus_read_byte;
1410 	this->write_buf = doc2001plus_writebuf;
1411 	this->read_buf = doc2001plus_readbuf;
1412 	doc->late_init = inftl_scan_bbt;
1413 	this->cmd_ctrl = NULL;
1414 	this->select_chip = doc2001plus_select_chip;
1415 	this->cmdfunc = doc2001plus_command;
1416 	this->ecc.hwctl = doc2001plus_enable_hwecc;
1417 
1418 	doc->chips_per_floor = 1;
1419 	mtd->name = "DiskOnChip Millennium Plus";
1420 
1421 	return 1;
1422 }
1423 
doc_probe(unsigned long physadr)1424 static int __init doc_probe(unsigned long physadr)
1425 {
1426 	unsigned char ChipID;
1427 	struct mtd_info *mtd;
1428 	struct nand_chip *nand;
1429 	struct doc_priv *doc;
1430 	void __iomem *virtadr;
1431 	unsigned char save_control;
1432 	unsigned char tmp, tmpb, tmpc;
1433 	int reg, len, numchips;
1434 	int ret = 0;
1435 
1436 	if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip"))
1437 		return -EBUSY;
1438 	virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1439 	if (!virtadr) {
1440 		printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1441 		ret = -EIO;
1442 		goto error_ioremap;
1443 	}
1444 
1445 	/* It's not possible to cleanly detect the DiskOnChip - the
1446 	 * bootup procedure will put the device into reset mode, and
1447 	 * it's not possible to talk to it without actually writing
1448 	 * to the DOCControl register. So we store the current contents
1449 	 * of the DOCControl register's location, in case we later decide
1450 	 * that it's not a DiskOnChip, and want to put it back how we
1451 	 * found it.
1452 	 */
1453 	save_control = ReadDOC(virtadr, DOCControl);
1454 
1455 	/* Reset the DiskOnChip ASIC */
1456 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1457 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1458 
1459 	/* Enable the DiskOnChip ASIC */
1460 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1461 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1462 
1463 	ChipID = ReadDOC(virtadr, ChipID);
1464 
1465 	switch (ChipID) {
1466 	case DOC_ChipID_Doc2k:
1467 		reg = DoC_2k_ECCStatus;
1468 		break;
1469 	case DOC_ChipID_DocMil:
1470 		reg = DoC_ECCConf;
1471 		break;
1472 	case DOC_ChipID_DocMilPlus16:
1473 	case DOC_ChipID_DocMilPlus32:
1474 	case 0:
1475 		/* Possible Millennium Plus, need to do more checks */
1476 		/* Possibly release from power down mode */
1477 		for (tmp = 0; (tmp < 4); tmp++)
1478 			ReadDOC(virtadr, Mplus_Power);
1479 
1480 		/* Reset the Millennium Plus ASIC */
1481 		tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1482 		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1483 		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1484 
1485 		mdelay(1);
1486 		/* Enable the Millennium Plus ASIC */
1487 		tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1488 		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1489 		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1490 		mdelay(1);
1491 
1492 		ChipID = ReadDOC(virtadr, ChipID);
1493 
1494 		switch (ChipID) {
1495 		case DOC_ChipID_DocMilPlus16:
1496 			reg = DoC_Mplus_Toggle;
1497 			break;
1498 		case DOC_ChipID_DocMilPlus32:
1499 			printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1500 		default:
1501 			ret = -ENODEV;
1502 			goto notfound;
1503 		}
1504 		break;
1505 
1506 	default:
1507 		ret = -ENODEV;
1508 		goto notfound;
1509 	}
1510 	/* Check the TOGGLE bit in the ECC register */
1511 	tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1512 	tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1513 	tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1514 	if ((tmp == tmpb) || (tmp != tmpc)) {
1515 		printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1516 		ret = -ENODEV;
1517 		goto notfound;
1518 	}
1519 
1520 	for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1521 		unsigned char oldval;
1522 		unsigned char newval;
1523 		nand = mtd_to_nand(mtd);
1524 		doc = nand_get_controller_data(nand);
1525 		/* Use the alias resolution register to determine if this is
1526 		   in fact the same DOC aliased to a new address.  If writes
1527 		   to one chip's alias resolution register change the value on
1528 		   the other chip, they're the same chip. */
1529 		if (ChipID == DOC_ChipID_DocMilPlus16) {
1530 			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1531 			newval = ReadDOC(virtadr, Mplus_AliasResolution);
1532 		} else {
1533 			oldval = ReadDOC(doc->virtadr, AliasResolution);
1534 			newval = ReadDOC(virtadr, AliasResolution);
1535 		}
1536 		if (oldval != newval)
1537 			continue;
1538 		if (ChipID == DOC_ChipID_DocMilPlus16) {
1539 			WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1540 			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1541 			WriteDOC(newval, virtadr, Mplus_AliasResolution);	// restore it
1542 		} else {
1543 			WriteDOC(~newval, virtadr, AliasResolution);
1544 			oldval = ReadDOC(doc->virtadr, AliasResolution);
1545 			WriteDOC(newval, virtadr, AliasResolution);	// restore it
1546 		}
1547 		newval = ~newval;
1548 		if (oldval == newval) {
1549 			printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1550 			goto notfound;
1551 		}
1552 	}
1553 
1554 	printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1555 
1556 	len = sizeof(struct nand_chip) + sizeof(struct doc_priv) +
1557 	      (2 * sizeof(struct nand_bbt_descr));
1558 	nand = kzalloc(len, GFP_KERNEL);
1559 	if (!nand) {
1560 		ret = -ENOMEM;
1561 		goto fail;
1562 	}
1563 
1564 	mtd			= nand_to_mtd(nand);
1565 	doc			= (struct doc_priv *) (nand + 1);
1566 	nand->bbt_td		= (struct nand_bbt_descr *) (doc + 1);
1567 	nand->bbt_md		= nand->bbt_td + 1;
1568 
1569 	mtd->owner		= THIS_MODULE;
1570 	mtd_set_ooblayout(mtd, &doc200x_ooblayout_ops);
1571 
1572 	nand_set_controller_data(nand, doc);
1573 	nand->select_chip	= doc200x_select_chip;
1574 	nand->cmd_ctrl		= doc200x_hwcontrol;
1575 	nand->dev_ready		= doc200x_dev_ready;
1576 	nand->waitfunc		= doc200x_wait;
1577 	nand->block_bad		= doc200x_block_bad;
1578 	nand->ecc.hwctl		= doc200x_enable_hwecc;
1579 	nand->ecc.calculate	= doc200x_calculate_ecc;
1580 	nand->ecc.correct	= doc200x_correct_data;
1581 
1582 	nand->ecc.mode		= NAND_ECC_HW_SYNDROME;
1583 	nand->ecc.size		= 512;
1584 	nand->ecc.bytes		= 6;
1585 	nand->ecc.strength	= 2;
1586 	nand->ecc.options	= NAND_ECC_GENERIC_ERASED_CHECK;
1587 	nand->bbt_options	= NAND_BBT_USE_FLASH;
1588 	/* Skip the automatic BBT scan so we can run it manually */
1589 	nand->options		|= NAND_SKIP_BBTSCAN;
1590 
1591 	doc->physadr		= physadr;
1592 	doc->virtadr		= virtadr;
1593 	doc->ChipID		= ChipID;
1594 	doc->curfloor		= -1;
1595 	doc->curchip		= -1;
1596 	doc->mh0_page		= -1;
1597 	doc->mh1_page		= -1;
1598 	doc->nextdoc		= doclist;
1599 
1600 	if (ChipID == DOC_ChipID_Doc2k)
1601 		numchips = doc2000_init(mtd);
1602 	else if (ChipID == DOC_ChipID_DocMilPlus16)
1603 		numchips = doc2001plus_init(mtd);
1604 	else
1605 		numchips = doc2001_init(mtd);
1606 
1607 	if ((ret = nand_scan(mtd, numchips)) || (ret = doc->late_init(mtd))) {
1608 		/* DBB note: i believe nand_release is necessary here, as
1609 		   buffers may have been allocated in nand_base.  Check with
1610 		   Thomas. FIX ME! */
1611 		/* nand_release will call mtd_device_unregister, but we
1612 		   haven't yet added it.  This is handled without incident by
1613 		   mtd_device_unregister, as far as I can tell. */
1614 		nand_release(mtd);
1615 		kfree(nand);
1616 		goto fail;
1617 	}
1618 
1619 	/* Success! */
1620 	doclist = mtd;
1621 	return 0;
1622 
1623  notfound:
1624 	/* Put back the contents of the DOCControl register, in case it's not
1625 	   actually a DiskOnChip.  */
1626 	WriteDOC(save_control, virtadr, DOCControl);
1627  fail:
1628 	iounmap(virtadr);
1629 
1630 error_ioremap:
1631 	release_mem_region(physadr, DOC_IOREMAP_LEN);
1632 
1633 	return ret;
1634 }
1635 
release_nanddoc(void)1636 static void release_nanddoc(void)
1637 {
1638 	struct mtd_info *mtd, *nextmtd;
1639 	struct nand_chip *nand;
1640 	struct doc_priv *doc;
1641 
1642 	for (mtd = doclist; mtd; mtd = nextmtd) {
1643 		nand = mtd_to_nand(mtd);
1644 		doc = nand_get_controller_data(nand);
1645 
1646 		nextmtd = doc->nextdoc;
1647 		nand_release(mtd);
1648 		iounmap(doc->virtadr);
1649 		release_mem_region(doc->physadr, DOC_IOREMAP_LEN);
1650 		kfree(nand);
1651 	}
1652 }
1653 
init_nanddoc(void)1654 static int __init init_nanddoc(void)
1655 {
1656 	int i, ret = 0;
1657 
1658 	/* We could create the decoder on demand, if memory is a concern.
1659 	 * This way we have it handy, if an error happens
1660 	 *
1661 	 * Symbolsize is 10 (bits)
1662 	 * Primitve polynomial is x^10+x^3+1
1663 	 * first consecutive root is 510
1664 	 * primitve element to generate roots = 1
1665 	 * generator polinomial degree = 4
1666 	 */
1667 	rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1668 	if (!rs_decoder) {
1669 		printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1670 		return -ENOMEM;
1671 	}
1672 
1673 	if (doc_config_location) {
1674 		printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1675 		ret = doc_probe(doc_config_location);
1676 		if (ret < 0)
1677 			goto outerr;
1678 	} else {
1679 		for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1680 			doc_probe(doc_locations[i]);
1681 		}
1682 	}
1683 	/* No banner message any more. Print a message if no DiskOnChip
1684 	   found, so the user knows we at least tried. */
1685 	if (!doclist) {
1686 		printk(KERN_INFO "No valid DiskOnChip devices found\n");
1687 		ret = -ENODEV;
1688 		goto outerr;
1689 	}
1690 	return 0;
1691  outerr:
1692 	free_rs(rs_decoder);
1693 	return ret;
1694 }
1695 
cleanup_nanddoc(void)1696 static void __exit cleanup_nanddoc(void)
1697 {
1698 	/* Cleanup the nand/DoC resources */
1699 	release_nanddoc();
1700 
1701 	/* Free the reed solomon resources */
1702 	if (rs_decoder) {
1703 		free_rs(rs_decoder);
1704 	}
1705 }
1706 
1707 module_init(init_nanddoc);
1708 module_exit(cleanup_nanddoc);
1709 
1710 MODULE_LICENSE("GPL");
1711 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1712 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");
1713