• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * drivers/mtd/nand/fsmc_nand.c
3  *
4  * ST Microelectronics
5  * Flexible Static Memory Controller (FSMC)
6  * Driver for NAND portions
7  *
8  * Copyright © 2010 ST Microelectronics
9  * Vipin Kumar <vipin.kumar@st.com>
10  * Ashish Priyadarshi
11  *
12  * Based on drivers/mtd/nand/nomadik_nand.c
13  *
14  * This file is licensed under the terms of the GNU General Public
15  * License version 2. This program is licensed "as is" without any
16  * warranty of any kind, whether express or implied.
17  */
18 
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/dmaengine.h>
22 #include <linux/dma-direction.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/err.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/resource.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/rawnand.h>
32 #include <linux/mtd/nand_ecc.h>
33 #include <linux/platform_device.h>
34 #include <linux/of.h>
35 #include <linux/mtd/partitions.h>
36 #include <linux/io.h>
37 #include <linux/slab.h>
38 #include <linux/amba/bus.h>
39 #include <mtd/mtd-abi.h>
40 
41 /* fsmc controller registers for NOR flash */
42 #define CTRL			0x0
43 	/* ctrl register definitions */
44 	#define BANK_ENABLE		(1 << 0)
45 	#define MUXED			(1 << 1)
46 	#define NOR_DEV			(2 << 2)
47 	#define WIDTH_8			(0 << 4)
48 	#define WIDTH_16		(1 << 4)
49 	#define RSTPWRDWN		(1 << 6)
50 	#define WPROT			(1 << 7)
51 	#define WRT_ENABLE		(1 << 12)
52 	#define WAIT_ENB		(1 << 13)
53 
54 #define CTRL_TIM		0x4
55 	/* ctrl_tim register definitions */
56 
57 #define FSMC_NOR_BANK_SZ	0x8
58 #define FSMC_NOR_REG_SIZE	0x40
59 
60 #define FSMC_NOR_REG(base, bank, reg)		(base + \
61 						FSMC_NOR_BANK_SZ * (bank) + \
62 						reg)
63 
64 /* fsmc controller registers for NAND flash */
65 #define PC			0x00
66 	/* pc register definitions */
67 	#define FSMC_RESET		(1 << 0)
68 	#define FSMC_WAITON		(1 << 1)
69 	#define FSMC_ENABLE		(1 << 2)
70 	#define FSMC_DEVTYPE_NAND	(1 << 3)
71 	#define FSMC_DEVWID_8		(0 << 4)
72 	#define FSMC_DEVWID_16		(1 << 4)
73 	#define FSMC_ECCEN		(1 << 6)
74 	#define FSMC_ECCPLEN_512	(0 << 7)
75 	#define FSMC_ECCPLEN_256	(1 << 7)
76 	#define FSMC_TCLR_1		(1)
77 	#define FSMC_TCLR_SHIFT		(9)
78 	#define FSMC_TCLR_MASK		(0xF)
79 	#define FSMC_TAR_1		(1)
80 	#define FSMC_TAR_SHIFT		(13)
81 	#define FSMC_TAR_MASK		(0xF)
82 #define STS			0x04
83 	/* sts register definitions */
84 	#define FSMC_CODE_RDY		(1 << 15)
85 #define COMM			0x08
86 	/* comm register definitions */
87 	#define FSMC_TSET_0		0
88 	#define FSMC_TSET_SHIFT		0
89 	#define FSMC_TSET_MASK		0xFF
90 	#define FSMC_TWAIT_6		6
91 	#define FSMC_TWAIT_SHIFT	8
92 	#define FSMC_TWAIT_MASK		0xFF
93 	#define FSMC_THOLD_4		4
94 	#define FSMC_THOLD_SHIFT	16
95 	#define FSMC_THOLD_MASK		0xFF
96 	#define FSMC_THIZ_1		1
97 	#define FSMC_THIZ_SHIFT		24
98 	#define FSMC_THIZ_MASK		0xFF
99 #define ATTRIB			0x0C
100 #define IOATA			0x10
101 #define ECC1			0x14
102 #define ECC2			0x18
103 #define ECC3			0x1C
104 #define FSMC_NAND_BANK_SZ	0x20
105 
106 #define FSMC_NAND_REG(base, bank, reg)		(base + FSMC_NOR_REG_SIZE + \
107 						(FSMC_NAND_BANK_SZ * (bank)) + \
108 						reg)
109 
110 #define FSMC_BUSY_WAIT_TIMEOUT	(1 * HZ)
111 
112 struct fsmc_nand_timings {
113 	uint8_t tclr;
114 	uint8_t tar;
115 	uint8_t thiz;
116 	uint8_t thold;
117 	uint8_t twait;
118 	uint8_t tset;
119 };
120 
121 enum access_mode {
122 	USE_DMA_ACCESS = 1,
123 	USE_WORD_ACCESS,
124 };
125 
126 /**
127  * struct fsmc_nand_data - structure for FSMC NAND device state
128  *
129  * @pid:		Part ID on the AMBA PrimeCell format
130  * @mtd:		MTD info for a NAND flash.
131  * @nand:		Chip related info for a NAND flash.
132  * @partitions:		Partition info for a NAND Flash.
133  * @nr_partitions:	Total number of partition of a NAND flash.
134  *
135  * @bank:		Bank number for probed device.
136  * @clk:		Clock structure for FSMC.
137  *
138  * @read_dma_chan:	DMA channel for read access
139  * @write_dma_chan:	DMA channel for write access to NAND
140  * @dma_access_complete: Completion structure
141  *
142  * @data_pa:		NAND Physical port for Data.
143  * @data_va:		NAND port for Data.
144  * @cmd_va:		NAND port for Command.
145  * @addr_va:		NAND port for Address.
146  * @regs_va:		FSMC regs base address.
147  */
148 struct fsmc_nand_data {
149 	u32			pid;
150 	struct nand_chip	nand;
151 
152 	unsigned int		bank;
153 	struct device		*dev;
154 	enum access_mode	mode;
155 	struct clk		*clk;
156 
157 	/* DMA related objects */
158 	struct dma_chan		*read_dma_chan;
159 	struct dma_chan		*write_dma_chan;
160 	struct completion	dma_access_complete;
161 
162 	struct fsmc_nand_timings *dev_timings;
163 
164 	dma_addr_t		data_pa;
165 	void __iomem		*data_va;
166 	void __iomem		*cmd_va;
167 	void __iomem		*addr_va;
168 	void __iomem		*regs_va;
169 };
170 
fsmc_ecc1_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)171 static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
172 				   struct mtd_oob_region *oobregion)
173 {
174 	struct nand_chip *chip = mtd_to_nand(mtd);
175 
176 	if (section >= chip->ecc.steps)
177 		return -ERANGE;
178 
179 	oobregion->offset = (section * 16) + 2;
180 	oobregion->length = 3;
181 
182 	return 0;
183 }
184 
fsmc_ecc1_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)185 static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
186 				    struct mtd_oob_region *oobregion)
187 {
188 	struct nand_chip *chip = mtd_to_nand(mtd);
189 
190 	if (section >= chip->ecc.steps)
191 		return -ERANGE;
192 
193 	oobregion->offset = (section * 16) + 8;
194 
195 	if (section < chip->ecc.steps - 1)
196 		oobregion->length = 8;
197 	else
198 		oobregion->length = mtd->oobsize - oobregion->offset;
199 
200 	return 0;
201 }
202 
203 static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
204 	.ecc = fsmc_ecc1_ooblayout_ecc,
205 	.free = fsmc_ecc1_ooblayout_free,
206 };
207 
208 /*
209  * ECC placement definitions in oobfree type format.
210  * There are 13 bytes of ecc for every 512 byte block and it has to be read
211  * consecutively and immediately after the 512 byte data block for hardware to
212  * generate the error bit offsets in 512 byte data.
213  */
fsmc_ecc4_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)214 static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
215 				   struct mtd_oob_region *oobregion)
216 {
217 	struct nand_chip *chip = mtd_to_nand(mtd);
218 
219 	if (section >= chip->ecc.steps)
220 		return -ERANGE;
221 
222 	oobregion->length = chip->ecc.bytes;
223 
224 	if (!section && mtd->writesize <= 512)
225 		oobregion->offset = 0;
226 	else
227 		oobregion->offset = (section * 16) + 2;
228 
229 	return 0;
230 }
231 
fsmc_ecc4_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)232 static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
233 				    struct mtd_oob_region *oobregion)
234 {
235 	struct nand_chip *chip = mtd_to_nand(mtd);
236 
237 	if (section >= chip->ecc.steps)
238 		return -ERANGE;
239 
240 	oobregion->offset = (section * 16) + 15;
241 
242 	if (section < chip->ecc.steps - 1)
243 		oobregion->length = 3;
244 	else
245 		oobregion->length = mtd->oobsize - oobregion->offset;
246 
247 	return 0;
248 }
249 
250 static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
251 	.ecc = fsmc_ecc4_ooblayout_ecc,
252 	.free = fsmc_ecc4_ooblayout_free,
253 };
254 
mtd_to_fsmc(struct mtd_info * mtd)255 static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
256 {
257 	return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand);
258 }
259 
260 /*
261  * fsmc_cmd_ctrl - For facilitaing Hardware access
262  * This routine allows hardware specific access to control-lines(ALE,CLE)
263  */
fsmc_cmd_ctrl(struct mtd_info * mtd,int cmd,unsigned int ctrl)264 static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
265 {
266 	struct nand_chip *this = mtd_to_nand(mtd);
267 	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
268 	void __iomem *regs = host->regs_va;
269 	unsigned int bank = host->bank;
270 
271 	if (ctrl & NAND_CTRL_CHANGE) {
272 		u32 pc;
273 
274 		if (ctrl & NAND_CLE) {
275 			this->IO_ADDR_R = host->cmd_va;
276 			this->IO_ADDR_W = host->cmd_va;
277 		} else if (ctrl & NAND_ALE) {
278 			this->IO_ADDR_R = host->addr_va;
279 			this->IO_ADDR_W = host->addr_va;
280 		} else {
281 			this->IO_ADDR_R = host->data_va;
282 			this->IO_ADDR_W = host->data_va;
283 		}
284 
285 		pc = readl(FSMC_NAND_REG(regs, bank, PC));
286 		if (ctrl & NAND_NCE)
287 			pc |= FSMC_ENABLE;
288 		else
289 			pc &= ~FSMC_ENABLE;
290 		writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC));
291 	}
292 
293 	mb();
294 
295 	if (cmd != NAND_CMD_NONE)
296 		writeb_relaxed(cmd, this->IO_ADDR_W);
297 }
298 
299 /*
300  * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
301  *
302  * This routine initializes timing parameters related to NAND memory access in
303  * FSMC registers
304  */
fsmc_nand_setup(struct fsmc_nand_data * host,struct fsmc_nand_timings * tims)305 static void fsmc_nand_setup(struct fsmc_nand_data *host,
306 			    struct fsmc_nand_timings *tims)
307 {
308 	uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
309 	uint32_t tclr, tar, thiz, thold, twait, tset;
310 	unsigned int bank = host->bank;
311 	void __iomem *regs = host->regs_va;
312 
313 	tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
314 	tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
315 	thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
316 	thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
317 	twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
318 	tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
319 
320 	if (host->nand.options & NAND_BUSWIDTH_16)
321 		writel_relaxed(value | FSMC_DEVWID_16,
322 				FSMC_NAND_REG(regs, bank, PC));
323 	else
324 		writel_relaxed(value | FSMC_DEVWID_8,
325 				FSMC_NAND_REG(regs, bank, PC));
326 
327 	writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
328 			FSMC_NAND_REG(regs, bank, PC));
329 	writel_relaxed(thiz | thold | twait | tset,
330 			FSMC_NAND_REG(regs, bank, COMM));
331 	writel_relaxed(thiz | thold | twait | tset,
332 			FSMC_NAND_REG(regs, bank, ATTRIB));
333 }
334 
fsmc_calc_timings(struct fsmc_nand_data * host,const struct nand_sdr_timings * sdrt,struct fsmc_nand_timings * tims)335 static int fsmc_calc_timings(struct fsmc_nand_data *host,
336 			     const struct nand_sdr_timings *sdrt,
337 			     struct fsmc_nand_timings *tims)
338 {
339 	unsigned long hclk = clk_get_rate(host->clk);
340 	unsigned long hclkn = NSEC_PER_SEC / hclk;
341 	uint32_t thiz, thold, twait, tset;
342 
343 	if (sdrt->tRC_min < 30000)
344 		return -EOPNOTSUPP;
345 
346 	tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
347 	if (tims->tar > FSMC_TAR_MASK)
348 		tims->tar = FSMC_TAR_MASK;
349 	tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
350 	if (tims->tclr > FSMC_TCLR_MASK)
351 		tims->tclr = FSMC_TCLR_MASK;
352 
353 	thiz = sdrt->tCS_min - sdrt->tWP_min;
354 	tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
355 
356 	thold = sdrt->tDH_min;
357 	if (thold < sdrt->tCH_min)
358 		thold = sdrt->tCH_min;
359 	if (thold < sdrt->tCLH_min)
360 		thold = sdrt->tCLH_min;
361 	if (thold < sdrt->tWH_min)
362 		thold = sdrt->tWH_min;
363 	if (thold < sdrt->tALH_min)
364 		thold = sdrt->tALH_min;
365 	if (thold < sdrt->tREH_min)
366 		thold = sdrt->tREH_min;
367 	tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
368 	if (tims->thold == 0)
369 		tims->thold = 1;
370 	else if (tims->thold > FSMC_THOLD_MASK)
371 		tims->thold = FSMC_THOLD_MASK;
372 
373 	twait = max(sdrt->tRP_min, sdrt->tWP_min);
374 	tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
375 	if (tims->twait == 0)
376 		tims->twait = 1;
377 	else if (tims->twait > FSMC_TWAIT_MASK)
378 		tims->twait = FSMC_TWAIT_MASK;
379 
380 	tset = max(sdrt->tCS_min - sdrt->tWP_min,
381 		   sdrt->tCEA_max - sdrt->tREA_max);
382 	tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
383 	if (tims->tset == 0)
384 		tims->tset = 1;
385 	else if (tims->tset > FSMC_TSET_MASK)
386 		tims->tset = FSMC_TSET_MASK;
387 
388 	return 0;
389 }
390 
fsmc_setup_data_interface(struct mtd_info * mtd,int csline,const struct nand_data_interface * conf)391 static int fsmc_setup_data_interface(struct mtd_info *mtd, int csline,
392 				     const struct nand_data_interface *conf)
393 {
394 	struct nand_chip *nand = mtd_to_nand(mtd);
395 	struct fsmc_nand_data *host = nand_get_controller_data(nand);
396 	struct fsmc_nand_timings tims;
397 	const struct nand_sdr_timings *sdrt;
398 	int ret;
399 
400 	sdrt = nand_get_sdr_timings(conf);
401 	if (IS_ERR(sdrt))
402 		return PTR_ERR(sdrt);
403 
404 	ret = fsmc_calc_timings(host, sdrt, &tims);
405 	if (ret)
406 		return ret;
407 
408 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
409 		return 0;
410 
411 	fsmc_nand_setup(host, &tims);
412 
413 	return 0;
414 }
415 
416 /*
417  * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
418  */
fsmc_enable_hwecc(struct mtd_info * mtd,int mode)419 static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
420 {
421 	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
422 	void __iomem *regs = host->regs_va;
423 	uint32_t bank = host->bank;
424 
425 	writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
426 			FSMC_NAND_REG(regs, bank, PC));
427 	writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
428 			FSMC_NAND_REG(regs, bank, PC));
429 	writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
430 			FSMC_NAND_REG(regs, bank, PC));
431 }
432 
433 /*
434  * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
435  * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
436  * max of 8-bits)
437  */
fsmc_read_hwecc_ecc4(struct mtd_info * mtd,const uint8_t * data,uint8_t * ecc)438 static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
439 				uint8_t *ecc)
440 {
441 	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
442 	void __iomem *regs = host->regs_va;
443 	uint32_t bank = host->bank;
444 	uint32_t ecc_tmp;
445 	unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
446 
447 	do {
448 		if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
449 			break;
450 		else
451 			cond_resched();
452 	} while (!time_after_eq(jiffies, deadline));
453 
454 	if (time_after_eq(jiffies, deadline)) {
455 		dev_err(host->dev, "calculate ecc timed out\n");
456 		return -ETIMEDOUT;
457 	}
458 
459 	ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
460 	ecc[0] = (uint8_t) (ecc_tmp >> 0);
461 	ecc[1] = (uint8_t) (ecc_tmp >> 8);
462 	ecc[2] = (uint8_t) (ecc_tmp >> 16);
463 	ecc[3] = (uint8_t) (ecc_tmp >> 24);
464 
465 	ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
466 	ecc[4] = (uint8_t) (ecc_tmp >> 0);
467 	ecc[5] = (uint8_t) (ecc_tmp >> 8);
468 	ecc[6] = (uint8_t) (ecc_tmp >> 16);
469 	ecc[7] = (uint8_t) (ecc_tmp >> 24);
470 
471 	ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
472 	ecc[8] = (uint8_t) (ecc_tmp >> 0);
473 	ecc[9] = (uint8_t) (ecc_tmp >> 8);
474 	ecc[10] = (uint8_t) (ecc_tmp >> 16);
475 	ecc[11] = (uint8_t) (ecc_tmp >> 24);
476 
477 	ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
478 	ecc[12] = (uint8_t) (ecc_tmp >> 16);
479 
480 	return 0;
481 }
482 
483 /*
484  * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
485  * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
486  * max of 1-bit)
487  */
fsmc_read_hwecc_ecc1(struct mtd_info * mtd,const uint8_t * data,uint8_t * ecc)488 static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
489 				uint8_t *ecc)
490 {
491 	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
492 	void __iomem *regs = host->regs_va;
493 	uint32_t bank = host->bank;
494 	uint32_t ecc_tmp;
495 
496 	ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
497 	ecc[0] = (uint8_t) (ecc_tmp >> 0);
498 	ecc[1] = (uint8_t) (ecc_tmp >> 8);
499 	ecc[2] = (uint8_t) (ecc_tmp >> 16);
500 
501 	return 0;
502 }
503 
504 /* Count the number of 0's in buff upto a max of max_bits */
count_written_bits(uint8_t * buff,int size,int max_bits)505 static int count_written_bits(uint8_t *buff, int size, int max_bits)
506 {
507 	int k, written_bits = 0;
508 
509 	for (k = 0; k < size; k++) {
510 		written_bits += hweight8(~buff[k]);
511 		if (written_bits > max_bits)
512 			break;
513 	}
514 
515 	return written_bits;
516 }
517 
dma_complete(void * param)518 static void dma_complete(void *param)
519 {
520 	struct fsmc_nand_data *host = param;
521 
522 	complete(&host->dma_access_complete);
523 }
524 
dma_xfer(struct fsmc_nand_data * host,void * buffer,int len,enum dma_data_direction direction)525 static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
526 		enum dma_data_direction direction)
527 {
528 	struct dma_chan *chan;
529 	struct dma_device *dma_dev;
530 	struct dma_async_tx_descriptor *tx;
531 	dma_addr_t dma_dst, dma_src, dma_addr;
532 	dma_cookie_t cookie;
533 	unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
534 	int ret;
535 	unsigned long time_left;
536 
537 	if (direction == DMA_TO_DEVICE)
538 		chan = host->write_dma_chan;
539 	else if (direction == DMA_FROM_DEVICE)
540 		chan = host->read_dma_chan;
541 	else
542 		return -EINVAL;
543 
544 	dma_dev = chan->device;
545 	dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
546 
547 	if (direction == DMA_TO_DEVICE) {
548 		dma_src = dma_addr;
549 		dma_dst = host->data_pa;
550 	} else {
551 		dma_src = host->data_pa;
552 		dma_dst = dma_addr;
553 	}
554 
555 	tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
556 			len, flags);
557 	if (!tx) {
558 		dev_err(host->dev, "device_prep_dma_memcpy error\n");
559 		ret = -EIO;
560 		goto unmap_dma;
561 	}
562 
563 	tx->callback = dma_complete;
564 	tx->callback_param = host;
565 	cookie = tx->tx_submit(tx);
566 
567 	ret = dma_submit_error(cookie);
568 	if (ret) {
569 		dev_err(host->dev, "dma_submit_error %d\n", cookie);
570 		goto unmap_dma;
571 	}
572 
573 	dma_async_issue_pending(chan);
574 
575 	time_left =
576 	wait_for_completion_timeout(&host->dma_access_complete,
577 				msecs_to_jiffies(3000));
578 	if (time_left == 0) {
579 		dmaengine_terminate_all(chan);
580 		dev_err(host->dev, "wait_for_completion_timeout\n");
581 		ret = -ETIMEDOUT;
582 		goto unmap_dma;
583 	}
584 
585 	ret = 0;
586 
587 unmap_dma:
588 	dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
589 
590 	return ret;
591 }
592 
593 /*
594  * fsmc_write_buf - write buffer to chip
595  * @mtd:	MTD device structure
596  * @buf:	data buffer
597  * @len:	number of bytes to write
598  */
fsmc_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)599 static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
600 {
601 	int i;
602 	struct nand_chip *chip = mtd_to_nand(mtd);
603 
604 	if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
605 			IS_ALIGNED(len, sizeof(uint32_t))) {
606 		uint32_t *p = (uint32_t *)buf;
607 		len = len >> 2;
608 		for (i = 0; i < len; i++)
609 			writel_relaxed(p[i], chip->IO_ADDR_W);
610 	} else {
611 		for (i = 0; i < len; i++)
612 			writeb_relaxed(buf[i], chip->IO_ADDR_W);
613 	}
614 }
615 
616 /*
617  * fsmc_read_buf - read chip data into buffer
618  * @mtd:	MTD device structure
619  * @buf:	buffer to store date
620  * @len:	number of bytes to read
621  */
fsmc_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)622 static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
623 {
624 	int i;
625 	struct nand_chip *chip = mtd_to_nand(mtd);
626 
627 	if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
628 			IS_ALIGNED(len, sizeof(uint32_t))) {
629 		uint32_t *p = (uint32_t *)buf;
630 		len = len >> 2;
631 		for (i = 0; i < len; i++)
632 			p[i] = readl_relaxed(chip->IO_ADDR_R);
633 	} else {
634 		for (i = 0; i < len; i++)
635 			buf[i] = readb_relaxed(chip->IO_ADDR_R);
636 	}
637 }
638 
639 /*
640  * fsmc_read_buf_dma - read chip data into buffer
641  * @mtd:	MTD device structure
642  * @buf:	buffer to store date
643  * @len:	number of bytes to read
644  */
fsmc_read_buf_dma(struct mtd_info * mtd,uint8_t * buf,int len)645 static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
646 {
647 	struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);
648 
649 	dma_xfer(host, buf, len, DMA_FROM_DEVICE);
650 }
651 
652 /*
653  * fsmc_write_buf_dma - write buffer to chip
654  * @mtd:	MTD device structure
655  * @buf:	data buffer
656  * @len:	number of bytes to write
657  */
fsmc_write_buf_dma(struct mtd_info * mtd,const uint8_t * buf,int len)658 static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
659 		int len)
660 {
661 	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
662 
663 	dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
664 }
665 
666 /*
667  * fsmc_read_page_hwecc
668  * @mtd:	mtd info structure
669  * @chip:	nand chip info structure
670  * @buf:	buffer to store read data
671  * @oob_required:	caller expects OOB data read to chip->oob_poi
672  * @page:	page number to read
673  *
674  * This routine is needed for fsmc version 8 as reading from NAND chip has to be
675  * performed in a strict sequence as follows:
676  * data(512 byte) -> ecc(13 byte)
677  * After this read, fsmc hardware generates and reports error data bits(up to a
678  * max of 8 bits)
679  */
fsmc_read_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)680 static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
681 				 uint8_t *buf, int oob_required, int page)
682 {
683 	int i, j, s, stat, eccsize = chip->ecc.size;
684 	int eccbytes = chip->ecc.bytes;
685 	int eccsteps = chip->ecc.steps;
686 	uint8_t *p = buf;
687 	uint8_t *ecc_calc = chip->buffers->ecccalc;
688 	uint8_t *ecc_code = chip->buffers->ecccode;
689 	int off, len, group = 0;
690 	/*
691 	 * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
692 	 * end up reading 14 bytes (7 words) from oob. The local array is
693 	 * to maintain word alignment
694 	 */
695 	uint16_t ecc_oob[7];
696 	uint8_t *oob = (uint8_t *)&ecc_oob[0];
697 	unsigned int max_bitflips = 0;
698 
699 	for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
700 		chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
701 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
702 		chip->read_buf(mtd, p, eccsize);
703 
704 		for (j = 0; j < eccbytes;) {
705 			struct mtd_oob_region oobregion;
706 			int ret;
707 
708 			ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
709 			if (ret)
710 				return ret;
711 
712 			off = oobregion.offset;
713 			len = oobregion.length;
714 
715 			/*
716 			 * length is intentionally kept a higher multiple of 2
717 			 * to read at least 13 bytes even in case of 16 bit NAND
718 			 * devices
719 			 */
720 			if (chip->options & NAND_BUSWIDTH_16)
721 				len = roundup(len, 2);
722 
723 			chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
724 			chip->read_buf(mtd, oob + j, len);
725 			j += len;
726 		}
727 
728 		memcpy(&ecc_code[i], oob, chip->ecc.bytes);
729 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
730 
731 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
732 		if (stat < 0) {
733 			mtd->ecc_stats.failed++;
734 		} else {
735 			mtd->ecc_stats.corrected += stat;
736 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
737 		}
738 	}
739 
740 	return max_bitflips;
741 }
742 
743 /*
744  * fsmc_bch8_correct_data
745  * @mtd:	mtd info structure
746  * @dat:	buffer of read data
747  * @read_ecc:	ecc read from device spare area
748  * @calc_ecc:	ecc calculated from read data
749  *
750  * calc_ecc is a 104 bit information containing maximum of 8 error
751  * offset informations of 13 bits each in 512 bytes of read data.
752  */
fsmc_bch8_correct_data(struct mtd_info * mtd,uint8_t * dat,uint8_t * read_ecc,uint8_t * calc_ecc)753 static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
754 			     uint8_t *read_ecc, uint8_t *calc_ecc)
755 {
756 	struct nand_chip *chip = mtd_to_nand(mtd);
757 	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
758 	void __iomem *regs = host->regs_va;
759 	unsigned int bank = host->bank;
760 	uint32_t err_idx[8];
761 	uint32_t num_err, i;
762 	uint32_t ecc1, ecc2, ecc3, ecc4;
763 
764 	num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
765 
766 	/* no bit flipping */
767 	if (likely(num_err == 0))
768 		return 0;
769 
770 	/* too many errors */
771 	if (unlikely(num_err > 8)) {
772 		/*
773 		 * This is a temporary erase check. A newly erased page read
774 		 * would result in an ecc error because the oob data is also
775 		 * erased to FF and the calculated ecc for an FF data is not
776 		 * FF..FF.
777 		 * This is a workaround to skip performing correction in case
778 		 * data is FF..FF
779 		 *
780 		 * Logic:
781 		 * For every page, each bit written as 0 is counted until these
782 		 * number of bits are greater than 8 (the maximum correction
783 		 * capability of FSMC for each 512 + 13 bytes)
784 		 */
785 
786 		int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
787 		int bits_data = count_written_bits(dat, chip->ecc.size, 8);
788 
789 		if ((bits_ecc + bits_data) <= 8) {
790 			if (bits_data)
791 				memset(dat, 0xff, chip->ecc.size);
792 			return bits_data;
793 		}
794 
795 		return -EBADMSG;
796 	}
797 
798 	/*
799 	 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
800 	 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
801 	 *
802 	 * calc_ecc is a 104 bit information containing maximum of 8 error
803 	 * offset informations of 13 bits each. calc_ecc is copied into a
804 	 * uint64_t array and error offset indexes are populated in err_idx
805 	 * array
806 	 */
807 	ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
808 	ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
809 	ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
810 	ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
811 
812 	err_idx[0] = (ecc1 >> 0) & 0x1FFF;
813 	err_idx[1] = (ecc1 >> 13) & 0x1FFF;
814 	err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
815 	err_idx[3] = (ecc2 >> 7) & 0x1FFF;
816 	err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
817 	err_idx[5] = (ecc3 >> 1) & 0x1FFF;
818 	err_idx[6] = (ecc3 >> 14) & 0x1FFF;
819 	err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
820 
821 	i = 0;
822 	while (num_err--) {
823 		change_bit(0, (unsigned long *)&err_idx[i]);
824 		change_bit(1, (unsigned long *)&err_idx[i]);
825 
826 		if (err_idx[i] < chip->ecc.size * 8) {
827 			change_bit(err_idx[i], (unsigned long *)dat);
828 			i++;
829 		}
830 	}
831 	return i;
832 }
833 
filter(struct dma_chan * chan,void * slave)834 static bool filter(struct dma_chan *chan, void *slave)
835 {
836 	chan->private = slave;
837 	return true;
838 }
839 
fsmc_nand_probe_config_dt(struct platform_device * pdev,struct fsmc_nand_data * host,struct nand_chip * nand)840 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
841 				     struct fsmc_nand_data *host,
842 				     struct nand_chip *nand)
843 {
844 	struct device_node *np = pdev->dev.of_node;
845 	u32 val;
846 	int ret;
847 
848 	nand->options = 0;
849 
850 	if (!of_property_read_u32(np, "bank-width", &val)) {
851 		if (val == 2) {
852 			nand->options |= NAND_BUSWIDTH_16;
853 		} else if (val != 1) {
854 			dev_err(&pdev->dev, "invalid bank-width %u\n", val);
855 			return -EINVAL;
856 		}
857 	}
858 
859 	if (of_get_property(np, "nand-skip-bbtscan", NULL))
860 		nand->options |= NAND_SKIP_BBTSCAN;
861 
862 	host->dev_timings = devm_kzalloc(&pdev->dev,
863 				sizeof(*host->dev_timings), GFP_KERNEL);
864 	if (!host->dev_timings)
865 		return -ENOMEM;
866 	ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
867 						sizeof(*host->dev_timings));
868 	if (ret)
869 		host->dev_timings = NULL;
870 
871 	/* Set default NAND bank to 0 */
872 	host->bank = 0;
873 	if (!of_property_read_u32(np, "bank", &val)) {
874 		if (val > 3) {
875 			dev_err(&pdev->dev, "invalid bank %u\n", val);
876 			return -EINVAL;
877 		}
878 		host->bank = val;
879 	}
880 	return 0;
881 }
882 
883 /*
884  * fsmc_nand_probe - Probe function
885  * @pdev:       platform device structure
886  */
fsmc_nand_probe(struct platform_device * pdev)887 static int __init fsmc_nand_probe(struct platform_device *pdev)
888 {
889 	struct fsmc_nand_data *host;
890 	struct mtd_info *mtd;
891 	struct nand_chip *nand;
892 	struct resource *res;
893 	dma_cap_mask_t mask;
894 	int ret = 0;
895 	u32 pid;
896 	int i;
897 
898 	/* Allocate memory for the device structure (and zero it) */
899 	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
900 	if (!host)
901 		return -ENOMEM;
902 
903 	nand = &host->nand;
904 
905 	ret = fsmc_nand_probe_config_dt(pdev, host, nand);
906 	if (ret)
907 		return ret;
908 
909 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
910 	host->data_va = devm_ioremap_resource(&pdev->dev, res);
911 	if (IS_ERR(host->data_va))
912 		return PTR_ERR(host->data_va);
913 
914 	host->data_pa = (dma_addr_t)res->start;
915 
916 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
917 	host->addr_va = devm_ioremap_resource(&pdev->dev, res);
918 	if (IS_ERR(host->addr_va))
919 		return PTR_ERR(host->addr_va);
920 
921 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
922 	host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
923 	if (IS_ERR(host->cmd_va))
924 		return PTR_ERR(host->cmd_va);
925 
926 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
927 	host->regs_va = devm_ioremap_resource(&pdev->dev, res);
928 	if (IS_ERR(host->regs_va))
929 		return PTR_ERR(host->regs_va);
930 
931 	host->clk = devm_clk_get(&pdev->dev, NULL);
932 	if (IS_ERR(host->clk)) {
933 		dev_err(&pdev->dev, "failed to fetch block clock\n");
934 		return PTR_ERR(host->clk);
935 	}
936 
937 	ret = clk_prepare_enable(host->clk);
938 	if (ret)
939 		return ret;
940 
941 	/*
942 	 * This device ID is actually a common AMBA ID as used on the
943 	 * AMBA PrimeCell bus. However it is not a PrimeCell.
944 	 */
945 	for (pid = 0, i = 0; i < 4; i++)
946 		pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
947 	host->pid = pid;
948 	dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
949 		 "revision %02x, config %02x\n",
950 		 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
951 		 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
952 
953 	host->dev = &pdev->dev;
954 
955 	if (host->mode == USE_DMA_ACCESS)
956 		init_completion(&host->dma_access_complete);
957 
958 	/* Link all private pointers */
959 	mtd = nand_to_mtd(&host->nand);
960 	nand_set_controller_data(nand, host);
961 	nand_set_flash_node(nand, pdev->dev.of_node);
962 
963 	mtd->dev.parent = &pdev->dev;
964 	nand->IO_ADDR_R = host->data_va;
965 	nand->IO_ADDR_W = host->data_va;
966 	nand->cmd_ctrl = fsmc_cmd_ctrl;
967 	nand->chip_delay = 30;
968 
969 	/*
970 	 * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
971 	 * can overwrite this value if the DT provides a different value.
972 	 */
973 	nand->ecc.mode = NAND_ECC_HW;
974 	nand->ecc.hwctl = fsmc_enable_hwecc;
975 	nand->ecc.size = 512;
976 	nand->badblockbits = 7;
977 
978 	switch (host->mode) {
979 	case USE_DMA_ACCESS:
980 		dma_cap_zero(mask);
981 		dma_cap_set(DMA_MEMCPY, mask);
982 		host->read_dma_chan = dma_request_channel(mask, filter, NULL);
983 		if (!host->read_dma_chan) {
984 			dev_err(&pdev->dev, "Unable to get read dma channel\n");
985 			goto err_req_read_chnl;
986 		}
987 		host->write_dma_chan = dma_request_channel(mask, filter, NULL);
988 		if (!host->write_dma_chan) {
989 			dev_err(&pdev->dev, "Unable to get write dma channel\n");
990 			goto err_req_write_chnl;
991 		}
992 		nand->read_buf = fsmc_read_buf_dma;
993 		nand->write_buf = fsmc_write_buf_dma;
994 		break;
995 
996 	default:
997 	case USE_WORD_ACCESS:
998 		nand->read_buf = fsmc_read_buf;
999 		nand->write_buf = fsmc_write_buf;
1000 		break;
1001 	}
1002 
1003 	if (host->dev_timings)
1004 		fsmc_nand_setup(host, host->dev_timings);
1005 	else
1006 		nand->setup_data_interface = fsmc_setup_data_interface;
1007 
1008 	if (AMBA_REV_BITS(host->pid) >= 8) {
1009 		nand->ecc.read_page = fsmc_read_page_hwecc;
1010 		nand->ecc.calculate = fsmc_read_hwecc_ecc4;
1011 		nand->ecc.correct = fsmc_bch8_correct_data;
1012 		nand->ecc.bytes = 13;
1013 		nand->ecc.strength = 8;
1014 	}
1015 
1016 	/*
1017 	 * Scan to find existence of the device
1018 	 */
1019 	ret = nand_scan_ident(mtd, 1, NULL);
1020 	if (ret) {
1021 		dev_err(&pdev->dev, "No NAND Device found!\n");
1022 		goto err_scan_ident;
1023 	}
1024 
1025 	if (AMBA_REV_BITS(host->pid) >= 8) {
1026 		switch (mtd->oobsize) {
1027 		case 16:
1028 		case 64:
1029 		case 128:
1030 		case 224:
1031 		case 256:
1032 			break;
1033 		default:
1034 			dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n",
1035 				 mtd->oobsize);
1036 			ret = -EINVAL;
1037 			goto err_probe;
1038 		}
1039 
1040 		mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
1041 	} else {
1042 		switch (nand->ecc.mode) {
1043 		case NAND_ECC_HW:
1044 			dev_info(&pdev->dev, "Using 1-bit HW ECC scheme\n");
1045 			nand->ecc.calculate = fsmc_read_hwecc_ecc1;
1046 			nand->ecc.correct = nand_correct_data;
1047 			nand->ecc.bytes = 3;
1048 			nand->ecc.strength = 1;
1049 			break;
1050 
1051 		case NAND_ECC_SOFT:
1052 			if (nand->ecc.algo == NAND_ECC_BCH) {
1053 				dev_info(&pdev->dev, "Using 4-bit SW BCH ECC scheme\n");
1054 				break;
1055 			}
1056 
1057 		case NAND_ECC_ON_DIE:
1058 			break;
1059 
1060 		default:
1061 			dev_err(&pdev->dev, "Unsupported ECC mode!\n");
1062 			goto err_probe;
1063 		}
1064 
1065 		/*
1066 		 * Don't set layout for BCH4 SW ECC. This will be
1067 		 * generated later in nand_bch_init() later.
1068 		 */
1069 		if (nand->ecc.mode == NAND_ECC_HW) {
1070 			switch (mtd->oobsize) {
1071 			case 16:
1072 			case 64:
1073 			case 128:
1074 				mtd_set_ooblayout(mtd,
1075 						  &fsmc_ecc1_ooblayout_ops);
1076 				break;
1077 			default:
1078 				dev_warn(&pdev->dev,
1079 					 "No oob scheme defined for oobsize %d\n",
1080 					 mtd->oobsize);
1081 				ret = -EINVAL;
1082 				goto err_probe;
1083 			}
1084 		}
1085 	}
1086 
1087 	/* Second stage of scan to fill MTD data-structures */
1088 	ret = nand_scan_tail(mtd);
1089 	if (ret)
1090 		goto err_probe;
1091 
1092 	mtd->name = "nand";
1093 	ret = mtd_device_register(mtd, NULL, 0);
1094 	if (ret)
1095 		goto err_probe;
1096 
1097 	platform_set_drvdata(pdev, host);
1098 	dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1099 	return 0;
1100 
1101 err_probe:
1102 err_scan_ident:
1103 	if (host->mode == USE_DMA_ACCESS)
1104 		dma_release_channel(host->write_dma_chan);
1105 err_req_write_chnl:
1106 	if (host->mode == USE_DMA_ACCESS)
1107 		dma_release_channel(host->read_dma_chan);
1108 err_req_read_chnl:
1109 	clk_disable_unprepare(host->clk);
1110 	return ret;
1111 }
1112 
1113 /*
1114  * Clean up routine
1115  */
fsmc_nand_remove(struct platform_device * pdev)1116 static int fsmc_nand_remove(struct platform_device *pdev)
1117 {
1118 	struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1119 
1120 	if (host) {
1121 		nand_release(nand_to_mtd(&host->nand));
1122 
1123 		if (host->mode == USE_DMA_ACCESS) {
1124 			dma_release_channel(host->write_dma_chan);
1125 			dma_release_channel(host->read_dma_chan);
1126 		}
1127 		clk_disable_unprepare(host->clk);
1128 	}
1129 
1130 	return 0;
1131 }
1132 
1133 #ifdef CONFIG_PM_SLEEP
fsmc_nand_suspend(struct device * dev)1134 static int fsmc_nand_suspend(struct device *dev)
1135 {
1136 	struct fsmc_nand_data *host = dev_get_drvdata(dev);
1137 	if (host)
1138 		clk_disable_unprepare(host->clk);
1139 	return 0;
1140 }
1141 
fsmc_nand_resume(struct device * dev)1142 static int fsmc_nand_resume(struct device *dev)
1143 {
1144 	struct fsmc_nand_data *host = dev_get_drvdata(dev);
1145 	if (host) {
1146 		clk_prepare_enable(host->clk);
1147 		if (host->dev_timings)
1148 			fsmc_nand_setup(host, host->dev_timings);
1149 	}
1150 	return 0;
1151 }
1152 #endif
1153 
1154 static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1155 
1156 static const struct of_device_id fsmc_nand_id_table[] = {
1157 	{ .compatible = "st,spear600-fsmc-nand" },
1158 	{ .compatible = "stericsson,fsmc-nand" },
1159 	{}
1160 };
1161 MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1162 
1163 static struct platform_driver fsmc_nand_driver = {
1164 	.remove = fsmc_nand_remove,
1165 	.driver = {
1166 		.name = "fsmc-nand",
1167 		.of_match_table = fsmc_nand_id_table,
1168 		.pm = &fsmc_nand_pm_ops,
1169 	},
1170 };
1171 
1172 module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1173 
1174 MODULE_LICENSE("GPL");
1175 MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1176 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");
1177