• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Driver for NAND MLC Controller in LPC32xx
3  *
4  * Author: Roland Stigge <stigge@antcom.de>
5  *
6  * Copyright © 2011 WORK Microwave GmbH
7  * Copyright © 2011, 2012 Roland Stigge
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  *
20  * NAND Flash Controller Operation:
21  * - Read: Auto Decode
22  * - Write: Auto Encode
23  * - Tested Page Sizes: 2048, 4096
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/rawnand.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/clk.h>
33 #include <linux/err.h>
34 #include <linux/delay.h>
35 #include <linux/completion.h>
36 #include <linux/interrupt.h>
37 #include <linux/of.h>
38 #include <linux/of_gpio.h>
39 #include <linux/mtd/lpc32xx_mlc.h>
40 #include <linux/io.h>
41 #include <linux/mm.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/dmaengine.h>
44 #include <linux/mtd/nand_ecc.h>
45 
46 #define DRV_NAME "lpc32xx_mlc"
47 
48 /**********************************************************************
49 * MLC NAND controller register offsets
50 **********************************************************************/
51 
52 #define MLC_BUFF(x)			(x + 0x00000)
53 #define MLC_DATA(x)			(x + 0x08000)
54 #define MLC_CMD(x)			(x + 0x10000)
55 #define MLC_ADDR(x)			(x + 0x10004)
56 #define MLC_ECC_ENC_REG(x)		(x + 0x10008)
57 #define MLC_ECC_DEC_REG(x)		(x + 0x1000C)
58 #define MLC_ECC_AUTO_ENC_REG(x)		(x + 0x10010)
59 #define MLC_ECC_AUTO_DEC_REG(x)		(x + 0x10014)
60 #define MLC_RPR(x)			(x + 0x10018)
61 #define MLC_WPR(x)			(x + 0x1001C)
62 #define MLC_RUBP(x)			(x + 0x10020)
63 #define MLC_ROBP(x)			(x + 0x10024)
64 #define MLC_SW_WP_ADD_LOW(x)		(x + 0x10028)
65 #define MLC_SW_WP_ADD_HIG(x)		(x + 0x1002C)
66 #define MLC_ICR(x)			(x + 0x10030)
67 #define MLC_TIME_REG(x)			(x + 0x10034)
68 #define MLC_IRQ_MR(x)			(x + 0x10038)
69 #define MLC_IRQ_SR(x)			(x + 0x1003C)
70 #define MLC_LOCK_PR(x)			(x + 0x10044)
71 #define MLC_ISR(x)			(x + 0x10048)
72 #define MLC_CEH(x)			(x + 0x1004C)
73 
74 /**********************************************************************
75 * MLC_CMD bit definitions
76 **********************************************************************/
77 #define MLCCMD_RESET			0xFF
78 
79 /**********************************************************************
80 * MLC_ICR bit definitions
81 **********************************************************************/
82 #define MLCICR_WPROT			(1 << 3)
83 #define MLCICR_LARGEBLOCK		(1 << 2)
84 #define MLCICR_LONGADDR			(1 << 1)
85 #define MLCICR_16BIT			(1 << 0)  /* unsupported by LPC32x0! */
86 
87 /**********************************************************************
88 * MLC_TIME_REG bit definitions
89 **********************************************************************/
90 #define MLCTIMEREG_TCEA_DELAY(n)	(((n) & 0x03) << 24)
91 #define MLCTIMEREG_BUSY_DELAY(n)	(((n) & 0x1F) << 19)
92 #define MLCTIMEREG_NAND_TA(n)		(((n) & 0x07) << 16)
93 #define MLCTIMEREG_RD_HIGH(n)		(((n) & 0x0F) << 12)
94 #define MLCTIMEREG_RD_LOW(n)		(((n) & 0x0F) << 8)
95 #define MLCTIMEREG_WR_HIGH(n)		(((n) & 0x0F) << 4)
96 #define MLCTIMEREG_WR_LOW(n)		(((n) & 0x0F) << 0)
97 
98 /**********************************************************************
99 * MLC_IRQ_MR and MLC_IRQ_SR bit definitions
100 **********************************************************************/
101 #define MLCIRQ_NAND_READY		(1 << 5)
102 #define MLCIRQ_CONTROLLER_READY		(1 << 4)
103 #define MLCIRQ_DECODE_FAILURE		(1 << 3)
104 #define MLCIRQ_DECODE_ERROR		(1 << 2)
105 #define MLCIRQ_ECC_READY		(1 << 1)
106 #define MLCIRQ_WRPROT_FAULT		(1 << 0)
107 
108 /**********************************************************************
109 * MLC_LOCK_PR bit definitions
110 **********************************************************************/
111 #define MLCLOCKPR_MAGIC			0xA25E
112 
113 /**********************************************************************
114 * MLC_ISR bit definitions
115 **********************************************************************/
116 #define MLCISR_DECODER_FAILURE		(1 << 6)
117 #define MLCISR_ERRORS			((1 << 4) | (1 << 5))
118 #define MLCISR_ERRORS_DETECTED		(1 << 3)
119 #define MLCISR_ECC_READY		(1 << 2)
120 #define MLCISR_CONTROLLER_READY		(1 << 1)
121 #define MLCISR_NAND_READY		(1 << 0)
122 
123 /**********************************************************************
124 * MLC_CEH bit definitions
125 **********************************************************************/
126 #define MLCCEH_NORMAL			(1 << 0)
127 
128 struct lpc32xx_nand_cfg_mlc {
129 	uint32_t tcea_delay;
130 	uint32_t busy_delay;
131 	uint32_t nand_ta;
132 	uint32_t rd_high;
133 	uint32_t rd_low;
134 	uint32_t wr_high;
135 	uint32_t wr_low;
136 	int wp_gpio;
137 	struct mtd_partition *parts;
138 	unsigned num_parts;
139 };
140 
lpc32xx_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)141 static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
142 				 struct mtd_oob_region *oobregion)
143 {
144 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
145 
146 	if (section >= nand_chip->ecc.steps)
147 		return -ERANGE;
148 
149 	oobregion->offset = ((section + 1) * 16) - nand_chip->ecc.bytes;
150 	oobregion->length = nand_chip->ecc.bytes;
151 
152 	return 0;
153 }
154 
lpc32xx_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)155 static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
156 				  struct mtd_oob_region *oobregion)
157 {
158 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
159 
160 	if (section >= nand_chip->ecc.steps)
161 		return -ERANGE;
162 
163 	oobregion->offset = 16 * section;
164 	oobregion->length = 16 - nand_chip->ecc.bytes;
165 
166 	return 0;
167 }
168 
169 static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
170 	.ecc = lpc32xx_ooblayout_ecc,
171 	.free = lpc32xx_ooblayout_free,
172 };
173 
174 static struct nand_bbt_descr lpc32xx_nand_bbt = {
175 	.options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
176 		   NAND_BBT_WRITE,
177 	.pages = { 524224, 0, 0, 0, 0, 0, 0, 0 },
178 };
179 
180 static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = {
181 	.options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
182 		   NAND_BBT_WRITE,
183 	.pages = { 524160, 0, 0, 0, 0, 0, 0, 0 },
184 };
185 
186 struct lpc32xx_nand_host {
187 	struct nand_chip	nand_chip;
188 	struct lpc32xx_mlc_platform_data *pdata;
189 	struct clk		*clk;
190 	void __iomem		*io_base;
191 	int			irq;
192 	struct lpc32xx_nand_cfg_mlc	*ncfg;
193 	struct completion       comp_nand;
194 	struct completion       comp_controller;
195 	uint32_t llptr;
196 	/*
197 	 * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer
198 	 */
199 	dma_addr_t		oob_buf_phy;
200 	/*
201 	 * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer
202 	 */
203 	uint8_t			*oob_buf;
204 	/* Physical address of DMA base address */
205 	dma_addr_t		io_base_phy;
206 
207 	struct completion	comp_dma;
208 	struct dma_chan		*dma_chan;
209 	struct dma_slave_config	dma_slave_config;
210 	struct scatterlist	sgl;
211 	uint8_t			*dma_buf;
212 	uint8_t			*dummy_buf;
213 	int			mlcsubpages; /* number of 512bytes-subpages */
214 };
215 
216 /*
217  * Activate/Deactivate DMA Operation:
218  *
219  * Using the PL080 DMA Controller for transferring the 512 byte subpages
220  * instead of doing readl() / writel() in a loop slows it down significantly.
221  * Measurements via getnstimeofday() upon 512 byte subpage reads reveal:
222  *
223  * - readl() of 128 x 32 bits in a loop: ~20us
224  * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us
225  * - DMA read of 512 bytes (32 bit, no bursts): ~100us
226  *
227  * This applies to the transfer itself. In the DMA case: only the
228  * wait_for_completion() (DMA setup _not_ included).
229  *
230  * Note that the 512 bytes subpage transfer is done directly from/to a
231  * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a
232  * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND
233  * controller transferring data between its internal buffer to/from the NAND
234  * chip.)
235  *
236  * Therefore, using the PL080 DMA is disabled by default, for now.
237  *
238  */
239 static int use_dma;
240 
lpc32xx_nand_setup(struct lpc32xx_nand_host * host)241 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
242 {
243 	uint32_t clkrate, tmp;
244 
245 	/* Reset MLC controller */
246 	writel(MLCCMD_RESET, MLC_CMD(host->io_base));
247 	udelay(1000);
248 
249 	/* Get base clock for MLC block */
250 	clkrate = clk_get_rate(host->clk);
251 	if (clkrate == 0)
252 		clkrate = 104000000;
253 
254 	/* Unlock MLC_ICR
255 	 * (among others, will be locked again automatically) */
256 	writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
257 
258 	/* Configure MLC Controller: Large Block, 5 Byte Address */
259 	tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR;
260 	writel(tmp, MLC_ICR(host->io_base));
261 
262 	/* Unlock MLC_TIME_REG
263 	 * (among others, will be locked again automatically) */
264 	writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
265 
266 	/* Compute clock setup values, see LPC and NAND manual */
267 	tmp = 0;
268 	tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1);
269 	tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1);
270 	tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1);
271 	tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1);
272 	tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low);
273 	tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1);
274 	tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low);
275 	writel(tmp, MLC_TIME_REG(host->io_base));
276 
277 	/* Enable IRQ for CONTROLLER_READY and NAND_READY */
278 	writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY,
279 			MLC_IRQ_MR(host->io_base));
280 
281 	/* Normal nCE operation: nCE controlled by controller */
282 	writel(MLCCEH_NORMAL, MLC_CEH(host->io_base));
283 }
284 
285 /*
286  * Hardware specific access to control lines
287  */
lpc32xx_nand_cmd_ctrl(struct mtd_info * mtd,int cmd,unsigned int ctrl)288 static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
289 				  unsigned int ctrl)
290 {
291 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
292 	struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
293 
294 	if (cmd != NAND_CMD_NONE) {
295 		if (ctrl & NAND_CLE)
296 			writel(cmd, MLC_CMD(host->io_base));
297 		else
298 			writel(cmd, MLC_ADDR(host->io_base));
299 	}
300 }
301 
302 /*
303  * Read Device Ready (NAND device _and_ controller ready)
304  */
lpc32xx_nand_device_ready(struct mtd_info * mtd)305 static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
306 {
307 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
308 	struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
309 
310 	if ((readb(MLC_ISR(host->io_base)) &
311 	     (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) ==
312 	    (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY))
313 		return  1;
314 
315 	return 0;
316 }
317 
lpc3xxx_nand_irq(int irq,struct lpc32xx_nand_host * host)318 static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host)
319 {
320 	uint8_t sr;
321 
322 	/* Clear interrupt flag by reading status */
323 	sr = readb(MLC_IRQ_SR(host->io_base));
324 	if (sr & MLCIRQ_NAND_READY)
325 		complete(&host->comp_nand);
326 	if (sr & MLCIRQ_CONTROLLER_READY)
327 		complete(&host->comp_controller);
328 
329 	return IRQ_HANDLED;
330 }
331 
lpc32xx_waitfunc_nand(struct mtd_info * mtd,struct nand_chip * chip)332 static int lpc32xx_waitfunc_nand(struct mtd_info *mtd, struct nand_chip *chip)
333 {
334 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
335 
336 	if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)
337 		goto exit;
338 
339 	wait_for_completion(&host->comp_nand);
340 
341 	while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) {
342 		/* Seems to be delayed sometimes by controller */
343 		dev_dbg(&mtd->dev, "Warning: NAND not ready.\n");
344 		cpu_relax();
345 	}
346 
347 exit:
348 	return NAND_STATUS_READY;
349 }
350 
lpc32xx_waitfunc_controller(struct mtd_info * mtd,struct nand_chip * chip)351 static int lpc32xx_waitfunc_controller(struct mtd_info *mtd,
352 				       struct nand_chip *chip)
353 {
354 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
355 
356 	if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY)
357 		goto exit;
358 
359 	wait_for_completion(&host->comp_controller);
360 
361 	while (!(readb(MLC_ISR(host->io_base)) &
362 		 MLCISR_CONTROLLER_READY)) {
363 		dev_dbg(&mtd->dev, "Warning: Controller not ready.\n");
364 		cpu_relax();
365 	}
366 
367 exit:
368 	return NAND_STATUS_READY;
369 }
370 
lpc32xx_waitfunc(struct mtd_info * mtd,struct nand_chip * chip)371 static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
372 {
373 	lpc32xx_waitfunc_nand(mtd, chip);
374 	lpc32xx_waitfunc_controller(mtd, chip);
375 
376 	return NAND_STATUS_READY;
377 }
378 
379 /*
380  * Enable NAND write protect
381  */
lpc32xx_wp_enable(struct lpc32xx_nand_host * host)382 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
383 {
384 	if (gpio_is_valid(host->ncfg->wp_gpio))
385 		gpio_set_value(host->ncfg->wp_gpio, 0);
386 }
387 
388 /*
389  * Disable NAND write protect
390  */
lpc32xx_wp_disable(struct lpc32xx_nand_host * host)391 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
392 {
393 	if (gpio_is_valid(host->ncfg->wp_gpio))
394 		gpio_set_value(host->ncfg->wp_gpio, 1);
395 }
396 
lpc32xx_dma_complete_func(void * completion)397 static void lpc32xx_dma_complete_func(void *completion)
398 {
399 	complete(completion);
400 }
401 
lpc32xx_xmit_dma(struct mtd_info * mtd,void * mem,int len,enum dma_transfer_direction dir)402 static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len,
403 			    enum dma_transfer_direction dir)
404 {
405 	struct nand_chip *chip = mtd_to_nand(mtd);
406 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
407 	struct dma_async_tx_descriptor *desc;
408 	int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
409 	int res;
410 
411 	sg_init_one(&host->sgl, mem, len);
412 
413 	res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
414 			 DMA_BIDIRECTIONAL);
415 	if (res != 1) {
416 		dev_err(mtd->dev.parent, "Failed to map sg list\n");
417 		return -ENXIO;
418 	}
419 	desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
420 				       flags);
421 	if (!desc) {
422 		dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
423 		goto out1;
424 	}
425 
426 	init_completion(&host->comp_dma);
427 	desc->callback = lpc32xx_dma_complete_func;
428 	desc->callback_param = &host->comp_dma;
429 
430 	dmaengine_submit(desc);
431 	dma_async_issue_pending(host->dma_chan);
432 
433 	wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000));
434 
435 	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
436 		     DMA_BIDIRECTIONAL);
437 	return 0;
438 out1:
439 	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
440 		     DMA_BIDIRECTIONAL);
441 	return -ENXIO;
442 }
443 
lpc32xx_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)444 static int lpc32xx_read_page(struct mtd_info *mtd, struct nand_chip *chip,
445 			     uint8_t *buf, int oob_required, int page)
446 {
447 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
448 	int i, j;
449 	uint8_t *oobbuf = chip->oob_poi;
450 	uint32_t mlc_isr;
451 	int res;
452 	uint8_t *dma_buf;
453 	bool dma_mapped;
454 
455 	if ((void *)buf <= high_memory) {
456 		dma_buf = buf;
457 		dma_mapped = true;
458 	} else {
459 		dma_buf = host->dma_buf;
460 		dma_mapped = false;
461 	}
462 
463 	/* Writing Command and Address */
464 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
465 
466 	/* For all sub-pages */
467 	for (i = 0; i < host->mlcsubpages; i++) {
468 		/* Start Auto Decode Command */
469 		writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base));
470 
471 		/* Wait for Controller Ready */
472 		lpc32xx_waitfunc_controller(mtd, chip);
473 
474 		/* Check ECC Error status */
475 		mlc_isr = readl(MLC_ISR(host->io_base));
476 		if (mlc_isr & MLCISR_DECODER_FAILURE) {
477 			mtd->ecc_stats.failed++;
478 			dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__);
479 		} else if (mlc_isr & MLCISR_ERRORS_DETECTED) {
480 			mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1;
481 		}
482 
483 		/* Read 512 + 16 Bytes */
484 		if (use_dma) {
485 			res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
486 					       DMA_DEV_TO_MEM);
487 			if (res)
488 				return res;
489 		} else {
490 			for (j = 0; j < (512 >> 2); j++) {
491 				*((uint32_t *)(buf)) =
492 					readl(MLC_BUFF(host->io_base));
493 				buf += 4;
494 			}
495 		}
496 		for (j = 0; j < (16 >> 2); j++) {
497 			*((uint32_t *)(oobbuf)) =
498 				readl(MLC_BUFF(host->io_base));
499 			oobbuf += 4;
500 		}
501 	}
502 
503 	if (use_dma && !dma_mapped)
504 		memcpy(buf, dma_buf, mtd->writesize);
505 
506 	return 0;
507 }
508 
lpc32xx_write_page_lowlevel(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)509 static int lpc32xx_write_page_lowlevel(struct mtd_info *mtd,
510 				       struct nand_chip *chip,
511 				       const uint8_t *buf, int oob_required,
512 				       int page)
513 {
514 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
515 	const uint8_t *oobbuf = chip->oob_poi;
516 	uint8_t *dma_buf = (uint8_t *)buf;
517 	int res;
518 	int i, j;
519 
520 	if (use_dma && (void *)buf >= high_memory) {
521 		dma_buf = host->dma_buf;
522 		memcpy(dma_buf, buf, mtd->writesize);
523 	}
524 
525 	for (i = 0; i < host->mlcsubpages; i++) {
526 		/* Start Encode */
527 		writeb(0x00, MLC_ECC_ENC_REG(host->io_base));
528 
529 		/* Write 512 + 6 Bytes to Buffer */
530 		if (use_dma) {
531 			res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
532 					       DMA_MEM_TO_DEV);
533 			if (res)
534 				return res;
535 		} else {
536 			for (j = 0; j < (512 >> 2); j++) {
537 				writel(*((uint32_t *)(buf)),
538 				       MLC_BUFF(host->io_base));
539 				buf += 4;
540 			}
541 		}
542 		writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base));
543 		oobbuf += 4;
544 		writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base));
545 		oobbuf += 12;
546 
547 		/* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */
548 		writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base));
549 
550 		/* Wait for Controller Ready */
551 		lpc32xx_waitfunc_controller(mtd, chip);
552 	}
553 	return 0;
554 }
555 
lpc32xx_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)556 static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
557 			    int page)
558 {
559 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
560 
561 	/* Read whole page - necessary with MLC controller! */
562 	lpc32xx_read_page(mtd, chip, host->dummy_buf, 1, page);
563 
564 	return 0;
565 }
566 
lpc32xx_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)567 static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
568 			      int page)
569 {
570 	/* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */
571 	return 0;
572 }
573 
574 /* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */
lpc32xx_ecc_enable(struct mtd_info * mtd,int mode)575 static void lpc32xx_ecc_enable(struct mtd_info *mtd, int mode)
576 {
577 	/* Always enabled! */
578 }
579 
lpc32xx_dma_setup(struct lpc32xx_nand_host * host)580 static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host)
581 {
582 	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
583 	dma_cap_mask_t mask;
584 
585 	if (!host->pdata || !host->pdata->dma_filter) {
586 		dev_err(mtd->dev.parent, "no DMA platform data\n");
587 		return -ENOENT;
588 	}
589 
590 	dma_cap_zero(mask);
591 	dma_cap_set(DMA_SLAVE, mask);
592 	host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
593 					     "nand-mlc");
594 	if (!host->dma_chan) {
595 		dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
596 		return -EBUSY;
597 	}
598 
599 	/*
600 	 * Set direction to a sensible value even if the dmaengine driver
601 	 * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x
602 	 * driver criticizes it as "alien transfer direction".
603 	 */
604 	host->dma_slave_config.direction = DMA_DEV_TO_MEM;
605 	host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
606 	host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
607 	host->dma_slave_config.src_maxburst = 128;
608 	host->dma_slave_config.dst_maxburst = 128;
609 	/* DMA controller does flow control: */
610 	host->dma_slave_config.device_fc = false;
611 	host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy);
612 	host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy);
613 	if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
614 		dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
615 		goto out1;
616 	}
617 
618 	return 0;
619 out1:
620 	dma_release_channel(host->dma_chan);
621 	return -ENXIO;
622 }
623 
lpc32xx_parse_dt(struct device * dev)624 static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev)
625 {
626 	struct lpc32xx_nand_cfg_mlc *ncfg;
627 	struct device_node *np = dev->of_node;
628 
629 	ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
630 	if (!ncfg)
631 		return NULL;
632 
633 	of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay);
634 	of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay);
635 	of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta);
636 	of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high);
637 	of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low);
638 	of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high);
639 	of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low);
640 
641 	if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta ||
642 	    !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high ||
643 	    !ncfg->wr_low) {
644 		dev_err(dev, "chip parameters not specified correctly\n");
645 		return NULL;
646 	}
647 
648 	ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
649 
650 	return ncfg;
651 }
652 
653 /*
654  * Probe for NAND controller
655  */
lpc32xx_nand_probe(struct platform_device * pdev)656 static int lpc32xx_nand_probe(struct platform_device *pdev)
657 {
658 	struct lpc32xx_nand_host *host;
659 	struct mtd_info *mtd;
660 	struct nand_chip *nand_chip;
661 	struct resource *rc;
662 	int res;
663 
664 	/* Allocate memory for the device structure (and zero it) */
665 	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
666 	if (!host)
667 		return -ENOMEM;
668 
669 	rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
670 	host->io_base = devm_ioremap_resource(&pdev->dev, rc);
671 	if (IS_ERR(host->io_base))
672 		return PTR_ERR(host->io_base);
673 
674 	host->io_base_phy = rc->start;
675 
676 	nand_chip = &host->nand_chip;
677 	mtd = nand_to_mtd(nand_chip);
678 	if (pdev->dev.of_node)
679 		host->ncfg = lpc32xx_parse_dt(&pdev->dev);
680 	if (!host->ncfg) {
681 		dev_err(&pdev->dev,
682 			"Missing or bad NAND config from device tree\n");
683 		return -ENOENT;
684 	}
685 	if (host->ncfg->wp_gpio == -EPROBE_DEFER)
686 		return -EPROBE_DEFER;
687 	if (gpio_is_valid(host->ncfg->wp_gpio) &&
688 			gpio_request(host->ncfg->wp_gpio, "NAND WP")) {
689 		dev_err(&pdev->dev, "GPIO not available\n");
690 		return -EBUSY;
691 	}
692 	lpc32xx_wp_disable(host);
693 
694 	host->pdata = dev_get_platdata(&pdev->dev);
695 
696 	/* link the private data structures */
697 	nand_set_controller_data(nand_chip, host);
698 	nand_set_flash_node(nand_chip, pdev->dev.of_node);
699 	mtd->dev.parent = &pdev->dev;
700 
701 	/* Get NAND clock */
702 	host->clk = clk_get(&pdev->dev, NULL);
703 	if (IS_ERR(host->clk)) {
704 		dev_err(&pdev->dev, "Clock initialization failure\n");
705 		res = -ENOENT;
706 		goto err_exit1;
707 	}
708 	res = clk_prepare_enable(host->clk);
709 	if (res)
710 		goto err_put_clk;
711 
712 	nand_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
713 	nand_chip->dev_ready = lpc32xx_nand_device_ready;
714 	nand_chip->chip_delay = 25; /* us */
715 	nand_chip->IO_ADDR_R = MLC_DATA(host->io_base);
716 	nand_chip->IO_ADDR_W = MLC_DATA(host->io_base);
717 
718 	/* Init NAND controller */
719 	lpc32xx_nand_setup(host);
720 
721 	platform_set_drvdata(pdev, host);
722 
723 	/* Initialize function pointers */
724 	nand_chip->ecc.hwctl = lpc32xx_ecc_enable;
725 	nand_chip->ecc.read_page_raw = lpc32xx_read_page;
726 	nand_chip->ecc.read_page = lpc32xx_read_page;
727 	nand_chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel;
728 	nand_chip->ecc.write_page = lpc32xx_write_page_lowlevel;
729 	nand_chip->ecc.write_oob = lpc32xx_write_oob;
730 	nand_chip->ecc.read_oob = lpc32xx_read_oob;
731 	nand_chip->ecc.strength = 4;
732 	nand_chip->ecc.bytes = 10;
733 	nand_chip->waitfunc = lpc32xx_waitfunc;
734 
735 	nand_chip->options = NAND_NO_SUBPAGE_WRITE;
736 	nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
737 	nand_chip->bbt_td = &lpc32xx_nand_bbt;
738 	nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror;
739 
740 	if (use_dma) {
741 		res = lpc32xx_dma_setup(host);
742 		if (res) {
743 			res = -EIO;
744 			goto err_exit2;
745 		}
746 	}
747 
748 	/*
749 	 * Scan to find existance of the device and
750 	 * Get the type of NAND device SMALL block or LARGE block
751 	 */
752 	res = nand_scan_ident(mtd, 1, NULL);
753 	if (res)
754 		goto err_exit3;
755 
756 	host->dma_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL);
757 	if (!host->dma_buf) {
758 		res = -ENOMEM;
759 		goto err_exit3;
760 	}
761 
762 	host->dummy_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL);
763 	if (!host->dummy_buf) {
764 		res = -ENOMEM;
765 		goto err_exit3;
766 	}
767 
768 	nand_chip->ecc.mode = NAND_ECC_HW;
769 	nand_chip->ecc.size = 512;
770 	mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
771 	host->mlcsubpages = mtd->writesize / 512;
772 
773 	/* initially clear interrupt status */
774 	readb(MLC_IRQ_SR(host->io_base));
775 
776 	init_completion(&host->comp_nand);
777 	init_completion(&host->comp_controller);
778 
779 	host->irq = platform_get_irq(pdev, 0);
780 	if (host->irq < 0) {
781 		dev_err(&pdev->dev, "failed to get platform irq\n");
782 		res = -EINVAL;
783 		goto err_exit3;
784 	}
785 
786 	if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq,
787 			IRQF_TRIGGER_HIGH, DRV_NAME, host)) {
788 		dev_err(&pdev->dev, "Error requesting NAND IRQ\n");
789 		res = -ENXIO;
790 		goto err_exit3;
791 	}
792 
793 	/*
794 	 * Fills out all the uninitialized function pointers with the defaults
795 	 * And scans for a bad block table if appropriate.
796 	 */
797 	res = nand_scan_tail(mtd);
798 	if (res)
799 		goto err_exit4;
800 
801 	mtd->name = DRV_NAME;
802 
803 	res = mtd_device_register(mtd, host->ncfg->parts,
804 				  host->ncfg->num_parts);
805 	if (!res)
806 		return res;
807 
808 	nand_release(mtd);
809 
810 err_exit4:
811 	free_irq(host->irq, host);
812 err_exit3:
813 	if (use_dma)
814 		dma_release_channel(host->dma_chan);
815 err_exit2:
816 	clk_disable_unprepare(host->clk);
817 err_put_clk:
818 	clk_put(host->clk);
819 err_exit1:
820 	lpc32xx_wp_enable(host);
821 	gpio_free(host->ncfg->wp_gpio);
822 
823 	return res;
824 }
825 
826 /*
827  * Remove NAND device
828  */
lpc32xx_nand_remove(struct platform_device * pdev)829 static int lpc32xx_nand_remove(struct platform_device *pdev)
830 {
831 	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
832 	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
833 
834 	nand_release(mtd);
835 	free_irq(host->irq, host);
836 	if (use_dma)
837 		dma_release_channel(host->dma_chan);
838 
839 	clk_disable_unprepare(host->clk);
840 	clk_put(host->clk);
841 
842 	lpc32xx_wp_enable(host);
843 	gpio_free(host->ncfg->wp_gpio);
844 
845 	return 0;
846 }
847 
848 #ifdef CONFIG_PM
lpc32xx_nand_resume(struct platform_device * pdev)849 static int lpc32xx_nand_resume(struct platform_device *pdev)
850 {
851 	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
852 	int ret;
853 
854 	/* Re-enable NAND clock */
855 	ret = clk_prepare_enable(host->clk);
856 	if (ret)
857 		return ret;
858 
859 	/* Fresh init of NAND controller */
860 	lpc32xx_nand_setup(host);
861 
862 	/* Disable write protect */
863 	lpc32xx_wp_disable(host);
864 
865 	return 0;
866 }
867 
lpc32xx_nand_suspend(struct platform_device * pdev,pm_message_t pm)868 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
869 {
870 	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
871 
872 	/* Enable write protect for safety */
873 	lpc32xx_wp_enable(host);
874 
875 	/* Disable clock */
876 	clk_disable_unprepare(host->clk);
877 	return 0;
878 }
879 
880 #else
881 #define lpc32xx_nand_resume NULL
882 #define lpc32xx_nand_suspend NULL
883 #endif
884 
885 static const struct of_device_id lpc32xx_nand_match[] = {
886 	{ .compatible = "nxp,lpc3220-mlc" },
887 	{ /* sentinel */ },
888 };
889 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
890 
891 static struct platform_driver lpc32xx_nand_driver = {
892 	.probe		= lpc32xx_nand_probe,
893 	.remove		= lpc32xx_nand_remove,
894 	.resume		= lpc32xx_nand_resume,
895 	.suspend	= lpc32xx_nand_suspend,
896 	.driver		= {
897 		.name	= DRV_NAME,
898 		.of_match_table = lpc32xx_nand_match,
899 	},
900 };
901 
902 module_platform_driver(lpc32xx_nand_driver);
903 
904 MODULE_LICENSE("GPL");
905 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
906 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller");
907