• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * MTK NAND Flash controller driver.
3  * Copyright (C) 2016 MediaTek Inc.
4  * Authors:	Xiaolei Li		<xiaolei.li@mediatek.com>
5  *		Jorge Ramirez-Ortiz	<jorge.ramirez-ortiz@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/platform_device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/clk.h>
22 #include <linux/mtd/rawnand.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/module.h>
25 #include <linux/iopoll.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include "mtk_ecc.h"
29 
30 /* NAND controller register definition */
31 #define NFI_CNFG		(0x00)
32 #define		CNFG_AHB		BIT(0)
33 #define		CNFG_READ_EN		BIT(1)
34 #define		CNFG_DMA_BURST_EN	BIT(2)
35 #define		CNFG_BYTE_RW		BIT(6)
36 #define		CNFG_HW_ECC_EN		BIT(8)
37 #define		CNFG_AUTO_FMT_EN	BIT(9)
38 #define		CNFG_OP_CUST		(6 << 12)
39 #define NFI_PAGEFMT		(0x04)
40 #define		PAGEFMT_FDM_ECC_SHIFT	(12)
41 #define		PAGEFMT_FDM_SHIFT	(8)
42 #define		PAGEFMT_SEC_SEL_512	BIT(2)
43 #define		PAGEFMT_512_2K		(0)
44 #define		PAGEFMT_2K_4K		(1)
45 #define		PAGEFMT_4K_8K		(2)
46 #define		PAGEFMT_8K_16K		(3)
47 /* NFI control */
48 #define NFI_CON			(0x08)
49 #define		CON_FIFO_FLUSH		BIT(0)
50 #define		CON_NFI_RST		BIT(1)
51 #define		CON_BRD			BIT(8)  /* burst  read */
52 #define		CON_BWR			BIT(9)	/* burst  write */
53 #define		CON_SEC_SHIFT		(12)
54 /* Timming control register */
55 #define NFI_ACCCON		(0x0C)
56 #define NFI_INTR_EN		(0x10)
57 #define		INTR_AHB_DONE_EN	BIT(6)
58 #define NFI_INTR_STA		(0x14)
59 #define NFI_CMD			(0x20)
60 #define NFI_ADDRNOB		(0x30)
61 #define NFI_COLADDR		(0x34)
62 #define NFI_ROWADDR		(0x38)
63 #define NFI_STRDATA		(0x40)
64 #define		STAR_EN			(1)
65 #define		STAR_DE			(0)
66 #define NFI_CNRNB		(0x44)
67 #define NFI_DATAW		(0x50)
68 #define NFI_DATAR		(0x54)
69 #define NFI_PIO_DIRDY		(0x58)
70 #define		PIO_DI_RDY		(0x01)
71 #define NFI_STA			(0x60)
72 #define		STA_CMD			BIT(0)
73 #define		STA_ADDR		BIT(1)
74 #define		STA_BUSY		BIT(8)
75 #define		STA_EMP_PAGE		BIT(12)
76 #define		NFI_FSM_CUSTDATA	(0xe << 16)
77 #define		NFI_FSM_MASK		(0xf << 16)
78 #define NFI_ADDRCNTR		(0x70)
79 #define		CNTR_MASK		GENMASK(16, 12)
80 #define		ADDRCNTR_SEC_SHIFT	(12)
81 #define		ADDRCNTR_SEC(val) \
82 		(((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT)
83 #define NFI_STRADDR		(0x80)
84 #define NFI_BYTELEN		(0x84)
85 #define NFI_CSEL		(0x90)
86 #define NFI_FDML(x)		(0xA0 + (x) * sizeof(u32) * 2)
87 #define NFI_FDMM(x)		(0xA4 + (x) * sizeof(u32) * 2)
88 #define NFI_FDM_MAX_SIZE	(8)
89 #define NFI_FDM_MIN_SIZE	(1)
90 #define NFI_MASTER_STA		(0x224)
91 #define		MASTER_STA_MASK		(0x0FFF)
92 #define NFI_EMPTY_THRESH	(0x23C)
93 
94 #define MTK_NAME		"mtk-nand"
95 #define KB(x)			((x) * 1024UL)
96 #define MB(x)			(KB(x) * 1024UL)
97 
98 #define MTK_TIMEOUT		(500000)
99 #define MTK_RESET_TIMEOUT	(1000000)
100 #define MTK_MAX_SECTOR		(16)
101 #define MTK_NAND_MAX_NSELS	(2)
102 #define MTK_NFC_MIN_SPARE	(16)
103 #define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \
104 	((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \
105 	(tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt))
106 
107 struct mtk_nfc_caps {
108 	const u8 *spare_size;
109 	u8 num_spare_size;
110 	u8 pageformat_spare_shift;
111 	u8 nfi_clk_div;
112 };
113 
114 struct mtk_nfc_bad_mark_ctl {
115 	void (*bm_swap)(struct mtd_info *, u8 *buf, int raw);
116 	u32 sec;
117 	u32 pos;
118 };
119 
120 /*
121  * FDM: region used to store free OOB data
122  */
123 struct mtk_nfc_fdm {
124 	u32 reg_size;
125 	u32 ecc_size;
126 };
127 
128 struct mtk_nfc_nand_chip {
129 	struct list_head node;
130 	struct nand_chip nand;
131 
132 	struct mtk_nfc_bad_mark_ctl bad_mark;
133 	struct mtk_nfc_fdm fdm;
134 	u32 spare_per_sector;
135 
136 	int nsels;
137 	u8 sels[0];
138 	/* nothing after this field */
139 };
140 
141 struct mtk_nfc_clk {
142 	struct clk *nfi_clk;
143 	struct clk *pad_clk;
144 };
145 
146 struct mtk_nfc {
147 	struct nand_hw_control controller;
148 	struct mtk_ecc_config ecc_cfg;
149 	struct mtk_nfc_clk clk;
150 	struct mtk_ecc *ecc;
151 
152 	struct device *dev;
153 	const struct mtk_nfc_caps *caps;
154 	void __iomem *regs;
155 
156 	struct completion done;
157 	struct list_head chips;
158 
159 	u8 *buffer;
160 };
161 
162 /*
163  * supported spare size of each IP.
164  * order should be the same with the spare size bitfiled defination of
165  * register NFI_PAGEFMT.
166  */
167 static const u8 spare_size_mt2701[] = {
168 	16, 26, 27, 28, 32, 36, 40, 44,	48, 49, 50, 51, 52, 62, 63, 64
169 };
170 
171 static const u8 spare_size_mt2712[] = {
172 	16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
173 	74
174 };
175 
to_mtk_nand(struct nand_chip * nand)176 static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand)
177 {
178 	return container_of(nand, struct mtk_nfc_nand_chip, nand);
179 }
180 
data_ptr(struct nand_chip * chip,const u8 * p,int i)181 static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i)
182 {
183 	return (u8 *)p + i * chip->ecc.size;
184 }
185 
oob_ptr(struct nand_chip * chip,int i)186 static inline u8 *oob_ptr(struct nand_chip *chip, int i)
187 {
188 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
189 	u8 *poi;
190 
191 	/* map the sector's FDM data to free oob:
192 	 * the beginning of the oob area stores the FDM data of bad mark sectors
193 	 */
194 
195 	if (i < mtk_nand->bad_mark.sec)
196 		poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size;
197 	else if (i == mtk_nand->bad_mark.sec)
198 		poi = chip->oob_poi;
199 	else
200 		poi = chip->oob_poi + i * mtk_nand->fdm.reg_size;
201 
202 	return poi;
203 }
204 
mtk_data_len(struct nand_chip * chip)205 static inline int mtk_data_len(struct nand_chip *chip)
206 {
207 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
208 
209 	return chip->ecc.size + mtk_nand->spare_per_sector;
210 }
211 
mtk_data_ptr(struct nand_chip * chip,int i)212 static inline u8 *mtk_data_ptr(struct nand_chip *chip,  int i)
213 {
214 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
215 
216 	return nfc->buffer + i * mtk_data_len(chip);
217 }
218 
mtk_oob_ptr(struct nand_chip * chip,int i)219 static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i)
220 {
221 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
222 
223 	return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size;
224 }
225 
nfi_writel(struct mtk_nfc * nfc,u32 val,u32 reg)226 static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg)
227 {
228 	writel(val, nfc->regs + reg);
229 }
230 
nfi_writew(struct mtk_nfc * nfc,u16 val,u32 reg)231 static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg)
232 {
233 	writew(val, nfc->regs + reg);
234 }
235 
nfi_writeb(struct mtk_nfc * nfc,u8 val,u32 reg)236 static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg)
237 {
238 	writeb(val, nfc->regs + reg);
239 }
240 
nfi_readl(struct mtk_nfc * nfc,u32 reg)241 static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg)
242 {
243 	return readl_relaxed(nfc->regs + reg);
244 }
245 
nfi_readw(struct mtk_nfc * nfc,u32 reg)246 static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg)
247 {
248 	return readw_relaxed(nfc->regs + reg);
249 }
250 
nfi_readb(struct mtk_nfc * nfc,u32 reg)251 static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg)
252 {
253 	return readb_relaxed(nfc->regs + reg);
254 }
255 
mtk_nfc_hw_reset(struct mtk_nfc * nfc)256 static void mtk_nfc_hw_reset(struct mtk_nfc *nfc)
257 {
258 	struct device *dev = nfc->dev;
259 	u32 val;
260 	int ret;
261 
262 	/* reset all registers and force the NFI master to terminate */
263 	nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
264 
265 	/* wait for the master to finish the last transaction */
266 	ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val,
267 				 !(val & MASTER_STA_MASK), 50,
268 				 MTK_RESET_TIMEOUT);
269 	if (ret)
270 		dev_warn(dev, "master active in reset [0x%x] = 0x%x\n",
271 			 NFI_MASTER_STA, val);
272 
273 	/* ensure any status register affected by the NFI master is reset */
274 	nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
275 	nfi_writew(nfc, STAR_DE, NFI_STRDATA);
276 }
277 
mtk_nfc_send_command(struct mtk_nfc * nfc,u8 command)278 static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command)
279 {
280 	struct device *dev = nfc->dev;
281 	u32 val;
282 	int ret;
283 
284 	nfi_writel(nfc, command, NFI_CMD);
285 
286 	ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
287 					!(val & STA_CMD), 10,  MTK_TIMEOUT);
288 	if (ret) {
289 		dev_warn(dev, "nfi core timed out entering command mode\n");
290 		return -EIO;
291 	}
292 
293 	return 0;
294 }
295 
mtk_nfc_send_address(struct mtk_nfc * nfc,int addr)296 static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr)
297 {
298 	struct device *dev = nfc->dev;
299 	u32 val;
300 	int ret;
301 
302 	nfi_writel(nfc, addr, NFI_COLADDR);
303 	nfi_writel(nfc, 0, NFI_ROWADDR);
304 	nfi_writew(nfc, 1, NFI_ADDRNOB);
305 
306 	ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
307 					!(val & STA_ADDR), 10, MTK_TIMEOUT);
308 	if (ret) {
309 		dev_warn(dev, "nfi core timed out entering address mode\n");
310 		return -EIO;
311 	}
312 
313 	return 0;
314 }
315 
mtk_nfc_hw_runtime_config(struct mtd_info * mtd)316 static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd)
317 {
318 	struct nand_chip *chip = mtd_to_nand(mtd);
319 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
320 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
321 	u32 fmt, spare, i;
322 
323 	if (!mtd->writesize)
324 		return 0;
325 
326 	spare = mtk_nand->spare_per_sector;
327 
328 	switch (mtd->writesize) {
329 	case 512:
330 		fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512;
331 		break;
332 	case KB(2):
333 		if (chip->ecc.size == 512)
334 			fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512;
335 		else
336 			fmt = PAGEFMT_512_2K;
337 		break;
338 	case KB(4):
339 		if (chip->ecc.size == 512)
340 			fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512;
341 		else
342 			fmt = PAGEFMT_2K_4K;
343 		break;
344 	case KB(8):
345 		if (chip->ecc.size == 512)
346 			fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512;
347 		else
348 			fmt = PAGEFMT_4K_8K;
349 		break;
350 	case KB(16):
351 		fmt = PAGEFMT_8K_16K;
352 		break;
353 	default:
354 		dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize);
355 		return -EINVAL;
356 	}
357 
358 	/*
359 	 * the hardware will double the value for this eccsize, so we need to
360 	 * halve it
361 	 */
362 	if (chip->ecc.size == 1024)
363 		spare >>= 1;
364 
365 	for (i = 0; i < nfc->caps->num_spare_size; i++) {
366 		if (nfc->caps->spare_size[i] == spare)
367 			break;
368 	}
369 
370 	if (i == nfc->caps->num_spare_size) {
371 		dev_err(nfc->dev, "invalid spare size %d\n", spare);
372 		return -EINVAL;
373 	}
374 
375 	fmt |= i << nfc->caps->pageformat_spare_shift;
376 
377 	fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT;
378 	fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT;
379 	nfi_writel(nfc, fmt, NFI_PAGEFMT);
380 
381 	nfc->ecc_cfg.strength = chip->ecc.strength;
382 	nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size;
383 
384 	return 0;
385 }
386 
mtk_nfc_select_chip(struct mtd_info * mtd,int chip)387 static void mtk_nfc_select_chip(struct mtd_info *mtd, int chip)
388 {
389 	struct nand_chip *nand = mtd_to_nand(mtd);
390 	struct mtk_nfc *nfc = nand_get_controller_data(nand);
391 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand);
392 
393 	if (chip < 0)
394 		return;
395 
396 	mtk_nfc_hw_runtime_config(mtd);
397 
398 	nfi_writel(nfc, mtk_nand->sels[chip], NFI_CSEL);
399 }
400 
mtk_nfc_dev_ready(struct mtd_info * mtd)401 static int mtk_nfc_dev_ready(struct mtd_info *mtd)
402 {
403 	struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
404 
405 	if (nfi_readl(nfc, NFI_STA) & STA_BUSY)
406 		return 0;
407 
408 	return 1;
409 }
410 
mtk_nfc_cmd_ctrl(struct mtd_info * mtd,int dat,unsigned int ctrl)411 static void mtk_nfc_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
412 {
413 	struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
414 
415 	if (ctrl & NAND_ALE) {
416 		mtk_nfc_send_address(nfc, dat);
417 	} else if (ctrl & NAND_CLE) {
418 		mtk_nfc_hw_reset(nfc);
419 
420 		nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG);
421 		mtk_nfc_send_command(nfc, dat);
422 	}
423 }
424 
mtk_nfc_wait_ioready(struct mtk_nfc * nfc)425 static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc)
426 {
427 	int rc;
428 	u8 val;
429 
430 	rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val,
431 				       val & PIO_DI_RDY, 10, MTK_TIMEOUT);
432 	if (rc < 0)
433 		dev_err(nfc->dev, "data not ready\n");
434 }
435 
mtk_nfc_read_byte(struct mtd_info * mtd)436 static inline u8 mtk_nfc_read_byte(struct mtd_info *mtd)
437 {
438 	struct nand_chip *chip = mtd_to_nand(mtd);
439 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
440 	u32 reg;
441 
442 	/* after each byte read, the NFI_STA reg is reset by the hardware */
443 	reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
444 	if (reg != NFI_FSM_CUSTDATA) {
445 		reg = nfi_readw(nfc, NFI_CNFG);
446 		reg |= CNFG_BYTE_RW | CNFG_READ_EN;
447 		nfi_writew(nfc, reg, NFI_CNFG);
448 
449 		/*
450 		 * set to max sector to allow the HW to continue reading over
451 		 * unaligned accesses
452 		 */
453 		reg = (MTK_MAX_SECTOR << CON_SEC_SHIFT) | CON_BRD;
454 		nfi_writel(nfc, reg, NFI_CON);
455 
456 		/* trigger to fetch data */
457 		nfi_writew(nfc, STAR_EN, NFI_STRDATA);
458 	}
459 
460 	mtk_nfc_wait_ioready(nfc);
461 
462 	return nfi_readb(nfc, NFI_DATAR);
463 }
464 
mtk_nfc_read_buf(struct mtd_info * mtd,u8 * buf,int len)465 static void mtk_nfc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
466 {
467 	int i;
468 
469 	for (i = 0; i < len; i++)
470 		buf[i] = mtk_nfc_read_byte(mtd);
471 }
472 
mtk_nfc_write_byte(struct mtd_info * mtd,u8 byte)473 static void mtk_nfc_write_byte(struct mtd_info *mtd, u8 byte)
474 {
475 	struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
476 	u32 reg;
477 
478 	reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
479 
480 	if (reg != NFI_FSM_CUSTDATA) {
481 		reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW;
482 		nfi_writew(nfc, reg, NFI_CNFG);
483 
484 		reg = MTK_MAX_SECTOR << CON_SEC_SHIFT | CON_BWR;
485 		nfi_writel(nfc, reg, NFI_CON);
486 
487 		nfi_writew(nfc, STAR_EN, NFI_STRDATA);
488 	}
489 
490 	mtk_nfc_wait_ioready(nfc);
491 	nfi_writeb(nfc, byte, NFI_DATAW);
492 }
493 
mtk_nfc_write_buf(struct mtd_info * mtd,const u8 * buf,int len)494 static void mtk_nfc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
495 {
496 	int i;
497 
498 	for (i = 0; i < len; i++)
499 		mtk_nfc_write_byte(mtd, buf[i]);
500 }
501 
mtk_nfc_setup_data_interface(struct mtd_info * mtd,int csline,const struct nand_data_interface * conf)502 static int mtk_nfc_setup_data_interface(struct mtd_info *mtd, int csline,
503 					const struct nand_data_interface *conf)
504 {
505 	struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
506 	const struct nand_sdr_timings *timings;
507 	u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt;
508 
509 	timings = nand_get_sdr_timings(conf);
510 	if (IS_ERR(timings))
511 		return -ENOTSUPP;
512 
513 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
514 		return 0;
515 
516 	rate = clk_get_rate(nfc->clk.nfi_clk);
517 	/* There is a frequency divider in some IPs */
518 	rate /= nfc->caps->nfi_clk_div;
519 
520 	/* turn clock rate into KHZ */
521 	rate /= 1000;
522 
523 	tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000;
524 	tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000);
525 	tpoecs &= 0xf;
526 
527 	tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000;
528 	tprecs = DIV_ROUND_UP(tprecs * rate, 1000000);
529 	tprecs &= 0x3f;
530 
531 	/* sdr interface has no tCR which means CE# low to RE# low */
532 	tc2r = 0;
533 
534 	tw2r = timings->tWHR_min / 1000;
535 	tw2r = DIV_ROUND_UP(tw2r * rate, 1000000);
536 	tw2r = DIV_ROUND_UP(tw2r - 1, 2);
537 	tw2r &= 0xf;
538 
539 	twh = max(timings->tREH_min, timings->tWH_min) / 1000;
540 	twh = DIV_ROUND_UP(twh * rate, 1000000) - 1;
541 	twh &= 0xf;
542 
543 	twst = timings->tWP_min / 1000;
544 	twst = DIV_ROUND_UP(twst * rate, 1000000) - 1;
545 	twst &= 0xf;
546 
547 	trlt = max(timings->tREA_max, timings->tRP_min) / 1000;
548 	trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1;
549 	trlt &= 0xf;
550 
551 	/*
552 	 * ACCON: access timing control register
553 	 * -------------------------------------
554 	 * 31:28: tpoecs, minimum required time for CS post pulling down after
555 	 *        accessing the device
556 	 * 27:22: tprecs, minimum required time for CS pre pulling down before
557 	 *        accessing the device
558 	 * 21:16: tc2r, minimum required time from NCEB low to NREB low
559 	 * 15:12: tw2r, minimum required time from NWEB high to NREB low.
560 	 * 11:08: twh, write enable hold time
561 	 * 07:04: twst, write wait states
562 	 * 03:00: trlt, read wait states
563 	 */
564 	trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt);
565 	nfi_writel(nfc, trlt, NFI_ACCCON);
566 
567 	return 0;
568 }
569 
mtk_nfc_sector_encode(struct nand_chip * chip,u8 * data)570 static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data)
571 {
572 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
573 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
574 	int size = chip->ecc.size + mtk_nand->fdm.reg_size;
575 
576 	nfc->ecc_cfg.mode = ECC_DMA_MODE;
577 	nfc->ecc_cfg.op = ECC_ENCODE;
578 
579 	return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size);
580 }
581 
mtk_nfc_no_bad_mark_swap(struct mtd_info * a,u8 * b,int c)582 static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c)
583 {
584 	/* nop */
585 }
586 
mtk_nfc_bad_mark_swap(struct mtd_info * mtd,u8 * buf,int raw)587 static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw)
588 {
589 	struct nand_chip *chip = mtd_to_nand(mtd);
590 	struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip);
591 	u32 bad_pos = nand->bad_mark.pos;
592 
593 	if (raw)
594 		bad_pos += nand->bad_mark.sec * mtk_data_len(chip);
595 	else
596 		bad_pos += nand->bad_mark.sec * chip->ecc.size;
597 
598 	swap(chip->oob_poi[0], buf[bad_pos]);
599 }
600 
mtk_nfc_format_subpage(struct mtd_info * mtd,u32 offset,u32 len,const u8 * buf)601 static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset,
602 				  u32 len, const u8 *buf)
603 {
604 	struct nand_chip *chip = mtd_to_nand(mtd);
605 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
606 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
607 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
608 	u32 start, end;
609 	int i, ret;
610 
611 	start = offset / chip->ecc.size;
612 	end = DIV_ROUND_UP(offset + len, chip->ecc.size);
613 
614 	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
615 	for (i = 0; i < chip->ecc.steps; i++) {
616 		memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
617 		       chip->ecc.size);
618 
619 		if (start > i || i >= end)
620 			continue;
621 
622 		if (i == mtk_nand->bad_mark.sec)
623 			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
624 
625 		memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
626 
627 		/* program the CRC back to the OOB */
628 		ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i));
629 		if (ret < 0)
630 			return ret;
631 	}
632 
633 	return 0;
634 }
635 
mtk_nfc_format_page(struct mtd_info * mtd,const u8 * buf)636 static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf)
637 {
638 	struct nand_chip *chip = mtd_to_nand(mtd);
639 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
640 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
641 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
642 	u32 i;
643 
644 	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
645 	for (i = 0; i < chip->ecc.steps; i++) {
646 		if (buf)
647 			memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
648 			       chip->ecc.size);
649 
650 		if (i == mtk_nand->bad_mark.sec)
651 			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
652 
653 		memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
654 	}
655 }
656 
mtk_nfc_read_fdm(struct nand_chip * chip,u32 start,u32 sectors)657 static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start,
658 				    u32 sectors)
659 {
660 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
661 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
662 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
663 	u32 vall, valm;
664 	u8 *oobptr;
665 	int i, j;
666 
667 	for (i = 0; i < sectors; i++) {
668 		oobptr = oob_ptr(chip, start + i);
669 		vall = nfi_readl(nfc, NFI_FDML(i));
670 		valm = nfi_readl(nfc, NFI_FDMM(i));
671 
672 		for (j = 0; j < fdm->reg_size; j++)
673 			oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
674 	}
675 }
676 
mtk_nfc_write_fdm(struct nand_chip * chip)677 static inline void mtk_nfc_write_fdm(struct nand_chip *chip)
678 {
679 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
680 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
681 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
682 	u32 vall, valm;
683 	u8 *oobptr;
684 	int i, j;
685 
686 	for (i = 0; i < chip->ecc.steps; i++) {
687 		oobptr = oob_ptr(chip, i);
688 		vall = 0;
689 		valm = 0;
690 		for (j = 0; j < 8; j++) {
691 			if (j < 4)
692 				vall |= (j < fdm->reg_size ? oobptr[j] : 0xff)
693 						<< (j * 8);
694 			else
695 				valm |= (j < fdm->reg_size ? oobptr[j] : 0xff)
696 						<< ((j - 4) * 8);
697 		}
698 		nfi_writel(nfc, vall, NFI_FDML(i));
699 		nfi_writel(nfc, valm, NFI_FDMM(i));
700 	}
701 }
702 
mtk_nfc_do_write_page(struct mtd_info * mtd,struct nand_chip * chip,const u8 * buf,int page,int len)703 static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip,
704 				 const u8 *buf, int page, int len)
705 {
706 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
707 	struct device *dev = nfc->dev;
708 	dma_addr_t addr;
709 	u32 reg;
710 	int ret;
711 
712 	addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE);
713 	ret = dma_mapping_error(nfc->dev, addr);
714 	if (ret) {
715 		dev_err(nfc->dev, "dma mapping error\n");
716 		return -EINVAL;
717 	}
718 
719 	reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN;
720 	nfi_writew(nfc, reg, NFI_CNFG);
721 
722 	nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON);
723 	nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
724 	nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
725 
726 	init_completion(&nfc->done);
727 
728 	reg = nfi_readl(nfc, NFI_CON) | CON_BWR;
729 	nfi_writel(nfc, reg, NFI_CON);
730 	nfi_writew(nfc, STAR_EN, NFI_STRDATA);
731 
732 	ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
733 	if (!ret) {
734 		dev_err(dev, "program ahb done timeout\n");
735 		nfi_writew(nfc, 0, NFI_INTR_EN);
736 		ret = -ETIMEDOUT;
737 		goto timeout;
738 	}
739 
740 	ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg,
741 					ADDRCNTR_SEC(reg) >= chip->ecc.steps,
742 					10, MTK_TIMEOUT);
743 	if (ret)
744 		dev_err(dev, "hwecc write timeout\n");
745 
746 timeout:
747 
748 	dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE);
749 	nfi_writel(nfc, 0, NFI_CON);
750 
751 	return ret;
752 }
753 
mtk_nfc_write_page(struct mtd_info * mtd,struct nand_chip * chip,const u8 * buf,int page,int raw)754 static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
755 			      const u8 *buf, int page, int raw)
756 {
757 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
758 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
759 	size_t len;
760 	const u8 *bufpoi;
761 	u32 reg;
762 	int ret;
763 
764 	if (!raw) {
765 		/* OOB => FDM: from register,  ECC: from HW */
766 		reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN;
767 		nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG);
768 
769 		nfc->ecc_cfg.op = ECC_ENCODE;
770 		nfc->ecc_cfg.mode = ECC_NFI_MODE;
771 		ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
772 		if (ret) {
773 			/* clear NFI config */
774 			reg = nfi_readw(nfc, NFI_CNFG);
775 			reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
776 			nfi_writew(nfc, reg, NFI_CNFG);
777 
778 			return ret;
779 		}
780 
781 		memcpy(nfc->buffer, buf, mtd->writesize);
782 		mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw);
783 		bufpoi = nfc->buffer;
784 
785 		/* write OOB into the FDM registers (OOB area in MTK NAND) */
786 		mtk_nfc_write_fdm(chip);
787 	} else {
788 		bufpoi = buf;
789 	}
790 
791 	len = mtd->writesize + (raw ? mtd->oobsize : 0);
792 	ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len);
793 
794 	if (!raw)
795 		mtk_ecc_disable(nfc->ecc);
796 
797 	return ret;
798 }
799 
mtk_nfc_write_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,const u8 * buf,int oob_on,int page)800 static int mtk_nfc_write_page_hwecc(struct mtd_info *mtd,
801 				    struct nand_chip *chip, const u8 *buf,
802 				    int oob_on, int page)
803 {
804 	return mtk_nfc_write_page(mtd, chip, buf, page, 0);
805 }
806 
mtk_nfc_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const u8 * buf,int oob_on,int pg)807 static int mtk_nfc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
808 				  const u8 *buf, int oob_on, int pg)
809 {
810 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
811 
812 	mtk_nfc_format_page(mtd, buf);
813 	return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1);
814 }
815 
mtk_nfc_write_subpage_hwecc(struct mtd_info * mtd,struct nand_chip * chip,u32 offset,u32 data_len,const u8 * buf,int oob_on,int page)816 static int mtk_nfc_write_subpage_hwecc(struct mtd_info *mtd,
817 				       struct nand_chip *chip, u32 offset,
818 				       u32 data_len, const u8 *buf,
819 				       int oob_on, int page)
820 {
821 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
822 	int ret;
823 
824 	ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf);
825 	if (ret < 0)
826 		return ret;
827 
828 	/* use the data in the private buffer (now with FDM and CRC) */
829 	return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);
830 }
831 
mtk_nfc_write_oob_std(struct mtd_info * mtd,struct nand_chip * chip,int page)832 static int mtk_nfc_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
833 				 int page)
834 {
835 	int ret;
836 
837 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
838 
839 	ret = mtk_nfc_write_page_raw(mtd, chip, NULL, 1, page);
840 	if (ret < 0)
841 		return -EIO;
842 
843 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
844 	ret = chip->waitfunc(mtd, chip);
845 
846 	return ret & NAND_STATUS_FAIL ? -EIO : 0;
847 }
848 
mtk_nfc_update_ecc_stats(struct mtd_info * mtd,u8 * buf,u32 start,u32 sectors)849 static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 start,
850 				    u32 sectors)
851 {
852 	struct nand_chip *chip = mtd_to_nand(mtd);
853 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
854 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
855 	struct mtk_ecc_stats stats;
856 	u32 reg_size = mtk_nand->fdm.reg_size;
857 	int rc, i;
858 
859 	rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE;
860 	if (rc) {
861 		memset(buf, 0xff, sectors * chip->ecc.size);
862 		for (i = 0; i < sectors; i++)
863 			memset(oob_ptr(chip, start + i), 0xff, reg_size);
864 		return 0;
865 	}
866 
867 	mtk_ecc_get_stats(nfc->ecc, &stats, sectors);
868 	mtd->ecc_stats.corrected += stats.corrected;
869 	mtd->ecc_stats.failed += stats.failed;
870 
871 	return stats.bitflips;
872 }
873 
mtk_nfc_read_subpage(struct mtd_info * mtd,struct nand_chip * chip,u32 data_offs,u32 readlen,u8 * bufpoi,int page,int raw)874 static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
875 				u32 data_offs, u32 readlen,
876 				u8 *bufpoi, int page, int raw)
877 {
878 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
879 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
880 	u32 spare = mtk_nand->spare_per_sector;
881 	u32 column, sectors, start, end, reg;
882 	dma_addr_t addr;
883 	int bitflips = 0;
884 	size_t len;
885 	u8 *buf;
886 	int rc;
887 
888 	start = data_offs / chip->ecc.size;
889 	end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
890 
891 	sectors = end - start;
892 	column = start * (chip->ecc.size + spare);
893 
894 	len = sectors * chip->ecc.size + (raw ? sectors * spare : 0);
895 	buf = bufpoi + start * chip->ecc.size;
896 
897 	if (column != 0)
898 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, column, -1);
899 
900 	addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
901 	rc = dma_mapping_error(nfc->dev, addr);
902 	if (rc) {
903 		dev_err(nfc->dev, "dma mapping error\n");
904 
905 		return -EINVAL;
906 	}
907 
908 	reg = nfi_readw(nfc, NFI_CNFG);
909 	reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB;
910 	if (!raw) {
911 		reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
912 		nfi_writew(nfc, reg, NFI_CNFG);
913 
914 		nfc->ecc_cfg.mode = ECC_NFI_MODE;
915 		nfc->ecc_cfg.sectors = sectors;
916 		nfc->ecc_cfg.op = ECC_DECODE;
917 		rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
918 		if (rc) {
919 			dev_err(nfc->dev, "ecc enable\n");
920 			/* clear NFI_CNFG */
921 			reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN |
922 				CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
923 			nfi_writew(nfc, reg, NFI_CNFG);
924 			dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
925 
926 			return rc;
927 		}
928 	} else {
929 		nfi_writew(nfc, reg, NFI_CNFG);
930 	}
931 
932 	nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON);
933 	nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
934 	nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
935 
936 	init_completion(&nfc->done);
937 	reg = nfi_readl(nfc, NFI_CON) | CON_BRD;
938 	nfi_writel(nfc, reg, NFI_CON);
939 	nfi_writew(nfc, STAR_EN, NFI_STRDATA);
940 
941 	rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
942 	if (!rc)
943 		dev_warn(nfc->dev, "read ahb/dma done timeout\n");
944 
945 	rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg,
946 				       ADDRCNTR_SEC(reg) >= sectors, 10,
947 				       MTK_TIMEOUT);
948 	if (rc < 0) {
949 		dev_err(nfc->dev, "subpage done timeout\n");
950 		bitflips = -EIO;
951 	} else if (!raw) {
952 		rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
953 		bitflips = rc < 0 ? -ETIMEDOUT :
954 			mtk_nfc_update_ecc_stats(mtd, buf, start, sectors);
955 		mtk_nfc_read_fdm(chip, start, sectors);
956 	}
957 
958 	dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
959 
960 	if (raw)
961 		goto done;
962 
963 	mtk_ecc_disable(nfc->ecc);
964 
965 	if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec)
966 		mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw);
967 done:
968 	nfi_writel(nfc, 0, NFI_CON);
969 
970 	return bitflips;
971 }
972 
mtk_nfc_read_subpage_hwecc(struct mtd_info * mtd,struct nand_chip * chip,u32 off,u32 len,u8 * p,int pg)973 static int mtk_nfc_read_subpage_hwecc(struct mtd_info *mtd,
974 				      struct nand_chip *chip, u32 off,
975 				      u32 len, u8 *p, int pg)
976 {
977 	return mtk_nfc_read_subpage(mtd, chip, off, len, p, pg, 0);
978 }
979 
mtk_nfc_read_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,u8 * p,int oob_on,int pg)980 static int mtk_nfc_read_page_hwecc(struct mtd_info *mtd,
981 				   struct nand_chip *chip, u8 *p,
982 				   int oob_on, int pg)
983 {
984 	return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0);
985 }
986 
mtk_nfc_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,u8 * buf,int oob_on,int page)987 static int mtk_nfc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
988 				 u8 *buf, int oob_on, int page)
989 {
990 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
991 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
992 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
993 	int i, ret;
994 
995 	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
996 	ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer,
997 				   page, 1);
998 	if (ret < 0)
999 		return ret;
1000 
1001 	for (i = 0; i < chip->ecc.steps; i++) {
1002 		memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size);
1003 
1004 		if (i == mtk_nand->bad_mark.sec)
1005 			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
1006 
1007 		if (buf)
1008 			memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i),
1009 			       chip->ecc.size);
1010 	}
1011 
1012 	return ret;
1013 }
1014 
mtk_nfc_read_oob_std(struct mtd_info * mtd,struct nand_chip * chip,int page)1015 static int mtk_nfc_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1016 				int page)
1017 {
1018 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1019 
1020 	return mtk_nfc_read_page_raw(mtd, chip, NULL, 1, page);
1021 }
1022 
mtk_nfc_hw_init(struct mtk_nfc * nfc)1023 static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc)
1024 {
1025 	/*
1026 	 * CNRNB: nand ready/busy register
1027 	 * -------------------------------
1028 	 * 7:4: timeout register for polling the NAND busy/ready signal
1029 	 * 0  : poll the status of the busy/ready signal after [7:4]*16 cycles.
1030 	 */
1031 	nfi_writew(nfc, 0xf1, NFI_CNRNB);
1032 	nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT);
1033 
1034 	mtk_nfc_hw_reset(nfc);
1035 
1036 	nfi_readl(nfc, NFI_INTR_STA);
1037 	nfi_writel(nfc, 0, NFI_INTR_EN);
1038 }
1039 
mtk_nfc_irq(int irq,void * id)1040 static irqreturn_t mtk_nfc_irq(int irq, void *id)
1041 {
1042 	struct mtk_nfc *nfc = id;
1043 	u16 sta, ien;
1044 
1045 	sta = nfi_readw(nfc, NFI_INTR_STA);
1046 	ien = nfi_readw(nfc, NFI_INTR_EN);
1047 
1048 	if (!(sta & ien))
1049 		return IRQ_NONE;
1050 
1051 	nfi_writew(nfc, ~sta & ien, NFI_INTR_EN);
1052 	complete(&nfc->done);
1053 
1054 	return IRQ_HANDLED;
1055 }
1056 
mtk_nfc_enable_clk(struct device * dev,struct mtk_nfc_clk * clk)1057 static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk)
1058 {
1059 	int ret;
1060 
1061 	ret = clk_prepare_enable(clk->nfi_clk);
1062 	if (ret) {
1063 		dev_err(dev, "failed to enable nfi clk\n");
1064 		return ret;
1065 	}
1066 
1067 	ret = clk_prepare_enable(clk->pad_clk);
1068 	if (ret) {
1069 		dev_err(dev, "failed to enable pad clk\n");
1070 		clk_disable_unprepare(clk->nfi_clk);
1071 		return ret;
1072 	}
1073 
1074 	return 0;
1075 }
1076 
mtk_nfc_disable_clk(struct mtk_nfc_clk * clk)1077 static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk)
1078 {
1079 	clk_disable_unprepare(clk->nfi_clk);
1080 	clk_disable_unprepare(clk->pad_clk);
1081 }
1082 
mtk_nfc_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oob_region)1083 static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
1084 				  struct mtd_oob_region *oob_region)
1085 {
1086 	struct nand_chip *chip = mtd_to_nand(mtd);
1087 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1088 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
1089 	u32 eccsteps;
1090 
1091 	eccsteps = mtd->writesize / chip->ecc.size;
1092 
1093 	if (section >= eccsteps)
1094 		return -ERANGE;
1095 
1096 	oob_region->length = fdm->reg_size - fdm->ecc_size;
1097 	oob_region->offset = section * fdm->reg_size + fdm->ecc_size;
1098 
1099 	return 0;
1100 }
1101 
mtk_nfc_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oob_region)1102 static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
1103 				 struct mtd_oob_region *oob_region)
1104 {
1105 	struct nand_chip *chip = mtd_to_nand(mtd);
1106 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1107 	u32 eccsteps;
1108 
1109 	if (section)
1110 		return -ERANGE;
1111 
1112 	eccsteps = mtd->writesize / chip->ecc.size;
1113 	oob_region->offset = mtk_nand->fdm.reg_size * eccsteps;
1114 	oob_region->length = mtd->oobsize - oob_region->offset;
1115 
1116 	return 0;
1117 }
1118 
1119 static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = {
1120 	.free = mtk_nfc_ooblayout_free,
1121 	.ecc = mtk_nfc_ooblayout_ecc,
1122 };
1123 
mtk_nfc_set_fdm(struct mtk_nfc_fdm * fdm,struct mtd_info * mtd)1124 static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd)
1125 {
1126 	struct nand_chip *nand = mtd_to_nand(mtd);
1127 	struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand);
1128 	u32 ecc_bytes;
1129 
1130 	ecc_bytes = DIV_ROUND_UP(nand->ecc.strength * ECC_PARITY_BITS, 8);
1131 
1132 	fdm->reg_size = chip->spare_per_sector - ecc_bytes;
1133 	if (fdm->reg_size > NFI_FDM_MAX_SIZE)
1134 		fdm->reg_size = NFI_FDM_MAX_SIZE;
1135 
1136 	/* bad block mark storage */
1137 	fdm->ecc_size = 1;
1138 }
1139 
mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl * bm_ctl,struct mtd_info * mtd)1140 static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl,
1141 				     struct mtd_info *mtd)
1142 {
1143 	struct nand_chip *nand = mtd_to_nand(mtd);
1144 
1145 	if (mtd->writesize == 512) {
1146 		bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap;
1147 	} else {
1148 		bm_ctl->bm_swap = mtk_nfc_bad_mark_swap;
1149 		bm_ctl->sec = mtd->writesize / mtk_data_len(nand);
1150 		bm_ctl->pos = mtd->writesize % mtk_data_len(nand);
1151 	}
1152 }
1153 
mtk_nfc_set_spare_per_sector(u32 * sps,struct mtd_info * mtd)1154 static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd)
1155 {
1156 	struct nand_chip *nand = mtd_to_nand(mtd);
1157 	struct mtk_nfc *nfc = nand_get_controller_data(nand);
1158 	const u8 *spare = nfc->caps->spare_size;
1159 	u32 eccsteps, i, closest_spare = 0;
1160 
1161 	eccsteps = mtd->writesize / nand->ecc.size;
1162 	*sps = mtd->oobsize / eccsteps;
1163 
1164 	if (nand->ecc.size == 1024)
1165 		*sps >>= 1;
1166 
1167 	if (*sps < MTK_NFC_MIN_SPARE)
1168 		return -EINVAL;
1169 
1170 	for (i = 0; i < nfc->caps->num_spare_size; i++) {
1171 		if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) {
1172 			closest_spare = i;
1173 			if (*sps == spare[i])
1174 				break;
1175 		}
1176 	}
1177 
1178 	*sps = spare[closest_spare];
1179 
1180 	if (nand->ecc.size == 1024)
1181 		*sps <<= 1;
1182 
1183 	return 0;
1184 }
1185 
mtk_nfc_ecc_init(struct device * dev,struct mtd_info * mtd)1186 static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
1187 {
1188 	struct nand_chip *nand = mtd_to_nand(mtd);
1189 	struct mtk_nfc *nfc = nand_get_controller_data(nand);
1190 	u32 spare;
1191 	int free, ret;
1192 
1193 	/* support only ecc hw mode */
1194 	if (nand->ecc.mode != NAND_ECC_HW) {
1195 		dev_err(dev, "ecc.mode not supported\n");
1196 		return -EINVAL;
1197 	}
1198 
1199 	/* if optional dt settings not present */
1200 	if (!nand->ecc.size || !nand->ecc.strength) {
1201 		/* use datasheet requirements */
1202 		nand->ecc.strength = nand->ecc_strength_ds;
1203 		nand->ecc.size = nand->ecc_step_ds;
1204 
1205 		/*
1206 		 * align eccstrength and eccsize
1207 		 * this controller only supports 512 and 1024 sizes
1208 		 */
1209 		if (nand->ecc.size < 1024) {
1210 			if (mtd->writesize > 512) {
1211 				nand->ecc.size = 1024;
1212 				nand->ecc.strength <<= 1;
1213 			} else {
1214 				nand->ecc.size = 512;
1215 			}
1216 		} else {
1217 			nand->ecc.size = 1024;
1218 		}
1219 
1220 		ret = mtk_nfc_set_spare_per_sector(&spare, mtd);
1221 		if (ret)
1222 			return ret;
1223 
1224 		/* calculate oob bytes except ecc parity data */
1225 		free = ((nand->ecc.strength * ECC_PARITY_BITS) + 7) >> 3;
1226 		free = spare - free;
1227 
1228 		/*
1229 		 * enhance ecc strength if oob left is bigger than max FDM size
1230 		 * or reduce ecc strength if oob size is not enough for ecc
1231 		 * parity data.
1232 		 */
1233 		if (free > NFI_FDM_MAX_SIZE) {
1234 			spare -= NFI_FDM_MAX_SIZE;
1235 			nand->ecc.strength = (spare << 3) / ECC_PARITY_BITS;
1236 		} else if (free < 0) {
1237 			spare -= NFI_FDM_MIN_SIZE;
1238 			nand->ecc.strength = (spare << 3) / ECC_PARITY_BITS;
1239 		}
1240 	}
1241 
1242 	mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength);
1243 
1244 	dev_info(dev, "eccsize %d eccstrength %d\n",
1245 		 nand->ecc.size, nand->ecc.strength);
1246 
1247 	return 0;
1248 }
1249 
mtk_nfc_nand_chip_init(struct device * dev,struct mtk_nfc * nfc,struct device_node * np)1250 static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
1251 				  struct device_node *np)
1252 {
1253 	struct mtk_nfc_nand_chip *chip;
1254 	struct nand_chip *nand;
1255 	struct mtd_info *mtd;
1256 	int nsels, len;
1257 	u32 tmp;
1258 	int ret;
1259 	int i;
1260 
1261 	if (!of_get_property(np, "reg", &nsels))
1262 		return -ENODEV;
1263 
1264 	nsels /= sizeof(u32);
1265 	if (!nsels || nsels > MTK_NAND_MAX_NSELS) {
1266 		dev_err(dev, "invalid reg property size %d\n", nsels);
1267 		return -EINVAL;
1268 	}
1269 
1270 	chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8),
1271 			    GFP_KERNEL);
1272 	if (!chip)
1273 		return -ENOMEM;
1274 
1275 	chip->nsels = nsels;
1276 	for (i = 0; i < nsels; i++) {
1277 		ret = of_property_read_u32_index(np, "reg", i, &tmp);
1278 		if (ret) {
1279 			dev_err(dev, "reg property failure : %d\n", ret);
1280 			return ret;
1281 		}
1282 		chip->sels[i] = tmp;
1283 	}
1284 
1285 	nand = &chip->nand;
1286 	nand->controller = &nfc->controller;
1287 
1288 	nand_set_flash_node(nand, np);
1289 	nand_set_controller_data(nand, nfc);
1290 
1291 	nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_SUBPAGE_READ;
1292 	nand->dev_ready = mtk_nfc_dev_ready;
1293 	nand->select_chip = mtk_nfc_select_chip;
1294 	nand->write_byte = mtk_nfc_write_byte;
1295 	nand->write_buf = mtk_nfc_write_buf;
1296 	nand->read_byte = mtk_nfc_read_byte;
1297 	nand->read_buf = mtk_nfc_read_buf;
1298 	nand->cmd_ctrl = mtk_nfc_cmd_ctrl;
1299 	nand->setup_data_interface = mtk_nfc_setup_data_interface;
1300 
1301 	/* set default mode in case dt entry is missing */
1302 	nand->ecc.mode = NAND_ECC_HW;
1303 
1304 	nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc;
1305 	nand->ecc.write_page_raw = mtk_nfc_write_page_raw;
1306 	nand->ecc.write_page = mtk_nfc_write_page_hwecc;
1307 	nand->ecc.write_oob_raw = mtk_nfc_write_oob_std;
1308 	nand->ecc.write_oob = mtk_nfc_write_oob_std;
1309 
1310 	nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc;
1311 	nand->ecc.read_page_raw = mtk_nfc_read_page_raw;
1312 	nand->ecc.read_page = mtk_nfc_read_page_hwecc;
1313 	nand->ecc.read_oob_raw = mtk_nfc_read_oob_std;
1314 	nand->ecc.read_oob = mtk_nfc_read_oob_std;
1315 
1316 	mtd = nand_to_mtd(nand);
1317 	mtd->owner = THIS_MODULE;
1318 	mtd->dev.parent = dev;
1319 	mtd->name = MTK_NAME;
1320 	mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops);
1321 
1322 	mtk_nfc_hw_init(nfc);
1323 
1324 	ret = nand_scan_ident(mtd, nsels, NULL);
1325 	if (ret)
1326 		return ret;
1327 
1328 	/* store bbt magic in page, cause OOB is not protected */
1329 	if (nand->bbt_options & NAND_BBT_USE_FLASH)
1330 		nand->bbt_options |= NAND_BBT_NO_OOB;
1331 
1332 	ret = mtk_nfc_ecc_init(dev, mtd);
1333 	if (ret)
1334 		return -EINVAL;
1335 
1336 	if (nand->options & NAND_BUSWIDTH_16) {
1337 		dev_err(dev, "16bits buswidth not supported");
1338 		return -EINVAL;
1339 	}
1340 
1341 	ret = mtk_nfc_set_spare_per_sector(&chip->spare_per_sector, mtd);
1342 	if (ret)
1343 		return ret;
1344 
1345 	mtk_nfc_set_fdm(&chip->fdm, mtd);
1346 	mtk_nfc_set_bad_mark_ctl(&chip->bad_mark, mtd);
1347 
1348 	len = mtd->writesize + mtd->oobsize;
1349 	nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL);
1350 	if (!nfc->buffer)
1351 		return  -ENOMEM;
1352 
1353 	ret = nand_scan_tail(mtd);
1354 	if (ret)
1355 		return ret;
1356 
1357 	ret = mtd_device_parse_register(mtd, NULL, NULL, NULL, 0);
1358 	if (ret) {
1359 		dev_err(dev, "mtd parse partition error\n");
1360 		nand_release(mtd);
1361 		return ret;
1362 	}
1363 
1364 	list_add_tail(&chip->node, &nfc->chips);
1365 
1366 	return 0;
1367 }
1368 
mtk_nfc_nand_chips_init(struct device * dev,struct mtk_nfc * nfc)1369 static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc)
1370 {
1371 	struct device_node *np = dev->of_node;
1372 	struct device_node *nand_np;
1373 	int ret;
1374 
1375 	for_each_child_of_node(np, nand_np) {
1376 		ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np);
1377 		if (ret) {
1378 			of_node_put(nand_np);
1379 			return ret;
1380 		}
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = {
1387 	.spare_size = spare_size_mt2701,
1388 	.num_spare_size = 16,
1389 	.pageformat_spare_shift = 4,
1390 	.nfi_clk_div = 1,
1391 };
1392 
1393 static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = {
1394 	.spare_size = spare_size_mt2712,
1395 	.num_spare_size = 19,
1396 	.pageformat_spare_shift = 16,
1397 	.nfi_clk_div = 2,
1398 };
1399 
1400 static const struct of_device_id mtk_nfc_id_table[] = {
1401 	{
1402 		.compatible = "mediatek,mt2701-nfc",
1403 		.data = &mtk_nfc_caps_mt2701,
1404 	}, {
1405 		.compatible = "mediatek,mt2712-nfc",
1406 		.data = &mtk_nfc_caps_mt2712,
1407 	},
1408 	{}
1409 };
1410 MODULE_DEVICE_TABLE(of, mtk_nfc_id_table);
1411 
mtk_nfc_probe(struct platform_device * pdev)1412 static int mtk_nfc_probe(struct platform_device *pdev)
1413 {
1414 	struct device *dev = &pdev->dev;
1415 	struct device_node *np = dev->of_node;
1416 	struct mtk_nfc *nfc;
1417 	struct resource *res;
1418 	const struct of_device_id *of_nfc_id = NULL;
1419 	int ret, irq;
1420 
1421 	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1422 	if (!nfc)
1423 		return -ENOMEM;
1424 
1425 	spin_lock_init(&nfc->controller.lock);
1426 	init_waitqueue_head(&nfc->controller.wq);
1427 	INIT_LIST_HEAD(&nfc->chips);
1428 
1429 	/* probe defer if not ready */
1430 	nfc->ecc = of_mtk_ecc_get(np);
1431 	if (IS_ERR(nfc->ecc))
1432 		return PTR_ERR(nfc->ecc);
1433 	else if (!nfc->ecc)
1434 		return -ENODEV;
1435 
1436 	nfc->dev = dev;
1437 
1438 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1439 	nfc->regs = devm_ioremap_resource(dev, res);
1440 	if (IS_ERR(nfc->regs)) {
1441 		ret = PTR_ERR(nfc->regs);
1442 		goto release_ecc;
1443 	}
1444 
1445 	nfc->clk.nfi_clk = devm_clk_get(dev, "nfi_clk");
1446 	if (IS_ERR(nfc->clk.nfi_clk)) {
1447 		dev_err(dev, "no clk\n");
1448 		ret = PTR_ERR(nfc->clk.nfi_clk);
1449 		goto release_ecc;
1450 	}
1451 
1452 	nfc->clk.pad_clk = devm_clk_get(dev, "pad_clk");
1453 	if (IS_ERR(nfc->clk.pad_clk)) {
1454 		dev_err(dev, "no pad clk\n");
1455 		ret = PTR_ERR(nfc->clk.pad_clk);
1456 		goto release_ecc;
1457 	}
1458 
1459 	ret = mtk_nfc_enable_clk(dev, &nfc->clk);
1460 	if (ret)
1461 		goto release_ecc;
1462 
1463 	irq = platform_get_irq(pdev, 0);
1464 	if (irq < 0) {
1465 		dev_err(dev, "no nfi irq resource\n");
1466 		ret = -EINVAL;
1467 		goto clk_disable;
1468 	}
1469 
1470 	ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc);
1471 	if (ret) {
1472 		dev_err(dev, "failed to request nfi irq\n");
1473 		goto clk_disable;
1474 	}
1475 
1476 	ret = dma_set_mask(dev, DMA_BIT_MASK(32));
1477 	if (ret) {
1478 		dev_err(dev, "failed to set dma mask\n");
1479 		goto clk_disable;
1480 	}
1481 
1482 	of_nfc_id = of_match_device(mtk_nfc_id_table, &pdev->dev);
1483 	if (!of_nfc_id) {
1484 		ret = -ENODEV;
1485 		goto clk_disable;
1486 	}
1487 
1488 	nfc->caps = of_nfc_id->data;
1489 
1490 	platform_set_drvdata(pdev, nfc);
1491 
1492 	ret = mtk_nfc_nand_chips_init(dev, nfc);
1493 	if (ret) {
1494 		dev_err(dev, "failed to init nand chips\n");
1495 		goto clk_disable;
1496 	}
1497 
1498 	return 0;
1499 
1500 clk_disable:
1501 	mtk_nfc_disable_clk(&nfc->clk);
1502 
1503 release_ecc:
1504 	mtk_ecc_release(nfc->ecc);
1505 
1506 	return ret;
1507 }
1508 
mtk_nfc_remove(struct platform_device * pdev)1509 static int mtk_nfc_remove(struct platform_device *pdev)
1510 {
1511 	struct mtk_nfc *nfc = platform_get_drvdata(pdev);
1512 	struct mtk_nfc_nand_chip *chip;
1513 
1514 	while (!list_empty(&nfc->chips)) {
1515 		chip = list_first_entry(&nfc->chips, struct mtk_nfc_nand_chip,
1516 					node);
1517 		nand_release(nand_to_mtd(&chip->nand));
1518 		list_del(&chip->node);
1519 	}
1520 
1521 	mtk_ecc_release(nfc->ecc);
1522 	mtk_nfc_disable_clk(&nfc->clk);
1523 
1524 	return 0;
1525 }
1526 
1527 #ifdef CONFIG_PM_SLEEP
mtk_nfc_suspend(struct device * dev)1528 static int mtk_nfc_suspend(struct device *dev)
1529 {
1530 	struct mtk_nfc *nfc = dev_get_drvdata(dev);
1531 
1532 	mtk_nfc_disable_clk(&nfc->clk);
1533 
1534 	return 0;
1535 }
1536 
mtk_nfc_resume(struct device * dev)1537 static int mtk_nfc_resume(struct device *dev)
1538 {
1539 	struct mtk_nfc *nfc = dev_get_drvdata(dev);
1540 	struct mtk_nfc_nand_chip *chip;
1541 	struct nand_chip *nand;
1542 	struct mtd_info *mtd;
1543 	int ret;
1544 	u32 i;
1545 
1546 	udelay(200);
1547 
1548 	ret = mtk_nfc_enable_clk(dev, &nfc->clk);
1549 	if (ret)
1550 		return ret;
1551 
1552 	/* reset NAND chip if VCC was powered off */
1553 	list_for_each_entry(chip, &nfc->chips, node) {
1554 		nand = &chip->nand;
1555 		mtd = nand_to_mtd(nand);
1556 		for (i = 0; i < chip->nsels; i++) {
1557 			nand->select_chip(mtd, i);
1558 			nand->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1559 		}
1560 	}
1561 
1562 	return 0;
1563 }
1564 
1565 static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume);
1566 #endif
1567 
1568 static struct platform_driver mtk_nfc_driver = {
1569 	.probe  = mtk_nfc_probe,
1570 	.remove = mtk_nfc_remove,
1571 	.driver = {
1572 		.name  = MTK_NAME,
1573 		.of_match_table = mtk_nfc_id_table,
1574 #ifdef CONFIG_PM_SLEEP
1575 		.pm = &mtk_nfc_pm_ops,
1576 #endif
1577 	},
1578 };
1579 
1580 module_platform_driver(mtk_nfc_driver);
1581 
1582 MODULE_LICENSE("GPL");
1583 MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
1584 MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");
1585