1 /*
2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17 * MA 02110-1301, USA.
18 */
19
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/rawnand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37
38 #include <asm/mach/flash.h>
39 #include <linux/platform_data/mtd-mxc_nand.h>
40
41 #define DRIVER_NAME "mxc_nand"
42
43 /* Addresses for NFC registers */
44 #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
45 #define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
46 #define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
47 #define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
48 #define NFC_V1_V2_CONFIG (host->regs + 0x0a)
49 #define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
50 #define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
51 #define NFC_V21_RSLTSPARE_AREA (host->regs + 0x10)
52 #define NFC_V1_V2_WRPROT (host->regs + 0x12)
53 #define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
54 #define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
55 #define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20)
56 #define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24)
57 #define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28)
58 #define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c)
59 #define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22)
60 #define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26)
61 #define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a)
62 #define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e)
63 #define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
64 #define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
65 #define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
66
67 #define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
68 #define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
69 #define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
70 #define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
71 #define NFC_V1_V2_CONFIG1_BIG (1 << 5)
72 #define NFC_V1_V2_CONFIG1_RST (1 << 6)
73 #define NFC_V1_V2_CONFIG1_CE (1 << 7)
74 #define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
75 #define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
76 #define NFC_V2_CONFIG1_FP_INT (1 << 11)
77
78 #define NFC_V1_V2_CONFIG2_INT (1 << 15)
79
80 /*
81 * Operation modes for the NFC. Valid for v1, v2 and v3
82 * type controllers.
83 */
84 #define NFC_CMD (1 << 0)
85 #define NFC_ADDR (1 << 1)
86 #define NFC_INPUT (1 << 2)
87 #define NFC_OUTPUT (1 << 3)
88 #define NFC_ID (1 << 4)
89 #define NFC_STATUS (1 << 5)
90
91 #define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
92 #define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
93
94 #define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
95 #define NFC_V3_CONFIG1_SP_EN (1 << 0)
96 #define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
97
98 #define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
99
100 #define NFC_V3_LAUNCH (host->regs_axi + 0x40)
101
102 #define NFC_V3_WRPROT (host->regs_ip + 0x0)
103 #define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
104 #define NFC_V3_WRPROT_LOCK (1 << 1)
105 #define NFC_V3_WRPROT_UNLOCK (1 << 2)
106 #define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
107
108 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
109
110 #define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
111 #define NFC_V3_CONFIG2_PS_512 (0 << 0)
112 #define NFC_V3_CONFIG2_PS_2048 (1 << 0)
113 #define NFC_V3_CONFIG2_PS_4096 (2 << 0)
114 #define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
115 #define NFC_V3_CONFIG2_ECC_EN (1 << 3)
116 #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
117 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
118 #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
119 #define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift)
120 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
121 #define NFC_V3_CONFIG2_INT_MSK (1 << 15)
122 #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
123 #define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
124
125 #define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
126 #define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
127 #define NFC_V3_CONFIG3_FW8 (1 << 3)
128 #define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
129 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
130 #define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
131 #define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
132
133 #define NFC_V3_IPC (host->regs_ip + 0x2C)
134 #define NFC_V3_IPC_CREQ (1 << 0)
135 #define NFC_V3_IPC_INT (1 << 31)
136
137 #define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
138
139 struct mxc_nand_host;
140
141 struct mxc_nand_devtype_data {
142 void (*preset)(struct mtd_info *);
143 void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
144 void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
145 void (*send_page)(struct mtd_info *, unsigned int);
146 void (*send_read_id)(struct mxc_nand_host *);
147 uint16_t (*get_dev_status)(struct mxc_nand_host *);
148 int (*check_int)(struct mxc_nand_host *);
149 void (*irq_control)(struct mxc_nand_host *, int);
150 u32 (*get_ecc_status)(struct mxc_nand_host *);
151 const struct mtd_ooblayout_ops *ooblayout;
152 void (*select_chip)(struct mtd_info *mtd, int chip);
153 int (*correct_data)(struct mtd_info *mtd, u_char *dat,
154 u_char *read_ecc, u_char *calc_ecc);
155 int (*setup_data_interface)(struct mtd_info *mtd, int csline,
156 const struct nand_data_interface *conf);
157
158 /*
159 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
160 * (CONFIG1:INT_MSK is set). To handle this the driver uses
161 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
162 */
163 int irqpending_quirk;
164 int needs_ip;
165
166 size_t regs_offset;
167 size_t spare0_offset;
168 size_t axi_offset;
169
170 int spare_len;
171 int eccbytes;
172 int eccsize;
173 int ppb_shift;
174 };
175
176 struct mxc_nand_host {
177 struct nand_chip nand;
178 struct device *dev;
179
180 void __iomem *spare0;
181 void __iomem *main_area0;
182
183 void __iomem *base;
184 void __iomem *regs;
185 void __iomem *regs_axi;
186 void __iomem *regs_ip;
187 int status_request;
188 struct clk *clk;
189 int clk_act;
190 int irq;
191 int eccsize;
192 int used_oobsize;
193 int active_cs;
194
195 struct completion op_completion;
196
197 uint8_t *data_buf;
198 unsigned int buf_start;
199
200 const struct mxc_nand_devtype_data *devtype_data;
201 struct mxc_nand_platform_data pdata;
202 };
203
204 static const char * const part_probes[] = {
205 "cmdlinepart", "RedBoot", "ofpart", NULL };
206
memcpy32_fromio(void * trg,const void __iomem * src,size_t size)207 static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size)
208 {
209 int i;
210 u32 *t = trg;
211 const __iomem u32 *s = src;
212
213 for (i = 0; i < (size >> 2); i++)
214 *t++ = __raw_readl(s++);
215 }
216
memcpy16_fromio(void * trg,const void __iomem * src,size_t size)217 static void memcpy16_fromio(void *trg, const void __iomem *src, size_t size)
218 {
219 int i;
220 u16 *t = trg;
221 const __iomem u16 *s = src;
222
223 /* We assume that src (IO) is always 32bit aligned */
224 if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
225 memcpy32_fromio(trg, src, size);
226 return;
227 }
228
229 for (i = 0; i < (size >> 1); i++)
230 *t++ = __raw_readw(s++);
231 }
232
memcpy32_toio(void __iomem * trg,const void * src,int size)233 static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
234 {
235 /* __iowrite32_copy use 32bit size values so divide by 4 */
236 __iowrite32_copy(trg, src, size / 4);
237 }
238
memcpy16_toio(void __iomem * trg,const void * src,int size)239 static void memcpy16_toio(void __iomem *trg, const void *src, int size)
240 {
241 int i;
242 __iomem u16 *t = trg;
243 const u16 *s = src;
244
245 /* We assume that trg (IO) is always 32bit aligned */
246 if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
247 memcpy32_toio(trg, src, size);
248 return;
249 }
250
251 for (i = 0; i < (size >> 1); i++)
252 __raw_writew(*s++, t++);
253 }
254
check_int_v3(struct mxc_nand_host * host)255 static int check_int_v3(struct mxc_nand_host *host)
256 {
257 uint32_t tmp;
258
259 tmp = readl(NFC_V3_IPC);
260 if (!(tmp & NFC_V3_IPC_INT))
261 return 0;
262
263 tmp &= ~NFC_V3_IPC_INT;
264 writel(tmp, NFC_V3_IPC);
265
266 return 1;
267 }
268
check_int_v1_v2(struct mxc_nand_host * host)269 static int check_int_v1_v2(struct mxc_nand_host *host)
270 {
271 uint32_t tmp;
272
273 tmp = readw(NFC_V1_V2_CONFIG2);
274 if (!(tmp & NFC_V1_V2_CONFIG2_INT))
275 return 0;
276
277 if (!host->devtype_data->irqpending_quirk)
278 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
279
280 return 1;
281 }
282
irq_control_v1_v2(struct mxc_nand_host * host,int activate)283 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
284 {
285 uint16_t tmp;
286
287 tmp = readw(NFC_V1_V2_CONFIG1);
288
289 if (activate)
290 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
291 else
292 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
293
294 writew(tmp, NFC_V1_V2_CONFIG1);
295 }
296
irq_control_v3(struct mxc_nand_host * host,int activate)297 static void irq_control_v3(struct mxc_nand_host *host, int activate)
298 {
299 uint32_t tmp;
300
301 tmp = readl(NFC_V3_CONFIG2);
302
303 if (activate)
304 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
305 else
306 tmp |= NFC_V3_CONFIG2_INT_MSK;
307
308 writel(tmp, NFC_V3_CONFIG2);
309 }
310
irq_control(struct mxc_nand_host * host,int activate)311 static void irq_control(struct mxc_nand_host *host, int activate)
312 {
313 if (host->devtype_data->irqpending_quirk) {
314 if (activate)
315 enable_irq(host->irq);
316 else
317 disable_irq_nosync(host->irq);
318 } else {
319 host->devtype_data->irq_control(host, activate);
320 }
321 }
322
get_ecc_status_v1(struct mxc_nand_host * host)323 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
324 {
325 return readw(NFC_V1_V2_ECC_STATUS_RESULT);
326 }
327
get_ecc_status_v2(struct mxc_nand_host * host)328 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
329 {
330 return readl(NFC_V1_V2_ECC_STATUS_RESULT);
331 }
332
get_ecc_status_v3(struct mxc_nand_host * host)333 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
334 {
335 return readl(NFC_V3_ECC_STATUS_RESULT);
336 }
337
mxc_nfc_irq(int irq,void * dev_id)338 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
339 {
340 struct mxc_nand_host *host = dev_id;
341
342 if (!host->devtype_data->check_int(host))
343 return IRQ_NONE;
344
345 irq_control(host, 0);
346
347 complete(&host->op_completion);
348
349 return IRQ_HANDLED;
350 }
351
352 /* This function polls the NANDFC to wait for the basic operation to
353 * complete by checking the INT bit of config2 register.
354 */
wait_op_done(struct mxc_nand_host * host,int useirq)355 static int wait_op_done(struct mxc_nand_host *host, int useirq)
356 {
357 int ret = 0;
358
359 /*
360 * If operation is already complete, don't bother to setup an irq or a
361 * loop.
362 */
363 if (host->devtype_data->check_int(host))
364 return 0;
365
366 if (useirq) {
367 unsigned long timeout;
368
369 reinit_completion(&host->op_completion);
370
371 irq_control(host, 1);
372
373 timeout = wait_for_completion_timeout(&host->op_completion, HZ);
374 if (!timeout && !host->devtype_data->check_int(host)) {
375 dev_dbg(host->dev, "timeout waiting for irq\n");
376 ret = -ETIMEDOUT;
377 }
378 } else {
379 int max_retries = 8000;
380 int done;
381
382 do {
383 udelay(1);
384
385 done = host->devtype_data->check_int(host);
386 if (done)
387 break;
388
389 } while (--max_retries);
390
391 if (!done) {
392 dev_dbg(host->dev, "timeout polling for completion\n");
393 ret = -ETIMEDOUT;
394 }
395 }
396
397 WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
398
399 return ret;
400 }
401
send_cmd_v3(struct mxc_nand_host * host,uint16_t cmd,int useirq)402 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
403 {
404 /* fill command */
405 writel(cmd, NFC_V3_FLASH_CMD);
406
407 /* send out command */
408 writel(NFC_CMD, NFC_V3_LAUNCH);
409
410 /* Wait for operation to complete */
411 wait_op_done(host, useirq);
412 }
413
414 /* This function issues the specified command to the NAND device and
415 * waits for completion. */
send_cmd_v1_v2(struct mxc_nand_host * host,uint16_t cmd,int useirq)416 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
417 {
418 pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
419
420 writew(cmd, NFC_V1_V2_FLASH_CMD);
421 writew(NFC_CMD, NFC_V1_V2_CONFIG2);
422
423 if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
424 int max_retries = 100;
425 /* Reset completion is indicated by NFC_CONFIG2 */
426 /* being set to 0 */
427 while (max_retries-- > 0) {
428 if (readw(NFC_V1_V2_CONFIG2) == 0) {
429 break;
430 }
431 udelay(1);
432 }
433 if (max_retries < 0)
434 pr_debug("%s: RESET failed\n", __func__);
435 } else {
436 /* Wait for operation to complete */
437 wait_op_done(host, useirq);
438 }
439 }
440
send_addr_v3(struct mxc_nand_host * host,uint16_t addr,int islast)441 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
442 {
443 /* fill address */
444 writel(addr, NFC_V3_FLASH_ADDR0);
445
446 /* send out address */
447 writel(NFC_ADDR, NFC_V3_LAUNCH);
448
449 wait_op_done(host, 0);
450 }
451
452 /* This function sends an address (or partial address) to the
453 * NAND device. The address is used to select the source/destination for
454 * a NAND command. */
send_addr_v1_v2(struct mxc_nand_host * host,uint16_t addr,int islast)455 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
456 {
457 pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
458
459 writew(addr, NFC_V1_V2_FLASH_ADDR);
460 writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
461
462 /* Wait for operation to complete */
463 wait_op_done(host, islast);
464 }
465
send_page_v3(struct mtd_info * mtd,unsigned int ops)466 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
467 {
468 struct nand_chip *nand_chip = mtd_to_nand(mtd);
469 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
470 uint32_t tmp;
471
472 tmp = readl(NFC_V3_CONFIG1);
473 tmp &= ~(7 << 4);
474 writel(tmp, NFC_V3_CONFIG1);
475
476 /* transfer data from NFC ram to nand */
477 writel(ops, NFC_V3_LAUNCH);
478
479 wait_op_done(host, false);
480 }
481
send_page_v2(struct mtd_info * mtd,unsigned int ops)482 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
483 {
484 struct nand_chip *nand_chip = mtd_to_nand(mtd);
485 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
486
487 /* NANDFC buffer 0 is used for page read/write */
488 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
489
490 writew(ops, NFC_V1_V2_CONFIG2);
491
492 /* Wait for operation to complete */
493 wait_op_done(host, true);
494 }
495
send_page_v1(struct mtd_info * mtd,unsigned int ops)496 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
497 {
498 struct nand_chip *nand_chip = mtd_to_nand(mtd);
499 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
500 int bufs, i;
501
502 if (mtd->writesize > 512)
503 bufs = 4;
504 else
505 bufs = 1;
506
507 for (i = 0; i < bufs; i++) {
508
509 /* NANDFC buffer 0 is used for page read/write */
510 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
511
512 writew(ops, NFC_V1_V2_CONFIG2);
513
514 /* Wait for operation to complete */
515 wait_op_done(host, true);
516 }
517 }
518
send_read_id_v3(struct mxc_nand_host * host)519 static void send_read_id_v3(struct mxc_nand_host *host)
520 {
521 /* Read ID into main buffer */
522 writel(NFC_ID, NFC_V3_LAUNCH);
523
524 wait_op_done(host, true);
525
526 memcpy32_fromio(host->data_buf, host->main_area0, 16);
527 }
528
529 /* Request the NANDFC to perform a read of the NAND device ID. */
send_read_id_v1_v2(struct mxc_nand_host * host)530 static void send_read_id_v1_v2(struct mxc_nand_host *host)
531 {
532 /* NANDFC buffer 0 is used for device ID output */
533 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
534
535 writew(NFC_ID, NFC_V1_V2_CONFIG2);
536
537 /* Wait for operation to complete */
538 wait_op_done(host, true);
539
540 memcpy32_fromio(host->data_buf, host->main_area0, 16);
541 }
542
get_dev_status_v3(struct mxc_nand_host * host)543 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
544 {
545 writew(NFC_STATUS, NFC_V3_LAUNCH);
546 wait_op_done(host, true);
547
548 return readl(NFC_V3_CONFIG1) >> 16;
549 }
550
551 /* This function requests the NANDFC to perform a read of the
552 * NAND device status and returns the current status. */
get_dev_status_v1_v2(struct mxc_nand_host * host)553 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
554 {
555 void __iomem *main_buf = host->main_area0;
556 uint32_t store;
557 uint16_t ret;
558
559 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
560
561 /*
562 * The device status is stored in main_area0. To
563 * prevent corruption of the buffer save the value
564 * and restore it afterwards.
565 */
566 store = readl(main_buf);
567
568 writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
569 wait_op_done(host, true);
570
571 ret = readw(main_buf);
572
573 writel(store, main_buf);
574
575 return ret;
576 }
577
578 /* This functions is used by upper layer to checks if device is ready */
mxc_nand_dev_ready(struct mtd_info * mtd)579 static int mxc_nand_dev_ready(struct mtd_info *mtd)
580 {
581 /*
582 * NFC handles R/B internally. Therefore, this function
583 * always returns status as ready.
584 */
585 return 1;
586 }
587
mxc_nand_enable_hwecc(struct mtd_info * mtd,int mode)588 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
589 {
590 /*
591 * If HW ECC is enabled, we turn it on during init. There is
592 * no need to enable again here.
593 */
594 }
595
mxc_nand_correct_data_v1(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)596 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
597 u_char *read_ecc, u_char *calc_ecc)
598 {
599 struct nand_chip *nand_chip = mtd_to_nand(mtd);
600 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
601
602 /*
603 * 1-Bit errors are automatically corrected in HW. No need for
604 * additional correction. 2-Bit errors cannot be corrected by
605 * HW ECC, so we need to return failure
606 */
607 uint16_t ecc_status = get_ecc_status_v1(host);
608
609 if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
610 pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
611 return -EBADMSG;
612 }
613
614 return 0;
615 }
616
mxc_nand_correct_data_v2_v3(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)617 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
618 u_char *read_ecc, u_char *calc_ecc)
619 {
620 struct nand_chip *nand_chip = mtd_to_nand(mtd);
621 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
622 u32 ecc_stat, err;
623 int no_subpages = 1;
624 int ret = 0;
625 u8 ecc_bit_mask, err_limit;
626
627 ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
628 err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
629
630 no_subpages = mtd->writesize >> 9;
631
632 ecc_stat = host->devtype_data->get_ecc_status(host);
633
634 do {
635 err = ecc_stat & ecc_bit_mask;
636 if (err > err_limit) {
637 printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
638 return -EBADMSG;
639 } else {
640 ret += err;
641 }
642 ecc_stat >>= 4;
643 } while (--no_subpages);
644
645 pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
646
647 return ret;
648 }
649
mxc_nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)650 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
651 u_char *ecc_code)
652 {
653 return 0;
654 }
655
mxc_nand_read_byte(struct mtd_info * mtd)656 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
657 {
658 struct nand_chip *nand_chip = mtd_to_nand(mtd);
659 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
660 uint8_t ret;
661
662 /* Check for status request */
663 if (host->status_request)
664 return host->devtype_data->get_dev_status(host) & 0xFF;
665
666 if (nand_chip->options & NAND_BUSWIDTH_16) {
667 /* only take the lower byte of each word */
668 ret = *(uint16_t *)(host->data_buf + host->buf_start);
669
670 host->buf_start += 2;
671 } else {
672 ret = *(uint8_t *)(host->data_buf + host->buf_start);
673 host->buf_start++;
674 }
675
676 pr_debug("%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
677 return ret;
678 }
679
mxc_nand_read_word(struct mtd_info * mtd)680 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
681 {
682 struct nand_chip *nand_chip = mtd_to_nand(mtd);
683 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
684 uint16_t ret;
685
686 ret = *(uint16_t *)(host->data_buf + host->buf_start);
687 host->buf_start += 2;
688
689 return ret;
690 }
691
692 /* Write data of length len to buffer buf. The data to be
693 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
694 * Operation by the NFC, the data is written to NAND Flash */
mxc_nand_write_buf(struct mtd_info * mtd,const u_char * buf,int len)695 static void mxc_nand_write_buf(struct mtd_info *mtd,
696 const u_char *buf, int len)
697 {
698 struct nand_chip *nand_chip = mtd_to_nand(mtd);
699 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
700 u16 col = host->buf_start;
701 int n = mtd->oobsize + mtd->writesize - col;
702
703 n = min(n, len);
704
705 memcpy(host->data_buf + col, buf, n);
706
707 host->buf_start += n;
708 }
709
710 /* Read the data buffer from the NAND Flash. To read the data from NAND
711 * Flash first the data output cycle is initiated by the NFC, which copies
712 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
713 */
mxc_nand_read_buf(struct mtd_info * mtd,u_char * buf,int len)714 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
715 {
716 struct nand_chip *nand_chip = mtd_to_nand(mtd);
717 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
718 u16 col = host->buf_start;
719 int n = mtd->oobsize + mtd->writesize - col;
720
721 n = min(n, len);
722
723 memcpy(buf, host->data_buf + col, n);
724
725 host->buf_start += n;
726 }
727
728 /* This function is used by upper layer for select and
729 * deselect of the NAND chip */
mxc_nand_select_chip_v1_v3(struct mtd_info * mtd,int chip)730 static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
731 {
732 struct nand_chip *nand_chip = mtd_to_nand(mtd);
733 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
734
735 if (chip == -1) {
736 /* Disable the NFC clock */
737 if (host->clk_act) {
738 clk_disable_unprepare(host->clk);
739 host->clk_act = 0;
740 }
741 return;
742 }
743
744 if (!host->clk_act) {
745 /* Enable the NFC clock */
746 clk_prepare_enable(host->clk);
747 host->clk_act = 1;
748 }
749 }
750
mxc_nand_select_chip_v2(struct mtd_info * mtd,int chip)751 static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
752 {
753 struct nand_chip *nand_chip = mtd_to_nand(mtd);
754 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
755
756 if (chip == -1) {
757 /* Disable the NFC clock */
758 if (host->clk_act) {
759 clk_disable_unprepare(host->clk);
760 host->clk_act = 0;
761 }
762 return;
763 }
764
765 if (!host->clk_act) {
766 /* Enable the NFC clock */
767 clk_prepare_enable(host->clk);
768 host->clk_act = 1;
769 }
770
771 host->active_cs = chip;
772 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
773 }
774
775 /*
776 * The controller splits a page into data chunks of 512 bytes + partial oob.
777 * There are writesize / 512 such chunks, the size of the partial oob parts is
778 * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
779 * contains additionally the byte lost by rounding (if any).
780 * This function handles the needed shuffling between host->data_buf (which
781 * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
782 * spare) and the NFC buffer.
783 */
copy_spare(struct mtd_info * mtd,bool bfrom)784 static void copy_spare(struct mtd_info *mtd, bool bfrom)
785 {
786 struct nand_chip *this = mtd_to_nand(mtd);
787 struct mxc_nand_host *host = nand_get_controller_data(this);
788 u16 i, oob_chunk_size;
789 u16 num_chunks = mtd->writesize / 512;
790
791 u8 *d = host->data_buf + mtd->writesize;
792 u8 __iomem *s = host->spare0;
793 u16 sparebuf_size = host->devtype_data->spare_len;
794
795 /* size of oob chunk for all but possibly the last one */
796 oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
797
798 if (bfrom) {
799 for (i = 0; i < num_chunks - 1; i++)
800 memcpy16_fromio(d + i * oob_chunk_size,
801 s + i * sparebuf_size,
802 oob_chunk_size);
803
804 /* the last chunk */
805 memcpy16_fromio(d + i * oob_chunk_size,
806 s + i * sparebuf_size,
807 host->used_oobsize - i * oob_chunk_size);
808 } else {
809 for (i = 0; i < num_chunks - 1; i++)
810 memcpy16_toio(&s[i * sparebuf_size],
811 &d[i * oob_chunk_size],
812 oob_chunk_size);
813
814 /* the last chunk */
815 memcpy16_toio(&s[i * sparebuf_size],
816 &d[i * oob_chunk_size],
817 host->used_oobsize - i * oob_chunk_size);
818 }
819 }
820
821 /*
822 * MXC NANDFC can only perform full page+spare or spare-only read/write. When
823 * the upper layers perform a read/write buf operation, the saved column address
824 * is used to index into the full page. So usually this function is called with
825 * column == 0 (unless no column cycle is needed indicated by column == -1)
826 */
mxc_do_addr_cycle(struct mtd_info * mtd,int column,int page_addr)827 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
828 {
829 struct nand_chip *nand_chip = mtd_to_nand(mtd);
830 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
831
832 /* Write out column address, if necessary */
833 if (column != -1) {
834 host->devtype_data->send_addr(host, column & 0xff,
835 page_addr == -1);
836 if (mtd->writesize > 512)
837 /* another col addr cycle for 2k page */
838 host->devtype_data->send_addr(host,
839 (column >> 8) & 0xff,
840 false);
841 }
842
843 /* Write out page address, if necessary */
844 if (page_addr != -1) {
845 /* paddr_0 - p_addr_7 */
846 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
847
848 if (mtd->writesize > 512) {
849 if (mtd->size >= 0x10000000) {
850 /* paddr_8 - paddr_15 */
851 host->devtype_data->send_addr(host,
852 (page_addr >> 8) & 0xff,
853 false);
854 host->devtype_data->send_addr(host,
855 (page_addr >> 16) & 0xff,
856 true);
857 } else
858 /* paddr_8 - paddr_15 */
859 host->devtype_data->send_addr(host,
860 (page_addr >> 8) & 0xff, true);
861 } else {
862 /* One more address cycle for higher density devices */
863 if (mtd->size >= 0x4000000) {
864 /* paddr_8 - paddr_15 */
865 host->devtype_data->send_addr(host,
866 (page_addr >> 8) & 0xff,
867 false);
868 host->devtype_data->send_addr(host,
869 (page_addr >> 16) & 0xff,
870 true);
871 } else
872 /* paddr_8 - paddr_15 */
873 host->devtype_data->send_addr(host,
874 (page_addr >> 8) & 0xff, true);
875 }
876 }
877 }
878
879 #define MXC_V1_ECCBYTES 5
880
mxc_v1_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)881 static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
882 struct mtd_oob_region *oobregion)
883 {
884 struct nand_chip *nand_chip = mtd_to_nand(mtd);
885
886 if (section >= nand_chip->ecc.steps)
887 return -ERANGE;
888
889 oobregion->offset = (section * 16) + 6;
890 oobregion->length = MXC_V1_ECCBYTES;
891
892 return 0;
893 }
894
mxc_v1_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)895 static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
896 struct mtd_oob_region *oobregion)
897 {
898 struct nand_chip *nand_chip = mtd_to_nand(mtd);
899
900 if (section > nand_chip->ecc.steps)
901 return -ERANGE;
902
903 if (!section) {
904 if (mtd->writesize <= 512) {
905 oobregion->offset = 0;
906 oobregion->length = 5;
907 } else {
908 oobregion->offset = 2;
909 oobregion->length = 4;
910 }
911 } else {
912 oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6;
913 if (section < nand_chip->ecc.steps)
914 oobregion->length = (section * 16) + 6 -
915 oobregion->offset;
916 else
917 oobregion->length = mtd->oobsize - oobregion->offset;
918 }
919
920 return 0;
921 }
922
923 static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
924 .ecc = mxc_v1_ooblayout_ecc,
925 .free = mxc_v1_ooblayout_free,
926 };
927
mxc_v2_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)928 static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
929 struct mtd_oob_region *oobregion)
930 {
931 struct nand_chip *nand_chip = mtd_to_nand(mtd);
932 int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
933
934 if (section >= nand_chip->ecc.steps)
935 return -ERANGE;
936
937 oobregion->offset = (section * stepsize) + 7;
938 oobregion->length = nand_chip->ecc.bytes;
939
940 return 0;
941 }
942
mxc_v2_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)943 static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
944 struct mtd_oob_region *oobregion)
945 {
946 struct nand_chip *nand_chip = mtd_to_nand(mtd);
947 int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
948
949 if (section >= nand_chip->ecc.steps)
950 return -ERANGE;
951
952 if (!section) {
953 if (mtd->writesize <= 512) {
954 oobregion->offset = 0;
955 oobregion->length = 5;
956 } else {
957 oobregion->offset = 2;
958 oobregion->length = 4;
959 }
960 } else {
961 oobregion->offset = section * stepsize;
962 oobregion->length = 7;
963 }
964
965 return 0;
966 }
967
968 static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
969 .ecc = mxc_v2_ooblayout_ecc,
970 .free = mxc_v2_ooblayout_free,
971 };
972
973 /*
974 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
975 * on how much oob the nand chip has. For 8bit ecc we need at least
976 * 26 bytes of oob data per 512 byte block.
977 */
get_eccsize(struct mtd_info * mtd)978 static int get_eccsize(struct mtd_info *mtd)
979 {
980 int oobbytes_per_512 = 0;
981
982 oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
983
984 if (oobbytes_per_512 < 26)
985 return 4;
986 else
987 return 8;
988 }
989
preset_v1(struct mtd_info * mtd)990 static void preset_v1(struct mtd_info *mtd)
991 {
992 struct nand_chip *nand_chip = mtd_to_nand(mtd);
993 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
994 uint16_t config1 = 0;
995
996 if (nand_chip->ecc.mode == NAND_ECC_HW && mtd->writesize)
997 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
998
999 if (!host->devtype_data->irqpending_quirk)
1000 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1001
1002 host->eccsize = 1;
1003
1004 writew(config1, NFC_V1_V2_CONFIG1);
1005 /* preset operation */
1006
1007 /* Unlock the internal RAM Buffer */
1008 writew(0x2, NFC_V1_V2_CONFIG);
1009
1010 /* Blocks to be unlocked */
1011 writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1012 writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1013
1014 /* Unlock Block Command for given address range */
1015 writew(0x4, NFC_V1_V2_WRPROT);
1016 }
1017
mxc_nand_v2_setup_data_interface(struct mtd_info * mtd,int csline,const struct nand_data_interface * conf)1018 static int mxc_nand_v2_setup_data_interface(struct mtd_info *mtd, int csline,
1019 const struct nand_data_interface *conf)
1020 {
1021 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1022 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1023 int tRC_min_ns, tRC_ps, ret;
1024 unsigned long rate, rate_round;
1025 const struct nand_sdr_timings *timings;
1026 u16 config1;
1027
1028 timings = nand_get_sdr_timings(conf);
1029 if (IS_ERR(timings))
1030 return -ENOTSUPP;
1031
1032 config1 = readw(NFC_V1_V2_CONFIG1);
1033
1034 tRC_min_ns = timings->tRC_min / 1000;
1035 rate = 1000000000 / tRC_min_ns;
1036
1037 /*
1038 * For tRC < 30ns we have to use EDO mode. In this case the controller
1039 * does one access per clock cycle. Otherwise the controller does one
1040 * access in two clock cycles, thus we have to double the rate to the
1041 * controller.
1042 */
1043 if (tRC_min_ns < 30) {
1044 rate_round = clk_round_rate(host->clk, rate);
1045 config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
1046 tRC_ps = 1000000000 / (rate_round / 1000);
1047 } else {
1048 rate *= 2;
1049 rate_round = clk_round_rate(host->clk, rate);
1050 config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
1051 tRC_ps = 1000000000 / (rate_round / 1000 / 2);
1052 }
1053
1054 /*
1055 * The timing values compared against are from the i.MX25 Automotive
1056 * datasheet, Table 50. NFC Timing Parameters
1057 */
1058 if (timings->tCLS_min > tRC_ps - 1000 ||
1059 timings->tCLH_min > tRC_ps - 2000 ||
1060 timings->tCS_min > tRC_ps - 1000 ||
1061 timings->tCH_min > tRC_ps - 2000 ||
1062 timings->tWP_min > tRC_ps - 1500 ||
1063 timings->tALS_min > tRC_ps ||
1064 timings->tALH_min > tRC_ps - 3000 ||
1065 timings->tDS_min > tRC_ps ||
1066 timings->tDH_min > tRC_ps - 5000 ||
1067 timings->tWC_min > 2 * tRC_ps ||
1068 timings->tWH_min > tRC_ps - 2500 ||
1069 timings->tRR_min > 6 * tRC_ps ||
1070 timings->tRP_min > 3 * tRC_ps / 2 ||
1071 timings->tRC_min > 2 * tRC_ps ||
1072 timings->tREH_min > (tRC_ps / 2) - 2500) {
1073 dev_dbg(host->dev, "Timing out of bounds\n");
1074 return -EINVAL;
1075 }
1076
1077 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1078 return 0;
1079
1080 ret = clk_set_rate(host->clk, rate);
1081 if (ret)
1082 return ret;
1083
1084 writew(config1, NFC_V1_V2_CONFIG1);
1085
1086 dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
1087 config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
1088 "normal");
1089
1090 return 0;
1091 }
1092
preset_v2(struct mtd_info * mtd)1093 static void preset_v2(struct mtd_info *mtd)
1094 {
1095 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1096 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1097 uint16_t config1 = 0;
1098
1099 config1 |= NFC_V2_CONFIG1_FP_INT;
1100
1101 if (!host->devtype_data->irqpending_quirk)
1102 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1103
1104 if (mtd->writesize) {
1105 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1106
1107 if (nand_chip->ecc.mode == NAND_ECC_HW)
1108 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1109
1110 host->eccsize = get_eccsize(mtd);
1111 if (host->eccsize == 4)
1112 config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1113
1114 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1115 } else {
1116 host->eccsize = 1;
1117 }
1118
1119 writew(config1, NFC_V1_V2_CONFIG1);
1120 /* preset operation */
1121
1122 /* spare area size in 16-bit half-words */
1123 writew(mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA);
1124
1125 /* Unlock the internal RAM Buffer */
1126 writew(0x2, NFC_V1_V2_CONFIG);
1127
1128 /* Blocks to be unlocked */
1129 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1130 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1131 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1132 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1133 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1134 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1135 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1136 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1137
1138 /* Unlock Block Command for given address range */
1139 writew(0x4, NFC_V1_V2_WRPROT);
1140 }
1141
preset_v3(struct mtd_info * mtd)1142 static void preset_v3(struct mtd_info *mtd)
1143 {
1144 struct nand_chip *chip = mtd_to_nand(mtd);
1145 struct mxc_nand_host *host = nand_get_controller_data(chip);
1146 uint32_t config2, config3;
1147 int i, addr_phases;
1148
1149 writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1150 writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1151
1152 /* Unlock the internal RAM Buffer */
1153 writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1154 NFC_V3_WRPROT);
1155
1156 /* Blocks to be unlocked */
1157 for (i = 0; i < NAND_MAX_CHIPS; i++)
1158 writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1159
1160 writel(0, NFC_V3_IPC);
1161
1162 config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1163 NFC_V3_CONFIG2_2CMD_PHASES |
1164 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1165 NFC_V3_CONFIG2_ST_CMD(0x70) |
1166 NFC_V3_CONFIG2_INT_MSK |
1167 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1168
1169 addr_phases = fls(chip->pagemask) >> 3;
1170
1171 if (mtd->writesize == 2048) {
1172 config2 |= NFC_V3_CONFIG2_PS_2048;
1173 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1174 } else if (mtd->writesize == 4096) {
1175 config2 |= NFC_V3_CONFIG2_PS_4096;
1176 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1177 } else {
1178 config2 |= NFC_V3_CONFIG2_PS_512;
1179 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1180 }
1181
1182 if (mtd->writesize) {
1183 if (chip->ecc.mode == NAND_ECC_HW)
1184 config2 |= NFC_V3_CONFIG2_ECC_EN;
1185
1186 config2 |= NFC_V3_CONFIG2_PPB(
1187 ffs(mtd->erasesize / mtd->writesize) - 6,
1188 host->devtype_data->ppb_shift);
1189 host->eccsize = get_eccsize(mtd);
1190 if (host->eccsize == 8)
1191 config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1192 }
1193
1194 writel(config2, NFC_V3_CONFIG2);
1195
1196 config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1197 NFC_V3_CONFIG3_NO_SDMA |
1198 NFC_V3_CONFIG3_RBB_MODE |
1199 NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1200 NFC_V3_CONFIG3_ADD_OP(0);
1201
1202 if (!(chip->options & NAND_BUSWIDTH_16))
1203 config3 |= NFC_V3_CONFIG3_FW8;
1204
1205 writel(config3, NFC_V3_CONFIG3);
1206
1207 writel(0, NFC_V3_DELAY_LINE);
1208 }
1209
1210 /* Used by the upper layer to write command to NAND Flash for
1211 * different operations to be carried out on NAND Flash */
mxc_nand_command(struct mtd_info * mtd,unsigned command,int column,int page_addr)1212 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1213 int column, int page_addr)
1214 {
1215 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1216 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1217
1218 pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1219 command, column, page_addr);
1220
1221 /* Reset command state information */
1222 host->status_request = false;
1223
1224 /* Command pre-processing step */
1225 switch (command) {
1226 case NAND_CMD_RESET:
1227 host->devtype_data->preset(mtd);
1228 host->devtype_data->send_cmd(host, command, false);
1229 break;
1230
1231 case NAND_CMD_STATUS:
1232 host->buf_start = 0;
1233 host->status_request = true;
1234
1235 host->devtype_data->send_cmd(host, command, true);
1236 WARN_ONCE(column != -1 || page_addr != -1,
1237 "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1238 command, column, page_addr);
1239 mxc_do_addr_cycle(mtd, column, page_addr);
1240 break;
1241
1242 case NAND_CMD_READ0:
1243 case NAND_CMD_READOOB:
1244 if (command == NAND_CMD_READ0)
1245 host->buf_start = column;
1246 else
1247 host->buf_start = column + mtd->writesize;
1248
1249 command = NAND_CMD_READ0; /* only READ0 is valid */
1250
1251 host->devtype_data->send_cmd(host, command, false);
1252 WARN_ONCE(column < 0,
1253 "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1254 command, column, page_addr);
1255 mxc_do_addr_cycle(mtd, 0, page_addr);
1256
1257 if (mtd->writesize > 512)
1258 host->devtype_data->send_cmd(host,
1259 NAND_CMD_READSTART, true);
1260
1261 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1262
1263 memcpy32_fromio(host->data_buf, host->main_area0,
1264 mtd->writesize);
1265 copy_spare(mtd, true);
1266 break;
1267
1268 case NAND_CMD_SEQIN:
1269 if (column >= mtd->writesize)
1270 /* call ourself to read a page */
1271 mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1272
1273 host->buf_start = column;
1274
1275 host->devtype_data->send_cmd(host, command, false);
1276 WARN_ONCE(column < -1,
1277 "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1278 command, column, page_addr);
1279 mxc_do_addr_cycle(mtd, 0, page_addr);
1280 break;
1281
1282 case NAND_CMD_PAGEPROG:
1283 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1284 copy_spare(mtd, false);
1285 host->devtype_data->send_page(mtd, NFC_INPUT);
1286 host->devtype_data->send_cmd(host, command, true);
1287 WARN_ONCE(column != -1 || page_addr != -1,
1288 "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1289 command, column, page_addr);
1290 mxc_do_addr_cycle(mtd, column, page_addr);
1291 break;
1292
1293 case NAND_CMD_READID:
1294 host->devtype_data->send_cmd(host, command, true);
1295 mxc_do_addr_cycle(mtd, column, page_addr);
1296 host->devtype_data->send_read_id(host);
1297 host->buf_start = 0;
1298 break;
1299
1300 case NAND_CMD_ERASE1:
1301 case NAND_CMD_ERASE2:
1302 host->devtype_data->send_cmd(host, command, false);
1303 WARN_ONCE(column != -1,
1304 "Unexpected column value (cmd=%u, col=%d)\n",
1305 command, column);
1306 mxc_do_addr_cycle(mtd, column, page_addr);
1307
1308 break;
1309 case NAND_CMD_PARAM:
1310 host->devtype_data->send_cmd(host, command, false);
1311 mxc_do_addr_cycle(mtd, column, page_addr);
1312 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1313 memcpy32_fromio(host->data_buf, host->main_area0, 512);
1314 host->buf_start = 0;
1315 break;
1316 default:
1317 WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1318 command);
1319 break;
1320 }
1321 }
1322
mxc_nand_onfi_set_features(struct mtd_info * mtd,struct nand_chip * chip,int addr,u8 * subfeature_param)1323 static int mxc_nand_onfi_set_features(struct mtd_info *mtd,
1324 struct nand_chip *chip, int addr,
1325 u8 *subfeature_param)
1326 {
1327 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1328 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1329 int i;
1330
1331 if (!chip->onfi_version ||
1332 !(le16_to_cpu(chip->onfi_params.opt_cmd)
1333 & ONFI_OPT_CMD_SET_GET_FEATURES))
1334 return -EINVAL;
1335
1336 host->buf_start = 0;
1337
1338 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1339 chip->write_byte(mtd, subfeature_param[i]);
1340
1341 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1342 host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
1343 mxc_do_addr_cycle(mtd, addr, -1);
1344 host->devtype_data->send_page(mtd, NFC_INPUT);
1345
1346 return 0;
1347 }
1348
mxc_nand_onfi_get_features(struct mtd_info * mtd,struct nand_chip * chip,int addr,u8 * subfeature_param)1349 static int mxc_nand_onfi_get_features(struct mtd_info *mtd,
1350 struct nand_chip *chip, int addr,
1351 u8 *subfeature_param)
1352 {
1353 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1354 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1355 int i;
1356
1357 if (!chip->onfi_version ||
1358 !(le16_to_cpu(chip->onfi_params.opt_cmd)
1359 & ONFI_OPT_CMD_SET_GET_FEATURES))
1360 return -EINVAL;
1361
1362 host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
1363 mxc_do_addr_cycle(mtd, addr, -1);
1364 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1365 memcpy32_fromio(host->data_buf, host->main_area0, 512);
1366 host->buf_start = 0;
1367
1368 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1369 *subfeature_param++ = chip->read_byte(mtd);
1370
1371 return 0;
1372 }
1373
1374 /*
1375 * The generic flash bbt decriptors overlap with our ecc
1376 * hardware, so define some i.MX specific ones.
1377 */
1378 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1379 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1380
1381 static struct nand_bbt_descr bbt_main_descr = {
1382 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1383 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1384 .offs = 0,
1385 .len = 4,
1386 .veroffs = 4,
1387 .maxblocks = 4,
1388 .pattern = bbt_pattern,
1389 };
1390
1391 static struct nand_bbt_descr bbt_mirror_descr = {
1392 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1393 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1394 .offs = 0,
1395 .len = 4,
1396 .veroffs = 4,
1397 .maxblocks = 4,
1398 .pattern = mirror_pattern,
1399 };
1400
1401 /* v1 + irqpending_quirk: i.MX21 */
1402 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1403 .preset = preset_v1,
1404 .send_cmd = send_cmd_v1_v2,
1405 .send_addr = send_addr_v1_v2,
1406 .send_page = send_page_v1,
1407 .send_read_id = send_read_id_v1_v2,
1408 .get_dev_status = get_dev_status_v1_v2,
1409 .check_int = check_int_v1_v2,
1410 .irq_control = irq_control_v1_v2,
1411 .get_ecc_status = get_ecc_status_v1,
1412 .ooblayout = &mxc_v1_ooblayout_ops,
1413 .select_chip = mxc_nand_select_chip_v1_v3,
1414 .correct_data = mxc_nand_correct_data_v1,
1415 .irqpending_quirk = 1,
1416 .needs_ip = 0,
1417 .regs_offset = 0xe00,
1418 .spare0_offset = 0x800,
1419 .spare_len = 16,
1420 .eccbytes = 3,
1421 .eccsize = 1,
1422 };
1423
1424 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1425 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1426 .preset = preset_v1,
1427 .send_cmd = send_cmd_v1_v2,
1428 .send_addr = send_addr_v1_v2,
1429 .send_page = send_page_v1,
1430 .send_read_id = send_read_id_v1_v2,
1431 .get_dev_status = get_dev_status_v1_v2,
1432 .check_int = check_int_v1_v2,
1433 .irq_control = irq_control_v1_v2,
1434 .get_ecc_status = get_ecc_status_v1,
1435 .ooblayout = &mxc_v1_ooblayout_ops,
1436 .select_chip = mxc_nand_select_chip_v1_v3,
1437 .correct_data = mxc_nand_correct_data_v1,
1438 .irqpending_quirk = 0,
1439 .needs_ip = 0,
1440 .regs_offset = 0xe00,
1441 .spare0_offset = 0x800,
1442 .axi_offset = 0,
1443 .spare_len = 16,
1444 .eccbytes = 3,
1445 .eccsize = 1,
1446 };
1447
1448 /* v21: i.MX25, i.MX35 */
1449 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1450 .preset = preset_v2,
1451 .send_cmd = send_cmd_v1_v2,
1452 .send_addr = send_addr_v1_v2,
1453 .send_page = send_page_v2,
1454 .send_read_id = send_read_id_v1_v2,
1455 .get_dev_status = get_dev_status_v1_v2,
1456 .check_int = check_int_v1_v2,
1457 .irq_control = irq_control_v1_v2,
1458 .get_ecc_status = get_ecc_status_v2,
1459 .ooblayout = &mxc_v2_ooblayout_ops,
1460 .select_chip = mxc_nand_select_chip_v2,
1461 .correct_data = mxc_nand_correct_data_v2_v3,
1462 .setup_data_interface = mxc_nand_v2_setup_data_interface,
1463 .irqpending_quirk = 0,
1464 .needs_ip = 0,
1465 .regs_offset = 0x1e00,
1466 .spare0_offset = 0x1000,
1467 .axi_offset = 0,
1468 .spare_len = 64,
1469 .eccbytes = 9,
1470 .eccsize = 0,
1471 };
1472
1473 /* v3.2a: i.MX51 */
1474 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1475 .preset = preset_v3,
1476 .send_cmd = send_cmd_v3,
1477 .send_addr = send_addr_v3,
1478 .send_page = send_page_v3,
1479 .send_read_id = send_read_id_v3,
1480 .get_dev_status = get_dev_status_v3,
1481 .check_int = check_int_v3,
1482 .irq_control = irq_control_v3,
1483 .get_ecc_status = get_ecc_status_v3,
1484 .ooblayout = &mxc_v2_ooblayout_ops,
1485 .select_chip = mxc_nand_select_chip_v1_v3,
1486 .correct_data = mxc_nand_correct_data_v2_v3,
1487 .irqpending_quirk = 0,
1488 .needs_ip = 1,
1489 .regs_offset = 0,
1490 .spare0_offset = 0x1000,
1491 .axi_offset = 0x1e00,
1492 .spare_len = 64,
1493 .eccbytes = 0,
1494 .eccsize = 0,
1495 .ppb_shift = 7,
1496 };
1497
1498 /* v3.2b: i.MX53 */
1499 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1500 .preset = preset_v3,
1501 .send_cmd = send_cmd_v3,
1502 .send_addr = send_addr_v3,
1503 .send_page = send_page_v3,
1504 .send_read_id = send_read_id_v3,
1505 .get_dev_status = get_dev_status_v3,
1506 .check_int = check_int_v3,
1507 .irq_control = irq_control_v3,
1508 .get_ecc_status = get_ecc_status_v3,
1509 .ooblayout = &mxc_v2_ooblayout_ops,
1510 .select_chip = mxc_nand_select_chip_v1_v3,
1511 .correct_data = mxc_nand_correct_data_v2_v3,
1512 .irqpending_quirk = 0,
1513 .needs_ip = 1,
1514 .regs_offset = 0,
1515 .spare0_offset = 0x1000,
1516 .axi_offset = 0x1e00,
1517 .spare_len = 64,
1518 .eccbytes = 0,
1519 .eccsize = 0,
1520 .ppb_shift = 8,
1521 };
1522
is_imx21_nfc(struct mxc_nand_host * host)1523 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1524 {
1525 return host->devtype_data == &imx21_nand_devtype_data;
1526 }
1527
is_imx27_nfc(struct mxc_nand_host * host)1528 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1529 {
1530 return host->devtype_data == &imx27_nand_devtype_data;
1531 }
1532
is_imx25_nfc(struct mxc_nand_host * host)1533 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1534 {
1535 return host->devtype_data == &imx25_nand_devtype_data;
1536 }
1537
is_imx51_nfc(struct mxc_nand_host * host)1538 static inline int is_imx51_nfc(struct mxc_nand_host *host)
1539 {
1540 return host->devtype_data == &imx51_nand_devtype_data;
1541 }
1542
is_imx53_nfc(struct mxc_nand_host * host)1543 static inline int is_imx53_nfc(struct mxc_nand_host *host)
1544 {
1545 return host->devtype_data == &imx53_nand_devtype_data;
1546 }
1547
1548 static const struct platform_device_id mxcnd_devtype[] = {
1549 {
1550 .name = "imx21-nand",
1551 .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1552 }, {
1553 .name = "imx27-nand",
1554 .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1555 }, {
1556 .name = "imx25-nand",
1557 .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1558 }, {
1559 .name = "imx51-nand",
1560 .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1561 }, {
1562 .name = "imx53-nand",
1563 .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1564 }, {
1565 /* sentinel */
1566 }
1567 };
1568 MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1569
1570 #ifdef CONFIG_OF
1571 static const struct of_device_id mxcnd_dt_ids[] = {
1572 {
1573 .compatible = "fsl,imx21-nand",
1574 .data = &imx21_nand_devtype_data,
1575 }, {
1576 .compatible = "fsl,imx27-nand",
1577 .data = &imx27_nand_devtype_data,
1578 }, {
1579 .compatible = "fsl,imx25-nand",
1580 .data = &imx25_nand_devtype_data,
1581 }, {
1582 .compatible = "fsl,imx51-nand",
1583 .data = &imx51_nand_devtype_data,
1584 }, {
1585 .compatible = "fsl,imx53-nand",
1586 .data = &imx53_nand_devtype_data,
1587 },
1588 { /* sentinel */ }
1589 };
1590 MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1591
mxcnd_probe_dt(struct mxc_nand_host * host)1592 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1593 {
1594 struct device_node *np = host->dev->of_node;
1595 const struct of_device_id *of_id =
1596 of_match_device(mxcnd_dt_ids, host->dev);
1597
1598 if (!np)
1599 return 1;
1600
1601 host->devtype_data = of_id->data;
1602
1603 return 0;
1604 }
1605 #else
mxcnd_probe_dt(struct mxc_nand_host * host)1606 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1607 {
1608 return 1;
1609 }
1610 #endif
1611
mxcnd_probe(struct platform_device * pdev)1612 static int mxcnd_probe(struct platform_device *pdev)
1613 {
1614 struct nand_chip *this;
1615 struct mtd_info *mtd;
1616 struct mxc_nand_host *host;
1617 struct resource *res;
1618 int err = 0;
1619
1620 /* Allocate memory for MTD device structure and private data */
1621 host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1622 GFP_KERNEL);
1623 if (!host)
1624 return -ENOMEM;
1625
1626 /* allocate a temporary buffer for the nand_scan_ident() */
1627 host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1628 if (!host->data_buf)
1629 return -ENOMEM;
1630
1631 host->dev = &pdev->dev;
1632 /* structures must be linked */
1633 this = &host->nand;
1634 mtd = nand_to_mtd(this);
1635 mtd->dev.parent = &pdev->dev;
1636 mtd->name = DRIVER_NAME;
1637
1638 /* 50 us command delay time */
1639 this->chip_delay = 5;
1640
1641 nand_set_controller_data(this, host);
1642 nand_set_flash_node(this, pdev->dev.of_node),
1643 this->dev_ready = mxc_nand_dev_ready;
1644 this->cmdfunc = mxc_nand_command;
1645 this->read_byte = mxc_nand_read_byte;
1646 this->read_word = mxc_nand_read_word;
1647 this->write_buf = mxc_nand_write_buf;
1648 this->read_buf = mxc_nand_read_buf;
1649 this->onfi_set_features = mxc_nand_onfi_set_features;
1650 this->onfi_get_features = mxc_nand_onfi_get_features;
1651
1652 host->clk = devm_clk_get(&pdev->dev, NULL);
1653 if (IS_ERR(host->clk))
1654 return PTR_ERR(host->clk);
1655
1656 err = mxcnd_probe_dt(host);
1657 if (err > 0) {
1658 struct mxc_nand_platform_data *pdata =
1659 dev_get_platdata(&pdev->dev);
1660 if (pdata) {
1661 host->pdata = *pdata;
1662 host->devtype_data = (struct mxc_nand_devtype_data *)
1663 pdev->id_entry->driver_data;
1664 } else {
1665 err = -ENODEV;
1666 }
1667 }
1668 if (err < 0)
1669 return err;
1670
1671 this->setup_data_interface = host->devtype_data->setup_data_interface;
1672
1673 if (host->devtype_data->needs_ip) {
1674 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1675 host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1676 if (IS_ERR(host->regs_ip))
1677 return PTR_ERR(host->regs_ip);
1678
1679 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1680 } else {
1681 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1682 }
1683
1684 host->base = devm_ioremap_resource(&pdev->dev, res);
1685 if (IS_ERR(host->base))
1686 return PTR_ERR(host->base);
1687
1688 host->main_area0 = host->base;
1689
1690 if (host->devtype_data->regs_offset)
1691 host->regs = host->base + host->devtype_data->regs_offset;
1692 host->spare0 = host->base + host->devtype_data->spare0_offset;
1693 if (host->devtype_data->axi_offset)
1694 host->regs_axi = host->base + host->devtype_data->axi_offset;
1695
1696 this->ecc.bytes = host->devtype_data->eccbytes;
1697 host->eccsize = host->devtype_data->eccsize;
1698
1699 this->select_chip = host->devtype_data->select_chip;
1700 this->ecc.size = 512;
1701 mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
1702
1703 if (host->pdata.hw_ecc) {
1704 this->ecc.mode = NAND_ECC_HW;
1705 } else {
1706 this->ecc.mode = NAND_ECC_SOFT;
1707 this->ecc.algo = NAND_ECC_HAMMING;
1708 }
1709
1710 /* NAND bus width determines access functions used by upper layer */
1711 if (host->pdata.width == 2)
1712 this->options |= NAND_BUSWIDTH_16;
1713
1714 /* update flash based bbt */
1715 if (host->pdata.flash_bbt)
1716 this->bbt_options |= NAND_BBT_USE_FLASH;
1717
1718 init_completion(&host->op_completion);
1719
1720 host->irq = platform_get_irq(pdev, 0);
1721 if (host->irq < 0)
1722 return host->irq;
1723
1724 /*
1725 * Use host->devtype_data->irq_control() here instead of irq_control()
1726 * because we must not disable_irq_nosync without having requested the
1727 * irq.
1728 */
1729 host->devtype_data->irq_control(host, 0);
1730
1731 err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1732 0, DRIVER_NAME, host);
1733 if (err)
1734 return err;
1735
1736 err = clk_prepare_enable(host->clk);
1737 if (err)
1738 return err;
1739 host->clk_act = 1;
1740
1741 /*
1742 * Now that we "own" the interrupt make sure the interrupt mask bit is
1743 * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1744 * on this machine.
1745 */
1746 if (host->devtype_data->irqpending_quirk) {
1747 disable_irq_nosync(host->irq);
1748 host->devtype_data->irq_control(host, 1);
1749 }
1750
1751 /* first scan to find the device and get the page size */
1752 err = nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL);
1753 if (err)
1754 goto escan;
1755
1756 switch (this->ecc.mode) {
1757 case NAND_ECC_HW:
1758 this->ecc.calculate = mxc_nand_calculate_ecc;
1759 this->ecc.hwctl = mxc_nand_enable_hwecc;
1760 this->ecc.correct = host->devtype_data->correct_data;
1761 break;
1762
1763 case NAND_ECC_SOFT:
1764 break;
1765
1766 default:
1767 err = -EINVAL;
1768 goto escan;
1769 }
1770
1771 if (this->bbt_options & NAND_BBT_USE_FLASH) {
1772 this->bbt_td = &bbt_main_descr;
1773 this->bbt_md = &bbt_mirror_descr;
1774 }
1775
1776 /* allocate the right size buffer now */
1777 devm_kfree(&pdev->dev, (void *)host->data_buf);
1778 host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize,
1779 GFP_KERNEL);
1780 if (!host->data_buf) {
1781 err = -ENOMEM;
1782 goto escan;
1783 }
1784
1785 /* Call preset again, with correct writesize this time */
1786 host->devtype_data->preset(mtd);
1787
1788 if (!this->ecc.bytes) {
1789 if (host->eccsize == 8)
1790 this->ecc.bytes = 18;
1791 else if (host->eccsize == 4)
1792 this->ecc.bytes = 9;
1793 }
1794
1795 /*
1796 * Experimentation shows that i.MX NFC can only handle up to 218 oob
1797 * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1798 * into copying invalid data to/from the spare IO buffer, as this
1799 * might cause ECC data corruption when doing sub-page write to a
1800 * partially written page.
1801 */
1802 host->used_oobsize = min(mtd->oobsize, 218U);
1803
1804 if (this->ecc.mode == NAND_ECC_HW) {
1805 if (is_imx21_nfc(host) || is_imx27_nfc(host))
1806 this->ecc.strength = 1;
1807 else
1808 this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1809 }
1810
1811 /* second phase scan */
1812 err = nand_scan_tail(mtd);
1813 if (err)
1814 goto escan;
1815
1816 /* Register the partitions */
1817 mtd_device_parse_register(mtd, part_probes,
1818 NULL,
1819 host->pdata.parts,
1820 host->pdata.nr_parts);
1821
1822 platform_set_drvdata(pdev, host);
1823
1824 return 0;
1825
1826 escan:
1827 if (host->clk_act)
1828 clk_disable_unprepare(host->clk);
1829
1830 return err;
1831 }
1832
mxcnd_remove(struct platform_device * pdev)1833 static int mxcnd_remove(struct platform_device *pdev)
1834 {
1835 struct mxc_nand_host *host = platform_get_drvdata(pdev);
1836
1837 nand_release(nand_to_mtd(&host->nand));
1838 if (host->clk_act)
1839 clk_disable_unprepare(host->clk);
1840
1841 return 0;
1842 }
1843
1844 static struct platform_driver mxcnd_driver = {
1845 .driver = {
1846 .name = DRIVER_NAME,
1847 .of_match_table = of_match_ptr(mxcnd_dt_ids),
1848 },
1849 .id_table = mxcnd_devtype,
1850 .probe = mxcnd_probe,
1851 .remove = mxcnd_remove,
1852 };
1853 module_platform_driver(mxcnd_driver);
1854
1855 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1856 MODULE_DESCRIPTION("MXC NAND MTD driver");
1857 MODULE_LICENSE("GPL");
1858