• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2017 Free Electrons
3  * Copyright (C) 2017 NextThing Co
4  *
5  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/mtd/rawnand.h>
19 #include <linux/sizes.h>
20 #include <linux/slab.h>
21 
22 #define NAND_HYNIX_CMD_SET_PARAMS	0x36
23 #define NAND_HYNIX_CMD_APPLY_PARAMS	0x16
24 
25 #define NAND_HYNIX_1XNM_RR_REPEAT	8
26 
27 /**
28  * struct hynix_read_retry - read-retry data
29  * @nregs: number of register to set when applying a new read-retry mode
30  * @regs: register offsets (NAND chip dependent)
31  * @values: array of values to set in registers. The array size is equal to
32  *	    (nregs * nmodes)
33  */
34 struct hynix_read_retry {
35 	int nregs;
36 	const u8 *regs;
37 	u8 values[0];
38 };
39 
40 /**
41  * struct hynix_nand - private Hynix NAND struct
42  * @nand_technology: manufacturing process expressed in picometer
43  * @read_retry: read-retry information
44  */
45 struct hynix_nand {
46 	const struct hynix_read_retry *read_retry;
47 };
48 
49 /**
50  * struct hynix_read_retry_otp - structure describing how the read-retry OTP
51  *				 area
52  * @nregs: number of hynix private registers to set before reading the reading
53  *	   the OTP area
54  * @regs: registers that should be configured
55  * @values: values that should be set in regs
56  * @page: the address to pass to the READ_PAGE command. Depends on the NAND
57  *	  chip
58  * @size: size of the read-retry OTP section
59  */
60 struct hynix_read_retry_otp {
61 	int nregs;
62 	const u8 *regs;
63 	const u8 *values;
64 	int page;
65 	int size;
66 };
67 
hynix_nand_has_valid_jedecid(struct nand_chip * chip)68 static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip)
69 {
70 	struct mtd_info *mtd = nand_to_mtd(chip);
71 	u8 jedecid[6] = { };
72 	int i = 0;
73 
74 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
75 	for (i = 0; i < 5; i++)
76 		jedecid[i] = chip->read_byte(mtd);
77 
78 	return !strcmp("JEDEC", jedecid);
79 }
80 
hynix_nand_setup_read_retry(struct mtd_info * mtd,int retry_mode)81 static int hynix_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
82 {
83 	struct nand_chip *chip = mtd_to_nand(mtd);
84 	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
85 	const u8 *values;
86 	int status;
87 	int i;
88 
89 	values = hynix->read_retry->values +
90 		 (retry_mode * hynix->read_retry->nregs);
91 
92 	/* Enter 'Set Hynix Parameters' mode */
93 	chip->cmdfunc(mtd, NAND_HYNIX_CMD_SET_PARAMS, -1, -1);
94 
95 	/*
96 	 * Configure the NAND in the requested read-retry mode.
97 	 * This is done by setting pre-defined values in internal NAND
98 	 * registers.
99 	 *
100 	 * The set of registers is NAND specific, and the values are either
101 	 * predefined or extracted from an OTP area on the NAND (values are
102 	 * probably tweaked at production in this case).
103 	 */
104 	for (i = 0; i < hynix->read_retry->nregs; i++) {
105 		int column = hynix->read_retry->regs[i];
106 
107 		column |= column << 8;
108 		chip->cmdfunc(mtd, NAND_CMD_NONE, column, -1);
109 		chip->write_byte(mtd, values[i]);
110 	}
111 
112 	/* Apply the new settings. */
113 	chip->cmdfunc(mtd, NAND_HYNIX_CMD_APPLY_PARAMS, -1, -1);
114 
115 	status = chip->waitfunc(mtd, chip);
116 	if (status & NAND_STATUS_FAIL)
117 		return -EIO;
118 
119 	return 0;
120 }
121 
122 /**
123  * hynix_get_majority - get the value that is occurring the most in a given
124  *			set of values
125  * @in: the array of values to test
126  * @repeat: the size of the in array
127  * @out: pointer used to store the output value
128  *
129  * This function implements the 'majority check' logic that is supposed to
130  * overcome the unreliability of MLC NANDs when reading the OTP area storing
131  * the read-retry parameters.
132  *
133  * It's based on a pretty simple assumption: if we repeat the same value
134  * several times and then take the one that is occurring the most, we should
135  * find the correct value.
136  * Let's hope this dummy algorithm prevents us from losing the read-retry
137  * parameters.
138  */
hynix_get_majority(const u8 * in,int repeat,u8 * out)139 static int hynix_get_majority(const u8 *in, int repeat, u8 *out)
140 {
141 	int i, j, half = repeat / 2;
142 
143 	/*
144 	 * We only test the first half of the in array because we must ensure
145 	 * that the value is at least occurring repeat / 2 times.
146 	 *
147 	 * This loop is suboptimal since we may count the occurrences of the
148 	 * same value several time, but we are doing that on small sets, which
149 	 * makes it acceptable.
150 	 */
151 	for (i = 0; i < half; i++) {
152 		int cnt = 0;
153 		u8 val = in[i];
154 
155 		/* Count all values that are matching the one at index i. */
156 		for (j = i + 1; j < repeat; j++) {
157 			if (in[j] == val)
158 				cnt++;
159 		}
160 
161 		/* We found a value occurring more than repeat / 2. */
162 		if (cnt > half) {
163 			*out = val;
164 			return 0;
165 		}
166 	}
167 
168 	return -EIO;
169 }
170 
hynix_read_rr_otp(struct nand_chip * chip,const struct hynix_read_retry_otp * info,void * buf)171 static int hynix_read_rr_otp(struct nand_chip *chip,
172 			     const struct hynix_read_retry_otp *info,
173 			     void *buf)
174 {
175 	struct mtd_info *mtd = nand_to_mtd(chip);
176 	int i;
177 
178 	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
179 
180 	chip->cmdfunc(mtd, NAND_HYNIX_CMD_SET_PARAMS, -1, -1);
181 
182 	for (i = 0; i < info->nregs; i++) {
183 		int column = info->regs[i];
184 
185 		column |= column << 8;
186 		chip->cmdfunc(mtd, NAND_CMD_NONE, column, -1);
187 		chip->write_byte(mtd, info->values[i]);
188 	}
189 
190 	chip->cmdfunc(mtd, NAND_HYNIX_CMD_APPLY_PARAMS, -1, -1);
191 
192 	/* Sequence to enter OTP mode? */
193 	chip->cmdfunc(mtd, 0x17, -1, -1);
194 	chip->cmdfunc(mtd, 0x04, -1, -1);
195 	chip->cmdfunc(mtd, 0x19, -1, -1);
196 
197 	/* Now read the page */
198 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0x0, info->page);
199 	chip->read_buf(mtd, buf, info->size);
200 
201 	/* Put everything back to normal */
202 	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
203 	chip->cmdfunc(mtd, NAND_HYNIX_CMD_SET_PARAMS, 0x38, -1);
204 	chip->write_byte(mtd, 0x0);
205 	chip->cmdfunc(mtd, NAND_HYNIX_CMD_APPLY_PARAMS, -1, -1);
206 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0x0, -1);
207 
208 	return 0;
209 }
210 
211 #define NAND_HYNIX_1XNM_RR_COUNT_OFFS				0
212 #define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS			8
213 #define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv)		\
214 	(16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize)))
215 
hynix_mlc_1xnm_rr_value(const u8 * buf,int nmodes,int nregs,int mode,int reg,bool inv,u8 * val)216 static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs,
217 				   int mode, int reg, bool inv, u8 *val)
218 {
219 	u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT];
220 	int val_offs = (mode * nregs) + reg;
221 	int set_size = nmodes * nregs;
222 	int i, ret;
223 
224 	for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) {
225 		int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv);
226 
227 		tmp[i] = buf[val_offs + set_offs];
228 	}
229 
230 	ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val);
231 	if (ret)
232 		return ret;
233 
234 	if (inv)
235 		*val = ~*val;
236 
237 	return 0;
238 }
239 
240 static u8 hynix_1xnm_mlc_read_retry_regs[] = {
241 	0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf
242 };
243 
hynix_mlc_1xnm_rr_init(struct nand_chip * chip,const struct hynix_read_retry_otp * info)244 static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip,
245 				  const struct hynix_read_retry_otp *info)
246 {
247 	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
248 	struct hynix_read_retry *rr = NULL;
249 	int ret, i, j;
250 	u8 nregs, nmodes;
251 	u8 *buf;
252 
253 	buf = kmalloc(info->size, GFP_KERNEL);
254 	if (!buf)
255 		return -ENOMEM;
256 
257 	ret = hynix_read_rr_otp(chip, info, buf);
258 	if (ret)
259 		goto out;
260 
261 	ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT,
262 				 &nmodes);
263 	if (ret)
264 		goto out;
265 
266 	ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT,
267 				 NAND_HYNIX_1XNM_RR_REPEAT,
268 				 &nregs);
269 	if (ret)
270 		goto out;
271 
272 	rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL);
273 	if (!rr) {
274 		ret = -ENOMEM;
275 		goto out;
276 	}
277 
278 	for (i = 0; i < nmodes; i++) {
279 		for (j = 0; j < nregs; j++) {
280 			u8 *val = rr->values + (i * nregs);
281 
282 			ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
283 						      false, val);
284 			if (!ret)
285 				continue;
286 
287 			ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
288 						      true, val);
289 			if (ret)
290 				goto out;
291 		}
292 	}
293 
294 	rr->nregs = nregs;
295 	rr->regs = hynix_1xnm_mlc_read_retry_regs;
296 	hynix->read_retry = rr;
297 	chip->setup_read_retry = hynix_nand_setup_read_retry;
298 	chip->read_retries = nmodes;
299 
300 out:
301 	kfree(buf);
302 
303 	if (ret)
304 		kfree(rr);
305 
306 	return ret;
307 }
308 
309 static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 };
310 static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 };
311 
312 static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = {
313 	{
314 		.nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
315 		.regs = hynix_mlc_1xnm_rr_otp_regs,
316 		.values = hynix_mlc_1xnm_rr_otp_values,
317 		.page = 0x21f,
318 		.size = 784
319 	},
320 	{
321 		.nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
322 		.regs = hynix_mlc_1xnm_rr_otp_regs,
323 		.values = hynix_mlc_1xnm_rr_otp_values,
324 		.page = 0x200,
325 		.size = 528,
326 	},
327 };
328 
hynix_nand_rr_init(struct nand_chip * chip)329 static int hynix_nand_rr_init(struct nand_chip *chip)
330 {
331 	int i, ret = 0;
332 	bool valid_jedecid;
333 
334 	valid_jedecid = hynix_nand_has_valid_jedecid(chip);
335 
336 	/*
337 	 * We only support read-retry for 1xnm NANDs, and those NANDs all
338 	 * expose a valid JEDEC ID.
339 	 */
340 	if (valid_jedecid) {
341 		u8 nand_tech = chip->id.data[5] >> 4;
342 
343 		/* 1xnm technology */
344 		if (nand_tech == 4) {
345 			for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps);
346 			     i++) {
347 				/*
348 				 * FIXME: Hynix recommend to copy the
349 				 * read-retry OTP area into a normal page.
350 				 */
351 				ret = hynix_mlc_1xnm_rr_init(chip,
352 						hynix_mlc_1xnm_rr_otps);
353 				if (!ret)
354 					break;
355 			}
356 		}
357 	}
358 
359 	if (ret)
360 		pr_warn("failed to initialize read-retry infrastructure");
361 
362 	return 0;
363 }
364 
hynix_nand_extract_oobsize(struct nand_chip * chip,bool valid_jedecid)365 static void hynix_nand_extract_oobsize(struct nand_chip *chip,
366 				       bool valid_jedecid)
367 {
368 	struct mtd_info *mtd = nand_to_mtd(chip);
369 	u8 oobsize;
370 
371 	oobsize = ((chip->id.data[3] >> 2) & 0x3) |
372 		  ((chip->id.data[3] >> 4) & 0x4);
373 
374 	if (valid_jedecid) {
375 		switch (oobsize) {
376 		case 0:
377 			mtd->oobsize = 2048;
378 			break;
379 		case 1:
380 			mtd->oobsize = 1664;
381 			break;
382 		case 2:
383 			mtd->oobsize = 1024;
384 			break;
385 		case 3:
386 			mtd->oobsize = 640;
387 			break;
388 		default:
389 			/*
390 			 * We should never reach this case, but if that
391 			 * happens, this probably means Hynix decided to use
392 			 * a different extended ID format, and we should find
393 			 * a way to support it.
394 			 */
395 			WARN(1, "Invalid OOB size");
396 			break;
397 		}
398 	} else {
399 		switch (oobsize) {
400 		case 0:
401 			mtd->oobsize = 128;
402 			break;
403 		case 1:
404 			mtd->oobsize = 224;
405 			break;
406 		case 2:
407 			mtd->oobsize = 448;
408 			break;
409 		case 3:
410 			mtd->oobsize = 64;
411 			break;
412 		case 4:
413 			mtd->oobsize = 32;
414 			break;
415 		case 5:
416 			mtd->oobsize = 16;
417 			break;
418 		case 6:
419 			mtd->oobsize = 640;
420 			break;
421 		default:
422 			/*
423 			 * We should never reach this case, but if that
424 			 * happens, this probably means Hynix decided to use
425 			 * a different extended ID format, and we should find
426 			 * a way to support it.
427 			 */
428 			WARN(1, "Invalid OOB size");
429 			break;
430 		}
431 	}
432 }
433 
hynix_nand_extract_ecc_requirements(struct nand_chip * chip,bool valid_jedecid)434 static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip,
435 						bool valid_jedecid)
436 {
437 	u8 ecc_level = (chip->id.data[4] >> 4) & 0x7;
438 
439 	if (valid_jedecid) {
440 		/* Reference: H27UCG8T2E datasheet */
441 		chip->ecc_step_ds = 1024;
442 
443 		switch (ecc_level) {
444 		case 0:
445 			chip->ecc_step_ds = 0;
446 			chip->ecc_strength_ds = 0;
447 			break;
448 		case 1:
449 			chip->ecc_strength_ds = 4;
450 			break;
451 		case 2:
452 			chip->ecc_strength_ds = 24;
453 			break;
454 		case 3:
455 			chip->ecc_strength_ds = 32;
456 			break;
457 		case 4:
458 			chip->ecc_strength_ds = 40;
459 			break;
460 		case 5:
461 			chip->ecc_strength_ds = 50;
462 			break;
463 		case 6:
464 			chip->ecc_strength_ds = 60;
465 			break;
466 		default:
467 			/*
468 			 * We should never reach this case, but if that
469 			 * happens, this probably means Hynix decided to use
470 			 * a different extended ID format, and we should find
471 			 * a way to support it.
472 			 */
473 			WARN(1, "Invalid ECC requirements");
474 		}
475 	} else {
476 		/*
477 		 * The ECC requirements field meaning depends on the
478 		 * NAND technology.
479 		 */
480 		u8 nand_tech = chip->id.data[5] & 0x7;
481 
482 		if (nand_tech < 3) {
483 			/* > 26nm, reference: H27UBG8T2A datasheet */
484 			if (ecc_level < 5) {
485 				chip->ecc_step_ds = 512;
486 				chip->ecc_strength_ds = 1 << ecc_level;
487 			} else if (ecc_level < 7) {
488 				if (ecc_level == 5)
489 					chip->ecc_step_ds = 2048;
490 				else
491 					chip->ecc_step_ds = 1024;
492 				chip->ecc_strength_ds = 24;
493 			} else {
494 				/*
495 				 * We should never reach this case, but if that
496 				 * happens, this probably means Hynix decided
497 				 * to use a different extended ID format, and
498 				 * we should find a way to support it.
499 				 */
500 				WARN(1, "Invalid ECC requirements");
501 			}
502 		} else {
503 			/* <= 26nm, reference: H27UBG8T2B datasheet */
504 			if (!ecc_level) {
505 				chip->ecc_step_ds = 0;
506 				chip->ecc_strength_ds = 0;
507 			} else if (ecc_level < 5) {
508 				chip->ecc_step_ds = 512;
509 				chip->ecc_strength_ds = 1 << (ecc_level - 1);
510 			} else {
511 				chip->ecc_step_ds = 1024;
512 				chip->ecc_strength_ds = 24 +
513 							(8 * (ecc_level - 5));
514 			}
515 		}
516 	}
517 }
518 
hynix_nand_extract_scrambling_requirements(struct nand_chip * chip,bool valid_jedecid)519 static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip,
520 						       bool valid_jedecid)
521 {
522 	u8 nand_tech;
523 
524 	/* We need scrambling on all TLC NANDs*/
525 	if (chip->bits_per_cell > 2)
526 		chip->options |= NAND_NEED_SCRAMBLING;
527 
528 	/* And on MLC NANDs with sub-3xnm process */
529 	if (valid_jedecid) {
530 		nand_tech = chip->id.data[5] >> 4;
531 
532 		/* < 3xnm */
533 		if (nand_tech > 0)
534 			chip->options |= NAND_NEED_SCRAMBLING;
535 	} else {
536 		nand_tech = chip->id.data[5] & 0x7;
537 
538 		/* < 32nm */
539 		if (nand_tech > 2)
540 			chip->options |= NAND_NEED_SCRAMBLING;
541 	}
542 }
543 
hynix_nand_decode_id(struct nand_chip * chip)544 static void hynix_nand_decode_id(struct nand_chip *chip)
545 {
546 	struct mtd_info *mtd = nand_to_mtd(chip);
547 	bool valid_jedecid;
548 	u8 tmp;
549 
550 	/*
551 	 * Exclude all SLC NANDs from this advanced detection scheme.
552 	 * According to the ranges defined in several datasheets, it might
553 	 * appear that even SLC NANDs could fall in this extended ID scheme.
554 	 * If that the case rework the test to let SLC NANDs go through the
555 	 * detection process.
556 	 */
557 	if (chip->id.len < 6 || nand_is_slc(chip)) {
558 		nand_decode_ext_id(chip);
559 		return;
560 	}
561 
562 	/* Extract pagesize */
563 	mtd->writesize = 2048 << (chip->id.data[3] & 0x03);
564 
565 	tmp = (chip->id.data[3] >> 4) & 0x3;
566 	/*
567 	 * When bit7 is set that means we start counting at 1MiB, otherwise
568 	 * we start counting at 128KiB and shift this value the content of
569 	 * ID[3][4:5].
570 	 * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in
571 	 * this case the erasesize is set to 768KiB.
572 	 */
573 	if (chip->id.data[3] & 0x80)
574 		mtd->erasesize = SZ_1M << tmp;
575 	else if (tmp == 3)
576 		mtd->erasesize = SZ_512K + SZ_256K;
577 	else
578 		mtd->erasesize = SZ_128K << tmp;
579 
580 	/*
581 	 * Modern Toggle DDR NANDs have a valid JEDECID even though they are
582 	 * not exposing a valid JEDEC parameter table.
583 	 * These NANDs use a different NAND ID scheme.
584 	 */
585 	valid_jedecid = hynix_nand_has_valid_jedecid(chip);
586 
587 	hynix_nand_extract_oobsize(chip, valid_jedecid);
588 	hynix_nand_extract_ecc_requirements(chip, valid_jedecid);
589 	hynix_nand_extract_scrambling_requirements(chip, valid_jedecid);
590 }
591 
hynix_nand_cleanup(struct nand_chip * chip)592 static void hynix_nand_cleanup(struct nand_chip *chip)
593 {
594 	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
595 
596 	if (!hynix)
597 		return;
598 
599 	kfree(hynix->read_retry);
600 	kfree(hynix);
601 	nand_set_manufacturer_data(chip, NULL);
602 }
603 
hynix_nand_init(struct nand_chip * chip)604 static int hynix_nand_init(struct nand_chip *chip)
605 {
606 	struct hynix_nand *hynix;
607 	int ret;
608 
609 	if (!nand_is_slc(chip))
610 		chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
611 	else
612 		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
613 
614 	hynix = kzalloc(sizeof(*hynix), GFP_KERNEL);
615 	if (!hynix)
616 		return -ENOMEM;
617 
618 	nand_set_manufacturer_data(chip, hynix);
619 
620 	ret = hynix_nand_rr_init(chip);
621 	if (ret)
622 		hynix_nand_cleanup(chip);
623 
624 	return ret;
625 }
626 
627 const struct nand_manufacturer_ops hynix_nand_manuf_ops = {
628 	.detect = hynix_nand_decode_id,
629 	.init = hynix_nand_init,
630 	.cleanup = hynix_nand_cleanup,
631 };
632