• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016, The Linux Foundation. All rights reserved.
3  *
4  * This software is licensed under the terms of the GNU General Public
5  * License version 2, as published by the Free Software Foundation, and
6  * may be copied, distributed, and modified under those terms.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/slab.h>
16 #include <linux/bitops.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/module.h>
20 #include <linux/mtd/rawnand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/delay.h>
25 
26 /* NANDc reg offsets */
27 #define	NAND_FLASH_CMD			0x00
28 #define	NAND_ADDR0			0x04
29 #define	NAND_ADDR1			0x08
30 #define	NAND_FLASH_CHIP_SELECT		0x0c
31 #define	NAND_EXEC_CMD			0x10
32 #define	NAND_FLASH_STATUS		0x14
33 #define	NAND_BUFFER_STATUS		0x18
34 #define	NAND_DEV0_CFG0			0x20
35 #define	NAND_DEV0_CFG1			0x24
36 #define	NAND_DEV0_ECC_CFG		0x28
37 #define	NAND_DEV1_ECC_CFG		0x2c
38 #define	NAND_DEV1_CFG0			0x30
39 #define	NAND_DEV1_CFG1			0x34
40 #define	NAND_READ_ID			0x40
41 #define	NAND_READ_STATUS		0x44
42 #define	NAND_DEV_CMD0			0xa0
43 #define	NAND_DEV_CMD1			0xa4
44 #define	NAND_DEV_CMD2			0xa8
45 #define	NAND_DEV_CMD_VLD		0xac
46 #define	SFLASHC_BURST_CFG		0xe0
47 #define	NAND_ERASED_CW_DETECT_CFG	0xe8
48 #define	NAND_ERASED_CW_DETECT_STATUS	0xec
49 #define	NAND_EBI2_ECC_BUF_CFG		0xf0
50 #define	FLASH_BUF_ACC			0x100
51 
52 #define	NAND_CTRL			0xf00
53 #define	NAND_VERSION			0xf08
54 #define	NAND_READ_LOCATION_0		0xf20
55 #define	NAND_READ_LOCATION_1		0xf24
56 #define	NAND_READ_LOCATION_2		0xf28
57 #define	NAND_READ_LOCATION_3		0xf2c
58 
59 /* dummy register offsets, used by write_reg_dma */
60 #define	NAND_DEV_CMD1_RESTORE		0xdead
61 #define	NAND_DEV_CMD_VLD_RESTORE	0xbeef
62 
63 /* NAND_FLASH_CMD bits */
64 #define	PAGE_ACC			BIT(4)
65 #define	LAST_PAGE			BIT(5)
66 
67 /* NAND_FLASH_CHIP_SELECT bits */
68 #define	NAND_DEV_SEL			0
69 #define	DM_EN				BIT(2)
70 
71 /* NAND_FLASH_STATUS bits */
72 #define	FS_OP_ERR			BIT(4)
73 #define	FS_READY_BSY_N			BIT(5)
74 #define	FS_MPU_ERR			BIT(8)
75 #define	FS_DEVICE_STS_ERR		BIT(16)
76 #define	FS_DEVICE_WP			BIT(23)
77 
78 /* NAND_BUFFER_STATUS bits */
79 #define	BS_UNCORRECTABLE_BIT		BIT(8)
80 #define	BS_CORRECTABLE_ERR_MSK		0x1f
81 
82 /* NAND_DEVn_CFG0 bits */
83 #define	DISABLE_STATUS_AFTER_WRITE	4
84 #define	CW_PER_PAGE			6
85 #define	UD_SIZE_BYTES			9
86 #define	ECC_PARITY_SIZE_BYTES_RS	19
87 #define	SPARE_SIZE_BYTES		23
88 #define	NUM_ADDR_CYCLES			27
89 #define	STATUS_BFR_READ			30
90 #define	SET_RD_MODE_AFTER_STATUS	31
91 
92 /* NAND_DEVn_CFG0 bits */
93 #define	DEV0_CFG1_ECC_DISABLE		0
94 #define	WIDE_FLASH			1
95 #define	NAND_RECOVERY_CYCLES		2
96 #define	CS_ACTIVE_BSY			5
97 #define	BAD_BLOCK_BYTE_NUM		6
98 #define	BAD_BLOCK_IN_SPARE_AREA		16
99 #define	WR_RD_BSY_GAP			17
100 #define	ENABLE_BCH_ECC			27
101 
102 /* NAND_DEV0_ECC_CFG bits */
103 #define	ECC_CFG_ECC_DISABLE		0
104 #define	ECC_SW_RESET			1
105 #define	ECC_MODE			4
106 #define	ECC_PARITY_SIZE_BYTES_BCH	8
107 #define	ECC_NUM_DATA_BYTES		16
108 #define	ECC_FORCE_CLK_OPEN		30
109 
110 /* NAND_DEV_CMD1 bits */
111 #define	READ_ADDR			0
112 
113 /* NAND_DEV_CMD_VLD bits */
114 #define	READ_START_VLD			BIT(0)
115 #define	READ_STOP_VLD			BIT(1)
116 #define	WRITE_START_VLD			BIT(2)
117 #define	ERASE_START_VLD			BIT(3)
118 #define	SEQ_READ_START_VLD		BIT(4)
119 
120 /* NAND_EBI2_ECC_BUF_CFG bits */
121 #define	NUM_STEPS			0
122 
123 /* NAND_ERASED_CW_DETECT_CFG bits */
124 #define	ERASED_CW_ECC_MASK		1
125 #define	AUTO_DETECT_RES			0
126 #define	MASK_ECC			(1 << ERASED_CW_ECC_MASK)
127 #define	RESET_ERASED_DET		(1 << AUTO_DETECT_RES)
128 #define	ACTIVE_ERASED_DET		(0 << AUTO_DETECT_RES)
129 #define	CLR_ERASED_PAGE_DET		(RESET_ERASED_DET | MASK_ECC)
130 #define	SET_ERASED_PAGE_DET		(ACTIVE_ERASED_DET | MASK_ECC)
131 
132 /* NAND_ERASED_CW_DETECT_STATUS bits */
133 #define	PAGE_ALL_ERASED			BIT(7)
134 #define	CODEWORD_ALL_ERASED		BIT(6)
135 #define	PAGE_ERASED			BIT(5)
136 #define	CODEWORD_ERASED			BIT(4)
137 #define	ERASED_PAGE			(PAGE_ALL_ERASED | PAGE_ERASED)
138 #define	ERASED_CW			(CODEWORD_ALL_ERASED | CODEWORD_ERASED)
139 
140 /* NAND_READ_LOCATION_n bits */
141 #define READ_LOCATION_OFFSET		0
142 #define READ_LOCATION_SIZE		16
143 #define READ_LOCATION_LAST		31
144 
145 /* Version Mask */
146 #define	NAND_VERSION_MAJOR_MASK		0xf0000000
147 #define	NAND_VERSION_MAJOR_SHIFT	28
148 #define	NAND_VERSION_MINOR_MASK		0x0fff0000
149 #define	NAND_VERSION_MINOR_SHIFT	16
150 
151 /* NAND OP_CMDs */
152 #define	OP_PAGE_READ			0x2
153 #define	OP_PAGE_READ_WITH_ECC		0x3
154 #define	OP_PAGE_READ_WITH_ECC_SPARE	0x4
155 #define	OP_PROGRAM_PAGE			0x6
156 #define	OP_PAGE_PROGRAM_WITH_ECC	0x7
157 #define	OP_PROGRAM_PAGE_SPARE		0x9
158 #define	OP_BLOCK_ERASE			0xa
159 #define	OP_FETCH_ID			0xb
160 #define	OP_RESET_DEVICE			0xd
161 
162 /* Default Value for NAND_DEV_CMD_VLD */
163 #define NAND_DEV_CMD_VLD_VAL		(READ_START_VLD | WRITE_START_VLD | \
164 					 ERASE_START_VLD | SEQ_READ_START_VLD)
165 
166 /* NAND_CTRL bits */
167 #define	BAM_MODE_EN			BIT(0)
168 
169 /*
170  * the NAND controller performs reads/writes with ECC in 516 byte chunks.
171  * the driver calls the chunks 'step' or 'codeword' interchangeably
172  */
173 #define	NANDC_STEP_SIZE			512
174 
175 /*
176  * the largest page size we support is 8K, this will have 16 steps/codewords
177  * of 512 bytes each
178  */
179 #define	MAX_NUM_STEPS			(SZ_8K / NANDC_STEP_SIZE)
180 
181 /* we read at most 3 registers per codeword scan */
182 #define	MAX_REG_RD			(3 * MAX_NUM_STEPS)
183 
184 /* ECC modes supported by the controller */
185 #define	ECC_NONE	BIT(0)
186 #define	ECC_RS_4BIT	BIT(1)
187 #define	ECC_BCH_4BIT	BIT(2)
188 #define	ECC_BCH_8BIT	BIT(3)
189 
190 #define nandc_set_read_loc(nandc, reg, offset, size, is_last)	\
191 nandc_set_reg(nandc, NAND_READ_LOCATION_##reg,			\
192 	      ((offset) << READ_LOCATION_OFFSET) |		\
193 	      ((size) << READ_LOCATION_SIZE) |			\
194 	      ((is_last) << READ_LOCATION_LAST))
195 
196 /*
197  * Returns the actual register address for all NAND_DEV_ registers
198  * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
199  */
200 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
201 
202 #define QPIC_PER_CW_CMD_SGL		32
203 #define QPIC_PER_CW_DATA_SGL		8
204 
205 /*
206  * Flags used in DMA descriptor preparation helper functions
207  * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
208  */
209 /* Don't set the EOT in current tx BAM sgl */
210 #define NAND_BAM_NO_EOT			BIT(0)
211 /* Set the NWD flag in current BAM sgl */
212 #define NAND_BAM_NWD			BIT(1)
213 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */
214 #define NAND_BAM_NEXT_SGL		BIT(2)
215 /*
216  * Erased codeword status is being used two times in single transfer so this
217  * flag will determine the current value of erased codeword status register
218  */
219 #define NAND_ERASED_CW_SET		BIT(4)
220 
221 /*
222  * This data type corresponds to the BAM transaction which will be used for all
223  * NAND transfers.
224  * @cmd_sgl - sgl for NAND BAM command pipe
225  * @data_sgl - sgl for NAND BAM consumer/producer pipe
226  * @cmd_sgl_pos - current index in command sgl.
227  * @cmd_sgl_start - start index in command sgl.
228  * @tx_sgl_pos - current index in data sgl for tx.
229  * @tx_sgl_start - start index in data sgl for tx.
230  * @rx_sgl_pos - current index in data sgl for rx.
231  * @rx_sgl_start - start index in data sgl for rx.
232  */
233 struct bam_transaction {
234 	struct scatterlist *cmd_sgl;
235 	struct scatterlist *data_sgl;
236 	u32 cmd_sgl_pos;
237 	u32 cmd_sgl_start;
238 	u32 tx_sgl_pos;
239 	u32 tx_sgl_start;
240 	u32 rx_sgl_pos;
241 	u32 rx_sgl_start;
242 };
243 
244 /*
245  * This data type corresponds to the nand dma descriptor
246  * @list - list for desc_info
247  * @dir - DMA transfer direction
248  * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
249  *	      ADM
250  * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
251  * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
252  * @dma_desc - low level DMA engine descriptor
253  */
254 struct desc_info {
255 	struct list_head node;
256 
257 	enum dma_data_direction dir;
258 	union {
259 		struct scatterlist adm_sgl;
260 		struct {
261 			struct scatterlist *bam_sgl;
262 			int sgl_cnt;
263 		};
264 	};
265 	struct dma_async_tx_descriptor *dma_desc;
266 };
267 
268 /*
269  * holds the current register values that we want to write. acts as a contiguous
270  * chunk of memory which we use to write the controller registers through DMA.
271  */
272 struct nandc_regs {
273 	__le32 cmd;
274 	__le32 addr0;
275 	__le32 addr1;
276 	__le32 chip_sel;
277 	__le32 exec;
278 
279 	__le32 cfg0;
280 	__le32 cfg1;
281 	__le32 ecc_bch_cfg;
282 
283 	__le32 clrflashstatus;
284 	__le32 clrreadstatus;
285 
286 	__le32 cmd1;
287 	__le32 vld;
288 
289 	__le32 orig_cmd1;
290 	__le32 orig_vld;
291 
292 	__le32 ecc_buf_cfg;
293 	__le32 read_location0;
294 	__le32 read_location1;
295 	__le32 read_location2;
296 	__le32 read_location3;
297 
298 	__le32 erased_cw_detect_cfg_clr;
299 	__le32 erased_cw_detect_cfg_set;
300 };
301 
302 /*
303  * NAND controller data struct
304  *
305  * @controller:			base controller structure
306  * @host_list:			list containing all the chips attached to the
307  *				controller
308  * @dev:			parent device
309  * @base:			MMIO base
310  * @base_dma:			physical base address of controller registers
311  * @core_clk:			controller clock
312  * @aon_clk:			another controller clock
313  *
314  * @chan:			dma channel
315  * @cmd_crci:			ADM DMA CRCI for command flow control
316  * @data_crci:			ADM DMA CRCI for data flow control
317  * @desc_list:			DMA descriptor list (list of desc_infos)
318  *
319  * @data_buffer:		our local DMA buffer for page read/writes,
320  *				used when we can't use the buffer provided
321  *				by upper layers directly
322  * @buf_size/count/start:	markers for chip->read_buf/write_buf functions
323  * @reg_read_buf:		local buffer for reading back registers via DMA
324  * @reg_read_dma:		contains dma address for register read buffer
325  * @reg_read_pos:		marker for data read in reg_read_buf
326  *
327  * @regs:			a contiguous chunk of memory for DMA register
328  *				writes. contains the register values to be
329  *				written to controller
330  * @cmd1/vld:			some fixed controller register values
331  * @props:			properties of current NAND controller,
332  *				initialized via DT match data
333  * @max_cwperpage:		maximum QPIC codewords required. calculated
334  *				from all connected NAND devices pagesize
335  */
336 struct qcom_nand_controller {
337 	struct nand_hw_control controller;
338 	struct list_head host_list;
339 
340 	struct device *dev;
341 
342 	void __iomem *base;
343 	dma_addr_t base_dma;
344 
345 	struct clk *core_clk;
346 	struct clk *aon_clk;
347 
348 	union {
349 		/* will be used only by QPIC for BAM DMA */
350 		struct {
351 			struct dma_chan *tx_chan;
352 			struct dma_chan *rx_chan;
353 			struct dma_chan *cmd_chan;
354 		};
355 
356 		/* will be used only by EBI2 for ADM DMA */
357 		struct {
358 			struct dma_chan *chan;
359 			unsigned int cmd_crci;
360 			unsigned int data_crci;
361 		};
362 	};
363 
364 	struct list_head desc_list;
365 	struct bam_transaction *bam_txn;
366 
367 	u8		*data_buffer;
368 	int		buf_size;
369 	int		buf_count;
370 	int		buf_start;
371 	unsigned int	max_cwperpage;
372 
373 	__le32 *reg_read_buf;
374 	dma_addr_t reg_read_dma;
375 	int reg_read_pos;
376 
377 	struct nandc_regs *regs;
378 
379 	u32 cmd1, vld;
380 	const struct qcom_nandc_props *props;
381 };
382 
383 /*
384  * NAND chip structure
385  *
386  * @chip:			base NAND chip structure
387  * @node:			list node to add itself to host_list in
388  *				qcom_nand_controller
389  *
390  * @cs:				chip select value for this chip
391  * @cw_size:			the number of bytes in a single step/codeword
392  *				of a page, consisting of all data, ecc, spare
393  *				and reserved bytes
394  * @cw_data:			the number of bytes within a codeword protected
395  *				by ECC
396  * @use_ecc:			request the controller to use ECC for the
397  *				upcoming read/write
398  * @bch_enabled:		flag to tell whether BCH ECC mode is used
399  * @ecc_bytes_hw:		ECC bytes used by controller hardware for this
400  *				chip
401  * @status:			value to be returned if NAND_CMD_STATUS command
402  *				is executed
403  * @last_command:		keeps track of last command on this chip. used
404  *				for reading correct status
405  *
406  * @cfg0, cfg1, cfg0_raw..:	NANDc register configurations needed for
407  *				ecc/non-ecc mode for the current nand flash
408  *				device
409  */
410 struct qcom_nand_host {
411 	struct nand_chip chip;
412 	struct list_head node;
413 
414 	int cs;
415 	int cw_size;
416 	int cw_data;
417 	bool use_ecc;
418 	bool bch_enabled;
419 	int ecc_bytes_hw;
420 	int spare_bytes;
421 	int bbm_size;
422 	u8 status;
423 	int last_command;
424 
425 	u32 cfg0, cfg1;
426 	u32 cfg0_raw, cfg1_raw;
427 	u32 ecc_buf_cfg;
428 	u32 ecc_bch_cfg;
429 	u32 clrflashstatus;
430 	u32 clrreadstatus;
431 };
432 
433 /*
434  * This data type corresponds to the NAND controller properties which varies
435  * among different NAND controllers.
436  * @ecc_modes - ecc mode for NAND
437  * @is_bam - whether NAND controller is using BAM
438  * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
439  */
440 struct qcom_nandc_props {
441 	u32 ecc_modes;
442 	bool is_bam;
443 	u32 dev_cmd_reg_start;
444 };
445 
446 /* Frees the BAM transaction memory */
free_bam_transaction(struct qcom_nand_controller * nandc)447 static void free_bam_transaction(struct qcom_nand_controller *nandc)
448 {
449 	struct bam_transaction *bam_txn = nandc->bam_txn;
450 
451 	devm_kfree(nandc->dev, bam_txn);
452 }
453 
454 /* Allocates and Initializes the BAM transaction */
455 static struct bam_transaction *
alloc_bam_transaction(struct qcom_nand_controller * nandc)456 alloc_bam_transaction(struct qcom_nand_controller *nandc)
457 {
458 	struct bam_transaction *bam_txn;
459 	size_t bam_txn_size;
460 	unsigned int num_cw = nandc->max_cwperpage;
461 	void *bam_txn_buf;
462 
463 	bam_txn_size =
464 		sizeof(*bam_txn) + num_cw *
465 		((sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
466 		(sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
467 
468 	bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
469 	if (!bam_txn_buf)
470 		return NULL;
471 
472 	bam_txn = bam_txn_buf;
473 	bam_txn_buf += sizeof(*bam_txn);
474 
475 	bam_txn->cmd_sgl = bam_txn_buf;
476 	bam_txn_buf +=
477 		sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
478 
479 	bam_txn->data_sgl = bam_txn_buf;
480 
481 	return bam_txn;
482 }
483 
484 /* Clears the BAM transaction indexes */
clear_bam_transaction(struct qcom_nand_controller * nandc)485 static void clear_bam_transaction(struct qcom_nand_controller *nandc)
486 {
487 	struct bam_transaction *bam_txn = nandc->bam_txn;
488 
489 	if (!nandc->props->is_bam)
490 		return;
491 
492 	bam_txn->cmd_sgl_pos = 0;
493 	bam_txn->cmd_sgl_start = 0;
494 	bam_txn->tx_sgl_pos = 0;
495 	bam_txn->tx_sgl_start = 0;
496 	bam_txn->rx_sgl_pos = 0;
497 	bam_txn->rx_sgl_start = 0;
498 
499 	sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
500 		      QPIC_PER_CW_CMD_SGL);
501 	sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
502 		      QPIC_PER_CW_DATA_SGL);
503 }
504 
to_qcom_nand_host(struct nand_chip * chip)505 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
506 {
507 	return container_of(chip, struct qcom_nand_host, chip);
508 }
509 
510 static inline struct qcom_nand_controller *
get_qcom_nand_controller(struct nand_chip * chip)511 get_qcom_nand_controller(struct nand_chip *chip)
512 {
513 	return container_of(chip->controller, struct qcom_nand_controller,
514 			    controller);
515 }
516 
nandc_read(struct qcom_nand_controller * nandc,int offset)517 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
518 {
519 	return ioread32(nandc->base + offset);
520 }
521 
nandc_write(struct qcom_nand_controller * nandc,int offset,u32 val)522 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
523 			       u32 val)
524 {
525 	iowrite32(val, nandc->base + offset);
526 }
527 
nandc_read_buffer_sync(struct qcom_nand_controller * nandc,bool is_cpu)528 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
529 					  bool is_cpu)
530 {
531 	if (!nandc->props->is_bam)
532 		return;
533 
534 	if (is_cpu)
535 		dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
536 					MAX_REG_RD *
537 					sizeof(*nandc->reg_read_buf),
538 					DMA_FROM_DEVICE);
539 	else
540 		dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
541 					   MAX_REG_RD *
542 					   sizeof(*nandc->reg_read_buf),
543 					   DMA_FROM_DEVICE);
544 }
545 
offset_to_nandc_reg(struct nandc_regs * regs,int offset)546 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
547 {
548 	switch (offset) {
549 	case NAND_FLASH_CMD:
550 		return &regs->cmd;
551 	case NAND_ADDR0:
552 		return &regs->addr0;
553 	case NAND_ADDR1:
554 		return &regs->addr1;
555 	case NAND_FLASH_CHIP_SELECT:
556 		return &regs->chip_sel;
557 	case NAND_EXEC_CMD:
558 		return &regs->exec;
559 	case NAND_FLASH_STATUS:
560 		return &regs->clrflashstatus;
561 	case NAND_DEV0_CFG0:
562 		return &regs->cfg0;
563 	case NAND_DEV0_CFG1:
564 		return &regs->cfg1;
565 	case NAND_DEV0_ECC_CFG:
566 		return &regs->ecc_bch_cfg;
567 	case NAND_READ_STATUS:
568 		return &regs->clrreadstatus;
569 	case NAND_DEV_CMD1:
570 		return &regs->cmd1;
571 	case NAND_DEV_CMD1_RESTORE:
572 		return &regs->orig_cmd1;
573 	case NAND_DEV_CMD_VLD:
574 		return &regs->vld;
575 	case NAND_DEV_CMD_VLD_RESTORE:
576 		return &regs->orig_vld;
577 	case NAND_EBI2_ECC_BUF_CFG:
578 		return &regs->ecc_buf_cfg;
579 	case NAND_READ_LOCATION_0:
580 		return &regs->read_location0;
581 	case NAND_READ_LOCATION_1:
582 		return &regs->read_location1;
583 	case NAND_READ_LOCATION_2:
584 		return &regs->read_location2;
585 	case NAND_READ_LOCATION_3:
586 		return &regs->read_location3;
587 	default:
588 		return NULL;
589 	}
590 }
591 
nandc_set_reg(struct qcom_nand_controller * nandc,int offset,u32 val)592 static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset,
593 			  u32 val)
594 {
595 	struct nandc_regs *regs = nandc->regs;
596 	__le32 *reg;
597 
598 	reg = offset_to_nandc_reg(regs, offset);
599 
600 	if (reg)
601 		*reg = cpu_to_le32(val);
602 }
603 
604 /* helper to configure address register values */
set_address(struct qcom_nand_host * host,u16 column,int page)605 static void set_address(struct qcom_nand_host *host, u16 column, int page)
606 {
607 	struct nand_chip *chip = &host->chip;
608 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
609 
610 	if (chip->options & NAND_BUSWIDTH_16)
611 		column >>= 1;
612 
613 	nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column);
614 	nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff);
615 }
616 
617 /*
618  * update_rw_regs:	set up read/write register values, these will be
619  *			written to the NAND controller registers via DMA
620  *
621  * @num_cw:		number of steps for the read/write operation
622  * @read:		read or write operation
623  */
update_rw_regs(struct qcom_nand_host * host,int num_cw,bool read)624 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read)
625 {
626 	struct nand_chip *chip = &host->chip;
627 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
628 	u32 cmd, cfg0, cfg1, ecc_bch_cfg;
629 
630 	if (read) {
631 		if (host->use_ecc)
632 			cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
633 		else
634 			cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE;
635 	} else {
636 		cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
637 	}
638 
639 	if (host->use_ecc) {
640 		cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
641 				(num_cw - 1) << CW_PER_PAGE;
642 
643 		cfg1 = host->cfg1;
644 		ecc_bch_cfg = host->ecc_bch_cfg;
645 	} else {
646 		cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
647 				(num_cw - 1) << CW_PER_PAGE;
648 
649 		cfg1 = host->cfg1_raw;
650 		ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
651 	}
652 
653 	nandc_set_reg(nandc, NAND_FLASH_CMD, cmd);
654 	nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0);
655 	nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1);
656 	nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
657 	nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
658 	nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
659 	nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
660 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
661 
662 	if (read)
663 		nandc_set_read_loc(nandc, 0, 0, host->use_ecc ?
664 				   host->cw_data : host->cw_size, 1);
665 }
666 
667 /*
668  * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
669  * for BAM. This descriptor will be added in the NAND DMA descriptor queue
670  * which will be submitted to DMA engine.
671  */
prepare_bam_async_desc(struct qcom_nand_controller * nandc,struct dma_chan * chan,unsigned long flags)672 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
673 				  struct dma_chan *chan,
674 				  unsigned long flags)
675 {
676 	struct desc_info *desc;
677 	struct scatterlist *sgl;
678 	unsigned int sgl_cnt;
679 	int ret;
680 	struct bam_transaction *bam_txn = nandc->bam_txn;
681 	enum dma_transfer_direction dir_eng;
682 	struct dma_async_tx_descriptor *dma_desc;
683 
684 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
685 	if (!desc)
686 		return -ENOMEM;
687 
688 	if (chan == nandc->cmd_chan) {
689 		sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
690 		sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
691 		bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
692 		dir_eng = DMA_MEM_TO_DEV;
693 		desc->dir = DMA_TO_DEVICE;
694 	} else if (chan == nandc->tx_chan) {
695 		sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
696 		sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
697 		bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
698 		dir_eng = DMA_MEM_TO_DEV;
699 		desc->dir = DMA_TO_DEVICE;
700 	} else {
701 		sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
702 		sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
703 		bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
704 		dir_eng = DMA_DEV_TO_MEM;
705 		desc->dir = DMA_FROM_DEVICE;
706 	}
707 
708 	sg_mark_end(sgl + sgl_cnt - 1);
709 	ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
710 	if (ret == 0) {
711 		dev_err(nandc->dev, "failure in mapping desc\n");
712 		kfree(desc);
713 		return -ENOMEM;
714 	}
715 
716 	desc->sgl_cnt = sgl_cnt;
717 	desc->bam_sgl = sgl;
718 
719 	dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
720 					   flags);
721 
722 	if (!dma_desc) {
723 		dev_err(nandc->dev, "failure in prep desc\n");
724 		dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
725 		kfree(desc);
726 		return -EINVAL;
727 	}
728 
729 	desc->dma_desc = dma_desc;
730 
731 	list_add_tail(&desc->node, &nandc->desc_list);
732 
733 	return 0;
734 }
735 
736 /*
737  * Prepares the data descriptor for BAM DMA which will be used for NAND
738  * data reads and writes.
739  */
prep_bam_dma_desc_data(struct qcom_nand_controller * nandc,bool read,const void * vaddr,int size,unsigned int flags)740 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
741 				  const void *vaddr,
742 				  int size, unsigned int flags)
743 {
744 	int ret;
745 	struct bam_transaction *bam_txn = nandc->bam_txn;
746 
747 	if (read) {
748 		sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
749 			   vaddr, size);
750 		bam_txn->rx_sgl_pos++;
751 	} else {
752 		sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
753 			   vaddr, size);
754 		bam_txn->tx_sgl_pos++;
755 
756 		/*
757 		 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
758 		 * is not set, form the DMA descriptor
759 		 */
760 		if (!(flags & NAND_BAM_NO_EOT)) {
761 			ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
762 						     DMA_PREP_INTERRUPT);
763 			if (ret)
764 				return ret;
765 		}
766 	}
767 
768 	return 0;
769 }
770 
prep_adm_dma_desc(struct qcom_nand_controller * nandc,bool read,int reg_off,const void * vaddr,int size,bool flow_control)771 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
772 			     int reg_off, const void *vaddr, int size,
773 			     bool flow_control)
774 {
775 	struct desc_info *desc;
776 	struct dma_async_tx_descriptor *dma_desc;
777 	struct scatterlist *sgl;
778 	struct dma_slave_config slave_conf;
779 	enum dma_transfer_direction dir_eng;
780 	int ret;
781 
782 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
783 	if (!desc)
784 		return -ENOMEM;
785 
786 	sgl = &desc->adm_sgl;
787 
788 	sg_init_one(sgl, vaddr, size);
789 
790 	if (read) {
791 		dir_eng = DMA_DEV_TO_MEM;
792 		desc->dir = DMA_FROM_DEVICE;
793 	} else {
794 		dir_eng = DMA_MEM_TO_DEV;
795 		desc->dir = DMA_TO_DEVICE;
796 	}
797 
798 	ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
799 	if (ret == 0) {
800 		ret = -ENOMEM;
801 		goto err;
802 	}
803 
804 	memset(&slave_conf, 0x00, sizeof(slave_conf));
805 
806 	slave_conf.device_fc = flow_control;
807 	if (read) {
808 		slave_conf.src_maxburst = 16;
809 		slave_conf.src_addr = nandc->base_dma + reg_off;
810 		slave_conf.slave_id = nandc->data_crci;
811 	} else {
812 		slave_conf.dst_maxburst = 16;
813 		slave_conf.dst_addr = nandc->base_dma + reg_off;
814 		slave_conf.slave_id = nandc->cmd_crci;
815 	}
816 
817 	ret = dmaengine_slave_config(nandc->chan, &slave_conf);
818 	if (ret) {
819 		dev_err(nandc->dev, "failed to configure dma channel\n");
820 		goto err;
821 	}
822 
823 	dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
824 	if (!dma_desc) {
825 		dev_err(nandc->dev, "failed to prepare desc\n");
826 		ret = -EINVAL;
827 		goto err;
828 	}
829 
830 	desc->dma_desc = dma_desc;
831 
832 	list_add_tail(&desc->node, &nandc->desc_list);
833 
834 	return 0;
835 err:
836 	kfree(desc);
837 
838 	return ret;
839 }
840 
841 /*
842  * read_reg_dma:	prepares a descriptor to read a given number of
843  *			contiguous registers to the reg_read_buf pointer
844  *
845  * @first:		offset of the first register in the contiguous block
846  * @num_regs:		number of registers to read
847  * @flags:		flags to control DMA descriptor preparation
848  */
read_reg_dma(struct qcom_nand_controller * nandc,int first,int num_regs,unsigned int flags)849 static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
850 			int num_regs, unsigned int flags)
851 {
852 	bool flow_control = false;
853 	void *vaddr;
854 	int size;
855 
856 	if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
857 		flow_control = true;
858 
859 	if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
860 		first = dev_cmd_reg_addr(nandc, first);
861 
862 	size = num_regs * sizeof(u32);
863 	vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
864 	nandc->reg_read_pos += num_regs;
865 
866 	return prep_adm_dma_desc(nandc, true, first, vaddr, size, flow_control);
867 }
868 
869 /*
870  * write_reg_dma:	prepares a descriptor to write a given number of
871  *			contiguous registers
872  *
873  * @first:		offset of the first register in the contiguous block
874  * @num_regs:		number of registers to write
875  * @flags:		flags to control DMA descriptor preparation
876  */
write_reg_dma(struct qcom_nand_controller * nandc,int first,int num_regs,unsigned int flags)877 static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
878 			 int num_regs, unsigned int flags)
879 {
880 	bool flow_control = false;
881 	struct nandc_regs *regs = nandc->regs;
882 	void *vaddr;
883 	int size;
884 
885 	vaddr = offset_to_nandc_reg(regs, first);
886 
887 	if (first == NAND_FLASH_CMD)
888 		flow_control = true;
889 
890 	if (first == NAND_ERASED_CW_DETECT_CFG) {
891 		if (flags & NAND_ERASED_CW_SET)
892 			vaddr = &regs->erased_cw_detect_cfg_set;
893 		else
894 			vaddr = &regs->erased_cw_detect_cfg_clr;
895 	}
896 
897 	if (first == NAND_EXEC_CMD)
898 		flags |= NAND_BAM_NWD;
899 
900 	if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
901 		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
902 
903 	if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
904 		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
905 
906 	size = num_regs * sizeof(u32);
907 
908 	return prep_adm_dma_desc(nandc, false, first, vaddr, size,
909 				 flow_control);
910 }
911 
912 /*
913  * read_data_dma:	prepares a DMA descriptor to transfer data from the
914  *			controller's internal buffer to the buffer 'vaddr'
915  *
916  * @reg_off:		offset within the controller's data buffer
917  * @vaddr:		virtual address of the buffer we want to write to
918  * @size:		DMA transaction size in bytes
919  * @flags:		flags to control DMA descriptor preparation
920  */
read_data_dma(struct qcom_nand_controller * nandc,int reg_off,const u8 * vaddr,int size,unsigned int flags)921 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
922 			 const u8 *vaddr, int size, unsigned int flags)
923 {
924 	if (nandc->props->is_bam)
925 		return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
926 
927 	return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
928 }
929 
930 /*
931  * write_data_dma:	prepares a DMA descriptor to transfer data from
932  *			'vaddr' to the controller's internal buffer
933  *
934  * @reg_off:		offset within the controller's data buffer
935  * @vaddr:		virtual address of the buffer we want to read from
936  * @size:		DMA transaction size in bytes
937  * @flags:		flags to control DMA descriptor preparation
938  */
write_data_dma(struct qcom_nand_controller * nandc,int reg_off,const u8 * vaddr,int size,unsigned int flags)939 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
940 			  const u8 *vaddr, int size, unsigned int flags)
941 {
942 	if (nandc->props->is_bam)
943 		return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
944 
945 	return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
946 }
947 
948 /*
949  * Helper to prepare DMA descriptors for configuring registers
950  * before reading a NAND page.
951  */
config_nand_page_read(struct qcom_nand_controller * nandc)952 static void config_nand_page_read(struct qcom_nand_controller *nandc)
953 {
954 	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
955 	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
956 	write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
957 	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
958 	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
959 		      NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
960 }
961 
962 /*
963  * Helper to prepare DMA descriptors for configuring registers
964  * before reading each codeword in NAND page.
965  */
config_nand_cw_read(struct qcom_nand_controller * nandc)966 static void config_nand_cw_read(struct qcom_nand_controller *nandc)
967 {
968 	if (nandc->props->is_bam)
969 		write_reg_dma(nandc, NAND_READ_LOCATION_0, 4,
970 			      NAND_BAM_NEXT_SGL);
971 
972 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
973 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
974 
975 	read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
976 	read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
977 		     NAND_BAM_NEXT_SGL);
978 }
979 
980 /*
981  * Helper to prepare dma descriptors to configure registers needed for reading a
982  * single codeword in page
983  */
config_nand_single_cw_page_read(struct qcom_nand_controller * nandc)984 static void config_nand_single_cw_page_read(struct qcom_nand_controller *nandc)
985 {
986 	config_nand_page_read(nandc);
987 	config_nand_cw_read(nandc);
988 }
989 
990 /*
991  * Helper to prepare DMA descriptors used to configure registers needed for
992  * before writing a NAND page.
993  */
config_nand_page_write(struct qcom_nand_controller * nandc)994 static void config_nand_page_write(struct qcom_nand_controller *nandc)
995 {
996 	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
997 	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
998 	write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
999 		      NAND_BAM_NEXT_SGL);
1000 }
1001 
1002 /*
1003  * Helper to prepare DMA descriptors for configuring registers
1004  * before writing each codeword in NAND page.
1005  */
config_nand_cw_write(struct qcom_nand_controller * nandc)1006 static void config_nand_cw_write(struct qcom_nand_controller *nandc)
1007 {
1008 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1009 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1010 
1011 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1012 
1013 	write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1014 	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1015 }
1016 
1017 /*
1018  * the following functions are used within chip->cmdfunc() to perform different
1019  * NAND_CMD_* commands
1020  */
1021 
1022 /* sets up descriptors for NAND_CMD_PARAM */
nandc_param(struct qcom_nand_host * host)1023 static int nandc_param(struct qcom_nand_host *host)
1024 {
1025 	struct nand_chip *chip = &host->chip;
1026 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1027 
1028 	/*
1029 	 * NAND_CMD_PARAM is called before we know much about the FLASH chip
1030 	 * in use. we configure the controller to perform a raw read of 512
1031 	 * bytes to read onfi params
1032 	 */
1033 	nandc_set_reg(nandc, NAND_FLASH_CMD, OP_PAGE_READ | PAGE_ACC | LAST_PAGE);
1034 	nandc_set_reg(nandc, NAND_ADDR0, 0);
1035 	nandc_set_reg(nandc, NAND_ADDR1, 0);
1036 	nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
1037 					| 512 << UD_SIZE_BYTES
1038 					| 5 << NUM_ADDR_CYCLES
1039 					| 0 << SPARE_SIZE_BYTES);
1040 	nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
1041 					| 0 << CS_ACTIVE_BSY
1042 					| 17 << BAD_BLOCK_BYTE_NUM
1043 					| 1 << BAD_BLOCK_IN_SPARE_AREA
1044 					| 2 << WR_RD_BSY_GAP
1045 					| 0 << WIDE_FLASH
1046 					| 1 << DEV0_CFG1_ECC_DISABLE);
1047 	nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
1048 
1049 	/* configure CMD1 and VLD for ONFI param probing */
1050 	nandc_set_reg(nandc, NAND_DEV_CMD_VLD,
1051 		      (nandc->vld & ~READ_START_VLD));
1052 	nandc_set_reg(nandc, NAND_DEV_CMD1,
1053 		      (nandc->cmd1 & ~(0xFF << READ_ADDR))
1054 		      | NAND_CMD_PARAM << READ_ADDR);
1055 
1056 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1057 
1058 	nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
1059 	nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
1060 	nandc_set_read_loc(nandc, 0, 0, 512, 1);
1061 
1062 	write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
1063 	write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
1064 
1065 	nandc->buf_count = 512;
1066 	memset(nandc->data_buffer, 0xff, nandc->buf_count);
1067 
1068 	config_nand_single_cw_page_read(nandc);
1069 
1070 	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1071 		      nandc->buf_count, 0);
1072 
1073 	/* restore CMD1 and VLD regs */
1074 	write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
1075 	write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
1076 
1077 	return 0;
1078 }
1079 
1080 /* sets up descriptors for NAND_CMD_ERASE1 */
erase_block(struct qcom_nand_host * host,int page_addr)1081 static int erase_block(struct qcom_nand_host *host, int page_addr)
1082 {
1083 	struct nand_chip *chip = &host->chip;
1084 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1085 
1086 	nandc_set_reg(nandc, NAND_FLASH_CMD,
1087 		      OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
1088 	nandc_set_reg(nandc, NAND_ADDR0, page_addr);
1089 	nandc_set_reg(nandc, NAND_ADDR1, 0);
1090 	nandc_set_reg(nandc, NAND_DEV0_CFG0,
1091 		      host->cfg0_raw & ~(7 << CW_PER_PAGE));
1092 	nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw);
1093 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1094 	nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
1095 	nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
1096 
1097 	write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
1098 	write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
1099 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1100 
1101 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1102 
1103 	write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1104 	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1105 
1106 	return 0;
1107 }
1108 
1109 /* sets up descriptors for NAND_CMD_READID */
read_id(struct qcom_nand_host * host,int column)1110 static int read_id(struct qcom_nand_host *host, int column)
1111 {
1112 	struct nand_chip *chip = &host->chip;
1113 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1114 
1115 	if (column == -1)
1116 		return 0;
1117 
1118 	nandc_set_reg(nandc, NAND_FLASH_CMD, OP_FETCH_ID);
1119 	nandc_set_reg(nandc, NAND_ADDR0, column);
1120 	nandc_set_reg(nandc, NAND_ADDR1, 0);
1121 	nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT,
1122 		      nandc->props->is_bam ? 0 : DM_EN);
1123 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1124 
1125 	write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
1126 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1127 
1128 	read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
1129 
1130 	return 0;
1131 }
1132 
1133 /* sets up descriptors for NAND_CMD_RESET */
reset(struct qcom_nand_host * host)1134 static int reset(struct qcom_nand_host *host)
1135 {
1136 	struct nand_chip *chip = &host->chip;
1137 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1138 
1139 	nandc_set_reg(nandc, NAND_FLASH_CMD, OP_RESET_DEVICE);
1140 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1141 
1142 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1143 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1144 
1145 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1146 
1147 	return 0;
1148 }
1149 
1150 /* helpers to submit/free our list of dma descriptors */
submit_descs(struct qcom_nand_controller * nandc)1151 static int submit_descs(struct qcom_nand_controller *nandc)
1152 {
1153 	struct desc_info *desc;
1154 	dma_cookie_t cookie = 0;
1155 	struct bam_transaction *bam_txn = nandc->bam_txn;
1156 	int r;
1157 
1158 	if (nandc->props->is_bam) {
1159 		if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
1160 			r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
1161 			if (r)
1162 				return r;
1163 		}
1164 
1165 		if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
1166 			r = prepare_bam_async_desc(nandc, nandc->tx_chan,
1167 						   DMA_PREP_INTERRUPT);
1168 			if (r)
1169 				return r;
1170 		}
1171 
1172 		if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
1173 			r = prepare_bam_async_desc(nandc, nandc->cmd_chan, 0);
1174 			if (r)
1175 				return r;
1176 		}
1177 	}
1178 
1179 	list_for_each_entry(desc, &nandc->desc_list, node)
1180 		cookie = dmaengine_submit(desc->dma_desc);
1181 
1182 	if (nandc->props->is_bam) {
1183 		dma_async_issue_pending(nandc->tx_chan);
1184 		dma_async_issue_pending(nandc->rx_chan);
1185 
1186 		if (dma_sync_wait(nandc->cmd_chan, cookie) != DMA_COMPLETE)
1187 			return -ETIMEDOUT;
1188 	} else {
1189 		if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
1190 			return -ETIMEDOUT;
1191 	}
1192 
1193 	return 0;
1194 }
1195 
free_descs(struct qcom_nand_controller * nandc)1196 static void free_descs(struct qcom_nand_controller *nandc)
1197 {
1198 	struct desc_info *desc, *n;
1199 
1200 	list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
1201 		list_del(&desc->node);
1202 
1203 		if (nandc->props->is_bam)
1204 			dma_unmap_sg(nandc->dev, desc->bam_sgl,
1205 				     desc->sgl_cnt, desc->dir);
1206 		else
1207 			dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
1208 				     desc->dir);
1209 
1210 		kfree(desc);
1211 	}
1212 }
1213 
1214 /* reset the register read buffer for next NAND operation */
clear_read_regs(struct qcom_nand_controller * nandc)1215 static void clear_read_regs(struct qcom_nand_controller *nandc)
1216 {
1217 	nandc->reg_read_pos = 0;
1218 	nandc_read_buffer_sync(nandc, false);
1219 }
1220 
pre_command(struct qcom_nand_host * host,int command)1221 static void pre_command(struct qcom_nand_host *host, int command)
1222 {
1223 	struct nand_chip *chip = &host->chip;
1224 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1225 
1226 	nandc->buf_count = 0;
1227 	nandc->buf_start = 0;
1228 	host->use_ecc = false;
1229 	host->last_command = command;
1230 
1231 	clear_read_regs(nandc);
1232 
1233 	if (command == NAND_CMD_RESET || command == NAND_CMD_READID ||
1234 	    command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1)
1235 		clear_bam_transaction(nandc);
1236 }
1237 
1238 /*
1239  * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
1240  * privately maintained status byte, this status byte can be read after
1241  * NAND_CMD_STATUS is called
1242  */
parse_erase_write_errors(struct qcom_nand_host * host,int command)1243 static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
1244 {
1245 	struct nand_chip *chip = &host->chip;
1246 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1247 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1248 	int num_cw;
1249 	int i;
1250 
1251 	num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
1252 	nandc_read_buffer_sync(nandc, true);
1253 
1254 	for (i = 0; i < num_cw; i++) {
1255 		u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
1256 
1257 		if (flash_status & FS_MPU_ERR)
1258 			host->status &= ~NAND_STATUS_WP;
1259 
1260 		if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
1261 						 (flash_status &
1262 						  FS_DEVICE_STS_ERR)))
1263 			host->status |= NAND_STATUS_FAIL;
1264 	}
1265 }
1266 
post_command(struct qcom_nand_host * host,int command)1267 static void post_command(struct qcom_nand_host *host, int command)
1268 {
1269 	struct nand_chip *chip = &host->chip;
1270 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1271 
1272 	switch (command) {
1273 	case NAND_CMD_READID:
1274 		nandc_read_buffer_sync(nandc, true);
1275 		memcpy(nandc->data_buffer, nandc->reg_read_buf,
1276 		       nandc->buf_count);
1277 		break;
1278 	case NAND_CMD_PAGEPROG:
1279 	case NAND_CMD_ERASE1:
1280 		parse_erase_write_errors(host, command);
1281 		break;
1282 	default:
1283 		break;
1284 	}
1285 }
1286 
1287 /*
1288  * Implements chip->cmdfunc. It's  only used for a limited set of commands.
1289  * The rest of the commands wouldn't be called by upper layers. For example,
1290  * NAND_CMD_READOOB would never be called because we have our own versions
1291  * of read_oob ops for nand_ecc_ctrl.
1292  */
qcom_nandc_command(struct mtd_info * mtd,unsigned int command,int column,int page_addr)1293 static void qcom_nandc_command(struct mtd_info *mtd, unsigned int command,
1294 			       int column, int page_addr)
1295 {
1296 	struct nand_chip *chip = mtd_to_nand(mtd);
1297 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1298 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1299 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1300 	bool wait = false;
1301 	int ret = 0;
1302 
1303 	pre_command(host, command);
1304 
1305 	switch (command) {
1306 	case NAND_CMD_RESET:
1307 		ret = reset(host);
1308 		wait = true;
1309 		break;
1310 
1311 	case NAND_CMD_READID:
1312 		nandc->buf_count = 4;
1313 		ret = read_id(host, column);
1314 		wait = true;
1315 		break;
1316 
1317 	case NAND_CMD_PARAM:
1318 		ret = nandc_param(host);
1319 		wait = true;
1320 		break;
1321 
1322 	case NAND_CMD_ERASE1:
1323 		ret = erase_block(host, page_addr);
1324 		wait = true;
1325 		break;
1326 
1327 	case NAND_CMD_READ0:
1328 		/* we read the entire page for now */
1329 		WARN_ON(column != 0);
1330 
1331 		host->use_ecc = true;
1332 		set_address(host, 0, page_addr);
1333 		update_rw_regs(host, ecc->steps, true);
1334 		break;
1335 
1336 	case NAND_CMD_SEQIN:
1337 		WARN_ON(column != 0);
1338 		set_address(host, 0, page_addr);
1339 		break;
1340 
1341 	case NAND_CMD_PAGEPROG:
1342 	case NAND_CMD_STATUS:
1343 	case NAND_CMD_NONE:
1344 	default:
1345 		break;
1346 	}
1347 
1348 	if (ret) {
1349 		dev_err(nandc->dev, "failure executing command %d\n",
1350 			command);
1351 		free_descs(nandc);
1352 		return;
1353 	}
1354 
1355 	if (wait) {
1356 		ret = submit_descs(nandc);
1357 		if (ret)
1358 			dev_err(nandc->dev,
1359 				"failure submitting descs for command %d\n",
1360 				command);
1361 	}
1362 
1363 	free_descs(nandc);
1364 
1365 	post_command(host, command);
1366 }
1367 
1368 /*
1369  * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1370  * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1371  *
1372  * when using RS ECC, the HW reports the same erros when reading an erased CW,
1373  * but it notifies that it is an erased CW by placing special characters at
1374  * certain offsets in the buffer.
1375  *
1376  * verify if the page is erased or not, and fix up the page for RS ECC by
1377  * replacing the special characters with 0xff.
1378  */
erased_chunk_check_and_fixup(u8 * data_buf,int data_len)1379 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
1380 {
1381 	u8 empty1, empty2;
1382 
1383 	/*
1384 	 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1385 	 * is erased by looking for 0x54s at offsets 3 and 175 from the
1386 	 * beginning of each codeword
1387 	 */
1388 
1389 	empty1 = data_buf[3];
1390 	empty2 = data_buf[175];
1391 
1392 	/*
1393 	 * if the erased codework markers, if they exist override them with
1394 	 * 0xffs
1395 	 */
1396 	if ((empty1 == 0x54 && empty2 == 0xff) ||
1397 	    (empty1 == 0xff && empty2 == 0x54)) {
1398 		data_buf[3] = 0xff;
1399 		data_buf[175] = 0xff;
1400 	}
1401 
1402 	/*
1403 	 * check if the entire chunk contains 0xffs or not. if it doesn't, then
1404 	 * restore the original values at the special offsets
1405 	 */
1406 	if (memchr_inv(data_buf, 0xff, data_len)) {
1407 		data_buf[3] = empty1;
1408 		data_buf[175] = empty2;
1409 
1410 		return false;
1411 	}
1412 
1413 	return true;
1414 }
1415 
1416 struct read_stats {
1417 	__le32 flash;
1418 	__le32 buffer;
1419 	__le32 erased_cw;
1420 };
1421 
1422 /*
1423  * reads back status registers set by the controller to notify page read
1424  * errors. this is equivalent to what 'ecc->correct()' would do.
1425  */
parse_read_errors(struct qcom_nand_host * host,u8 * data_buf,u8 * oob_buf)1426 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1427 			     u8 *oob_buf)
1428 {
1429 	struct nand_chip *chip = &host->chip;
1430 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1431 	struct mtd_info *mtd = nand_to_mtd(chip);
1432 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1433 	unsigned int max_bitflips = 0;
1434 	struct read_stats *buf;
1435 	int i;
1436 
1437 	buf = (struct read_stats *)nandc->reg_read_buf;
1438 	nandc_read_buffer_sync(nandc, true);
1439 
1440 	for (i = 0; i < ecc->steps; i++, buf++) {
1441 		u32 flash, buffer, erased_cw;
1442 		int data_len, oob_len;
1443 
1444 		if (i == (ecc->steps - 1)) {
1445 			data_len = ecc->size - ((ecc->steps - 1) << 2);
1446 			oob_len = ecc->steps << 2;
1447 		} else {
1448 			data_len = host->cw_data;
1449 			oob_len = 0;
1450 		}
1451 
1452 		flash = le32_to_cpu(buf->flash);
1453 		buffer = le32_to_cpu(buf->buffer);
1454 		erased_cw = le32_to_cpu(buf->erased_cw);
1455 
1456 		if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1457 			bool erased;
1458 
1459 			/* ignore erased codeword errors */
1460 			if (host->bch_enabled) {
1461 				erased = (erased_cw & ERASED_CW) == ERASED_CW ?
1462 					 true : false;
1463 			} else {
1464 				erased = erased_chunk_check_and_fixup(data_buf,
1465 								      data_len);
1466 			}
1467 
1468 			if (erased) {
1469 				data_buf += data_len;
1470 				if (oob_buf)
1471 					oob_buf += oob_len + ecc->bytes;
1472 				continue;
1473 			}
1474 
1475 			if (buffer & BS_UNCORRECTABLE_BIT) {
1476 				int ret, ecclen, extraooblen;
1477 				void *eccbuf;
1478 
1479 				eccbuf = oob_buf ? oob_buf + oob_len : NULL;
1480 				ecclen = oob_buf ? host->ecc_bytes_hw : 0;
1481 				extraooblen = oob_buf ? oob_len : 0;
1482 
1483 				/*
1484 				 * make sure it isn't an erased page reported
1485 				 * as not-erased by HW because of a few bitflips
1486 				 */
1487 				ret = nand_check_erased_ecc_chunk(data_buf,
1488 					data_len, eccbuf, ecclen, oob_buf,
1489 					extraooblen, ecc->strength);
1490 				if (ret < 0) {
1491 					mtd->ecc_stats.failed++;
1492 				} else {
1493 					mtd->ecc_stats.corrected += ret;
1494 					max_bitflips =
1495 						max_t(unsigned int, max_bitflips, ret);
1496 				}
1497 			}
1498 		} else {
1499 			unsigned int stat;
1500 
1501 			stat = buffer & BS_CORRECTABLE_ERR_MSK;
1502 			mtd->ecc_stats.corrected += stat;
1503 			max_bitflips = max(max_bitflips, stat);
1504 		}
1505 
1506 		data_buf += data_len;
1507 		if (oob_buf)
1508 			oob_buf += oob_len + ecc->bytes;
1509 	}
1510 
1511 	return max_bitflips;
1512 }
1513 
1514 /*
1515  * helper to perform the actual page read operation, used by ecc->read_page(),
1516  * ecc->read_oob()
1517  */
read_page_ecc(struct qcom_nand_host * host,u8 * data_buf,u8 * oob_buf)1518 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1519 			 u8 *oob_buf)
1520 {
1521 	struct nand_chip *chip = &host->chip;
1522 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1523 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1524 	int i, ret;
1525 
1526 	config_nand_page_read(nandc);
1527 
1528 	/* queue cmd descs for each codeword */
1529 	for (i = 0; i < ecc->steps; i++) {
1530 		int data_size, oob_size;
1531 
1532 		if (i == (ecc->steps - 1)) {
1533 			data_size = ecc->size - ((ecc->steps - 1) << 2);
1534 			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1535 				   host->spare_bytes;
1536 		} else {
1537 			data_size = host->cw_data;
1538 			oob_size = host->ecc_bytes_hw + host->spare_bytes;
1539 		}
1540 
1541 		if (nandc->props->is_bam) {
1542 			if (data_buf && oob_buf) {
1543 				nandc_set_read_loc(nandc, 0, 0, data_size, 0);
1544 				nandc_set_read_loc(nandc, 1, data_size,
1545 						   oob_size, 1);
1546 			} else if (data_buf) {
1547 				nandc_set_read_loc(nandc, 0, 0, data_size, 1);
1548 			} else {
1549 				nandc_set_read_loc(nandc, 0, data_size,
1550 						   oob_size, 1);
1551 			}
1552 		}
1553 
1554 		config_nand_cw_read(nandc);
1555 
1556 		if (data_buf)
1557 			read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1558 				      data_size, 0);
1559 
1560 		/*
1561 		 * when ecc is enabled, the controller doesn't read the real
1562 		 * or dummy bad block markers in each chunk. To maintain a
1563 		 * consistent layout across RAW and ECC reads, we just
1564 		 * leave the real/dummy BBM offsets empty (i.e, filled with
1565 		 * 0xffs)
1566 		 */
1567 		if (oob_buf) {
1568 			int j;
1569 
1570 			for (j = 0; j < host->bbm_size; j++)
1571 				*oob_buf++ = 0xff;
1572 
1573 			read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1574 				      oob_buf, oob_size, 0);
1575 		}
1576 
1577 		if (data_buf)
1578 			data_buf += data_size;
1579 		if (oob_buf)
1580 			oob_buf += oob_size;
1581 	}
1582 
1583 	ret = submit_descs(nandc);
1584 	if (ret)
1585 		dev_err(nandc->dev, "failure to read page/oob\n");
1586 
1587 	free_descs(nandc);
1588 
1589 	return ret;
1590 }
1591 
1592 /*
1593  * a helper that copies the last step/codeword of a page (containing free oob)
1594  * into our local buffer
1595  */
copy_last_cw(struct qcom_nand_host * host,int page)1596 static int copy_last_cw(struct qcom_nand_host *host, int page)
1597 {
1598 	struct nand_chip *chip = &host->chip;
1599 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1600 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1601 	int size;
1602 	int ret;
1603 
1604 	clear_read_regs(nandc);
1605 
1606 	size = host->use_ecc ? host->cw_data : host->cw_size;
1607 
1608 	/* prepare a clean read buffer */
1609 	memset(nandc->data_buffer, 0xff, size);
1610 
1611 	set_address(host, host->cw_size * (ecc->steps - 1), page);
1612 	update_rw_regs(host, 1, true);
1613 
1614 	config_nand_single_cw_page_read(nandc);
1615 
1616 	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
1617 
1618 	ret = submit_descs(nandc);
1619 	if (ret)
1620 		dev_err(nandc->dev, "failed to copy last codeword\n");
1621 
1622 	free_descs(nandc);
1623 
1624 	return ret;
1625 }
1626 
1627 /* implements ecc->read_page() */
qcom_nandc_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1628 static int qcom_nandc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1629 				uint8_t *buf, int oob_required, int page)
1630 {
1631 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1632 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1633 	u8 *data_buf, *oob_buf = NULL;
1634 	int ret;
1635 
1636 	data_buf = buf;
1637 	oob_buf = oob_required ? chip->oob_poi : NULL;
1638 
1639 	clear_bam_transaction(nandc);
1640 	ret = read_page_ecc(host, data_buf, oob_buf);
1641 	if (ret) {
1642 		dev_err(nandc->dev, "failure to read page\n");
1643 		return ret;
1644 	}
1645 
1646 	return parse_read_errors(host, data_buf, oob_buf);
1647 }
1648 
1649 /* implements ecc->read_page_raw() */
qcom_nandc_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1650 static int qcom_nandc_read_page_raw(struct mtd_info *mtd,
1651 				    struct nand_chip *chip, uint8_t *buf,
1652 				    int oob_required, int page)
1653 {
1654 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1655 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1656 	u8 *data_buf, *oob_buf;
1657 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1658 	int i, ret;
1659 	int read_loc;
1660 
1661 	data_buf = buf;
1662 	oob_buf = chip->oob_poi;
1663 
1664 	host->use_ecc = false;
1665 
1666 	clear_bam_transaction(nandc);
1667 	update_rw_regs(host, ecc->steps, true);
1668 	config_nand_page_read(nandc);
1669 
1670 	for (i = 0; i < ecc->steps; i++) {
1671 		int data_size1, data_size2, oob_size1, oob_size2;
1672 		int reg_off = FLASH_BUF_ACC;
1673 
1674 		data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1675 		oob_size1 = host->bbm_size;
1676 
1677 		if (i == (ecc->steps - 1)) {
1678 			data_size2 = ecc->size - data_size1 -
1679 				     ((ecc->steps - 1) << 2);
1680 			oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
1681 				    host->spare_bytes;
1682 		} else {
1683 			data_size2 = host->cw_data - data_size1;
1684 			oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1685 		}
1686 
1687 		if (nandc->props->is_bam) {
1688 			read_loc = 0;
1689 			nandc_set_read_loc(nandc, 0, read_loc, data_size1, 0);
1690 			read_loc += data_size1;
1691 
1692 			nandc_set_read_loc(nandc, 1, read_loc, oob_size1, 0);
1693 			read_loc += oob_size1;
1694 
1695 			nandc_set_read_loc(nandc, 2, read_loc, data_size2, 0);
1696 			read_loc += data_size2;
1697 
1698 			nandc_set_read_loc(nandc, 3, read_loc, oob_size2, 1);
1699 		}
1700 
1701 		config_nand_cw_read(nandc);
1702 
1703 		read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
1704 		reg_off += data_size1;
1705 		data_buf += data_size1;
1706 
1707 		read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
1708 		reg_off += oob_size1;
1709 		oob_buf += oob_size1;
1710 
1711 		read_data_dma(nandc, reg_off, data_buf, data_size2, 0);
1712 		reg_off += data_size2;
1713 		data_buf += data_size2;
1714 
1715 		read_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
1716 		oob_buf += oob_size2;
1717 	}
1718 
1719 	ret = submit_descs(nandc);
1720 	if (ret)
1721 		dev_err(nandc->dev, "failure to read raw page\n");
1722 
1723 	free_descs(nandc);
1724 
1725 	return 0;
1726 }
1727 
1728 /* implements ecc->read_oob() */
qcom_nandc_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1729 static int qcom_nandc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1730 			       int page)
1731 {
1732 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1733 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1734 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1735 	int ret;
1736 
1737 	clear_read_regs(nandc);
1738 	clear_bam_transaction(nandc);
1739 
1740 	host->use_ecc = true;
1741 	set_address(host, 0, page);
1742 	update_rw_regs(host, ecc->steps, true);
1743 
1744 	ret = read_page_ecc(host, NULL, chip->oob_poi);
1745 	if (ret)
1746 		dev_err(nandc->dev, "failure to read oob\n");
1747 
1748 	return ret;
1749 }
1750 
1751 /* implements ecc->write_page() */
qcom_nandc_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)1752 static int qcom_nandc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1753 				 const uint8_t *buf, int oob_required, int page)
1754 {
1755 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1756 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1757 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1758 	u8 *data_buf, *oob_buf;
1759 	int i, ret;
1760 
1761 	clear_read_regs(nandc);
1762 	clear_bam_transaction(nandc);
1763 
1764 	data_buf = (u8 *)buf;
1765 	oob_buf = chip->oob_poi;
1766 
1767 	host->use_ecc = true;
1768 	update_rw_regs(host, ecc->steps, false);
1769 	config_nand_page_write(nandc);
1770 
1771 	for (i = 0; i < ecc->steps; i++) {
1772 		int data_size, oob_size;
1773 
1774 		if (i == (ecc->steps - 1)) {
1775 			data_size = ecc->size - ((ecc->steps - 1) << 2);
1776 			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1777 				   host->spare_bytes;
1778 		} else {
1779 			data_size = host->cw_data;
1780 			oob_size = ecc->bytes;
1781 		}
1782 
1783 
1784 		write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
1785 			       i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
1786 
1787 		/*
1788 		 * when ECC is enabled, we don't really need to write anything
1789 		 * to oob for the first n - 1 codewords since these oob regions
1790 		 * just contain ECC bytes that's written by the controller
1791 		 * itself. For the last codeword, we skip the bbm positions and
1792 		 * write to the free oob area.
1793 		 */
1794 		if (i == (ecc->steps - 1)) {
1795 			oob_buf += host->bbm_size;
1796 
1797 			write_data_dma(nandc, FLASH_BUF_ACC + data_size,
1798 				       oob_buf, oob_size, 0);
1799 		}
1800 
1801 		config_nand_cw_write(nandc);
1802 
1803 		data_buf += data_size;
1804 		oob_buf += oob_size;
1805 	}
1806 
1807 	ret = submit_descs(nandc);
1808 	if (ret)
1809 		dev_err(nandc->dev, "failure to write page\n");
1810 
1811 	free_descs(nandc);
1812 
1813 	return ret;
1814 }
1815 
1816 /* implements ecc->write_page_raw() */
qcom_nandc_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)1817 static int qcom_nandc_write_page_raw(struct mtd_info *mtd,
1818 				     struct nand_chip *chip, const uint8_t *buf,
1819 				     int oob_required, int page)
1820 {
1821 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1822 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1823 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1824 	u8 *data_buf, *oob_buf;
1825 	int i, ret;
1826 
1827 	clear_read_regs(nandc);
1828 	clear_bam_transaction(nandc);
1829 
1830 	data_buf = (u8 *)buf;
1831 	oob_buf = chip->oob_poi;
1832 
1833 	host->use_ecc = false;
1834 	update_rw_regs(host, ecc->steps, false);
1835 	config_nand_page_write(nandc);
1836 
1837 	for (i = 0; i < ecc->steps; i++) {
1838 		int data_size1, data_size2, oob_size1, oob_size2;
1839 		int reg_off = FLASH_BUF_ACC;
1840 
1841 		data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1842 		oob_size1 = host->bbm_size;
1843 
1844 		if (i == (ecc->steps - 1)) {
1845 			data_size2 = ecc->size - data_size1 -
1846 				     ((ecc->steps - 1) << 2);
1847 			oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
1848 				    host->spare_bytes;
1849 		} else {
1850 			data_size2 = host->cw_data - data_size1;
1851 			oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1852 		}
1853 
1854 		write_data_dma(nandc, reg_off, data_buf, data_size1,
1855 			       NAND_BAM_NO_EOT);
1856 		reg_off += data_size1;
1857 		data_buf += data_size1;
1858 
1859 		write_data_dma(nandc, reg_off, oob_buf, oob_size1,
1860 			       NAND_BAM_NO_EOT);
1861 		reg_off += oob_size1;
1862 		oob_buf += oob_size1;
1863 
1864 		write_data_dma(nandc, reg_off, data_buf, data_size2,
1865 			       NAND_BAM_NO_EOT);
1866 		reg_off += data_size2;
1867 		data_buf += data_size2;
1868 
1869 		write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
1870 		oob_buf += oob_size2;
1871 
1872 		config_nand_cw_write(nandc);
1873 	}
1874 
1875 	ret = submit_descs(nandc);
1876 	if (ret)
1877 		dev_err(nandc->dev, "failure to write raw page\n");
1878 
1879 	free_descs(nandc);
1880 
1881 	return ret;
1882 }
1883 
1884 /*
1885  * implements ecc->write_oob()
1886  *
1887  * the NAND controller cannot write only data or only oob within a codeword,
1888  * since ecc is calculated for the combined codeword. we first copy the
1889  * entire contents for the last codeword(data + oob), replace the old oob
1890  * with the new one in chip->oob_poi, and then write the entire codeword.
1891  * this read-copy-write operation results in a slight performance loss.
1892  */
qcom_nandc_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1893 static int qcom_nandc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1894 				int page)
1895 {
1896 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1897 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1898 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1899 	u8 *oob = chip->oob_poi;
1900 	int data_size, oob_size;
1901 	int ret, status = 0;
1902 
1903 	host->use_ecc = true;
1904 
1905 	clear_bam_transaction(nandc);
1906 	ret = copy_last_cw(host, page);
1907 	if (ret)
1908 		return ret;
1909 
1910 	clear_read_regs(nandc);
1911 	clear_bam_transaction(nandc);
1912 
1913 	/* calculate the data and oob size for the last codeword/step */
1914 	data_size = ecc->size - ((ecc->steps - 1) << 2);
1915 	oob_size = mtd->oobavail;
1916 
1917 	/* override new oob content to last codeword */
1918 	mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
1919 				    0, mtd->oobavail);
1920 
1921 	set_address(host, host->cw_size * (ecc->steps - 1), page);
1922 	update_rw_regs(host, 1, false);
1923 
1924 	config_nand_page_write(nandc);
1925 	write_data_dma(nandc, FLASH_BUF_ACC,
1926 		       nandc->data_buffer, data_size + oob_size, 0);
1927 	config_nand_cw_write(nandc);
1928 
1929 	ret = submit_descs(nandc);
1930 
1931 	free_descs(nandc);
1932 
1933 	if (ret) {
1934 		dev_err(nandc->dev, "failure to write oob\n");
1935 		return -EIO;
1936 	}
1937 
1938 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1939 
1940 	status = chip->waitfunc(mtd, chip);
1941 
1942 	return status & NAND_STATUS_FAIL ? -EIO : 0;
1943 }
1944 
qcom_nandc_block_bad(struct mtd_info * mtd,loff_t ofs)1945 static int qcom_nandc_block_bad(struct mtd_info *mtd, loff_t ofs)
1946 {
1947 	struct nand_chip *chip = mtd_to_nand(mtd);
1948 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1949 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1950 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1951 	int page, ret, bbpos, bad = 0;
1952 	u32 flash_status;
1953 
1954 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
1955 
1956 	/*
1957 	 * configure registers for a raw sub page read, the address is set to
1958 	 * the beginning of the last codeword, we don't care about reading ecc
1959 	 * portion of oob. we just want the first few bytes from this codeword
1960 	 * that contains the BBM
1961 	 */
1962 	host->use_ecc = false;
1963 
1964 	clear_bam_transaction(nandc);
1965 	ret = copy_last_cw(host, page);
1966 	if (ret)
1967 		goto err;
1968 
1969 	flash_status = le32_to_cpu(nandc->reg_read_buf[0]);
1970 
1971 	if (flash_status & (FS_OP_ERR | FS_MPU_ERR)) {
1972 		dev_warn(nandc->dev, "error when trying to read BBM\n");
1973 		goto err;
1974 	}
1975 
1976 	bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
1977 
1978 	bad = nandc->data_buffer[bbpos] != 0xff;
1979 
1980 	if (chip->options & NAND_BUSWIDTH_16)
1981 		bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
1982 err:
1983 	return bad;
1984 }
1985 
qcom_nandc_block_markbad(struct mtd_info * mtd,loff_t ofs)1986 static int qcom_nandc_block_markbad(struct mtd_info *mtd, loff_t ofs)
1987 {
1988 	struct nand_chip *chip = mtd_to_nand(mtd);
1989 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1990 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1991 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1992 	int page, ret, status = 0;
1993 
1994 	clear_read_regs(nandc);
1995 	clear_bam_transaction(nandc);
1996 
1997 	/*
1998 	 * to mark the BBM as bad, we flash the entire last codeword with 0s.
1999 	 * we don't care about the rest of the content in the codeword since
2000 	 * we aren't going to use this block again
2001 	 */
2002 	memset(nandc->data_buffer, 0x00, host->cw_size);
2003 
2004 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2005 
2006 	/* prepare write */
2007 	host->use_ecc = false;
2008 	set_address(host, host->cw_size * (ecc->steps - 1), page);
2009 	update_rw_regs(host, 1, false);
2010 
2011 	config_nand_page_write(nandc);
2012 	write_data_dma(nandc, FLASH_BUF_ACC,
2013 		       nandc->data_buffer, host->cw_size, 0);
2014 	config_nand_cw_write(nandc);
2015 
2016 	ret = submit_descs(nandc);
2017 
2018 	free_descs(nandc);
2019 
2020 	if (ret) {
2021 		dev_err(nandc->dev, "failure to update BBM\n");
2022 		return -EIO;
2023 	}
2024 
2025 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2026 
2027 	status = chip->waitfunc(mtd, chip);
2028 
2029 	return status & NAND_STATUS_FAIL ? -EIO : 0;
2030 }
2031 
2032 /*
2033  * the three functions below implement chip->read_byte(), chip->read_buf()
2034  * and chip->write_buf() respectively. these aren't used for
2035  * reading/writing page data, they are used for smaller data like reading
2036  * id, status etc
2037  */
qcom_nandc_read_byte(struct mtd_info * mtd)2038 static uint8_t qcom_nandc_read_byte(struct mtd_info *mtd)
2039 {
2040 	struct nand_chip *chip = mtd_to_nand(mtd);
2041 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2042 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2043 	u8 *buf = nandc->data_buffer;
2044 	u8 ret = 0x0;
2045 
2046 	if (host->last_command == NAND_CMD_STATUS) {
2047 		ret = host->status;
2048 
2049 		host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2050 
2051 		return ret;
2052 	}
2053 
2054 	if (nandc->buf_start < nandc->buf_count)
2055 		ret = buf[nandc->buf_start++];
2056 
2057 	return ret;
2058 }
2059 
qcom_nandc_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)2060 static void qcom_nandc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
2061 {
2062 	struct nand_chip *chip = mtd_to_nand(mtd);
2063 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2064 	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2065 
2066 	memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
2067 	nandc->buf_start += real_len;
2068 }
2069 
qcom_nandc_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)2070 static void qcom_nandc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
2071 				 int len)
2072 {
2073 	struct nand_chip *chip = mtd_to_nand(mtd);
2074 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2075 	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2076 
2077 	memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
2078 
2079 	nandc->buf_start += real_len;
2080 }
2081 
2082 /* we support only one external chip for now */
qcom_nandc_select_chip(struct mtd_info * mtd,int chipnr)2083 static void qcom_nandc_select_chip(struct mtd_info *mtd, int chipnr)
2084 {
2085 	struct nand_chip *chip = mtd_to_nand(mtd);
2086 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2087 
2088 	if (chipnr <= 0)
2089 		return;
2090 
2091 	dev_warn(nandc->dev, "invalid chip select\n");
2092 }
2093 
2094 /*
2095  * NAND controller page layout info
2096  *
2097  * Layout with ECC enabled:
2098  *
2099  * |----------------------|  |---------------------------------|
2100  * |           xx.......yy|  |             *********xx.......yy|
2101  * |    DATA   xx..ECC..yy|  |    DATA     **SPARE**xx..ECC..yy|
2102  * |   (516)   xx.......yy|  |  (516-n*4)  **(n*4)**xx.......yy|
2103  * |           xx.......yy|  |             *********xx.......yy|
2104  * |----------------------|  |---------------------------------|
2105  *     codeword 1,2..n-1                  codeword n
2106  *  <---(528/532 Bytes)-->    <-------(528/532 Bytes)--------->
2107  *
2108  * n = Number of codewords in the page
2109  * . = ECC bytes
2110  * * = Spare/free bytes
2111  * x = Unused byte(s)
2112  * y = Reserved byte(s)
2113  *
2114  * 2K page: n = 4, spare = 16 bytes
2115  * 4K page: n = 8, spare = 32 bytes
2116  * 8K page: n = 16, spare = 64 bytes
2117  *
2118  * the qcom nand controller operates at a sub page/codeword level. each
2119  * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2120  * the number of ECC bytes vary based on the ECC strength and the bus width.
2121  *
2122  * the first n - 1 codewords contains 516 bytes of user data, the remaining
2123  * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2124  * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2125  *
2126  * When we access a page with ECC enabled, the reserved bytes(s) are not
2127  * accessible at all. When reading, we fill up these unreadable positions
2128  * with 0xffs. When writing, the controller skips writing the inaccessible
2129  * bytes.
2130  *
2131  * Layout with ECC disabled:
2132  *
2133  * |------------------------------|  |---------------------------------------|
2134  * |         yy          xx.......|  |         bb          *********xx.......|
2135  * |  DATA1  yy  DATA2   xx..ECC..|  |  DATA1  bb  DATA2   **SPARE**xx..ECC..|
2136  * | (size1) yy (size2)  xx.......|  | (size1) bb (size2)  **(n*4)**xx.......|
2137  * |         yy          xx.......|  |         bb          *********xx.......|
2138  * |------------------------------|  |---------------------------------------|
2139  *         codeword 1,2..n-1                        codeword n
2140  *  <-------(528/532 Bytes)------>    <-----------(528/532 Bytes)----------->
2141  *
2142  * n = Number of codewords in the page
2143  * . = ECC bytes
2144  * * = Spare/free bytes
2145  * x = Unused byte(s)
2146  * y = Dummy Bad Bock byte(s)
2147  * b = Real Bad Block byte(s)
2148  * size1/size2 = function of codeword size and 'n'
2149  *
2150  * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2151  * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2152  * Block Markers. In the last codeword, this position contains the real BBM
2153  *
2154  * In order to have a consistent layout between RAW and ECC modes, we assume
2155  * the following OOB layout arrangement:
2156  *
2157  * |-----------|  |--------------------|
2158  * |yyxx.......|  |bb*********xx.......|
2159  * |yyxx..ECC..|  |bb*FREEOOB*xx..ECC..|
2160  * |yyxx.......|  |bb*********xx.......|
2161  * |yyxx.......|  |bb*********xx.......|
2162  * |-----------|  |--------------------|
2163  *  first n - 1       nth OOB region
2164  *  OOB regions
2165  *
2166  * n = Number of codewords in the page
2167  * . = ECC bytes
2168  * * = FREE OOB bytes
2169  * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2170  * x = Unused byte(s)
2171  * b = Real bad block byte(s) (inaccessible when ECC enabled)
2172  *
2173  * This layout is read as is when ECC is disabled. When ECC is enabled, the
2174  * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2175  * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2176  * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2177  * the sum of the three).
2178  */
qcom_nand_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)2179 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2180 				   struct mtd_oob_region *oobregion)
2181 {
2182 	struct nand_chip *chip = mtd_to_nand(mtd);
2183 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2184 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2185 
2186 	if (section > 1)
2187 		return -ERANGE;
2188 
2189 	if (!section) {
2190 		oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
2191 				    host->bbm_size;
2192 		oobregion->offset = 0;
2193 	} else {
2194 		oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
2195 		oobregion->offset = mtd->oobsize - oobregion->length;
2196 	}
2197 
2198 	return 0;
2199 }
2200 
qcom_nand_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)2201 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
2202 				     struct mtd_oob_region *oobregion)
2203 {
2204 	struct nand_chip *chip = mtd_to_nand(mtd);
2205 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2206 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2207 
2208 	if (section)
2209 		return -ERANGE;
2210 
2211 	oobregion->length = ecc->steps * 4;
2212 	oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
2213 
2214 	return 0;
2215 }
2216 
2217 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
2218 	.ecc = qcom_nand_ooblayout_ecc,
2219 	.free = qcom_nand_ooblayout_free,
2220 };
2221 
qcom_nand_host_setup(struct qcom_nand_host * host)2222 static int qcom_nand_host_setup(struct qcom_nand_host *host)
2223 {
2224 	struct nand_chip *chip = &host->chip;
2225 	struct mtd_info *mtd = nand_to_mtd(chip);
2226 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2227 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2228 	int cwperpage, bad_block_byte;
2229 	bool wide_bus;
2230 	int ecc_mode = 1;
2231 
2232 	/*
2233 	 * the controller requires each step consists of 512 bytes of data.
2234 	 * bail out if DT has populated a wrong step size.
2235 	 */
2236 	if (ecc->size != NANDC_STEP_SIZE) {
2237 		dev_err(nandc->dev, "invalid ecc size\n");
2238 		return -EINVAL;
2239 	}
2240 
2241 	wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
2242 
2243 	if (ecc->strength >= 8) {
2244 		/* 8 bit ECC defaults to BCH ECC on all platforms */
2245 		host->bch_enabled = true;
2246 		ecc_mode = 1;
2247 
2248 		if (wide_bus) {
2249 			host->ecc_bytes_hw = 14;
2250 			host->spare_bytes = 0;
2251 			host->bbm_size = 2;
2252 		} else {
2253 			host->ecc_bytes_hw = 13;
2254 			host->spare_bytes = 2;
2255 			host->bbm_size = 1;
2256 		}
2257 	} else {
2258 		/*
2259 		 * if the controller supports BCH for 4 bit ECC, the controller
2260 		 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2261 		 * always 10 bytes
2262 		 */
2263 		if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
2264 			/* BCH */
2265 			host->bch_enabled = true;
2266 			ecc_mode = 0;
2267 
2268 			if (wide_bus) {
2269 				host->ecc_bytes_hw = 8;
2270 				host->spare_bytes = 2;
2271 				host->bbm_size = 2;
2272 			} else {
2273 				host->ecc_bytes_hw = 7;
2274 				host->spare_bytes = 4;
2275 				host->bbm_size = 1;
2276 			}
2277 		} else {
2278 			/* RS */
2279 			host->ecc_bytes_hw = 10;
2280 
2281 			if (wide_bus) {
2282 				host->spare_bytes = 0;
2283 				host->bbm_size = 2;
2284 			} else {
2285 				host->spare_bytes = 1;
2286 				host->bbm_size = 1;
2287 			}
2288 		}
2289 	}
2290 
2291 	/*
2292 	 * we consider ecc->bytes as the sum of all the non-data content in a
2293 	 * step. It gives us a clean representation of the oob area (even if
2294 	 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2295 	 * ECC and 12 bytes for 4 bit ECC
2296 	 */
2297 	ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
2298 
2299 	ecc->read_page		= qcom_nandc_read_page;
2300 	ecc->read_page_raw	= qcom_nandc_read_page_raw;
2301 	ecc->read_oob		= qcom_nandc_read_oob;
2302 	ecc->write_page		= qcom_nandc_write_page;
2303 	ecc->write_page_raw	= qcom_nandc_write_page_raw;
2304 	ecc->write_oob		= qcom_nandc_write_oob;
2305 
2306 	ecc->mode = NAND_ECC_HW;
2307 
2308 	mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
2309 
2310 	cwperpage = mtd->writesize / ecc->size;
2311 	nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
2312 				     cwperpage);
2313 
2314 	/*
2315 	 * DATA_UD_BYTES varies based on whether the read/write command protects
2316 	 * spare data with ECC too. We protect spare data by default, so we set
2317 	 * it to main + spare data, which are 512 and 4 bytes respectively.
2318 	 */
2319 	host->cw_data = 516;
2320 
2321 	/*
2322 	 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2323 	 * for 8 bit ECC
2324 	 */
2325 	host->cw_size = host->cw_data + ecc->bytes;
2326 
2327 	if (ecc->bytes * (mtd->writesize / ecc->size) > mtd->oobsize) {
2328 		dev_err(nandc->dev, "ecc data doesn't fit in OOB area\n");
2329 		return -EINVAL;
2330 	}
2331 
2332 	bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
2333 
2334 	host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
2335 				| host->cw_data << UD_SIZE_BYTES
2336 				| 0 << DISABLE_STATUS_AFTER_WRITE
2337 				| 5 << NUM_ADDR_CYCLES
2338 				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
2339 				| 0 << STATUS_BFR_READ
2340 				| 1 << SET_RD_MODE_AFTER_STATUS
2341 				| host->spare_bytes << SPARE_SIZE_BYTES;
2342 
2343 	host->cfg1 = 7 << NAND_RECOVERY_CYCLES
2344 				| 0 <<  CS_ACTIVE_BSY
2345 				| bad_block_byte << BAD_BLOCK_BYTE_NUM
2346 				| 0 << BAD_BLOCK_IN_SPARE_AREA
2347 				| 2 << WR_RD_BSY_GAP
2348 				| wide_bus << WIDE_FLASH
2349 				| host->bch_enabled << ENABLE_BCH_ECC;
2350 
2351 	host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
2352 				| host->cw_size << UD_SIZE_BYTES
2353 				| 5 << NUM_ADDR_CYCLES
2354 				| 0 << SPARE_SIZE_BYTES;
2355 
2356 	host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
2357 				| 0 << CS_ACTIVE_BSY
2358 				| 17 << BAD_BLOCK_BYTE_NUM
2359 				| 1 << BAD_BLOCK_IN_SPARE_AREA
2360 				| 2 << WR_RD_BSY_GAP
2361 				| wide_bus << WIDE_FLASH
2362 				| 1 << DEV0_CFG1_ECC_DISABLE;
2363 
2364 	host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
2365 				| 0 << ECC_SW_RESET
2366 				| host->cw_data << ECC_NUM_DATA_BYTES
2367 				| 1 << ECC_FORCE_CLK_OPEN
2368 				| ecc_mode << ECC_MODE
2369 				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
2370 
2371 	host->ecc_buf_cfg = 0x203 << NUM_STEPS;
2372 
2373 	host->clrflashstatus = FS_READY_BSY_N;
2374 	host->clrreadstatus = 0xc0;
2375 	nandc->regs->erased_cw_detect_cfg_clr =
2376 		cpu_to_le32(CLR_ERASED_PAGE_DET);
2377 	nandc->regs->erased_cw_detect_cfg_set =
2378 		cpu_to_le32(SET_ERASED_PAGE_DET);
2379 
2380 	dev_dbg(nandc->dev,
2381 		"cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2382 		host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
2383 		host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
2384 		cwperpage);
2385 
2386 	return 0;
2387 }
2388 
qcom_nandc_alloc(struct qcom_nand_controller * nandc)2389 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
2390 {
2391 	int ret;
2392 
2393 	ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
2394 	if (ret) {
2395 		dev_err(nandc->dev, "failed to set DMA mask\n");
2396 		return ret;
2397 	}
2398 
2399 	/*
2400 	 * we use the internal buffer for reading ONFI params, reading small
2401 	 * data like ID and status, and preforming read-copy-write operations
2402 	 * when writing to a codeword partially. 532 is the maximum possible
2403 	 * size of a codeword for our nand controller
2404 	 */
2405 	nandc->buf_size = 532;
2406 
2407 	nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
2408 					GFP_KERNEL);
2409 	if (!nandc->data_buffer)
2410 		return -ENOMEM;
2411 
2412 	nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
2413 					GFP_KERNEL);
2414 	if (!nandc->regs)
2415 		return -ENOMEM;
2416 
2417 	nandc->reg_read_buf = devm_kzalloc(nandc->dev,
2418 				MAX_REG_RD * sizeof(*nandc->reg_read_buf),
2419 				GFP_KERNEL);
2420 	if (!nandc->reg_read_buf)
2421 		return -ENOMEM;
2422 
2423 	if (nandc->props->is_bam) {
2424 		nandc->reg_read_dma =
2425 			dma_map_single(nandc->dev, nandc->reg_read_buf,
2426 				       MAX_REG_RD *
2427 				       sizeof(*nandc->reg_read_buf),
2428 				       DMA_FROM_DEVICE);
2429 		if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
2430 			dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
2431 			return -EIO;
2432 		}
2433 
2434 		nandc->tx_chan = dma_request_slave_channel(nandc->dev, "tx");
2435 		if (!nandc->tx_chan) {
2436 			dev_err(nandc->dev, "failed to request tx channel\n");
2437 			return -ENODEV;
2438 		}
2439 
2440 		nandc->rx_chan = dma_request_slave_channel(nandc->dev, "rx");
2441 		if (!nandc->rx_chan) {
2442 			dev_err(nandc->dev, "failed to request rx channel\n");
2443 			return -ENODEV;
2444 		}
2445 
2446 		nandc->cmd_chan = dma_request_slave_channel(nandc->dev, "cmd");
2447 		if (!nandc->cmd_chan) {
2448 			dev_err(nandc->dev, "failed to request cmd channel\n");
2449 			return -ENODEV;
2450 		}
2451 
2452 		/*
2453 		 * Initially allocate BAM transaction to read ONFI param page.
2454 		 * After detecting all the devices, this BAM transaction will
2455 		 * be freed and the next BAM tranasction will be allocated with
2456 		 * maximum codeword size
2457 		 */
2458 		nandc->max_cwperpage = 1;
2459 		nandc->bam_txn = alloc_bam_transaction(nandc);
2460 		if (!nandc->bam_txn) {
2461 			dev_err(nandc->dev,
2462 				"failed to allocate bam transaction\n");
2463 			return -ENOMEM;
2464 		}
2465 	} else {
2466 		nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx");
2467 		if (!nandc->chan) {
2468 			dev_err(nandc->dev,
2469 				"failed to request slave channel\n");
2470 			return -ENODEV;
2471 		}
2472 	}
2473 
2474 	INIT_LIST_HEAD(&nandc->desc_list);
2475 	INIT_LIST_HEAD(&nandc->host_list);
2476 
2477 	nand_hw_control_init(&nandc->controller);
2478 
2479 	return 0;
2480 }
2481 
qcom_nandc_unalloc(struct qcom_nand_controller * nandc)2482 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
2483 {
2484 	if (nandc->props->is_bam) {
2485 		if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
2486 			dma_unmap_single(nandc->dev, nandc->reg_read_dma,
2487 					 MAX_REG_RD *
2488 					 sizeof(*nandc->reg_read_buf),
2489 					 DMA_FROM_DEVICE);
2490 
2491 		if (nandc->tx_chan)
2492 			dma_release_channel(nandc->tx_chan);
2493 
2494 		if (nandc->rx_chan)
2495 			dma_release_channel(nandc->rx_chan);
2496 
2497 		if (nandc->cmd_chan)
2498 			dma_release_channel(nandc->cmd_chan);
2499 	} else {
2500 		if (nandc->chan)
2501 			dma_release_channel(nandc->chan);
2502 	}
2503 }
2504 
2505 /* one time setup of a few nand controller registers */
qcom_nandc_setup(struct qcom_nand_controller * nandc)2506 static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
2507 {
2508 	u32 nand_ctrl;
2509 
2510 	/* kill onenand */
2511 	nandc_write(nandc, SFLASHC_BURST_CFG, 0);
2512 	nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
2513 		    NAND_DEV_CMD_VLD_VAL);
2514 
2515 	/* enable ADM or BAM DMA */
2516 	if (nandc->props->is_bam) {
2517 		nand_ctrl = nandc_read(nandc, NAND_CTRL);
2518 		nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
2519 	} else {
2520 		nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
2521 	}
2522 
2523 	/* save the original values of these registers */
2524 	nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
2525 	nandc->vld = NAND_DEV_CMD_VLD_VAL;
2526 
2527 	return 0;
2528 }
2529 
qcom_nand_host_init(struct qcom_nand_controller * nandc,struct qcom_nand_host * host,struct device_node * dn)2530 static int qcom_nand_host_init(struct qcom_nand_controller *nandc,
2531 			       struct qcom_nand_host *host,
2532 			       struct device_node *dn)
2533 {
2534 	struct nand_chip *chip = &host->chip;
2535 	struct mtd_info *mtd = nand_to_mtd(chip);
2536 	struct device *dev = nandc->dev;
2537 	int ret;
2538 
2539 	ret = of_property_read_u32(dn, "reg", &host->cs);
2540 	if (ret) {
2541 		dev_err(dev, "can't get chip-select\n");
2542 		return -ENXIO;
2543 	}
2544 
2545 	nand_set_flash_node(chip, dn);
2546 	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
2547 	if (!mtd->name)
2548 		return -ENOMEM;
2549 
2550 	mtd->owner = THIS_MODULE;
2551 	mtd->dev.parent = dev;
2552 
2553 	chip->cmdfunc		= qcom_nandc_command;
2554 	chip->select_chip	= qcom_nandc_select_chip;
2555 	chip->read_byte		= qcom_nandc_read_byte;
2556 	chip->read_buf		= qcom_nandc_read_buf;
2557 	chip->write_buf		= qcom_nandc_write_buf;
2558 	chip->onfi_set_features	= nand_onfi_get_set_features_notsupp;
2559 	chip->onfi_get_features	= nand_onfi_get_set_features_notsupp;
2560 
2561 	/*
2562 	 * the bad block marker is readable only when we read the last codeword
2563 	 * of a page with ECC disabled. currently, the nand_base and nand_bbt
2564 	 * helpers don't allow us to read BB from a nand chip with ECC
2565 	 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2566 	 * and block_markbad helpers until we permanently switch to using
2567 	 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2568 	 */
2569 	chip->block_bad		= qcom_nandc_block_bad;
2570 	chip->block_markbad	= qcom_nandc_block_markbad;
2571 
2572 	chip->controller = &nandc->controller;
2573 	chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER |
2574 			 NAND_SKIP_BBTSCAN;
2575 
2576 	/* set up initial status value */
2577 	host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2578 
2579 	ret = nand_scan_ident(mtd, 1, NULL);
2580 	if (ret)
2581 		return ret;
2582 
2583 	ret = qcom_nand_host_setup(host);
2584 
2585 	return ret;
2586 }
2587 
qcom_nand_mtd_register(struct qcom_nand_controller * nandc,struct qcom_nand_host * host,struct device_node * dn)2588 static int qcom_nand_mtd_register(struct qcom_nand_controller *nandc,
2589 				  struct qcom_nand_host *host,
2590 				  struct device_node *dn)
2591 {
2592 	struct nand_chip *chip = &host->chip;
2593 	struct mtd_info *mtd = nand_to_mtd(chip);
2594 	int ret;
2595 
2596 	ret = nand_scan_tail(mtd);
2597 	if (ret)
2598 		return ret;
2599 
2600 	ret = mtd_device_register(mtd, NULL, 0);
2601 	if (ret)
2602 		nand_cleanup(mtd_to_nand(mtd));
2603 
2604 	return ret;
2605 }
2606 
qcom_probe_nand_devices(struct qcom_nand_controller * nandc)2607 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
2608 {
2609 	struct device *dev = nandc->dev;
2610 	struct device_node *dn = dev->of_node, *child;
2611 	struct qcom_nand_host *host, *tmp;
2612 	int ret;
2613 
2614 	for_each_available_child_of_node(dn, child) {
2615 		host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2616 		if (!host) {
2617 			of_node_put(child);
2618 			return -ENOMEM;
2619 		}
2620 
2621 		ret = qcom_nand_host_init(nandc, host, child);
2622 		if (ret) {
2623 			devm_kfree(dev, host);
2624 			continue;
2625 		}
2626 
2627 		list_add_tail(&host->node, &nandc->host_list);
2628 	}
2629 
2630 	if (list_empty(&nandc->host_list))
2631 		return -ENODEV;
2632 
2633 	if (nandc->props->is_bam) {
2634 		free_bam_transaction(nandc);
2635 		nandc->bam_txn = alloc_bam_transaction(nandc);
2636 		if (!nandc->bam_txn) {
2637 			dev_err(nandc->dev,
2638 				"failed to allocate bam transaction\n");
2639 			return -ENOMEM;
2640 		}
2641 	}
2642 
2643 	list_for_each_entry_safe(host, tmp, &nandc->host_list, node) {
2644 		ret = qcom_nand_mtd_register(nandc, host, child);
2645 		if (ret) {
2646 			list_del(&host->node);
2647 			devm_kfree(dev, host);
2648 		}
2649 	}
2650 
2651 	if (list_empty(&nandc->host_list))
2652 		return -ENODEV;
2653 
2654 	return 0;
2655 }
2656 
2657 /* parse custom DT properties here */
qcom_nandc_parse_dt(struct platform_device * pdev)2658 static int qcom_nandc_parse_dt(struct platform_device *pdev)
2659 {
2660 	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2661 	struct device_node *np = nandc->dev->of_node;
2662 	int ret;
2663 
2664 	if (!nandc->props->is_bam) {
2665 		ret = of_property_read_u32(np, "qcom,cmd-crci",
2666 					   &nandc->cmd_crci);
2667 		if (ret) {
2668 			dev_err(nandc->dev, "command CRCI unspecified\n");
2669 			return ret;
2670 		}
2671 
2672 		ret = of_property_read_u32(np, "qcom,data-crci",
2673 					   &nandc->data_crci);
2674 		if (ret) {
2675 			dev_err(nandc->dev, "data CRCI unspecified\n");
2676 			return ret;
2677 		}
2678 	}
2679 
2680 	return 0;
2681 }
2682 
qcom_nandc_probe(struct platform_device * pdev)2683 static int qcom_nandc_probe(struct platform_device *pdev)
2684 {
2685 	struct qcom_nand_controller *nandc;
2686 	const void *dev_data;
2687 	struct device *dev = &pdev->dev;
2688 	struct resource *res;
2689 	int ret;
2690 
2691 	nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
2692 	if (!nandc)
2693 		return -ENOMEM;
2694 
2695 	platform_set_drvdata(pdev, nandc);
2696 	nandc->dev = dev;
2697 
2698 	dev_data = of_device_get_match_data(dev);
2699 	if (!dev_data) {
2700 		dev_err(&pdev->dev, "failed to get device data\n");
2701 		return -ENODEV;
2702 	}
2703 
2704 	nandc->props = dev_data;
2705 
2706 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2707 	nandc->base = devm_ioremap_resource(dev, res);
2708 	if (IS_ERR(nandc->base))
2709 		return PTR_ERR(nandc->base);
2710 
2711 	nandc->base_dma = phys_to_dma(dev, (phys_addr_t)res->start);
2712 
2713 	nandc->core_clk = devm_clk_get(dev, "core");
2714 	if (IS_ERR(nandc->core_clk))
2715 		return PTR_ERR(nandc->core_clk);
2716 
2717 	nandc->aon_clk = devm_clk_get(dev, "aon");
2718 	if (IS_ERR(nandc->aon_clk))
2719 		return PTR_ERR(nandc->aon_clk);
2720 
2721 	ret = qcom_nandc_parse_dt(pdev);
2722 	if (ret)
2723 		return ret;
2724 
2725 	ret = qcom_nandc_alloc(nandc);
2726 	if (ret)
2727 		goto err_core_clk;
2728 
2729 	ret = clk_prepare_enable(nandc->core_clk);
2730 	if (ret)
2731 		goto err_core_clk;
2732 
2733 	ret = clk_prepare_enable(nandc->aon_clk);
2734 	if (ret)
2735 		goto err_aon_clk;
2736 
2737 	ret = qcom_nandc_setup(nandc);
2738 	if (ret)
2739 		goto err_setup;
2740 
2741 	ret = qcom_probe_nand_devices(nandc);
2742 	if (ret)
2743 		goto err_setup;
2744 
2745 	return 0;
2746 
2747 err_setup:
2748 	clk_disable_unprepare(nandc->aon_clk);
2749 err_aon_clk:
2750 	clk_disable_unprepare(nandc->core_clk);
2751 err_core_clk:
2752 	qcom_nandc_unalloc(nandc);
2753 
2754 	return ret;
2755 }
2756 
qcom_nandc_remove(struct platform_device * pdev)2757 static int qcom_nandc_remove(struct platform_device *pdev)
2758 {
2759 	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2760 	struct qcom_nand_host *host;
2761 
2762 	list_for_each_entry(host, &nandc->host_list, node)
2763 		nand_release(nand_to_mtd(&host->chip));
2764 
2765 	qcom_nandc_unalloc(nandc);
2766 
2767 	clk_disable_unprepare(nandc->aon_clk);
2768 	clk_disable_unprepare(nandc->core_clk);
2769 
2770 	return 0;
2771 }
2772 
2773 static const struct qcom_nandc_props ipq806x_nandc_props = {
2774 	.ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
2775 	.is_bam = false,
2776 	.dev_cmd_reg_start = 0x0,
2777 };
2778 
2779 static const struct qcom_nandc_props ipq4019_nandc_props = {
2780 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
2781 	.is_bam = true,
2782 	.dev_cmd_reg_start = 0x0,
2783 };
2784 
2785 static const struct qcom_nandc_props ipq8074_nandc_props = {
2786 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
2787 	.is_bam = true,
2788 	.dev_cmd_reg_start = 0x7000,
2789 };
2790 
2791 /*
2792  * data will hold a struct pointer containing more differences once we support
2793  * more controller variants
2794  */
2795 static const struct of_device_id qcom_nandc_of_match[] = {
2796 	{
2797 		.compatible = "qcom,ipq806x-nand",
2798 		.data = &ipq806x_nandc_props,
2799 	},
2800 	{
2801 		.compatible = "qcom,ipq4019-nand",
2802 		.data = &ipq4019_nandc_props,
2803 	},
2804 	{
2805 		.compatible = "qcom,ipq8074-nand",
2806 		.data = &ipq8074_nandc_props,
2807 	},
2808 	{}
2809 };
2810 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
2811 
2812 static struct platform_driver qcom_nandc_driver = {
2813 	.driver = {
2814 		.name = "qcom-nandc",
2815 		.of_match_table = qcom_nandc_of_match,
2816 	},
2817 	.probe   = qcom_nandc_probe,
2818 	.remove  = qcom_nandc_remove,
2819 };
2820 module_platform_driver(qcom_nandc_driver);
2821 
2822 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
2823 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
2824 MODULE_LICENSE("GPL v2");
2825