1 /*
2 * Copyright (c) 2016, The Linux Foundation. All rights reserved.
3 *
4 * This software is licensed under the terms of the GNU General Public
5 * License version 2, as published by the Free Software Foundation, and
6 * may be copied, distributed, and modified under those terms.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14 #include <linux/clk.h>
15 #include <linux/slab.h>
16 #include <linux/bitops.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/module.h>
20 #include <linux/mtd/rawnand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/delay.h>
25
26 /* NANDc reg offsets */
27 #define NAND_FLASH_CMD 0x00
28 #define NAND_ADDR0 0x04
29 #define NAND_ADDR1 0x08
30 #define NAND_FLASH_CHIP_SELECT 0x0c
31 #define NAND_EXEC_CMD 0x10
32 #define NAND_FLASH_STATUS 0x14
33 #define NAND_BUFFER_STATUS 0x18
34 #define NAND_DEV0_CFG0 0x20
35 #define NAND_DEV0_CFG1 0x24
36 #define NAND_DEV0_ECC_CFG 0x28
37 #define NAND_DEV1_ECC_CFG 0x2c
38 #define NAND_DEV1_CFG0 0x30
39 #define NAND_DEV1_CFG1 0x34
40 #define NAND_READ_ID 0x40
41 #define NAND_READ_STATUS 0x44
42 #define NAND_DEV_CMD0 0xa0
43 #define NAND_DEV_CMD1 0xa4
44 #define NAND_DEV_CMD2 0xa8
45 #define NAND_DEV_CMD_VLD 0xac
46 #define SFLASHC_BURST_CFG 0xe0
47 #define NAND_ERASED_CW_DETECT_CFG 0xe8
48 #define NAND_ERASED_CW_DETECT_STATUS 0xec
49 #define NAND_EBI2_ECC_BUF_CFG 0xf0
50 #define FLASH_BUF_ACC 0x100
51
52 #define NAND_CTRL 0xf00
53 #define NAND_VERSION 0xf08
54 #define NAND_READ_LOCATION_0 0xf20
55 #define NAND_READ_LOCATION_1 0xf24
56 #define NAND_READ_LOCATION_2 0xf28
57 #define NAND_READ_LOCATION_3 0xf2c
58
59 /* dummy register offsets, used by write_reg_dma */
60 #define NAND_DEV_CMD1_RESTORE 0xdead
61 #define NAND_DEV_CMD_VLD_RESTORE 0xbeef
62
63 /* NAND_FLASH_CMD bits */
64 #define PAGE_ACC BIT(4)
65 #define LAST_PAGE BIT(5)
66
67 /* NAND_FLASH_CHIP_SELECT bits */
68 #define NAND_DEV_SEL 0
69 #define DM_EN BIT(2)
70
71 /* NAND_FLASH_STATUS bits */
72 #define FS_OP_ERR BIT(4)
73 #define FS_READY_BSY_N BIT(5)
74 #define FS_MPU_ERR BIT(8)
75 #define FS_DEVICE_STS_ERR BIT(16)
76 #define FS_DEVICE_WP BIT(23)
77
78 /* NAND_BUFFER_STATUS bits */
79 #define BS_UNCORRECTABLE_BIT BIT(8)
80 #define BS_CORRECTABLE_ERR_MSK 0x1f
81
82 /* NAND_DEVn_CFG0 bits */
83 #define DISABLE_STATUS_AFTER_WRITE 4
84 #define CW_PER_PAGE 6
85 #define UD_SIZE_BYTES 9
86 #define ECC_PARITY_SIZE_BYTES_RS 19
87 #define SPARE_SIZE_BYTES 23
88 #define NUM_ADDR_CYCLES 27
89 #define STATUS_BFR_READ 30
90 #define SET_RD_MODE_AFTER_STATUS 31
91
92 /* NAND_DEVn_CFG0 bits */
93 #define DEV0_CFG1_ECC_DISABLE 0
94 #define WIDE_FLASH 1
95 #define NAND_RECOVERY_CYCLES 2
96 #define CS_ACTIVE_BSY 5
97 #define BAD_BLOCK_BYTE_NUM 6
98 #define BAD_BLOCK_IN_SPARE_AREA 16
99 #define WR_RD_BSY_GAP 17
100 #define ENABLE_BCH_ECC 27
101
102 /* NAND_DEV0_ECC_CFG bits */
103 #define ECC_CFG_ECC_DISABLE 0
104 #define ECC_SW_RESET 1
105 #define ECC_MODE 4
106 #define ECC_PARITY_SIZE_BYTES_BCH 8
107 #define ECC_NUM_DATA_BYTES 16
108 #define ECC_FORCE_CLK_OPEN 30
109
110 /* NAND_DEV_CMD1 bits */
111 #define READ_ADDR 0
112
113 /* NAND_DEV_CMD_VLD bits */
114 #define READ_START_VLD BIT(0)
115 #define READ_STOP_VLD BIT(1)
116 #define WRITE_START_VLD BIT(2)
117 #define ERASE_START_VLD BIT(3)
118 #define SEQ_READ_START_VLD BIT(4)
119
120 /* NAND_EBI2_ECC_BUF_CFG bits */
121 #define NUM_STEPS 0
122
123 /* NAND_ERASED_CW_DETECT_CFG bits */
124 #define ERASED_CW_ECC_MASK 1
125 #define AUTO_DETECT_RES 0
126 #define MASK_ECC (1 << ERASED_CW_ECC_MASK)
127 #define RESET_ERASED_DET (1 << AUTO_DETECT_RES)
128 #define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES)
129 #define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC)
130 #define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC)
131
132 /* NAND_ERASED_CW_DETECT_STATUS bits */
133 #define PAGE_ALL_ERASED BIT(7)
134 #define CODEWORD_ALL_ERASED BIT(6)
135 #define PAGE_ERASED BIT(5)
136 #define CODEWORD_ERASED BIT(4)
137 #define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED)
138 #define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
139
140 /* NAND_READ_LOCATION_n bits */
141 #define READ_LOCATION_OFFSET 0
142 #define READ_LOCATION_SIZE 16
143 #define READ_LOCATION_LAST 31
144
145 /* Version Mask */
146 #define NAND_VERSION_MAJOR_MASK 0xf0000000
147 #define NAND_VERSION_MAJOR_SHIFT 28
148 #define NAND_VERSION_MINOR_MASK 0x0fff0000
149 #define NAND_VERSION_MINOR_SHIFT 16
150
151 /* NAND OP_CMDs */
152 #define OP_PAGE_READ 0x2
153 #define OP_PAGE_READ_WITH_ECC 0x3
154 #define OP_PAGE_READ_WITH_ECC_SPARE 0x4
155 #define OP_PROGRAM_PAGE 0x6
156 #define OP_PAGE_PROGRAM_WITH_ECC 0x7
157 #define OP_PROGRAM_PAGE_SPARE 0x9
158 #define OP_BLOCK_ERASE 0xa
159 #define OP_FETCH_ID 0xb
160 #define OP_RESET_DEVICE 0xd
161
162 /* Default Value for NAND_DEV_CMD_VLD */
163 #define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \
164 ERASE_START_VLD | SEQ_READ_START_VLD)
165
166 /* NAND_CTRL bits */
167 #define BAM_MODE_EN BIT(0)
168
169 /*
170 * the NAND controller performs reads/writes with ECC in 516 byte chunks.
171 * the driver calls the chunks 'step' or 'codeword' interchangeably
172 */
173 #define NANDC_STEP_SIZE 512
174
175 /*
176 * the largest page size we support is 8K, this will have 16 steps/codewords
177 * of 512 bytes each
178 */
179 #define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE)
180
181 /* we read at most 3 registers per codeword scan */
182 #define MAX_REG_RD (3 * MAX_NUM_STEPS)
183
184 /* ECC modes supported by the controller */
185 #define ECC_NONE BIT(0)
186 #define ECC_RS_4BIT BIT(1)
187 #define ECC_BCH_4BIT BIT(2)
188 #define ECC_BCH_8BIT BIT(3)
189
190 #define nandc_set_read_loc(nandc, reg, offset, size, is_last) \
191 nandc_set_reg(nandc, NAND_READ_LOCATION_##reg, \
192 ((offset) << READ_LOCATION_OFFSET) | \
193 ((size) << READ_LOCATION_SIZE) | \
194 ((is_last) << READ_LOCATION_LAST))
195
196 /*
197 * Returns the actual register address for all NAND_DEV_ registers
198 * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
199 */
200 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
201
202 #define QPIC_PER_CW_CMD_SGL 32
203 #define QPIC_PER_CW_DATA_SGL 8
204
205 /*
206 * Flags used in DMA descriptor preparation helper functions
207 * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
208 */
209 /* Don't set the EOT in current tx BAM sgl */
210 #define NAND_BAM_NO_EOT BIT(0)
211 /* Set the NWD flag in current BAM sgl */
212 #define NAND_BAM_NWD BIT(1)
213 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */
214 #define NAND_BAM_NEXT_SGL BIT(2)
215 /*
216 * Erased codeword status is being used two times in single transfer so this
217 * flag will determine the current value of erased codeword status register
218 */
219 #define NAND_ERASED_CW_SET BIT(4)
220
221 /*
222 * This data type corresponds to the BAM transaction which will be used for all
223 * NAND transfers.
224 * @cmd_sgl - sgl for NAND BAM command pipe
225 * @data_sgl - sgl for NAND BAM consumer/producer pipe
226 * @cmd_sgl_pos - current index in command sgl.
227 * @cmd_sgl_start - start index in command sgl.
228 * @tx_sgl_pos - current index in data sgl for tx.
229 * @tx_sgl_start - start index in data sgl for tx.
230 * @rx_sgl_pos - current index in data sgl for rx.
231 * @rx_sgl_start - start index in data sgl for rx.
232 */
233 struct bam_transaction {
234 struct scatterlist *cmd_sgl;
235 struct scatterlist *data_sgl;
236 u32 cmd_sgl_pos;
237 u32 cmd_sgl_start;
238 u32 tx_sgl_pos;
239 u32 tx_sgl_start;
240 u32 rx_sgl_pos;
241 u32 rx_sgl_start;
242 };
243
244 /*
245 * This data type corresponds to the nand dma descriptor
246 * @list - list for desc_info
247 * @dir - DMA transfer direction
248 * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
249 * ADM
250 * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
251 * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
252 * @dma_desc - low level DMA engine descriptor
253 */
254 struct desc_info {
255 struct list_head node;
256
257 enum dma_data_direction dir;
258 union {
259 struct scatterlist adm_sgl;
260 struct {
261 struct scatterlist *bam_sgl;
262 int sgl_cnt;
263 };
264 };
265 struct dma_async_tx_descriptor *dma_desc;
266 };
267
268 /*
269 * holds the current register values that we want to write. acts as a contiguous
270 * chunk of memory which we use to write the controller registers through DMA.
271 */
272 struct nandc_regs {
273 __le32 cmd;
274 __le32 addr0;
275 __le32 addr1;
276 __le32 chip_sel;
277 __le32 exec;
278
279 __le32 cfg0;
280 __le32 cfg1;
281 __le32 ecc_bch_cfg;
282
283 __le32 clrflashstatus;
284 __le32 clrreadstatus;
285
286 __le32 cmd1;
287 __le32 vld;
288
289 __le32 orig_cmd1;
290 __le32 orig_vld;
291
292 __le32 ecc_buf_cfg;
293 __le32 read_location0;
294 __le32 read_location1;
295 __le32 read_location2;
296 __le32 read_location3;
297
298 __le32 erased_cw_detect_cfg_clr;
299 __le32 erased_cw_detect_cfg_set;
300 };
301
302 /*
303 * NAND controller data struct
304 *
305 * @controller: base controller structure
306 * @host_list: list containing all the chips attached to the
307 * controller
308 * @dev: parent device
309 * @base: MMIO base
310 * @base_dma: physical base address of controller registers
311 * @core_clk: controller clock
312 * @aon_clk: another controller clock
313 *
314 * @chan: dma channel
315 * @cmd_crci: ADM DMA CRCI for command flow control
316 * @data_crci: ADM DMA CRCI for data flow control
317 * @desc_list: DMA descriptor list (list of desc_infos)
318 *
319 * @data_buffer: our local DMA buffer for page read/writes,
320 * used when we can't use the buffer provided
321 * by upper layers directly
322 * @buf_size/count/start: markers for chip->read_buf/write_buf functions
323 * @reg_read_buf: local buffer for reading back registers via DMA
324 * @reg_read_dma: contains dma address for register read buffer
325 * @reg_read_pos: marker for data read in reg_read_buf
326 *
327 * @regs: a contiguous chunk of memory for DMA register
328 * writes. contains the register values to be
329 * written to controller
330 * @cmd1/vld: some fixed controller register values
331 * @props: properties of current NAND controller,
332 * initialized via DT match data
333 * @max_cwperpage: maximum QPIC codewords required. calculated
334 * from all connected NAND devices pagesize
335 */
336 struct qcom_nand_controller {
337 struct nand_hw_control controller;
338 struct list_head host_list;
339
340 struct device *dev;
341
342 void __iomem *base;
343 dma_addr_t base_dma;
344
345 struct clk *core_clk;
346 struct clk *aon_clk;
347
348 union {
349 /* will be used only by QPIC for BAM DMA */
350 struct {
351 struct dma_chan *tx_chan;
352 struct dma_chan *rx_chan;
353 struct dma_chan *cmd_chan;
354 };
355
356 /* will be used only by EBI2 for ADM DMA */
357 struct {
358 struct dma_chan *chan;
359 unsigned int cmd_crci;
360 unsigned int data_crci;
361 };
362 };
363
364 struct list_head desc_list;
365 struct bam_transaction *bam_txn;
366
367 u8 *data_buffer;
368 int buf_size;
369 int buf_count;
370 int buf_start;
371 unsigned int max_cwperpage;
372
373 __le32 *reg_read_buf;
374 dma_addr_t reg_read_dma;
375 int reg_read_pos;
376
377 struct nandc_regs *regs;
378
379 u32 cmd1, vld;
380 const struct qcom_nandc_props *props;
381 };
382
383 /*
384 * NAND chip structure
385 *
386 * @chip: base NAND chip structure
387 * @node: list node to add itself to host_list in
388 * qcom_nand_controller
389 *
390 * @cs: chip select value for this chip
391 * @cw_size: the number of bytes in a single step/codeword
392 * of a page, consisting of all data, ecc, spare
393 * and reserved bytes
394 * @cw_data: the number of bytes within a codeword protected
395 * by ECC
396 * @use_ecc: request the controller to use ECC for the
397 * upcoming read/write
398 * @bch_enabled: flag to tell whether BCH ECC mode is used
399 * @ecc_bytes_hw: ECC bytes used by controller hardware for this
400 * chip
401 * @status: value to be returned if NAND_CMD_STATUS command
402 * is executed
403 * @last_command: keeps track of last command on this chip. used
404 * for reading correct status
405 *
406 * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for
407 * ecc/non-ecc mode for the current nand flash
408 * device
409 */
410 struct qcom_nand_host {
411 struct nand_chip chip;
412 struct list_head node;
413
414 int cs;
415 int cw_size;
416 int cw_data;
417 bool use_ecc;
418 bool bch_enabled;
419 int ecc_bytes_hw;
420 int spare_bytes;
421 int bbm_size;
422 u8 status;
423 int last_command;
424
425 u32 cfg0, cfg1;
426 u32 cfg0_raw, cfg1_raw;
427 u32 ecc_buf_cfg;
428 u32 ecc_bch_cfg;
429 u32 clrflashstatus;
430 u32 clrreadstatus;
431 };
432
433 /*
434 * This data type corresponds to the NAND controller properties which varies
435 * among different NAND controllers.
436 * @ecc_modes - ecc mode for NAND
437 * @is_bam - whether NAND controller is using BAM
438 * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
439 */
440 struct qcom_nandc_props {
441 u32 ecc_modes;
442 bool is_bam;
443 u32 dev_cmd_reg_start;
444 };
445
446 /* Frees the BAM transaction memory */
free_bam_transaction(struct qcom_nand_controller * nandc)447 static void free_bam_transaction(struct qcom_nand_controller *nandc)
448 {
449 struct bam_transaction *bam_txn = nandc->bam_txn;
450
451 devm_kfree(nandc->dev, bam_txn);
452 }
453
454 /* Allocates and Initializes the BAM transaction */
455 static struct bam_transaction *
alloc_bam_transaction(struct qcom_nand_controller * nandc)456 alloc_bam_transaction(struct qcom_nand_controller *nandc)
457 {
458 struct bam_transaction *bam_txn;
459 size_t bam_txn_size;
460 unsigned int num_cw = nandc->max_cwperpage;
461 void *bam_txn_buf;
462
463 bam_txn_size =
464 sizeof(*bam_txn) + num_cw *
465 ((sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
466 (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
467
468 bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
469 if (!bam_txn_buf)
470 return NULL;
471
472 bam_txn = bam_txn_buf;
473 bam_txn_buf += sizeof(*bam_txn);
474
475 bam_txn->cmd_sgl = bam_txn_buf;
476 bam_txn_buf +=
477 sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
478
479 bam_txn->data_sgl = bam_txn_buf;
480
481 return bam_txn;
482 }
483
484 /* Clears the BAM transaction indexes */
clear_bam_transaction(struct qcom_nand_controller * nandc)485 static void clear_bam_transaction(struct qcom_nand_controller *nandc)
486 {
487 struct bam_transaction *bam_txn = nandc->bam_txn;
488
489 if (!nandc->props->is_bam)
490 return;
491
492 bam_txn->cmd_sgl_pos = 0;
493 bam_txn->cmd_sgl_start = 0;
494 bam_txn->tx_sgl_pos = 0;
495 bam_txn->tx_sgl_start = 0;
496 bam_txn->rx_sgl_pos = 0;
497 bam_txn->rx_sgl_start = 0;
498
499 sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
500 QPIC_PER_CW_CMD_SGL);
501 sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
502 QPIC_PER_CW_DATA_SGL);
503 }
504
to_qcom_nand_host(struct nand_chip * chip)505 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
506 {
507 return container_of(chip, struct qcom_nand_host, chip);
508 }
509
510 static inline struct qcom_nand_controller *
get_qcom_nand_controller(struct nand_chip * chip)511 get_qcom_nand_controller(struct nand_chip *chip)
512 {
513 return container_of(chip->controller, struct qcom_nand_controller,
514 controller);
515 }
516
nandc_read(struct qcom_nand_controller * nandc,int offset)517 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
518 {
519 return ioread32(nandc->base + offset);
520 }
521
nandc_write(struct qcom_nand_controller * nandc,int offset,u32 val)522 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
523 u32 val)
524 {
525 iowrite32(val, nandc->base + offset);
526 }
527
nandc_read_buffer_sync(struct qcom_nand_controller * nandc,bool is_cpu)528 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
529 bool is_cpu)
530 {
531 if (!nandc->props->is_bam)
532 return;
533
534 if (is_cpu)
535 dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
536 MAX_REG_RD *
537 sizeof(*nandc->reg_read_buf),
538 DMA_FROM_DEVICE);
539 else
540 dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
541 MAX_REG_RD *
542 sizeof(*nandc->reg_read_buf),
543 DMA_FROM_DEVICE);
544 }
545
offset_to_nandc_reg(struct nandc_regs * regs,int offset)546 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
547 {
548 switch (offset) {
549 case NAND_FLASH_CMD:
550 return ®s->cmd;
551 case NAND_ADDR0:
552 return ®s->addr0;
553 case NAND_ADDR1:
554 return ®s->addr1;
555 case NAND_FLASH_CHIP_SELECT:
556 return ®s->chip_sel;
557 case NAND_EXEC_CMD:
558 return ®s->exec;
559 case NAND_FLASH_STATUS:
560 return ®s->clrflashstatus;
561 case NAND_DEV0_CFG0:
562 return ®s->cfg0;
563 case NAND_DEV0_CFG1:
564 return ®s->cfg1;
565 case NAND_DEV0_ECC_CFG:
566 return ®s->ecc_bch_cfg;
567 case NAND_READ_STATUS:
568 return ®s->clrreadstatus;
569 case NAND_DEV_CMD1:
570 return ®s->cmd1;
571 case NAND_DEV_CMD1_RESTORE:
572 return ®s->orig_cmd1;
573 case NAND_DEV_CMD_VLD:
574 return ®s->vld;
575 case NAND_DEV_CMD_VLD_RESTORE:
576 return ®s->orig_vld;
577 case NAND_EBI2_ECC_BUF_CFG:
578 return ®s->ecc_buf_cfg;
579 case NAND_READ_LOCATION_0:
580 return ®s->read_location0;
581 case NAND_READ_LOCATION_1:
582 return ®s->read_location1;
583 case NAND_READ_LOCATION_2:
584 return ®s->read_location2;
585 case NAND_READ_LOCATION_3:
586 return ®s->read_location3;
587 default:
588 return NULL;
589 }
590 }
591
nandc_set_reg(struct qcom_nand_controller * nandc,int offset,u32 val)592 static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset,
593 u32 val)
594 {
595 struct nandc_regs *regs = nandc->regs;
596 __le32 *reg;
597
598 reg = offset_to_nandc_reg(regs, offset);
599
600 if (reg)
601 *reg = cpu_to_le32(val);
602 }
603
604 /* helper to configure address register values */
set_address(struct qcom_nand_host * host,u16 column,int page)605 static void set_address(struct qcom_nand_host *host, u16 column, int page)
606 {
607 struct nand_chip *chip = &host->chip;
608 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
609
610 if (chip->options & NAND_BUSWIDTH_16)
611 column >>= 1;
612
613 nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column);
614 nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff);
615 }
616
617 /*
618 * update_rw_regs: set up read/write register values, these will be
619 * written to the NAND controller registers via DMA
620 *
621 * @num_cw: number of steps for the read/write operation
622 * @read: read or write operation
623 */
update_rw_regs(struct qcom_nand_host * host,int num_cw,bool read)624 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read)
625 {
626 struct nand_chip *chip = &host->chip;
627 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
628 u32 cmd, cfg0, cfg1, ecc_bch_cfg;
629
630 if (read) {
631 if (host->use_ecc)
632 cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
633 else
634 cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE;
635 } else {
636 cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
637 }
638
639 if (host->use_ecc) {
640 cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
641 (num_cw - 1) << CW_PER_PAGE;
642
643 cfg1 = host->cfg1;
644 ecc_bch_cfg = host->ecc_bch_cfg;
645 } else {
646 cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
647 (num_cw - 1) << CW_PER_PAGE;
648
649 cfg1 = host->cfg1_raw;
650 ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
651 }
652
653 nandc_set_reg(nandc, NAND_FLASH_CMD, cmd);
654 nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0);
655 nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1);
656 nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
657 nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
658 nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
659 nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
660 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
661
662 if (read)
663 nandc_set_read_loc(nandc, 0, 0, host->use_ecc ?
664 host->cw_data : host->cw_size, 1);
665 }
666
667 /*
668 * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
669 * for BAM. This descriptor will be added in the NAND DMA descriptor queue
670 * which will be submitted to DMA engine.
671 */
prepare_bam_async_desc(struct qcom_nand_controller * nandc,struct dma_chan * chan,unsigned long flags)672 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
673 struct dma_chan *chan,
674 unsigned long flags)
675 {
676 struct desc_info *desc;
677 struct scatterlist *sgl;
678 unsigned int sgl_cnt;
679 int ret;
680 struct bam_transaction *bam_txn = nandc->bam_txn;
681 enum dma_transfer_direction dir_eng;
682 struct dma_async_tx_descriptor *dma_desc;
683
684 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
685 if (!desc)
686 return -ENOMEM;
687
688 if (chan == nandc->cmd_chan) {
689 sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
690 sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
691 bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
692 dir_eng = DMA_MEM_TO_DEV;
693 desc->dir = DMA_TO_DEVICE;
694 } else if (chan == nandc->tx_chan) {
695 sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
696 sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
697 bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
698 dir_eng = DMA_MEM_TO_DEV;
699 desc->dir = DMA_TO_DEVICE;
700 } else {
701 sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
702 sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
703 bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
704 dir_eng = DMA_DEV_TO_MEM;
705 desc->dir = DMA_FROM_DEVICE;
706 }
707
708 sg_mark_end(sgl + sgl_cnt - 1);
709 ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
710 if (ret == 0) {
711 dev_err(nandc->dev, "failure in mapping desc\n");
712 kfree(desc);
713 return -ENOMEM;
714 }
715
716 desc->sgl_cnt = sgl_cnt;
717 desc->bam_sgl = sgl;
718
719 dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
720 flags);
721
722 if (!dma_desc) {
723 dev_err(nandc->dev, "failure in prep desc\n");
724 dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
725 kfree(desc);
726 return -EINVAL;
727 }
728
729 desc->dma_desc = dma_desc;
730
731 list_add_tail(&desc->node, &nandc->desc_list);
732
733 return 0;
734 }
735
736 /*
737 * Prepares the data descriptor for BAM DMA which will be used for NAND
738 * data reads and writes.
739 */
prep_bam_dma_desc_data(struct qcom_nand_controller * nandc,bool read,const void * vaddr,int size,unsigned int flags)740 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
741 const void *vaddr,
742 int size, unsigned int flags)
743 {
744 int ret;
745 struct bam_transaction *bam_txn = nandc->bam_txn;
746
747 if (read) {
748 sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
749 vaddr, size);
750 bam_txn->rx_sgl_pos++;
751 } else {
752 sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
753 vaddr, size);
754 bam_txn->tx_sgl_pos++;
755
756 /*
757 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
758 * is not set, form the DMA descriptor
759 */
760 if (!(flags & NAND_BAM_NO_EOT)) {
761 ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
762 DMA_PREP_INTERRUPT);
763 if (ret)
764 return ret;
765 }
766 }
767
768 return 0;
769 }
770
prep_adm_dma_desc(struct qcom_nand_controller * nandc,bool read,int reg_off,const void * vaddr,int size,bool flow_control)771 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
772 int reg_off, const void *vaddr, int size,
773 bool flow_control)
774 {
775 struct desc_info *desc;
776 struct dma_async_tx_descriptor *dma_desc;
777 struct scatterlist *sgl;
778 struct dma_slave_config slave_conf;
779 enum dma_transfer_direction dir_eng;
780 int ret;
781
782 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
783 if (!desc)
784 return -ENOMEM;
785
786 sgl = &desc->adm_sgl;
787
788 sg_init_one(sgl, vaddr, size);
789
790 if (read) {
791 dir_eng = DMA_DEV_TO_MEM;
792 desc->dir = DMA_FROM_DEVICE;
793 } else {
794 dir_eng = DMA_MEM_TO_DEV;
795 desc->dir = DMA_TO_DEVICE;
796 }
797
798 ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
799 if (ret == 0) {
800 ret = -ENOMEM;
801 goto err;
802 }
803
804 memset(&slave_conf, 0x00, sizeof(slave_conf));
805
806 slave_conf.device_fc = flow_control;
807 if (read) {
808 slave_conf.src_maxburst = 16;
809 slave_conf.src_addr = nandc->base_dma + reg_off;
810 slave_conf.slave_id = nandc->data_crci;
811 } else {
812 slave_conf.dst_maxburst = 16;
813 slave_conf.dst_addr = nandc->base_dma + reg_off;
814 slave_conf.slave_id = nandc->cmd_crci;
815 }
816
817 ret = dmaengine_slave_config(nandc->chan, &slave_conf);
818 if (ret) {
819 dev_err(nandc->dev, "failed to configure dma channel\n");
820 goto err;
821 }
822
823 dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
824 if (!dma_desc) {
825 dev_err(nandc->dev, "failed to prepare desc\n");
826 ret = -EINVAL;
827 goto err;
828 }
829
830 desc->dma_desc = dma_desc;
831
832 list_add_tail(&desc->node, &nandc->desc_list);
833
834 return 0;
835 err:
836 kfree(desc);
837
838 return ret;
839 }
840
841 /*
842 * read_reg_dma: prepares a descriptor to read a given number of
843 * contiguous registers to the reg_read_buf pointer
844 *
845 * @first: offset of the first register in the contiguous block
846 * @num_regs: number of registers to read
847 * @flags: flags to control DMA descriptor preparation
848 */
read_reg_dma(struct qcom_nand_controller * nandc,int first,int num_regs,unsigned int flags)849 static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
850 int num_regs, unsigned int flags)
851 {
852 bool flow_control = false;
853 void *vaddr;
854 int size;
855
856 if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
857 flow_control = true;
858
859 if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
860 first = dev_cmd_reg_addr(nandc, first);
861
862 size = num_regs * sizeof(u32);
863 vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
864 nandc->reg_read_pos += num_regs;
865
866 return prep_adm_dma_desc(nandc, true, first, vaddr, size, flow_control);
867 }
868
869 /*
870 * write_reg_dma: prepares a descriptor to write a given number of
871 * contiguous registers
872 *
873 * @first: offset of the first register in the contiguous block
874 * @num_regs: number of registers to write
875 * @flags: flags to control DMA descriptor preparation
876 */
write_reg_dma(struct qcom_nand_controller * nandc,int first,int num_regs,unsigned int flags)877 static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
878 int num_regs, unsigned int flags)
879 {
880 bool flow_control = false;
881 struct nandc_regs *regs = nandc->regs;
882 void *vaddr;
883 int size;
884
885 vaddr = offset_to_nandc_reg(regs, first);
886
887 if (first == NAND_FLASH_CMD)
888 flow_control = true;
889
890 if (first == NAND_ERASED_CW_DETECT_CFG) {
891 if (flags & NAND_ERASED_CW_SET)
892 vaddr = ®s->erased_cw_detect_cfg_set;
893 else
894 vaddr = ®s->erased_cw_detect_cfg_clr;
895 }
896
897 if (first == NAND_EXEC_CMD)
898 flags |= NAND_BAM_NWD;
899
900 if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
901 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
902
903 if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
904 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
905
906 size = num_regs * sizeof(u32);
907
908 return prep_adm_dma_desc(nandc, false, first, vaddr, size,
909 flow_control);
910 }
911
912 /*
913 * read_data_dma: prepares a DMA descriptor to transfer data from the
914 * controller's internal buffer to the buffer 'vaddr'
915 *
916 * @reg_off: offset within the controller's data buffer
917 * @vaddr: virtual address of the buffer we want to write to
918 * @size: DMA transaction size in bytes
919 * @flags: flags to control DMA descriptor preparation
920 */
read_data_dma(struct qcom_nand_controller * nandc,int reg_off,const u8 * vaddr,int size,unsigned int flags)921 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
922 const u8 *vaddr, int size, unsigned int flags)
923 {
924 if (nandc->props->is_bam)
925 return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
926
927 return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
928 }
929
930 /*
931 * write_data_dma: prepares a DMA descriptor to transfer data from
932 * 'vaddr' to the controller's internal buffer
933 *
934 * @reg_off: offset within the controller's data buffer
935 * @vaddr: virtual address of the buffer we want to read from
936 * @size: DMA transaction size in bytes
937 * @flags: flags to control DMA descriptor preparation
938 */
write_data_dma(struct qcom_nand_controller * nandc,int reg_off,const u8 * vaddr,int size,unsigned int flags)939 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
940 const u8 *vaddr, int size, unsigned int flags)
941 {
942 if (nandc->props->is_bam)
943 return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
944
945 return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
946 }
947
948 /*
949 * Helper to prepare DMA descriptors for configuring registers
950 * before reading a NAND page.
951 */
config_nand_page_read(struct qcom_nand_controller * nandc)952 static void config_nand_page_read(struct qcom_nand_controller *nandc)
953 {
954 write_reg_dma(nandc, NAND_ADDR0, 2, 0);
955 write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
956 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
957 write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
958 write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
959 NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
960 }
961
962 /*
963 * Helper to prepare DMA descriptors for configuring registers
964 * before reading each codeword in NAND page.
965 */
config_nand_cw_read(struct qcom_nand_controller * nandc)966 static void config_nand_cw_read(struct qcom_nand_controller *nandc)
967 {
968 if (nandc->props->is_bam)
969 write_reg_dma(nandc, NAND_READ_LOCATION_0, 4,
970 NAND_BAM_NEXT_SGL);
971
972 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
973 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
974
975 read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
976 read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
977 NAND_BAM_NEXT_SGL);
978 }
979
980 /*
981 * Helper to prepare dma descriptors to configure registers needed for reading a
982 * single codeword in page
983 */
config_nand_single_cw_page_read(struct qcom_nand_controller * nandc)984 static void config_nand_single_cw_page_read(struct qcom_nand_controller *nandc)
985 {
986 config_nand_page_read(nandc);
987 config_nand_cw_read(nandc);
988 }
989
990 /*
991 * Helper to prepare DMA descriptors used to configure registers needed for
992 * before writing a NAND page.
993 */
config_nand_page_write(struct qcom_nand_controller * nandc)994 static void config_nand_page_write(struct qcom_nand_controller *nandc)
995 {
996 write_reg_dma(nandc, NAND_ADDR0, 2, 0);
997 write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
998 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
999 NAND_BAM_NEXT_SGL);
1000 }
1001
1002 /*
1003 * Helper to prepare DMA descriptors for configuring registers
1004 * before writing each codeword in NAND page.
1005 */
config_nand_cw_write(struct qcom_nand_controller * nandc)1006 static void config_nand_cw_write(struct qcom_nand_controller *nandc)
1007 {
1008 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1009 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1010
1011 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1012
1013 write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1014 write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1015 }
1016
1017 /*
1018 * the following functions are used within chip->cmdfunc() to perform different
1019 * NAND_CMD_* commands
1020 */
1021
1022 /* sets up descriptors for NAND_CMD_PARAM */
nandc_param(struct qcom_nand_host * host)1023 static int nandc_param(struct qcom_nand_host *host)
1024 {
1025 struct nand_chip *chip = &host->chip;
1026 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1027
1028 /*
1029 * NAND_CMD_PARAM is called before we know much about the FLASH chip
1030 * in use. we configure the controller to perform a raw read of 512
1031 * bytes to read onfi params
1032 */
1033 nandc_set_reg(nandc, NAND_FLASH_CMD, OP_PAGE_READ | PAGE_ACC | LAST_PAGE);
1034 nandc_set_reg(nandc, NAND_ADDR0, 0);
1035 nandc_set_reg(nandc, NAND_ADDR1, 0);
1036 nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
1037 | 512 << UD_SIZE_BYTES
1038 | 5 << NUM_ADDR_CYCLES
1039 | 0 << SPARE_SIZE_BYTES);
1040 nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
1041 | 0 << CS_ACTIVE_BSY
1042 | 17 << BAD_BLOCK_BYTE_NUM
1043 | 1 << BAD_BLOCK_IN_SPARE_AREA
1044 | 2 << WR_RD_BSY_GAP
1045 | 0 << WIDE_FLASH
1046 | 1 << DEV0_CFG1_ECC_DISABLE);
1047 nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
1048
1049 /* configure CMD1 and VLD for ONFI param probing */
1050 nandc_set_reg(nandc, NAND_DEV_CMD_VLD,
1051 (nandc->vld & ~READ_START_VLD));
1052 nandc_set_reg(nandc, NAND_DEV_CMD1,
1053 (nandc->cmd1 & ~(0xFF << READ_ADDR))
1054 | NAND_CMD_PARAM << READ_ADDR);
1055
1056 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1057
1058 nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
1059 nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
1060 nandc_set_read_loc(nandc, 0, 0, 512, 1);
1061
1062 write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
1063 write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
1064
1065 nandc->buf_count = 512;
1066 memset(nandc->data_buffer, 0xff, nandc->buf_count);
1067
1068 config_nand_single_cw_page_read(nandc);
1069
1070 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1071 nandc->buf_count, 0);
1072
1073 /* restore CMD1 and VLD regs */
1074 write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
1075 write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
1076
1077 return 0;
1078 }
1079
1080 /* sets up descriptors for NAND_CMD_ERASE1 */
erase_block(struct qcom_nand_host * host,int page_addr)1081 static int erase_block(struct qcom_nand_host *host, int page_addr)
1082 {
1083 struct nand_chip *chip = &host->chip;
1084 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1085
1086 nandc_set_reg(nandc, NAND_FLASH_CMD,
1087 OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
1088 nandc_set_reg(nandc, NAND_ADDR0, page_addr);
1089 nandc_set_reg(nandc, NAND_ADDR1, 0);
1090 nandc_set_reg(nandc, NAND_DEV0_CFG0,
1091 host->cfg0_raw & ~(7 << CW_PER_PAGE));
1092 nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw);
1093 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1094 nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
1095 nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
1096
1097 write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
1098 write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
1099 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1100
1101 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1102
1103 write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1104 write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1105
1106 return 0;
1107 }
1108
1109 /* sets up descriptors for NAND_CMD_READID */
read_id(struct qcom_nand_host * host,int column)1110 static int read_id(struct qcom_nand_host *host, int column)
1111 {
1112 struct nand_chip *chip = &host->chip;
1113 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1114
1115 if (column == -1)
1116 return 0;
1117
1118 nandc_set_reg(nandc, NAND_FLASH_CMD, OP_FETCH_ID);
1119 nandc_set_reg(nandc, NAND_ADDR0, column);
1120 nandc_set_reg(nandc, NAND_ADDR1, 0);
1121 nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT,
1122 nandc->props->is_bam ? 0 : DM_EN);
1123 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1124
1125 write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
1126 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1127
1128 read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
1129
1130 return 0;
1131 }
1132
1133 /* sets up descriptors for NAND_CMD_RESET */
reset(struct qcom_nand_host * host)1134 static int reset(struct qcom_nand_host *host)
1135 {
1136 struct nand_chip *chip = &host->chip;
1137 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1138
1139 nandc_set_reg(nandc, NAND_FLASH_CMD, OP_RESET_DEVICE);
1140 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1141
1142 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1143 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1144
1145 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1146
1147 return 0;
1148 }
1149
1150 /* helpers to submit/free our list of dma descriptors */
submit_descs(struct qcom_nand_controller * nandc)1151 static int submit_descs(struct qcom_nand_controller *nandc)
1152 {
1153 struct desc_info *desc;
1154 dma_cookie_t cookie = 0;
1155 struct bam_transaction *bam_txn = nandc->bam_txn;
1156 int r;
1157
1158 if (nandc->props->is_bam) {
1159 if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
1160 r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
1161 if (r)
1162 return r;
1163 }
1164
1165 if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
1166 r = prepare_bam_async_desc(nandc, nandc->tx_chan,
1167 DMA_PREP_INTERRUPT);
1168 if (r)
1169 return r;
1170 }
1171
1172 if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
1173 r = prepare_bam_async_desc(nandc, nandc->cmd_chan, 0);
1174 if (r)
1175 return r;
1176 }
1177 }
1178
1179 list_for_each_entry(desc, &nandc->desc_list, node)
1180 cookie = dmaengine_submit(desc->dma_desc);
1181
1182 if (nandc->props->is_bam) {
1183 dma_async_issue_pending(nandc->tx_chan);
1184 dma_async_issue_pending(nandc->rx_chan);
1185
1186 if (dma_sync_wait(nandc->cmd_chan, cookie) != DMA_COMPLETE)
1187 return -ETIMEDOUT;
1188 } else {
1189 if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
1190 return -ETIMEDOUT;
1191 }
1192
1193 return 0;
1194 }
1195
free_descs(struct qcom_nand_controller * nandc)1196 static void free_descs(struct qcom_nand_controller *nandc)
1197 {
1198 struct desc_info *desc, *n;
1199
1200 list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
1201 list_del(&desc->node);
1202
1203 if (nandc->props->is_bam)
1204 dma_unmap_sg(nandc->dev, desc->bam_sgl,
1205 desc->sgl_cnt, desc->dir);
1206 else
1207 dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
1208 desc->dir);
1209
1210 kfree(desc);
1211 }
1212 }
1213
1214 /* reset the register read buffer for next NAND operation */
clear_read_regs(struct qcom_nand_controller * nandc)1215 static void clear_read_regs(struct qcom_nand_controller *nandc)
1216 {
1217 nandc->reg_read_pos = 0;
1218 nandc_read_buffer_sync(nandc, false);
1219 }
1220
pre_command(struct qcom_nand_host * host,int command)1221 static void pre_command(struct qcom_nand_host *host, int command)
1222 {
1223 struct nand_chip *chip = &host->chip;
1224 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1225
1226 nandc->buf_count = 0;
1227 nandc->buf_start = 0;
1228 host->use_ecc = false;
1229 host->last_command = command;
1230
1231 clear_read_regs(nandc);
1232
1233 if (command == NAND_CMD_RESET || command == NAND_CMD_READID ||
1234 command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1)
1235 clear_bam_transaction(nandc);
1236 }
1237
1238 /*
1239 * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
1240 * privately maintained status byte, this status byte can be read after
1241 * NAND_CMD_STATUS is called
1242 */
parse_erase_write_errors(struct qcom_nand_host * host,int command)1243 static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
1244 {
1245 struct nand_chip *chip = &host->chip;
1246 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1247 struct nand_ecc_ctrl *ecc = &chip->ecc;
1248 int num_cw;
1249 int i;
1250
1251 num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
1252 nandc_read_buffer_sync(nandc, true);
1253
1254 for (i = 0; i < num_cw; i++) {
1255 u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
1256
1257 if (flash_status & FS_MPU_ERR)
1258 host->status &= ~NAND_STATUS_WP;
1259
1260 if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
1261 (flash_status &
1262 FS_DEVICE_STS_ERR)))
1263 host->status |= NAND_STATUS_FAIL;
1264 }
1265 }
1266
post_command(struct qcom_nand_host * host,int command)1267 static void post_command(struct qcom_nand_host *host, int command)
1268 {
1269 struct nand_chip *chip = &host->chip;
1270 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1271
1272 switch (command) {
1273 case NAND_CMD_READID:
1274 nandc_read_buffer_sync(nandc, true);
1275 memcpy(nandc->data_buffer, nandc->reg_read_buf,
1276 nandc->buf_count);
1277 break;
1278 case NAND_CMD_PAGEPROG:
1279 case NAND_CMD_ERASE1:
1280 parse_erase_write_errors(host, command);
1281 break;
1282 default:
1283 break;
1284 }
1285 }
1286
1287 /*
1288 * Implements chip->cmdfunc. It's only used for a limited set of commands.
1289 * The rest of the commands wouldn't be called by upper layers. For example,
1290 * NAND_CMD_READOOB would never be called because we have our own versions
1291 * of read_oob ops for nand_ecc_ctrl.
1292 */
qcom_nandc_command(struct mtd_info * mtd,unsigned int command,int column,int page_addr)1293 static void qcom_nandc_command(struct mtd_info *mtd, unsigned int command,
1294 int column, int page_addr)
1295 {
1296 struct nand_chip *chip = mtd_to_nand(mtd);
1297 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1298 struct nand_ecc_ctrl *ecc = &chip->ecc;
1299 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1300 bool wait = false;
1301 int ret = 0;
1302
1303 pre_command(host, command);
1304
1305 switch (command) {
1306 case NAND_CMD_RESET:
1307 ret = reset(host);
1308 wait = true;
1309 break;
1310
1311 case NAND_CMD_READID:
1312 nandc->buf_count = 4;
1313 ret = read_id(host, column);
1314 wait = true;
1315 break;
1316
1317 case NAND_CMD_PARAM:
1318 ret = nandc_param(host);
1319 wait = true;
1320 break;
1321
1322 case NAND_CMD_ERASE1:
1323 ret = erase_block(host, page_addr);
1324 wait = true;
1325 break;
1326
1327 case NAND_CMD_READ0:
1328 /* we read the entire page for now */
1329 WARN_ON(column != 0);
1330
1331 host->use_ecc = true;
1332 set_address(host, 0, page_addr);
1333 update_rw_regs(host, ecc->steps, true);
1334 break;
1335
1336 case NAND_CMD_SEQIN:
1337 WARN_ON(column != 0);
1338 set_address(host, 0, page_addr);
1339 break;
1340
1341 case NAND_CMD_PAGEPROG:
1342 case NAND_CMD_STATUS:
1343 case NAND_CMD_NONE:
1344 default:
1345 break;
1346 }
1347
1348 if (ret) {
1349 dev_err(nandc->dev, "failure executing command %d\n",
1350 command);
1351 free_descs(nandc);
1352 return;
1353 }
1354
1355 if (wait) {
1356 ret = submit_descs(nandc);
1357 if (ret)
1358 dev_err(nandc->dev,
1359 "failure submitting descs for command %d\n",
1360 command);
1361 }
1362
1363 free_descs(nandc);
1364
1365 post_command(host, command);
1366 }
1367
1368 /*
1369 * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1370 * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1371 *
1372 * when using RS ECC, the HW reports the same erros when reading an erased CW,
1373 * but it notifies that it is an erased CW by placing special characters at
1374 * certain offsets in the buffer.
1375 *
1376 * verify if the page is erased or not, and fix up the page for RS ECC by
1377 * replacing the special characters with 0xff.
1378 */
erased_chunk_check_and_fixup(u8 * data_buf,int data_len)1379 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
1380 {
1381 u8 empty1, empty2;
1382
1383 /*
1384 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1385 * is erased by looking for 0x54s at offsets 3 and 175 from the
1386 * beginning of each codeword
1387 */
1388
1389 empty1 = data_buf[3];
1390 empty2 = data_buf[175];
1391
1392 /*
1393 * if the erased codework markers, if they exist override them with
1394 * 0xffs
1395 */
1396 if ((empty1 == 0x54 && empty2 == 0xff) ||
1397 (empty1 == 0xff && empty2 == 0x54)) {
1398 data_buf[3] = 0xff;
1399 data_buf[175] = 0xff;
1400 }
1401
1402 /*
1403 * check if the entire chunk contains 0xffs or not. if it doesn't, then
1404 * restore the original values at the special offsets
1405 */
1406 if (memchr_inv(data_buf, 0xff, data_len)) {
1407 data_buf[3] = empty1;
1408 data_buf[175] = empty2;
1409
1410 return false;
1411 }
1412
1413 return true;
1414 }
1415
1416 struct read_stats {
1417 __le32 flash;
1418 __le32 buffer;
1419 __le32 erased_cw;
1420 };
1421
1422 /*
1423 * reads back status registers set by the controller to notify page read
1424 * errors. this is equivalent to what 'ecc->correct()' would do.
1425 */
parse_read_errors(struct qcom_nand_host * host,u8 * data_buf,u8 * oob_buf)1426 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1427 u8 *oob_buf)
1428 {
1429 struct nand_chip *chip = &host->chip;
1430 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1431 struct mtd_info *mtd = nand_to_mtd(chip);
1432 struct nand_ecc_ctrl *ecc = &chip->ecc;
1433 unsigned int max_bitflips = 0;
1434 struct read_stats *buf;
1435 int i;
1436
1437 buf = (struct read_stats *)nandc->reg_read_buf;
1438 nandc_read_buffer_sync(nandc, true);
1439
1440 for (i = 0; i < ecc->steps; i++, buf++) {
1441 u32 flash, buffer, erased_cw;
1442 int data_len, oob_len;
1443
1444 if (i == (ecc->steps - 1)) {
1445 data_len = ecc->size - ((ecc->steps - 1) << 2);
1446 oob_len = ecc->steps << 2;
1447 } else {
1448 data_len = host->cw_data;
1449 oob_len = 0;
1450 }
1451
1452 flash = le32_to_cpu(buf->flash);
1453 buffer = le32_to_cpu(buf->buffer);
1454 erased_cw = le32_to_cpu(buf->erased_cw);
1455
1456 if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1457 bool erased;
1458
1459 /* ignore erased codeword errors */
1460 if (host->bch_enabled) {
1461 erased = (erased_cw & ERASED_CW) == ERASED_CW ?
1462 true : false;
1463 } else {
1464 erased = erased_chunk_check_and_fixup(data_buf,
1465 data_len);
1466 }
1467
1468 if (erased) {
1469 data_buf += data_len;
1470 if (oob_buf)
1471 oob_buf += oob_len + ecc->bytes;
1472 continue;
1473 }
1474
1475 if (buffer & BS_UNCORRECTABLE_BIT) {
1476 int ret, ecclen, extraooblen;
1477 void *eccbuf;
1478
1479 eccbuf = oob_buf ? oob_buf + oob_len : NULL;
1480 ecclen = oob_buf ? host->ecc_bytes_hw : 0;
1481 extraooblen = oob_buf ? oob_len : 0;
1482
1483 /*
1484 * make sure it isn't an erased page reported
1485 * as not-erased by HW because of a few bitflips
1486 */
1487 ret = nand_check_erased_ecc_chunk(data_buf,
1488 data_len, eccbuf, ecclen, oob_buf,
1489 extraooblen, ecc->strength);
1490 if (ret < 0) {
1491 mtd->ecc_stats.failed++;
1492 } else {
1493 mtd->ecc_stats.corrected += ret;
1494 max_bitflips =
1495 max_t(unsigned int, max_bitflips, ret);
1496 }
1497 }
1498 } else {
1499 unsigned int stat;
1500
1501 stat = buffer & BS_CORRECTABLE_ERR_MSK;
1502 mtd->ecc_stats.corrected += stat;
1503 max_bitflips = max(max_bitflips, stat);
1504 }
1505
1506 data_buf += data_len;
1507 if (oob_buf)
1508 oob_buf += oob_len + ecc->bytes;
1509 }
1510
1511 return max_bitflips;
1512 }
1513
1514 /*
1515 * helper to perform the actual page read operation, used by ecc->read_page(),
1516 * ecc->read_oob()
1517 */
read_page_ecc(struct qcom_nand_host * host,u8 * data_buf,u8 * oob_buf)1518 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1519 u8 *oob_buf)
1520 {
1521 struct nand_chip *chip = &host->chip;
1522 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1523 struct nand_ecc_ctrl *ecc = &chip->ecc;
1524 int i, ret;
1525
1526 config_nand_page_read(nandc);
1527
1528 /* queue cmd descs for each codeword */
1529 for (i = 0; i < ecc->steps; i++) {
1530 int data_size, oob_size;
1531
1532 if (i == (ecc->steps - 1)) {
1533 data_size = ecc->size - ((ecc->steps - 1) << 2);
1534 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1535 host->spare_bytes;
1536 } else {
1537 data_size = host->cw_data;
1538 oob_size = host->ecc_bytes_hw + host->spare_bytes;
1539 }
1540
1541 if (nandc->props->is_bam) {
1542 if (data_buf && oob_buf) {
1543 nandc_set_read_loc(nandc, 0, 0, data_size, 0);
1544 nandc_set_read_loc(nandc, 1, data_size,
1545 oob_size, 1);
1546 } else if (data_buf) {
1547 nandc_set_read_loc(nandc, 0, 0, data_size, 1);
1548 } else {
1549 nandc_set_read_loc(nandc, 0, data_size,
1550 oob_size, 1);
1551 }
1552 }
1553
1554 config_nand_cw_read(nandc);
1555
1556 if (data_buf)
1557 read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1558 data_size, 0);
1559
1560 /*
1561 * when ecc is enabled, the controller doesn't read the real
1562 * or dummy bad block markers in each chunk. To maintain a
1563 * consistent layout across RAW and ECC reads, we just
1564 * leave the real/dummy BBM offsets empty (i.e, filled with
1565 * 0xffs)
1566 */
1567 if (oob_buf) {
1568 int j;
1569
1570 for (j = 0; j < host->bbm_size; j++)
1571 *oob_buf++ = 0xff;
1572
1573 read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1574 oob_buf, oob_size, 0);
1575 }
1576
1577 if (data_buf)
1578 data_buf += data_size;
1579 if (oob_buf)
1580 oob_buf += oob_size;
1581 }
1582
1583 ret = submit_descs(nandc);
1584 if (ret)
1585 dev_err(nandc->dev, "failure to read page/oob\n");
1586
1587 free_descs(nandc);
1588
1589 return ret;
1590 }
1591
1592 /*
1593 * a helper that copies the last step/codeword of a page (containing free oob)
1594 * into our local buffer
1595 */
copy_last_cw(struct qcom_nand_host * host,int page)1596 static int copy_last_cw(struct qcom_nand_host *host, int page)
1597 {
1598 struct nand_chip *chip = &host->chip;
1599 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1600 struct nand_ecc_ctrl *ecc = &chip->ecc;
1601 int size;
1602 int ret;
1603
1604 clear_read_regs(nandc);
1605
1606 size = host->use_ecc ? host->cw_data : host->cw_size;
1607
1608 /* prepare a clean read buffer */
1609 memset(nandc->data_buffer, 0xff, size);
1610
1611 set_address(host, host->cw_size * (ecc->steps - 1), page);
1612 update_rw_regs(host, 1, true);
1613
1614 config_nand_single_cw_page_read(nandc);
1615
1616 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
1617
1618 ret = submit_descs(nandc);
1619 if (ret)
1620 dev_err(nandc->dev, "failed to copy last codeword\n");
1621
1622 free_descs(nandc);
1623
1624 return ret;
1625 }
1626
1627 /* implements ecc->read_page() */
qcom_nandc_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1628 static int qcom_nandc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1629 uint8_t *buf, int oob_required, int page)
1630 {
1631 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1632 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1633 u8 *data_buf, *oob_buf = NULL;
1634 int ret;
1635
1636 data_buf = buf;
1637 oob_buf = oob_required ? chip->oob_poi : NULL;
1638
1639 clear_bam_transaction(nandc);
1640 ret = read_page_ecc(host, data_buf, oob_buf);
1641 if (ret) {
1642 dev_err(nandc->dev, "failure to read page\n");
1643 return ret;
1644 }
1645
1646 return parse_read_errors(host, data_buf, oob_buf);
1647 }
1648
1649 /* implements ecc->read_page_raw() */
qcom_nandc_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1650 static int qcom_nandc_read_page_raw(struct mtd_info *mtd,
1651 struct nand_chip *chip, uint8_t *buf,
1652 int oob_required, int page)
1653 {
1654 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1655 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1656 u8 *data_buf, *oob_buf;
1657 struct nand_ecc_ctrl *ecc = &chip->ecc;
1658 int i, ret;
1659 int read_loc;
1660
1661 data_buf = buf;
1662 oob_buf = chip->oob_poi;
1663
1664 host->use_ecc = false;
1665
1666 clear_bam_transaction(nandc);
1667 update_rw_regs(host, ecc->steps, true);
1668 config_nand_page_read(nandc);
1669
1670 for (i = 0; i < ecc->steps; i++) {
1671 int data_size1, data_size2, oob_size1, oob_size2;
1672 int reg_off = FLASH_BUF_ACC;
1673
1674 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1675 oob_size1 = host->bbm_size;
1676
1677 if (i == (ecc->steps - 1)) {
1678 data_size2 = ecc->size - data_size1 -
1679 ((ecc->steps - 1) << 2);
1680 oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
1681 host->spare_bytes;
1682 } else {
1683 data_size2 = host->cw_data - data_size1;
1684 oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1685 }
1686
1687 if (nandc->props->is_bam) {
1688 read_loc = 0;
1689 nandc_set_read_loc(nandc, 0, read_loc, data_size1, 0);
1690 read_loc += data_size1;
1691
1692 nandc_set_read_loc(nandc, 1, read_loc, oob_size1, 0);
1693 read_loc += oob_size1;
1694
1695 nandc_set_read_loc(nandc, 2, read_loc, data_size2, 0);
1696 read_loc += data_size2;
1697
1698 nandc_set_read_loc(nandc, 3, read_loc, oob_size2, 1);
1699 }
1700
1701 config_nand_cw_read(nandc);
1702
1703 read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
1704 reg_off += data_size1;
1705 data_buf += data_size1;
1706
1707 read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
1708 reg_off += oob_size1;
1709 oob_buf += oob_size1;
1710
1711 read_data_dma(nandc, reg_off, data_buf, data_size2, 0);
1712 reg_off += data_size2;
1713 data_buf += data_size2;
1714
1715 read_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
1716 oob_buf += oob_size2;
1717 }
1718
1719 ret = submit_descs(nandc);
1720 if (ret)
1721 dev_err(nandc->dev, "failure to read raw page\n");
1722
1723 free_descs(nandc);
1724
1725 return 0;
1726 }
1727
1728 /* implements ecc->read_oob() */
qcom_nandc_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1729 static int qcom_nandc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1730 int page)
1731 {
1732 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1733 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1734 struct nand_ecc_ctrl *ecc = &chip->ecc;
1735 int ret;
1736
1737 clear_read_regs(nandc);
1738 clear_bam_transaction(nandc);
1739
1740 host->use_ecc = true;
1741 set_address(host, 0, page);
1742 update_rw_regs(host, ecc->steps, true);
1743
1744 ret = read_page_ecc(host, NULL, chip->oob_poi);
1745 if (ret)
1746 dev_err(nandc->dev, "failure to read oob\n");
1747
1748 return ret;
1749 }
1750
1751 /* implements ecc->write_page() */
qcom_nandc_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)1752 static int qcom_nandc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1753 const uint8_t *buf, int oob_required, int page)
1754 {
1755 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1756 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1757 struct nand_ecc_ctrl *ecc = &chip->ecc;
1758 u8 *data_buf, *oob_buf;
1759 int i, ret;
1760
1761 clear_read_regs(nandc);
1762 clear_bam_transaction(nandc);
1763
1764 data_buf = (u8 *)buf;
1765 oob_buf = chip->oob_poi;
1766
1767 host->use_ecc = true;
1768 update_rw_regs(host, ecc->steps, false);
1769 config_nand_page_write(nandc);
1770
1771 for (i = 0; i < ecc->steps; i++) {
1772 int data_size, oob_size;
1773
1774 if (i == (ecc->steps - 1)) {
1775 data_size = ecc->size - ((ecc->steps - 1) << 2);
1776 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1777 host->spare_bytes;
1778 } else {
1779 data_size = host->cw_data;
1780 oob_size = ecc->bytes;
1781 }
1782
1783
1784 write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
1785 i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
1786
1787 /*
1788 * when ECC is enabled, we don't really need to write anything
1789 * to oob for the first n - 1 codewords since these oob regions
1790 * just contain ECC bytes that's written by the controller
1791 * itself. For the last codeword, we skip the bbm positions and
1792 * write to the free oob area.
1793 */
1794 if (i == (ecc->steps - 1)) {
1795 oob_buf += host->bbm_size;
1796
1797 write_data_dma(nandc, FLASH_BUF_ACC + data_size,
1798 oob_buf, oob_size, 0);
1799 }
1800
1801 config_nand_cw_write(nandc);
1802
1803 data_buf += data_size;
1804 oob_buf += oob_size;
1805 }
1806
1807 ret = submit_descs(nandc);
1808 if (ret)
1809 dev_err(nandc->dev, "failure to write page\n");
1810
1811 free_descs(nandc);
1812
1813 return ret;
1814 }
1815
1816 /* implements ecc->write_page_raw() */
qcom_nandc_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)1817 static int qcom_nandc_write_page_raw(struct mtd_info *mtd,
1818 struct nand_chip *chip, const uint8_t *buf,
1819 int oob_required, int page)
1820 {
1821 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1822 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1823 struct nand_ecc_ctrl *ecc = &chip->ecc;
1824 u8 *data_buf, *oob_buf;
1825 int i, ret;
1826
1827 clear_read_regs(nandc);
1828 clear_bam_transaction(nandc);
1829
1830 data_buf = (u8 *)buf;
1831 oob_buf = chip->oob_poi;
1832
1833 host->use_ecc = false;
1834 update_rw_regs(host, ecc->steps, false);
1835 config_nand_page_write(nandc);
1836
1837 for (i = 0; i < ecc->steps; i++) {
1838 int data_size1, data_size2, oob_size1, oob_size2;
1839 int reg_off = FLASH_BUF_ACC;
1840
1841 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1842 oob_size1 = host->bbm_size;
1843
1844 if (i == (ecc->steps - 1)) {
1845 data_size2 = ecc->size - data_size1 -
1846 ((ecc->steps - 1) << 2);
1847 oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
1848 host->spare_bytes;
1849 } else {
1850 data_size2 = host->cw_data - data_size1;
1851 oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1852 }
1853
1854 write_data_dma(nandc, reg_off, data_buf, data_size1,
1855 NAND_BAM_NO_EOT);
1856 reg_off += data_size1;
1857 data_buf += data_size1;
1858
1859 write_data_dma(nandc, reg_off, oob_buf, oob_size1,
1860 NAND_BAM_NO_EOT);
1861 reg_off += oob_size1;
1862 oob_buf += oob_size1;
1863
1864 write_data_dma(nandc, reg_off, data_buf, data_size2,
1865 NAND_BAM_NO_EOT);
1866 reg_off += data_size2;
1867 data_buf += data_size2;
1868
1869 write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
1870 oob_buf += oob_size2;
1871
1872 config_nand_cw_write(nandc);
1873 }
1874
1875 ret = submit_descs(nandc);
1876 if (ret)
1877 dev_err(nandc->dev, "failure to write raw page\n");
1878
1879 free_descs(nandc);
1880
1881 return ret;
1882 }
1883
1884 /*
1885 * implements ecc->write_oob()
1886 *
1887 * the NAND controller cannot write only data or only oob within a codeword,
1888 * since ecc is calculated for the combined codeword. we first copy the
1889 * entire contents for the last codeword(data + oob), replace the old oob
1890 * with the new one in chip->oob_poi, and then write the entire codeword.
1891 * this read-copy-write operation results in a slight performance loss.
1892 */
qcom_nandc_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1893 static int qcom_nandc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1894 int page)
1895 {
1896 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1897 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1898 struct nand_ecc_ctrl *ecc = &chip->ecc;
1899 u8 *oob = chip->oob_poi;
1900 int data_size, oob_size;
1901 int ret, status = 0;
1902
1903 host->use_ecc = true;
1904
1905 clear_bam_transaction(nandc);
1906 ret = copy_last_cw(host, page);
1907 if (ret)
1908 return ret;
1909
1910 clear_read_regs(nandc);
1911 clear_bam_transaction(nandc);
1912
1913 /* calculate the data and oob size for the last codeword/step */
1914 data_size = ecc->size - ((ecc->steps - 1) << 2);
1915 oob_size = mtd->oobavail;
1916
1917 /* override new oob content to last codeword */
1918 mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
1919 0, mtd->oobavail);
1920
1921 set_address(host, host->cw_size * (ecc->steps - 1), page);
1922 update_rw_regs(host, 1, false);
1923
1924 config_nand_page_write(nandc);
1925 write_data_dma(nandc, FLASH_BUF_ACC,
1926 nandc->data_buffer, data_size + oob_size, 0);
1927 config_nand_cw_write(nandc);
1928
1929 ret = submit_descs(nandc);
1930
1931 free_descs(nandc);
1932
1933 if (ret) {
1934 dev_err(nandc->dev, "failure to write oob\n");
1935 return -EIO;
1936 }
1937
1938 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1939
1940 status = chip->waitfunc(mtd, chip);
1941
1942 return status & NAND_STATUS_FAIL ? -EIO : 0;
1943 }
1944
qcom_nandc_block_bad(struct mtd_info * mtd,loff_t ofs)1945 static int qcom_nandc_block_bad(struct mtd_info *mtd, loff_t ofs)
1946 {
1947 struct nand_chip *chip = mtd_to_nand(mtd);
1948 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1949 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1950 struct nand_ecc_ctrl *ecc = &chip->ecc;
1951 int page, ret, bbpos, bad = 0;
1952 u32 flash_status;
1953
1954 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
1955
1956 /*
1957 * configure registers for a raw sub page read, the address is set to
1958 * the beginning of the last codeword, we don't care about reading ecc
1959 * portion of oob. we just want the first few bytes from this codeword
1960 * that contains the BBM
1961 */
1962 host->use_ecc = false;
1963
1964 clear_bam_transaction(nandc);
1965 ret = copy_last_cw(host, page);
1966 if (ret)
1967 goto err;
1968
1969 flash_status = le32_to_cpu(nandc->reg_read_buf[0]);
1970
1971 if (flash_status & (FS_OP_ERR | FS_MPU_ERR)) {
1972 dev_warn(nandc->dev, "error when trying to read BBM\n");
1973 goto err;
1974 }
1975
1976 bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
1977
1978 bad = nandc->data_buffer[bbpos] != 0xff;
1979
1980 if (chip->options & NAND_BUSWIDTH_16)
1981 bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
1982 err:
1983 return bad;
1984 }
1985
qcom_nandc_block_markbad(struct mtd_info * mtd,loff_t ofs)1986 static int qcom_nandc_block_markbad(struct mtd_info *mtd, loff_t ofs)
1987 {
1988 struct nand_chip *chip = mtd_to_nand(mtd);
1989 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1990 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1991 struct nand_ecc_ctrl *ecc = &chip->ecc;
1992 int page, ret, status = 0;
1993
1994 clear_read_regs(nandc);
1995 clear_bam_transaction(nandc);
1996
1997 /*
1998 * to mark the BBM as bad, we flash the entire last codeword with 0s.
1999 * we don't care about the rest of the content in the codeword since
2000 * we aren't going to use this block again
2001 */
2002 memset(nandc->data_buffer, 0x00, host->cw_size);
2003
2004 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2005
2006 /* prepare write */
2007 host->use_ecc = false;
2008 set_address(host, host->cw_size * (ecc->steps - 1), page);
2009 update_rw_regs(host, 1, false);
2010
2011 config_nand_page_write(nandc);
2012 write_data_dma(nandc, FLASH_BUF_ACC,
2013 nandc->data_buffer, host->cw_size, 0);
2014 config_nand_cw_write(nandc);
2015
2016 ret = submit_descs(nandc);
2017
2018 free_descs(nandc);
2019
2020 if (ret) {
2021 dev_err(nandc->dev, "failure to update BBM\n");
2022 return -EIO;
2023 }
2024
2025 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2026
2027 status = chip->waitfunc(mtd, chip);
2028
2029 return status & NAND_STATUS_FAIL ? -EIO : 0;
2030 }
2031
2032 /*
2033 * the three functions below implement chip->read_byte(), chip->read_buf()
2034 * and chip->write_buf() respectively. these aren't used for
2035 * reading/writing page data, they are used for smaller data like reading
2036 * id, status etc
2037 */
qcom_nandc_read_byte(struct mtd_info * mtd)2038 static uint8_t qcom_nandc_read_byte(struct mtd_info *mtd)
2039 {
2040 struct nand_chip *chip = mtd_to_nand(mtd);
2041 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2042 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2043 u8 *buf = nandc->data_buffer;
2044 u8 ret = 0x0;
2045
2046 if (host->last_command == NAND_CMD_STATUS) {
2047 ret = host->status;
2048
2049 host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2050
2051 return ret;
2052 }
2053
2054 if (nandc->buf_start < nandc->buf_count)
2055 ret = buf[nandc->buf_start++];
2056
2057 return ret;
2058 }
2059
qcom_nandc_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)2060 static void qcom_nandc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
2061 {
2062 struct nand_chip *chip = mtd_to_nand(mtd);
2063 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2064 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2065
2066 memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
2067 nandc->buf_start += real_len;
2068 }
2069
qcom_nandc_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)2070 static void qcom_nandc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
2071 int len)
2072 {
2073 struct nand_chip *chip = mtd_to_nand(mtd);
2074 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2075 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2076
2077 memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
2078
2079 nandc->buf_start += real_len;
2080 }
2081
2082 /* we support only one external chip for now */
qcom_nandc_select_chip(struct mtd_info * mtd,int chipnr)2083 static void qcom_nandc_select_chip(struct mtd_info *mtd, int chipnr)
2084 {
2085 struct nand_chip *chip = mtd_to_nand(mtd);
2086 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2087
2088 if (chipnr <= 0)
2089 return;
2090
2091 dev_warn(nandc->dev, "invalid chip select\n");
2092 }
2093
2094 /*
2095 * NAND controller page layout info
2096 *
2097 * Layout with ECC enabled:
2098 *
2099 * |----------------------| |---------------------------------|
2100 * | xx.......yy| | *********xx.......yy|
2101 * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy|
2102 * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy|
2103 * | xx.......yy| | *********xx.......yy|
2104 * |----------------------| |---------------------------------|
2105 * codeword 1,2..n-1 codeword n
2106 * <---(528/532 Bytes)--> <-------(528/532 Bytes)--------->
2107 *
2108 * n = Number of codewords in the page
2109 * . = ECC bytes
2110 * * = Spare/free bytes
2111 * x = Unused byte(s)
2112 * y = Reserved byte(s)
2113 *
2114 * 2K page: n = 4, spare = 16 bytes
2115 * 4K page: n = 8, spare = 32 bytes
2116 * 8K page: n = 16, spare = 64 bytes
2117 *
2118 * the qcom nand controller operates at a sub page/codeword level. each
2119 * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2120 * the number of ECC bytes vary based on the ECC strength and the bus width.
2121 *
2122 * the first n - 1 codewords contains 516 bytes of user data, the remaining
2123 * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2124 * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2125 *
2126 * When we access a page with ECC enabled, the reserved bytes(s) are not
2127 * accessible at all. When reading, we fill up these unreadable positions
2128 * with 0xffs. When writing, the controller skips writing the inaccessible
2129 * bytes.
2130 *
2131 * Layout with ECC disabled:
2132 *
2133 * |------------------------------| |---------------------------------------|
2134 * | yy xx.......| | bb *********xx.......|
2135 * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..|
2136 * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......|
2137 * | yy xx.......| | bb *********xx.......|
2138 * |------------------------------| |---------------------------------------|
2139 * codeword 1,2..n-1 codeword n
2140 * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)----------->
2141 *
2142 * n = Number of codewords in the page
2143 * . = ECC bytes
2144 * * = Spare/free bytes
2145 * x = Unused byte(s)
2146 * y = Dummy Bad Bock byte(s)
2147 * b = Real Bad Block byte(s)
2148 * size1/size2 = function of codeword size and 'n'
2149 *
2150 * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2151 * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2152 * Block Markers. In the last codeword, this position contains the real BBM
2153 *
2154 * In order to have a consistent layout between RAW and ECC modes, we assume
2155 * the following OOB layout arrangement:
2156 *
2157 * |-----------| |--------------------|
2158 * |yyxx.......| |bb*********xx.......|
2159 * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..|
2160 * |yyxx.......| |bb*********xx.......|
2161 * |yyxx.......| |bb*********xx.......|
2162 * |-----------| |--------------------|
2163 * first n - 1 nth OOB region
2164 * OOB regions
2165 *
2166 * n = Number of codewords in the page
2167 * . = ECC bytes
2168 * * = FREE OOB bytes
2169 * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2170 * x = Unused byte(s)
2171 * b = Real bad block byte(s) (inaccessible when ECC enabled)
2172 *
2173 * This layout is read as is when ECC is disabled. When ECC is enabled, the
2174 * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2175 * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2176 * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2177 * the sum of the three).
2178 */
qcom_nand_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)2179 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2180 struct mtd_oob_region *oobregion)
2181 {
2182 struct nand_chip *chip = mtd_to_nand(mtd);
2183 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2184 struct nand_ecc_ctrl *ecc = &chip->ecc;
2185
2186 if (section > 1)
2187 return -ERANGE;
2188
2189 if (!section) {
2190 oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
2191 host->bbm_size;
2192 oobregion->offset = 0;
2193 } else {
2194 oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
2195 oobregion->offset = mtd->oobsize - oobregion->length;
2196 }
2197
2198 return 0;
2199 }
2200
qcom_nand_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)2201 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
2202 struct mtd_oob_region *oobregion)
2203 {
2204 struct nand_chip *chip = mtd_to_nand(mtd);
2205 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2206 struct nand_ecc_ctrl *ecc = &chip->ecc;
2207
2208 if (section)
2209 return -ERANGE;
2210
2211 oobregion->length = ecc->steps * 4;
2212 oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
2213
2214 return 0;
2215 }
2216
2217 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
2218 .ecc = qcom_nand_ooblayout_ecc,
2219 .free = qcom_nand_ooblayout_free,
2220 };
2221
qcom_nand_host_setup(struct qcom_nand_host * host)2222 static int qcom_nand_host_setup(struct qcom_nand_host *host)
2223 {
2224 struct nand_chip *chip = &host->chip;
2225 struct mtd_info *mtd = nand_to_mtd(chip);
2226 struct nand_ecc_ctrl *ecc = &chip->ecc;
2227 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2228 int cwperpage, bad_block_byte;
2229 bool wide_bus;
2230 int ecc_mode = 1;
2231
2232 /*
2233 * the controller requires each step consists of 512 bytes of data.
2234 * bail out if DT has populated a wrong step size.
2235 */
2236 if (ecc->size != NANDC_STEP_SIZE) {
2237 dev_err(nandc->dev, "invalid ecc size\n");
2238 return -EINVAL;
2239 }
2240
2241 wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
2242
2243 if (ecc->strength >= 8) {
2244 /* 8 bit ECC defaults to BCH ECC on all platforms */
2245 host->bch_enabled = true;
2246 ecc_mode = 1;
2247
2248 if (wide_bus) {
2249 host->ecc_bytes_hw = 14;
2250 host->spare_bytes = 0;
2251 host->bbm_size = 2;
2252 } else {
2253 host->ecc_bytes_hw = 13;
2254 host->spare_bytes = 2;
2255 host->bbm_size = 1;
2256 }
2257 } else {
2258 /*
2259 * if the controller supports BCH for 4 bit ECC, the controller
2260 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2261 * always 10 bytes
2262 */
2263 if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
2264 /* BCH */
2265 host->bch_enabled = true;
2266 ecc_mode = 0;
2267
2268 if (wide_bus) {
2269 host->ecc_bytes_hw = 8;
2270 host->spare_bytes = 2;
2271 host->bbm_size = 2;
2272 } else {
2273 host->ecc_bytes_hw = 7;
2274 host->spare_bytes = 4;
2275 host->bbm_size = 1;
2276 }
2277 } else {
2278 /* RS */
2279 host->ecc_bytes_hw = 10;
2280
2281 if (wide_bus) {
2282 host->spare_bytes = 0;
2283 host->bbm_size = 2;
2284 } else {
2285 host->spare_bytes = 1;
2286 host->bbm_size = 1;
2287 }
2288 }
2289 }
2290
2291 /*
2292 * we consider ecc->bytes as the sum of all the non-data content in a
2293 * step. It gives us a clean representation of the oob area (even if
2294 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2295 * ECC and 12 bytes for 4 bit ECC
2296 */
2297 ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
2298
2299 ecc->read_page = qcom_nandc_read_page;
2300 ecc->read_page_raw = qcom_nandc_read_page_raw;
2301 ecc->read_oob = qcom_nandc_read_oob;
2302 ecc->write_page = qcom_nandc_write_page;
2303 ecc->write_page_raw = qcom_nandc_write_page_raw;
2304 ecc->write_oob = qcom_nandc_write_oob;
2305
2306 ecc->mode = NAND_ECC_HW;
2307
2308 mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
2309
2310 cwperpage = mtd->writesize / ecc->size;
2311 nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
2312 cwperpage);
2313
2314 /*
2315 * DATA_UD_BYTES varies based on whether the read/write command protects
2316 * spare data with ECC too. We protect spare data by default, so we set
2317 * it to main + spare data, which are 512 and 4 bytes respectively.
2318 */
2319 host->cw_data = 516;
2320
2321 /*
2322 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2323 * for 8 bit ECC
2324 */
2325 host->cw_size = host->cw_data + ecc->bytes;
2326
2327 if (ecc->bytes * (mtd->writesize / ecc->size) > mtd->oobsize) {
2328 dev_err(nandc->dev, "ecc data doesn't fit in OOB area\n");
2329 return -EINVAL;
2330 }
2331
2332 bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
2333
2334 host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
2335 | host->cw_data << UD_SIZE_BYTES
2336 | 0 << DISABLE_STATUS_AFTER_WRITE
2337 | 5 << NUM_ADDR_CYCLES
2338 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
2339 | 0 << STATUS_BFR_READ
2340 | 1 << SET_RD_MODE_AFTER_STATUS
2341 | host->spare_bytes << SPARE_SIZE_BYTES;
2342
2343 host->cfg1 = 7 << NAND_RECOVERY_CYCLES
2344 | 0 << CS_ACTIVE_BSY
2345 | bad_block_byte << BAD_BLOCK_BYTE_NUM
2346 | 0 << BAD_BLOCK_IN_SPARE_AREA
2347 | 2 << WR_RD_BSY_GAP
2348 | wide_bus << WIDE_FLASH
2349 | host->bch_enabled << ENABLE_BCH_ECC;
2350
2351 host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
2352 | host->cw_size << UD_SIZE_BYTES
2353 | 5 << NUM_ADDR_CYCLES
2354 | 0 << SPARE_SIZE_BYTES;
2355
2356 host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
2357 | 0 << CS_ACTIVE_BSY
2358 | 17 << BAD_BLOCK_BYTE_NUM
2359 | 1 << BAD_BLOCK_IN_SPARE_AREA
2360 | 2 << WR_RD_BSY_GAP
2361 | wide_bus << WIDE_FLASH
2362 | 1 << DEV0_CFG1_ECC_DISABLE;
2363
2364 host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
2365 | 0 << ECC_SW_RESET
2366 | host->cw_data << ECC_NUM_DATA_BYTES
2367 | 1 << ECC_FORCE_CLK_OPEN
2368 | ecc_mode << ECC_MODE
2369 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
2370
2371 host->ecc_buf_cfg = 0x203 << NUM_STEPS;
2372
2373 host->clrflashstatus = FS_READY_BSY_N;
2374 host->clrreadstatus = 0xc0;
2375 nandc->regs->erased_cw_detect_cfg_clr =
2376 cpu_to_le32(CLR_ERASED_PAGE_DET);
2377 nandc->regs->erased_cw_detect_cfg_set =
2378 cpu_to_le32(SET_ERASED_PAGE_DET);
2379
2380 dev_dbg(nandc->dev,
2381 "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2382 host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
2383 host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
2384 cwperpage);
2385
2386 return 0;
2387 }
2388
qcom_nandc_alloc(struct qcom_nand_controller * nandc)2389 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
2390 {
2391 int ret;
2392
2393 ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
2394 if (ret) {
2395 dev_err(nandc->dev, "failed to set DMA mask\n");
2396 return ret;
2397 }
2398
2399 /*
2400 * we use the internal buffer for reading ONFI params, reading small
2401 * data like ID and status, and preforming read-copy-write operations
2402 * when writing to a codeword partially. 532 is the maximum possible
2403 * size of a codeword for our nand controller
2404 */
2405 nandc->buf_size = 532;
2406
2407 nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
2408 GFP_KERNEL);
2409 if (!nandc->data_buffer)
2410 return -ENOMEM;
2411
2412 nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
2413 GFP_KERNEL);
2414 if (!nandc->regs)
2415 return -ENOMEM;
2416
2417 nandc->reg_read_buf = devm_kzalloc(nandc->dev,
2418 MAX_REG_RD * sizeof(*nandc->reg_read_buf),
2419 GFP_KERNEL);
2420 if (!nandc->reg_read_buf)
2421 return -ENOMEM;
2422
2423 if (nandc->props->is_bam) {
2424 nandc->reg_read_dma =
2425 dma_map_single(nandc->dev, nandc->reg_read_buf,
2426 MAX_REG_RD *
2427 sizeof(*nandc->reg_read_buf),
2428 DMA_FROM_DEVICE);
2429 if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
2430 dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
2431 return -EIO;
2432 }
2433
2434 nandc->tx_chan = dma_request_slave_channel(nandc->dev, "tx");
2435 if (!nandc->tx_chan) {
2436 dev_err(nandc->dev, "failed to request tx channel\n");
2437 return -ENODEV;
2438 }
2439
2440 nandc->rx_chan = dma_request_slave_channel(nandc->dev, "rx");
2441 if (!nandc->rx_chan) {
2442 dev_err(nandc->dev, "failed to request rx channel\n");
2443 return -ENODEV;
2444 }
2445
2446 nandc->cmd_chan = dma_request_slave_channel(nandc->dev, "cmd");
2447 if (!nandc->cmd_chan) {
2448 dev_err(nandc->dev, "failed to request cmd channel\n");
2449 return -ENODEV;
2450 }
2451
2452 /*
2453 * Initially allocate BAM transaction to read ONFI param page.
2454 * After detecting all the devices, this BAM transaction will
2455 * be freed and the next BAM tranasction will be allocated with
2456 * maximum codeword size
2457 */
2458 nandc->max_cwperpage = 1;
2459 nandc->bam_txn = alloc_bam_transaction(nandc);
2460 if (!nandc->bam_txn) {
2461 dev_err(nandc->dev,
2462 "failed to allocate bam transaction\n");
2463 return -ENOMEM;
2464 }
2465 } else {
2466 nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx");
2467 if (!nandc->chan) {
2468 dev_err(nandc->dev,
2469 "failed to request slave channel\n");
2470 return -ENODEV;
2471 }
2472 }
2473
2474 INIT_LIST_HEAD(&nandc->desc_list);
2475 INIT_LIST_HEAD(&nandc->host_list);
2476
2477 nand_hw_control_init(&nandc->controller);
2478
2479 return 0;
2480 }
2481
qcom_nandc_unalloc(struct qcom_nand_controller * nandc)2482 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
2483 {
2484 if (nandc->props->is_bam) {
2485 if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
2486 dma_unmap_single(nandc->dev, nandc->reg_read_dma,
2487 MAX_REG_RD *
2488 sizeof(*nandc->reg_read_buf),
2489 DMA_FROM_DEVICE);
2490
2491 if (nandc->tx_chan)
2492 dma_release_channel(nandc->tx_chan);
2493
2494 if (nandc->rx_chan)
2495 dma_release_channel(nandc->rx_chan);
2496
2497 if (nandc->cmd_chan)
2498 dma_release_channel(nandc->cmd_chan);
2499 } else {
2500 if (nandc->chan)
2501 dma_release_channel(nandc->chan);
2502 }
2503 }
2504
2505 /* one time setup of a few nand controller registers */
qcom_nandc_setup(struct qcom_nand_controller * nandc)2506 static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
2507 {
2508 u32 nand_ctrl;
2509
2510 /* kill onenand */
2511 nandc_write(nandc, SFLASHC_BURST_CFG, 0);
2512 nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
2513 NAND_DEV_CMD_VLD_VAL);
2514
2515 /* enable ADM or BAM DMA */
2516 if (nandc->props->is_bam) {
2517 nand_ctrl = nandc_read(nandc, NAND_CTRL);
2518 nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
2519 } else {
2520 nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
2521 }
2522
2523 /* save the original values of these registers */
2524 nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
2525 nandc->vld = NAND_DEV_CMD_VLD_VAL;
2526
2527 return 0;
2528 }
2529
qcom_nand_host_init(struct qcom_nand_controller * nandc,struct qcom_nand_host * host,struct device_node * dn)2530 static int qcom_nand_host_init(struct qcom_nand_controller *nandc,
2531 struct qcom_nand_host *host,
2532 struct device_node *dn)
2533 {
2534 struct nand_chip *chip = &host->chip;
2535 struct mtd_info *mtd = nand_to_mtd(chip);
2536 struct device *dev = nandc->dev;
2537 int ret;
2538
2539 ret = of_property_read_u32(dn, "reg", &host->cs);
2540 if (ret) {
2541 dev_err(dev, "can't get chip-select\n");
2542 return -ENXIO;
2543 }
2544
2545 nand_set_flash_node(chip, dn);
2546 mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
2547 if (!mtd->name)
2548 return -ENOMEM;
2549
2550 mtd->owner = THIS_MODULE;
2551 mtd->dev.parent = dev;
2552
2553 chip->cmdfunc = qcom_nandc_command;
2554 chip->select_chip = qcom_nandc_select_chip;
2555 chip->read_byte = qcom_nandc_read_byte;
2556 chip->read_buf = qcom_nandc_read_buf;
2557 chip->write_buf = qcom_nandc_write_buf;
2558 chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
2559 chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
2560
2561 /*
2562 * the bad block marker is readable only when we read the last codeword
2563 * of a page with ECC disabled. currently, the nand_base and nand_bbt
2564 * helpers don't allow us to read BB from a nand chip with ECC
2565 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2566 * and block_markbad helpers until we permanently switch to using
2567 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2568 */
2569 chip->block_bad = qcom_nandc_block_bad;
2570 chip->block_markbad = qcom_nandc_block_markbad;
2571
2572 chip->controller = &nandc->controller;
2573 chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER |
2574 NAND_SKIP_BBTSCAN;
2575
2576 /* set up initial status value */
2577 host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2578
2579 ret = nand_scan_ident(mtd, 1, NULL);
2580 if (ret)
2581 return ret;
2582
2583 ret = qcom_nand_host_setup(host);
2584
2585 return ret;
2586 }
2587
qcom_nand_mtd_register(struct qcom_nand_controller * nandc,struct qcom_nand_host * host,struct device_node * dn)2588 static int qcom_nand_mtd_register(struct qcom_nand_controller *nandc,
2589 struct qcom_nand_host *host,
2590 struct device_node *dn)
2591 {
2592 struct nand_chip *chip = &host->chip;
2593 struct mtd_info *mtd = nand_to_mtd(chip);
2594 int ret;
2595
2596 ret = nand_scan_tail(mtd);
2597 if (ret)
2598 return ret;
2599
2600 ret = mtd_device_register(mtd, NULL, 0);
2601 if (ret)
2602 nand_cleanup(mtd_to_nand(mtd));
2603
2604 return ret;
2605 }
2606
qcom_probe_nand_devices(struct qcom_nand_controller * nandc)2607 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
2608 {
2609 struct device *dev = nandc->dev;
2610 struct device_node *dn = dev->of_node, *child;
2611 struct qcom_nand_host *host, *tmp;
2612 int ret;
2613
2614 for_each_available_child_of_node(dn, child) {
2615 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2616 if (!host) {
2617 of_node_put(child);
2618 return -ENOMEM;
2619 }
2620
2621 ret = qcom_nand_host_init(nandc, host, child);
2622 if (ret) {
2623 devm_kfree(dev, host);
2624 continue;
2625 }
2626
2627 list_add_tail(&host->node, &nandc->host_list);
2628 }
2629
2630 if (list_empty(&nandc->host_list))
2631 return -ENODEV;
2632
2633 if (nandc->props->is_bam) {
2634 free_bam_transaction(nandc);
2635 nandc->bam_txn = alloc_bam_transaction(nandc);
2636 if (!nandc->bam_txn) {
2637 dev_err(nandc->dev,
2638 "failed to allocate bam transaction\n");
2639 return -ENOMEM;
2640 }
2641 }
2642
2643 list_for_each_entry_safe(host, tmp, &nandc->host_list, node) {
2644 ret = qcom_nand_mtd_register(nandc, host, child);
2645 if (ret) {
2646 list_del(&host->node);
2647 devm_kfree(dev, host);
2648 }
2649 }
2650
2651 if (list_empty(&nandc->host_list))
2652 return -ENODEV;
2653
2654 return 0;
2655 }
2656
2657 /* parse custom DT properties here */
qcom_nandc_parse_dt(struct platform_device * pdev)2658 static int qcom_nandc_parse_dt(struct platform_device *pdev)
2659 {
2660 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2661 struct device_node *np = nandc->dev->of_node;
2662 int ret;
2663
2664 if (!nandc->props->is_bam) {
2665 ret = of_property_read_u32(np, "qcom,cmd-crci",
2666 &nandc->cmd_crci);
2667 if (ret) {
2668 dev_err(nandc->dev, "command CRCI unspecified\n");
2669 return ret;
2670 }
2671
2672 ret = of_property_read_u32(np, "qcom,data-crci",
2673 &nandc->data_crci);
2674 if (ret) {
2675 dev_err(nandc->dev, "data CRCI unspecified\n");
2676 return ret;
2677 }
2678 }
2679
2680 return 0;
2681 }
2682
qcom_nandc_probe(struct platform_device * pdev)2683 static int qcom_nandc_probe(struct platform_device *pdev)
2684 {
2685 struct qcom_nand_controller *nandc;
2686 const void *dev_data;
2687 struct device *dev = &pdev->dev;
2688 struct resource *res;
2689 int ret;
2690
2691 nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
2692 if (!nandc)
2693 return -ENOMEM;
2694
2695 platform_set_drvdata(pdev, nandc);
2696 nandc->dev = dev;
2697
2698 dev_data = of_device_get_match_data(dev);
2699 if (!dev_data) {
2700 dev_err(&pdev->dev, "failed to get device data\n");
2701 return -ENODEV;
2702 }
2703
2704 nandc->props = dev_data;
2705
2706 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2707 nandc->base = devm_ioremap_resource(dev, res);
2708 if (IS_ERR(nandc->base))
2709 return PTR_ERR(nandc->base);
2710
2711 nandc->base_dma = phys_to_dma(dev, (phys_addr_t)res->start);
2712
2713 nandc->core_clk = devm_clk_get(dev, "core");
2714 if (IS_ERR(nandc->core_clk))
2715 return PTR_ERR(nandc->core_clk);
2716
2717 nandc->aon_clk = devm_clk_get(dev, "aon");
2718 if (IS_ERR(nandc->aon_clk))
2719 return PTR_ERR(nandc->aon_clk);
2720
2721 ret = qcom_nandc_parse_dt(pdev);
2722 if (ret)
2723 return ret;
2724
2725 ret = qcom_nandc_alloc(nandc);
2726 if (ret)
2727 goto err_core_clk;
2728
2729 ret = clk_prepare_enable(nandc->core_clk);
2730 if (ret)
2731 goto err_core_clk;
2732
2733 ret = clk_prepare_enable(nandc->aon_clk);
2734 if (ret)
2735 goto err_aon_clk;
2736
2737 ret = qcom_nandc_setup(nandc);
2738 if (ret)
2739 goto err_setup;
2740
2741 ret = qcom_probe_nand_devices(nandc);
2742 if (ret)
2743 goto err_setup;
2744
2745 return 0;
2746
2747 err_setup:
2748 clk_disable_unprepare(nandc->aon_clk);
2749 err_aon_clk:
2750 clk_disable_unprepare(nandc->core_clk);
2751 err_core_clk:
2752 qcom_nandc_unalloc(nandc);
2753
2754 return ret;
2755 }
2756
qcom_nandc_remove(struct platform_device * pdev)2757 static int qcom_nandc_remove(struct platform_device *pdev)
2758 {
2759 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2760 struct qcom_nand_host *host;
2761
2762 list_for_each_entry(host, &nandc->host_list, node)
2763 nand_release(nand_to_mtd(&host->chip));
2764
2765 qcom_nandc_unalloc(nandc);
2766
2767 clk_disable_unprepare(nandc->aon_clk);
2768 clk_disable_unprepare(nandc->core_clk);
2769
2770 return 0;
2771 }
2772
2773 static const struct qcom_nandc_props ipq806x_nandc_props = {
2774 .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
2775 .is_bam = false,
2776 .dev_cmd_reg_start = 0x0,
2777 };
2778
2779 static const struct qcom_nandc_props ipq4019_nandc_props = {
2780 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
2781 .is_bam = true,
2782 .dev_cmd_reg_start = 0x0,
2783 };
2784
2785 static const struct qcom_nandc_props ipq8074_nandc_props = {
2786 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
2787 .is_bam = true,
2788 .dev_cmd_reg_start = 0x7000,
2789 };
2790
2791 /*
2792 * data will hold a struct pointer containing more differences once we support
2793 * more controller variants
2794 */
2795 static const struct of_device_id qcom_nandc_of_match[] = {
2796 {
2797 .compatible = "qcom,ipq806x-nand",
2798 .data = &ipq806x_nandc_props,
2799 },
2800 {
2801 .compatible = "qcom,ipq4019-nand",
2802 .data = &ipq4019_nandc_props,
2803 },
2804 {
2805 .compatible = "qcom,ipq8074-nand",
2806 .data = &ipq8074_nandc_props,
2807 },
2808 {}
2809 };
2810 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
2811
2812 static struct platform_driver qcom_nandc_driver = {
2813 .driver = {
2814 .name = "qcom-nandc",
2815 .of_match_table = qcom_nandc_of_match,
2816 },
2817 .probe = qcom_nandc_probe,
2818 .remove = qcom_nandc_remove,
2819 };
2820 module_platform_driver(qcom_nandc_driver);
2821
2822 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
2823 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
2824 MODULE_LICENSE("GPL v2");
2825