• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* linux/drivers/mtd/nand/s3c2410.c
2  *
3  * Copyright © 2004-2008 Simtec Electronics
4  *	http://armlinux.simtec.co.uk/
5  *	Ben Dooks <ben@simtec.co.uk>
6  *
7  * Samsung S3C2410/S3C2440/S3C2412 NAND driver
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22 */
23 
24 #define pr_fmt(fmt) "nand-s3c2410: " fmt
25 
26 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
27 #define DEBUG
28 #endif
29 
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/kernel.h>
33 #include <linux/string.h>
34 #include <linux/io.h>
35 #include <linux/ioport.h>
36 #include <linux/platform_device.h>
37 #include <linux/delay.h>
38 #include <linux/err.h>
39 #include <linux/slab.h>
40 #include <linux/clk.h>
41 #include <linux/cpufreq.h>
42 #include <linux/of.h>
43 #include <linux/of_device.h>
44 
45 #include <linux/mtd/mtd.h>
46 #include <linux/mtd/rawnand.h>
47 #include <linux/mtd/nand_ecc.h>
48 #include <linux/mtd/partitions.h>
49 
50 #include <linux/platform_data/mtd-nand-s3c2410.h>
51 
52 #define S3C2410_NFREG(x) (x)
53 
54 #define S3C2410_NFCONF		S3C2410_NFREG(0x00)
55 #define S3C2410_NFCMD		S3C2410_NFREG(0x04)
56 #define S3C2410_NFADDR		S3C2410_NFREG(0x08)
57 #define S3C2410_NFDATA		S3C2410_NFREG(0x0C)
58 #define S3C2410_NFSTAT		S3C2410_NFREG(0x10)
59 #define S3C2410_NFECC		S3C2410_NFREG(0x14)
60 #define S3C2440_NFCONT		S3C2410_NFREG(0x04)
61 #define S3C2440_NFCMD		S3C2410_NFREG(0x08)
62 #define S3C2440_NFADDR		S3C2410_NFREG(0x0C)
63 #define S3C2440_NFDATA		S3C2410_NFREG(0x10)
64 #define S3C2440_NFSTAT		S3C2410_NFREG(0x20)
65 #define S3C2440_NFMECC0		S3C2410_NFREG(0x2C)
66 #define S3C2412_NFSTAT		S3C2410_NFREG(0x28)
67 #define S3C2412_NFMECC0		S3C2410_NFREG(0x34)
68 #define S3C2410_NFCONF_EN		(1<<15)
69 #define S3C2410_NFCONF_INITECC		(1<<12)
70 #define S3C2410_NFCONF_nFCE		(1<<11)
71 #define S3C2410_NFCONF_TACLS(x)		((x)<<8)
72 #define S3C2410_NFCONF_TWRPH0(x)	((x)<<4)
73 #define S3C2410_NFCONF_TWRPH1(x)	((x)<<0)
74 #define S3C2410_NFSTAT_BUSY		(1<<0)
75 #define S3C2440_NFCONF_TACLS(x)		((x)<<12)
76 #define S3C2440_NFCONF_TWRPH0(x)	((x)<<8)
77 #define S3C2440_NFCONF_TWRPH1(x)	((x)<<4)
78 #define S3C2440_NFCONT_INITECC		(1<<4)
79 #define S3C2440_NFCONT_nFCE		(1<<1)
80 #define S3C2440_NFCONT_ENABLE		(1<<0)
81 #define S3C2440_NFSTAT_READY		(1<<0)
82 #define S3C2412_NFCONF_NANDBOOT		(1<<31)
83 #define S3C2412_NFCONT_INIT_MAIN_ECC	(1<<5)
84 #define S3C2412_NFCONT_nFCE0		(1<<1)
85 #define S3C2412_NFSTAT_READY		(1<<0)
86 
87 /* new oob placement block for use with hardware ecc generation
88  */
s3c2410_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)89 static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
90 				 struct mtd_oob_region *oobregion)
91 {
92 	if (section)
93 		return -ERANGE;
94 
95 	oobregion->offset = 0;
96 	oobregion->length = 3;
97 
98 	return 0;
99 }
100 
s3c2410_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)101 static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
102 				  struct mtd_oob_region *oobregion)
103 {
104 	if (section)
105 		return -ERANGE;
106 
107 	oobregion->offset = 8;
108 	oobregion->length = 8;
109 
110 	return 0;
111 }
112 
113 static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
114 	.ecc = s3c2410_ooblayout_ecc,
115 	.free = s3c2410_ooblayout_free,
116 };
117 
118 /* controller and mtd information */
119 
120 struct s3c2410_nand_info;
121 
122 /**
123  * struct s3c2410_nand_mtd - driver MTD structure
124  * @mtd: The MTD instance to pass to the MTD layer.
125  * @chip: The NAND chip information.
126  * @set: The platform information supplied for this set of NAND chips.
127  * @info: Link back to the hardware information.
128  * @scan_res: The result from calling nand_scan_ident().
129 */
130 struct s3c2410_nand_mtd {
131 	struct nand_chip		chip;
132 	struct s3c2410_nand_set		*set;
133 	struct s3c2410_nand_info	*info;
134 	int				scan_res;
135 };
136 
137 enum s3c_cpu_type {
138 	TYPE_S3C2410,
139 	TYPE_S3C2412,
140 	TYPE_S3C2440,
141 };
142 
143 enum s3c_nand_clk_state {
144 	CLOCK_DISABLE	= 0,
145 	CLOCK_ENABLE,
146 	CLOCK_SUSPEND,
147 };
148 
149 /* overview of the s3c2410 nand state */
150 
151 /**
152  * struct s3c2410_nand_info - NAND controller state.
153  * @mtds: An array of MTD instances on this controoler.
154  * @platform: The platform data for this board.
155  * @device: The platform device we bound to.
156  * @clk: The clock resource for this controller.
157  * @regs: The area mapped for the hardware registers.
158  * @sel_reg: Pointer to the register controlling the NAND selection.
159  * @sel_bit: The bit in @sel_reg to select the NAND chip.
160  * @mtd_count: The number of MTDs created from this controller.
161  * @save_sel: The contents of @sel_reg to be saved over suspend.
162  * @clk_rate: The clock rate from @clk.
163  * @clk_state: The current clock state.
164  * @cpu_type: The exact type of this controller.
165  */
166 struct s3c2410_nand_info {
167 	/* mtd info */
168 	struct nand_hw_control		controller;
169 	struct s3c2410_nand_mtd		*mtds;
170 	struct s3c2410_platform_nand	*platform;
171 
172 	/* device info */
173 	struct device			*device;
174 	struct clk			*clk;
175 	void __iomem			*regs;
176 	void __iomem			*sel_reg;
177 	int				sel_bit;
178 	int				mtd_count;
179 	unsigned long			save_sel;
180 	unsigned long			clk_rate;
181 	enum s3c_nand_clk_state		clk_state;
182 
183 	enum s3c_cpu_type		cpu_type;
184 
185 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
186 	struct notifier_block	freq_transition;
187 #endif
188 };
189 
190 struct s3c24XX_nand_devtype_data {
191 	enum s3c_cpu_type type;
192 };
193 
194 static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
195 	.type = TYPE_S3C2410,
196 };
197 
198 static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
199 	.type = TYPE_S3C2412,
200 };
201 
202 static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
203 	.type = TYPE_S3C2440,
204 };
205 
206 /* conversion functions */
207 
s3c2410_nand_mtd_toours(struct mtd_info * mtd)208 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
209 {
210 	return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
211 			    chip);
212 }
213 
s3c2410_nand_mtd_toinfo(struct mtd_info * mtd)214 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
215 {
216 	return s3c2410_nand_mtd_toours(mtd)->info;
217 }
218 
to_nand_info(struct platform_device * dev)219 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
220 {
221 	return platform_get_drvdata(dev);
222 }
223 
to_nand_plat(struct platform_device * dev)224 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
225 {
226 	return dev_get_platdata(&dev->dev);
227 }
228 
allow_clk_suspend(struct s3c2410_nand_info * info)229 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
230 {
231 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
232 	return 1;
233 #else
234 	return 0;
235 #endif
236 }
237 
238 /**
239  * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
240  * @info: The controller instance.
241  * @new_state: State to which clock should be set.
242  */
s3c2410_nand_clk_set_state(struct s3c2410_nand_info * info,enum s3c_nand_clk_state new_state)243 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
244 		enum s3c_nand_clk_state new_state)
245 {
246 	if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
247 		return;
248 
249 	if (info->clk_state == CLOCK_ENABLE) {
250 		if (new_state != CLOCK_ENABLE)
251 			clk_disable_unprepare(info->clk);
252 	} else {
253 		if (new_state == CLOCK_ENABLE)
254 			clk_prepare_enable(info->clk);
255 	}
256 
257 	info->clk_state = new_state;
258 }
259 
260 /* timing calculations */
261 
262 #define NS_IN_KHZ 1000000
263 
264 /**
265  * s3c_nand_calc_rate - calculate timing data.
266  * @wanted: The cycle time in nanoseconds.
267  * @clk: The clock rate in kHz.
268  * @max: The maximum divider value.
269  *
270  * Calculate the timing value from the given parameters.
271  */
s3c_nand_calc_rate(int wanted,unsigned long clk,int max)272 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
273 {
274 	int result;
275 
276 	result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
277 
278 	pr_debug("result %d from %ld, %d\n", result, clk, wanted);
279 
280 	if (result > max) {
281 		pr_err("%d ns is too big for current clock rate %ld\n",
282 			wanted, clk);
283 		return -1;
284 	}
285 
286 	if (result < 1)
287 		result = 1;
288 
289 	return result;
290 }
291 
292 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
293 
294 /* controller setup */
295 
296 /**
297  * s3c2410_nand_setrate - setup controller timing information.
298  * @info: The controller instance.
299  *
300  * Given the information supplied by the platform, calculate and set
301  * the necessary timing registers in the hardware to generate the
302  * necessary timing cycles to the hardware.
303  */
s3c2410_nand_setrate(struct s3c2410_nand_info * info)304 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
305 {
306 	struct s3c2410_platform_nand *plat = info->platform;
307 	int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
308 	int tacls, twrph0, twrph1;
309 	unsigned long clkrate = clk_get_rate(info->clk);
310 	unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
311 	unsigned long flags;
312 
313 	/* calculate the timing information for the controller */
314 
315 	info->clk_rate = clkrate;
316 	clkrate /= 1000;	/* turn clock into kHz for ease of use */
317 
318 	if (plat != NULL) {
319 		tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
320 		twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
321 		twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
322 	} else {
323 		/* default timings */
324 		tacls = tacls_max;
325 		twrph0 = 8;
326 		twrph1 = 8;
327 	}
328 
329 	if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
330 		dev_err(info->device, "cannot get suitable timings\n");
331 		return -EINVAL;
332 	}
333 
334 	dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
335 		tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
336 						twrph1, to_ns(twrph1, clkrate));
337 
338 	switch (info->cpu_type) {
339 	case TYPE_S3C2410:
340 		mask = (S3C2410_NFCONF_TACLS(3) |
341 			S3C2410_NFCONF_TWRPH0(7) |
342 			S3C2410_NFCONF_TWRPH1(7));
343 		set = S3C2410_NFCONF_EN;
344 		set |= S3C2410_NFCONF_TACLS(tacls - 1);
345 		set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
346 		set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
347 		break;
348 
349 	case TYPE_S3C2440:
350 	case TYPE_S3C2412:
351 		mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
352 			S3C2440_NFCONF_TWRPH0(7) |
353 			S3C2440_NFCONF_TWRPH1(7));
354 
355 		set = S3C2440_NFCONF_TACLS(tacls - 1);
356 		set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
357 		set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
358 		break;
359 
360 	default:
361 		BUG();
362 	}
363 
364 	local_irq_save(flags);
365 
366 	cfg = readl(info->regs + S3C2410_NFCONF);
367 	cfg &= ~mask;
368 	cfg |= set;
369 	writel(cfg, info->regs + S3C2410_NFCONF);
370 
371 	local_irq_restore(flags);
372 
373 	dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
374 
375 	return 0;
376 }
377 
378 /**
379  * s3c2410_nand_inithw - basic hardware initialisation
380  * @info: The hardware state.
381  *
382  * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
383  * to setup the hardware access speeds and set the controller to be enabled.
384 */
s3c2410_nand_inithw(struct s3c2410_nand_info * info)385 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
386 {
387 	int ret;
388 
389 	ret = s3c2410_nand_setrate(info);
390 	if (ret < 0)
391 		return ret;
392 
393 	switch (info->cpu_type) {
394 	case TYPE_S3C2410:
395 	default:
396 		break;
397 
398 	case TYPE_S3C2440:
399 	case TYPE_S3C2412:
400 		/* enable the controller and de-assert nFCE */
401 
402 		writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
403 	}
404 
405 	return 0;
406 }
407 
408 /**
409  * s3c2410_nand_select_chip - select the given nand chip
410  * @mtd: The MTD instance for this chip.
411  * @chip: The chip number.
412  *
413  * This is called by the MTD layer to either select a given chip for the
414  * @mtd instance, or to indicate that the access has finished and the
415  * chip can be de-selected.
416  *
417  * The routine ensures that the nFCE line is correctly setup, and any
418  * platform specific selection code is called to route nFCE to the specific
419  * chip.
420  */
s3c2410_nand_select_chip(struct mtd_info * mtd,int chip)421 static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
422 {
423 	struct s3c2410_nand_info *info;
424 	struct s3c2410_nand_mtd *nmtd;
425 	struct nand_chip *this = mtd_to_nand(mtd);
426 	unsigned long cur;
427 
428 	nmtd = nand_get_controller_data(this);
429 	info = nmtd->info;
430 
431 	if (chip != -1)
432 		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
433 
434 	cur = readl(info->sel_reg);
435 
436 	if (chip == -1) {
437 		cur |= info->sel_bit;
438 	} else {
439 		if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
440 			dev_err(info->device, "invalid chip %d\n", chip);
441 			return;
442 		}
443 
444 		if (info->platform != NULL) {
445 			if (info->platform->select_chip != NULL)
446 				(info->platform->select_chip) (nmtd->set, chip);
447 		}
448 
449 		cur &= ~info->sel_bit;
450 	}
451 
452 	writel(cur, info->sel_reg);
453 
454 	if (chip == -1)
455 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
456 }
457 
458 /* s3c2410_nand_hwcontrol
459  *
460  * Issue command and address cycles to the chip
461 */
462 
s3c2410_nand_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)463 static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
464 				   unsigned int ctrl)
465 {
466 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
467 
468 	if (cmd == NAND_CMD_NONE)
469 		return;
470 
471 	if (ctrl & NAND_CLE)
472 		writeb(cmd, info->regs + S3C2410_NFCMD);
473 	else
474 		writeb(cmd, info->regs + S3C2410_NFADDR);
475 }
476 
477 /* command and control functions */
478 
s3c2440_nand_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)479 static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
480 				   unsigned int ctrl)
481 {
482 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
483 
484 	if (cmd == NAND_CMD_NONE)
485 		return;
486 
487 	if (ctrl & NAND_CLE)
488 		writeb(cmd, info->regs + S3C2440_NFCMD);
489 	else
490 		writeb(cmd, info->regs + S3C2440_NFADDR);
491 }
492 
493 /* s3c2410_nand_devready()
494  *
495  * returns 0 if the nand is busy, 1 if it is ready
496 */
497 
s3c2410_nand_devready(struct mtd_info * mtd)498 static int s3c2410_nand_devready(struct mtd_info *mtd)
499 {
500 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
501 	return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
502 }
503 
s3c2440_nand_devready(struct mtd_info * mtd)504 static int s3c2440_nand_devready(struct mtd_info *mtd)
505 {
506 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
507 	return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
508 }
509 
s3c2412_nand_devready(struct mtd_info * mtd)510 static int s3c2412_nand_devready(struct mtd_info *mtd)
511 {
512 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
513 	return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
514 }
515 
516 /* ECC handling functions */
517 
s3c2410_nand_correct_data(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)518 static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
519 				     u_char *read_ecc, u_char *calc_ecc)
520 {
521 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
522 	unsigned int diff0, diff1, diff2;
523 	unsigned int bit, byte;
524 
525 	pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
526 
527 	diff0 = read_ecc[0] ^ calc_ecc[0];
528 	diff1 = read_ecc[1] ^ calc_ecc[1];
529 	diff2 = read_ecc[2] ^ calc_ecc[2];
530 
531 	pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
532 		 __func__, 3, read_ecc, 3, calc_ecc,
533 		 diff0, diff1, diff2);
534 
535 	if (diff0 == 0 && diff1 == 0 && diff2 == 0)
536 		return 0;		/* ECC is ok */
537 
538 	/* sometimes people do not think about using the ECC, so check
539 	 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
540 	 * the error, on the assumption that this is an un-eccd page.
541 	 */
542 	if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
543 	    && info->platform->ignore_unset_ecc)
544 		return 0;
545 
546 	/* Can we correct this ECC (ie, one row and column change).
547 	 * Note, this is similar to the 256 error code on smartmedia */
548 
549 	if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
550 	    ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
551 	    ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
552 		/* calculate the bit position of the error */
553 
554 		bit  = ((diff2 >> 3) & 1) |
555 		       ((diff2 >> 4) & 2) |
556 		       ((diff2 >> 5) & 4);
557 
558 		/* calculate the byte position of the error */
559 
560 		byte = ((diff2 << 7) & 0x100) |
561 		       ((diff1 << 0) & 0x80)  |
562 		       ((diff1 << 1) & 0x40)  |
563 		       ((diff1 << 2) & 0x20)  |
564 		       ((diff1 << 3) & 0x10)  |
565 		       ((diff0 >> 4) & 0x08)  |
566 		       ((diff0 >> 3) & 0x04)  |
567 		       ((diff0 >> 2) & 0x02)  |
568 		       ((diff0 >> 1) & 0x01);
569 
570 		dev_dbg(info->device, "correcting error bit %d, byte %d\n",
571 			bit, byte);
572 
573 		dat[byte] ^= (1 << bit);
574 		return 1;
575 	}
576 
577 	/* if there is only one bit difference in the ECC, then
578 	 * one of only a row or column parity has changed, which
579 	 * means the error is most probably in the ECC itself */
580 
581 	diff0 |= (diff1 << 8);
582 	diff0 |= (diff2 << 16);
583 
584 	/* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
585 	if ((diff0 & (diff0 - 1)) == 0)
586 		return 1;
587 
588 	return -1;
589 }
590 
591 /* ECC functions
592  *
593  * These allow the s3c2410 and s3c2440 to use the controller's ECC
594  * generator block to ECC the data as it passes through]
595 */
596 
s3c2410_nand_enable_hwecc(struct mtd_info * mtd,int mode)597 static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
598 {
599 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
600 	unsigned long ctrl;
601 
602 	ctrl = readl(info->regs + S3C2410_NFCONF);
603 	ctrl |= S3C2410_NFCONF_INITECC;
604 	writel(ctrl, info->regs + S3C2410_NFCONF);
605 }
606 
s3c2412_nand_enable_hwecc(struct mtd_info * mtd,int mode)607 static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
608 {
609 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
610 	unsigned long ctrl;
611 
612 	ctrl = readl(info->regs + S3C2440_NFCONT);
613 	writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
614 	       info->regs + S3C2440_NFCONT);
615 }
616 
s3c2440_nand_enable_hwecc(struct mtd_info * mtd,int mode)617 static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
618 {
619 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
620 	unsigned long ctrl;
621 
622 	ctrl = readl(info->regs + S3C2440_NFCONT);
623 	writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
624 }
625 
s3c2410_nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)626 static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
627 				      u_char *ecc_code)
628 {
629 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
630 
631 	ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
632 	ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
633 	ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
634 
635 	pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
636 
637 	return 0;
638 }
639 
s3c2412_nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)640 static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
641 				      u_char *ecc_code)
642 {
643 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
644 	unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
645 
646 	ecc_code[0] = ecc;
647 	ecc_code[1] = ecc >> 8;
648 	ecc_code[2] = ecc >> 16;
649 
650 	pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
651 
652 	return 0;
653 }
654 
s3c2440_nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)655 static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
656 				      u_char *ecc_code)
657 {
658 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
659 	unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
660 
661 	ecc_code[0] = ecc;
662 	ecc_code[1] = ecc >> 8;
663 	ecc_code[2] = ecc >> 16;
664 
665 	pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
666 
667 	return 0;
668 }
669 
670 /* over-ride the standard functions for a little more speed. We can
671  * use read/write block to move the data buffers to/from the controller
672 */
673 
s3c2410_nand_read_buf(struct mtd_info * mtd,u_char * buf,int len)674 static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
675 {
676 	struct nand_chip *this = mtd_to_nand(mtd);
677 	readsb(this->IO_ADDR_R, buf, len);
678 }
679 
s3c2440_nand_read_buf(struct mtd_info * mtd,u_char * buf,int len)680 static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
681 {
682 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
683 
684 	readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
685 
686 	/* cleanup if we've got less than a word to do */
687 	if (len & 3) {
688 		buf += len & ~3;
689 
690 		for (; len & 3; len--)
691 			*buf++ = readb(info->regs + S3C2440_NFDATA);
692 	}
693 }
694 
s3c2410_nand_write_buf(struct mtd_info * mtd,const u_char * buf,int len)695 static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
696 				   int len)
697 {
698 	struct nand_chip *this = mtd_to_nand(mtd);
699 	writesb(this->IO_ADDR_W, buf, len);
700 }
701 
s3c2440_nand_write_buf(struct mtd_info * mtd,const u_char * buf,int len)702 static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
703 				   int len)
704 {
705 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
706 
707 	writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
708 
709 	/* cleanup any fractional write */
710 	if (len & 3) {
711 		buf += len & ~3;
712 
713 		for (; len & 3; len--, buf++)
714 			writeb(*buf, info->regs + S3C2440_NFDATA);
715 	}
716 }
717 
718 /* cpufreq driver support */
719 
720 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
721 
s3c2410_nand_cpufreq_transition(struct notifier_block * nb,unsigned long val,void * data)722 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
723 					  unsigned long val, void *data)
724 {
725 	struct s3c2410_nand_info *info;
726 	unsigned long newclk;
727 
728 	info = container_of(nb, struct s3c2410_nand_info, freq_transition);
729 	newclk = clk_get_rate(info->clk);
730 
731 	if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
732 	    (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
733 		s3c2410_nand_setrate(info);
734 	}
735 
736 	return 0;
737 }
738 
s3c2410_nand_cpufreq_register(struct s3c2410_nand_info * info)739 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
740 {
741 	info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
742 
743 	return cpufreq_register_notifier(&info->freq_transition,
744 					 CPUFREQ_TRANSITION_NOTIFIER);
745 }
746 
747 static inline void
s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info * info)748 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
749 {
750 	cpufreq_unregister_notifier(&info->freq_transition,
751 				    CPUFREQ_TRANSITION_NOTIFIER);
752 }
753 
754 #else
s3c2410_nand_cpufreq_register(struct s3c2410_nand_info * info)755 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
756 {
757 	return 0;
758 }
759 
760 static inline void
s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info * info)761 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
762 {
763 }
764 #endif
765 
766 /* device management functions */
767 
s3c24xx_nand_remove(struct platform_device * pdev)768 static int s3c24xx_nand_remove(struct platform_device *pdev)
769 {
770 	struct s3c2410_nand_info *info = to_nand_info(pdev);
771 
772 	if (info == NULL)
773 		return 0;
774 
775 	s3c2410_nand_cpufreq_deregister(info);
776 
777 	/* Release all our mtds  and their partitions, then go through
778 	 * freeing the resources used
779 	 */
780 
781 	if (info->mtds != NULL) {
782 		struct s3c2410_nand_mtd *ptr = info->mtds;
783 		int mtdno;
784 
785 		for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
786 			pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
787 			nand_release(nand_to_mtd(&ptr->chip));
788 		}
789 	}
790 
791 	/* free the common resources */
792 
793 	if (!IS_ERR(info->clk))
794 		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
795 
796 	return 0;
797 }
798 
s3c2410_nand_add_partition(struct s3c2410_nand_info * info,struct s3c2410_nand_mtd * mtd,struct s3c2410_nand_set * set)799 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
800 				      struct s3c2410_nand_mtd *mtd,
801 				      struct s3c2410_nand_set *set)
802 {
803 	if (set) {
804 		struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
805 
806 		mtdinfo->name = set->name;
807 
808 		return mtd_device_parse_register(mtdinfo, NULL, NULL,
809 					 set->partitions, set->nr_partitions);
810 	}
811 
812 	return -ENODEV;
813 }
814 
s3c2410_nand_setup_data_interface(struct mtd_info * mtd,int csline,const struct nand_data_interface * conf)815 static int s3c2410_nand_setup_data_interface(struct mtd_info *mtd, int csline,
816 					const struct nand_data_interface *conf)
817 {
818 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
819 	struct s3c2410_platform_nand *pdata = info->platform;
820 	const struct nand_sdr_timings *timings;
821 	int tacls;
822 
823 	timings = nand_get_sdr_timings(conf);
824 	if (IS_ERR(timings))
825 		return -ENOTSUPP;
826 
827 	tacls = timings->tCLS_min - timings->tWP_min;
828 	if (tacls < 0)
829 		tacls = 0;
830 
831 	pdata->tacls  = DIV_ROUND_UP(tacls, 1000);
832 	pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
833 	pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
834 
835 	return s3c2410_nand_setrate(info);
836 }
837 
838 /**
839  * s3c2410_nand_init_chip - initialise a single instance of an chip
840  * @info: The base NAND controller the chip is on.
841  * @nmtd: The new controller MTD instance to fill in.
842  * @set: The information passed from the board specific platform data.
843  *
844  * Initialise the given @nmtd from the information in @info and @set. This
845  * readies the structure for use with the MTD layer functions by ensuring
846  * all pointers are setup and the necessary control routines selected.
847  */
s3c2410_nand_init_chip(struct s3c2410_nand_info * info,struct s3c2410_nand_mtd * nmtd,struct s3c2410_nand_set * set)848 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
849 				   struct s3c2410_nand_mtd *nmtd,
850 				   struct s3c2410_nand_set *set)
851 {
852 	struct device_node *np = info->device->of_node;
853 	struct nand_chip *chip = &nmtd->chip;
854 	void __iomem *regs = info->regs;
855 
856 	nand_set_flash_node(chip, set->of_node);
857 
858 	chip->write_buf    = s3c2410_nand_write_buf;
859 	chip->read_buf     = s3c2410_nand_read_buf;
860 	chip->select_chip  = s3c2410_nand_select_chip;
861 	chip->chip_delay   = 50;
862 	nand_set_controller_data(chip, nmtd);
863 	chip->options	   = set->options;
864 	chip->controller   = &info->controller;
865 
866 	/*
867 	 * let's keep behavior unchanged for legacy boards booting via pdata and
868 	 * auto-detect timings only when booting with a device tree.
869 	 */
870 	if (np)
871 		chip->setup_data_interface = s3c2410_nand_setup_data_interface;
872 
873 	switch (info->cpu_type) {
874 	case TYPE_S3C2410:
875 		chip->IO_ADDR_W = regs + S3C2410_NFDATA;
876 		info->sel_reg   = regs + S3C2410_NFCONF;
877 		info->sel_bit	= S3C2410_NFCONF_nFCE;
878 		chip->cmd_ctrl  = s3c2410_nand_hwcontrol;
879 		chip->dev_ready = s3c2410_nand_devready;
880 		break;
881 
882 	case TYPE_S3C2440:
883 		chip->IO_ADDR_W = regs + S3C2440_NFDATA;
884 		info->sel_reg   = regs + S3C2440_NFCONT;
885 		info->sel_bit	= S3C2440_NFCONT_nFCE;
886 		chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
887 		chip->dev_ready = s3c2440_nand_devready;
888 		chip->read_buf  = s3c2440_nand_read_buf;
889 		chip->write_buf	= s3c2440_nand_write_buf;
890 		break;
891 
892 	case TYPE_S3C2412:
893 		chip->IO_ADDR_W = regs + S3C2440_NFDATA;
894 		info->sel_reg   = regs + S3C2440_NFCONT;
895 		info->sel_bit	= S3C2412_NFCONT_nFCE0;
896 		chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
897 		chip->dev_ready = s3c2412_nand_devready;
898 
899 		if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
900 			dev_info(info->device, "System booted from NAND\n");
901 
902 		break;
903 	}
904 
905 	chip->IO_ADDR_R = chip->IO_ADDR_W;
906 
907 	nmtd->info	   = info;
908 	nmtd->set	   = set;
909 
910 	chip->ecc.mode = info->platform->ecc_mode;
911 
912 	/*
913 	 * If you use u-boot BBT creation code, specifying this flag will
914 	 * let the kernel fish out the BBT from the NAND.
915 	 */
916 	if (set->flash_bbt)
917 		chip->bbt_options |= NAND_BBT_USE_FLASH;
918 }
919 
920 /**
921  * s3c2410_nand_update_chip - post probe update
922  * @info: The controller instance.
923  * @nmtd: The driver version of the MTD instance.
924  *
925  * This routine is called after the chip probe has successfully completed
926  * and the relevant per-chip information updated. This call ensure that
927  * we update the internal state accordingly.
928  *
929  * The internal state is currently limited to the ECC state information.
930 */
s3c2410_nand_update_chip(struct s3c2410_nand_info * info,struct s3c2410_nand_mtd * nmtd)931 static int s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
932 				    struct s3c2410_nand_mtd *nmtd)
933 {
934 	struct nand_chip *chip = &nmtd->chip;
935 
936 	switch (chip->ecc.mode) {
937 
938 	case NAND_ECC_NONE:
939 		dev_info(info->device, "ECC disabled\n");
940 		break;
941 
942 	case NAND_ECC_SOFT:
943 		/*
944 		 * This driver expects Hamming based ECC when ecc_mode is set
945 		 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
946 		 * avoid adding an extra ecc_algo field to
947 		 * s3c2410_platform_nand.
948 		 */
949 		chip->ecc.algo = NAND_ECC_HAMMING;
950 		dev_info(info->device, "soft ECC\n");
951 		break;
952 
953 	case NAND_ECC_HW:
954 		chip->ecc.calculate = s3c2410_nand_calculate_ecc;
955 		chip->ecc.correct   = s3c2410_nand_correct_data;
956 		chip->ecc.strength  = 1;
957 
958 		switch (info->cpu_type) {
959 		case TYPE_S3C2410:
960 			chip->ecc.hwctl	    = s3c2410_nand_enable_hwecc;
961 			chip->ecc.calculate = s3c2410_nand_calculate_ecc;
962 			break;
963 
964 		case TYPE_S3C2412:
965 			chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
966 			chip->ecc.calculate = s3c2412_nand_calculate_ecc;
967 			break;
968 
969 		case TYPE_S3C2440:
970 			chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
971 			chip->ecc.calculate = s3c2440_nand_calculate_ecc;
972 			break;
973 		}
974 
975 		dev_dbg(info->device, "chip %p => page shift %d\n",
976 			chip, chip->page_shift);
977 
978 		/* change the behaviour depending on whether we are using
979 		 * the large or small page nand device */
980 		if (chip->page_shift > 10) {
981 			chip->ecc.size	    = 256;
982 			chip->ecc.bytes	    = 3;
983 		} else {
984 			chip->ecc.size	    = 512;
985 			chip->ecc.bytes	    = 3;
986 			mtd_set_ooblayout(nand_to_mtd(chip),
987 					  &s3c2410_ooblayout_ops);
988 		}
989 
990 		dev_info(info->device, "hardware ECC\n");
991 		break;
992 
993 	default:
994 		dev_err(info->device, "invalid ECC mode!\n");
995 		return -EINVAL;
996 	}
997 
998 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
999 		chip->options |= NAND_SKIP_BBTSCAN;
1000 
1001 	return 0;
1002 }
1003 
1004 static const struct of_device_id s3c24xx_nand_dt_ids[] = {
1005 	{
1006 		.compatible = "samsung,s3c2410-nand",
1007 		.data = &s3c2410_nand_devtype_data,
1008 	}, {
1009 		/* also compatible with s3c6400 */
1010 		.compatible = "samsung,s3c2412-nand",
1011 		.data = &s3c2412_nand_devtype_data,
1012 	}, {
1013 		.compatible = "samsung,s3c2440-nand",
1014 		.data = &s3c2440_nand_devtype_data,
1015 	},
1016 	{ /* sentinel */ }
1017 };
1018 MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
1019 
s3c24xx_nand_probe_dt(struct platform_device * pdev)1020 static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
1021 {
1022 	const struct s3c24XX_nand_devtype_data *devtype_data;
1023 	struct s3c2410_platform_nand *pdata;
1024 	struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1025 	struct device_node *np = pdev->dev.of_node, *child;
1026 	struct s3c2410_nand_set *sets;
1027 
1028 	devtype_data = of_device_get_match_data(&pdev->dev);
1029 	if (!devtype_data)
1030 		return -ENODEV;
1031 
1032 	info->cpu_type = devtype_data->type;
1033 
1034 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1035 	if (!pdata)
1036 		return -ENOMEM;
1037 
1038 	pdev->dev.platform_data = pdata;
1039 
1040 	pdata->nr_sets = of_get_child_count(np);
1041 	if (!pdata->nr_sets)
1042 		return 0;
1043 
1044 	sets = devm_kzalloc(&pdev->dev, sizeof(*sets) * pdata->nr_sets,
1045 			    GFP_KERNEL);
1046 	if (!sets)
1047 		return -ENOMEM;
1048 
1049 	pdata->sets = sets;
1050 
1051 	for_each_available_child_of_node(np, child) {
1052 		sets->name = (char *)child->name;
1053 		sets->of_node = child;
1054 		sets->nr_chips = 1;
1055 
1056 		of_node_get(child);
1057 
1058 		sets++;
1059 	}
1060 
1061 	return 0;
1062 }
1063 
s3c24xx_nand_probe_pdata(struct platform_device * pdev)1064 static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
1065 {
1066 	struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1067 
1068 	info->cpu_type = platform_get_device_id(pdev)->driver_data;
1069 
1070 	return 0;
1071 }
1072 
1073 /* s3c24xx_nand_probe
1074  *
1075  * called by device layer when it finds a device matching
1076  * one our driver can handled. This code checks to see if
1077  * it can allocate all necessary resources then calls the
1078  * nand layer to look for devices
1079 */
s3c24xx_nand_probe(struct platform_device * pdev)1080 static int s3c24xx_nand_probe(struct platform_device *pdev)
1081 {
1082 	struct s3c2410_platform_nand *plat;
1083 	struct s3c2410_nand_info *info;
1084 	struct s3c2410_nand_mtd *nmtd;
1085 	struct s3c2410_nand_set *sets;
1086 	struct resource *res;
1087 	int err = 0;
1088 	int size;
1089 	int nr_sets;
1090 	int setno;
1091 
1092 	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
1093 	if (info == NULL) {
1094 		err = -ENOMEM;
1095 		goto exit_error;
1096 	}
1097 
1098 	platform_set_drvdata(pdev, info);
1099 
1100 	nand_hw_control_init(&info->controller);
1101 
1102 	/* get the clock source and enable it */
1103 
1104 	info->clk = devm_clk_get(&pdev->dev, "nand");
1105 	if (IS_ERR(info->clk)) {
1106 		dev_err(&pdev->dev, "failed to get clock\n");
1107 		err = -ENOENT;
1108 		goto exit_error;
1109 	}
1110 
1111 	s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1112 
1113 	if (pdev->dev.of_node)
1114 		err = s3c24xx_nand_probe_dt(pdev);
1115 	else
1116 		err = s3c24xx_nand_probe_pdata(pdev);
1117 
1118 	if (err)
1119 		goto exit_error;
1120 
1121 	plat = to_nand_plat(pdev);
1122 
1123 	/* allocate and map the resource */
1124 
1125 	/* currently we assume we have the one resource */
1126 	res = pdev->resource;
1127 	size = resource_size(res);
1128 
1129 	info->device	= &pdev->dev;
1130 	info->platform	= plat;
1131 
1132 	info->regs = devm_ioremap_resource(&pdev->dev, res);
1133 	if (IS_ERR(info->regs)) {
1134 		err = PTR_ERR(info->regs);
1135 		goto exit_error;
1136 	}
1137 
1138 	dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1139 
1140 	sets = (plat != NULL) ? plat->sets : NULL;
1141 	nr_sets = (plat != NULL) ? plat->nr_sets : 1;
1142 
1143 	info->mtd_count = nr_sets;
1144 
1145 	/* allocate our information */
1146 
1147 	size = nr_sets * sizeof(*info->mtds);
1148 	info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1149 	if (info->mtds == NULL) {
1150 		err = -ENOMEM;
1151 		goto exit_error;
1152 	}
1153 
1154 	/* initialise all possible chips */
1155 
1156 	nmtd = info->mtds;
1157 
1158 	for (setno = 0; setno < nr_sets; setno++, nmtd++) {
1159 		struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
1160 
1161 		pr_debug("initialising set %d (%p, info %p)\n",
1162 			 setno, nmtd, info);
1163 
1164 		mtd->dev.parent = &pdev->dev;
1165 		s3c2410_nand_init_chip(info, nmtd, sets);
1166 
1167 		nmtd->scan_res = nand_scan_ident(mtd,
1168 						 (sets) ? sets->nr_chips : 1,
1169 						 NULL);
1170 
1171 		if (nmtd->scan_res == 0) {
1172 			err = s3c2410_nand_update_chip(info, nmtd);
1173 			if (err < 0)
1174 				goto exit_error;
1175 			nand_scan_tail(mtd);
1176 			s3c2410_nand_add_partition(info, nmtd, sets);
1177 		}
1178 
1179 		if (sets != NULL)
1180 			sets++;
1181 	}
1182 
1183 	/* initialise the hardware */
1184 	err = s3c2410_nand_inithw(info);
1185 	if (err != 0)
1186 		goto exit_error;
1187 
1188 	err = s3c2410_nand_cpufreq_register(info);
1189 	if (err < 0) {
1190 		dev_err(&pdev->dev, "failed to init cpufreq support\n");
1191 		goto exit_error;
1192 	}
1193 
1194 	if (allow_clk_suspend(info)) {
1195 		dev_info(&pdev->dev, "clock idle support enabled\n");
1196 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1197 	}
1198 
1199 	return 0;
1200 
1201  exit_error:
1202 	s3c24xx_nand_remove(pdev);
1203 
1204 	if (err == 0)
1205 		err = -EINVAL;
1206 	return err;
1207 }
1208 
1209 /* PM Support */
1210 #ifdef CONFIG_PM
1211 
s3c24xx_nand_suspend(struct platform_device * dev,pm_message_t pm)1212 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1213 {
1214 	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1215 
1216 	if (info) {
1217 		info->save_sel = readl(info->sel_reg);
1218 
1219 		/* For the moment, we must ensure nFCE is high during
1220 		 * the time we are suspended. This really should be
1221 		 * handled by suspending the MTDs we are using, but
1222 		 * that is currently not the case. */
1223 
1224 		writel(info->save_sel | info->sel_bit, info->sel_reg);
1225 
1226 		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1227 	}
1228 
1229 	return 0;
1230 }
1231 
s3c24xx_nand_resume(struct platform_device * dev)1232 static int s3c24xx_nand_resume(struct platform_device *dev)
1233 {
1234 	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1235 	unsigned long sel;
1236 
1237 	if (info) {
1238 		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1239 		s3c2410_nand_inithw(info);
1240 
1241 		/* Restore the state of the nFCE line. */
1242 
1243 		sel = readl(info->sel_reg);
1244 		sel &= ~info->sel_bit;
1245 		sel |= info->save_sel & info->sel_bit;
1246 		writel(sel, info->sel_reg);
1247 
1248 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1249 	}
1250 
1251 	return 0;
1252 }
1253 
1254 #else
1255 #define s3c24xx_nand_suspend NULL
1256 #define s3c24xx_nand_resume NULL
1257 #endif
1258 
1259 /* driver device registration */
1260 
1261 static const struct platform_device_id s3c24xx_driver_ids[] = {
1262 	{
1263 		.name		= "s3c2410-nand",
1264 		.driver_data	= TYPE_S3C2410,
1265 	}, {
1266 		.name		= "s3c2440-nand",
1267 		.driver_data	= TYPE_S3C2440,
1268 	}, {
1269 		.name		= "s3c2412-nand",
1270 		.driver_data	= TYPE_S3C2412,
1271 	}, {
1272 		.name		= "s3c6400-nand",
1273 		.driver_data	= TYPE_S3C2412, /* compatible with 2412 */
1274 	},
1275 	{ }
1276 };
1277 
1278 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1279 
1280 static struct platform_driver s3c24xx_nand_driver = {
1281 	.probe		= s3c24xx_nand_probe,
1282 	.remove		= s3c24xx_nand_remove,
1283 	.suspend	= s3c24xx_nand_suspend,
1284 	.resume		= s3c24xx_nand_resume,
1285 	.id_table	= s3c24xx_driver_ids,
1286 	.driver		= {
1287 		.name	= "s3c24xx-nand",
1288 		.of_match_table = s3c24xx_nand_dt_ids,
1289 	},
1290 };
1291 
1292 module_platform_driver(s3c24xx_nand_driver);
1293 
1294 MODULE_LICENSE("GPL");
1295 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1296 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
1297