• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright © 2005-2009 Samsung Electronics
5  *  Copyright © 2007 Nokia Corporation
6  *
7  *  Kyungmin Park <kyungmin.park@samsung.com>
8  *
9  *  Credits:
10  *	Adrian Hunter <ext-adrian.hunter@nokia.com>:
11  *	auto-placement support, read-while load support, various fixes
12  *
13  *	Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
14  *	Flex-OneNAND support
15  *	Amul Kumar Saha <amul.saha at samsung.com>
16  *	OTP support
17  *
18  * This program is free software; you can redistribute it and/or modify
19  * it under the terms of the GNU General Public License version 2 as
20  * published by the Free Software Foundation.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
27 #include <linux/sched.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/jiffies.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/onenand.h>
33 #include <linux/mtd/partitions.h>
34 
35 #include <asm/io.h>
36 
37 /*
38  * Multiblock erase if number of blocks to erase is 2 or more.
39  * Maximum number of blocks for simultaneous erase is 64.
40  */
41 #define MB_ERASE_MIN_BLK_COUNT 2
42 #define MB_ERASE_MAX_BLK_COUNT 64
43 
44 /* Default Flex-OneNAND boundary and lock respectively */
45 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
46 
47 module_param_array(flex_bdry, int, NULL, 0400);
48 MODULE_PARM_DESC(flex_bdry,	"SLC Boundary information for Flex-OneNAND"
49 				"Syntax:flex_bdry=DIE_BDRY,LOCK,..."
50 				"DIE_BDRY: SLC boundary of the die"
51 				"LOCK: Locking information for SLC boundary"
52 				"    : 0->Set boundary in unlocked status"
53 				"    : 1->Set boundary in locked status");
54 
55 /* Default OneNAND/Flex-OneNAND OTP options*/
56 static int otp;
57 
58 module_param(otp, int, 0400);
59 MODULE_PARM_DESC(otp,	"Corresponding behaviour of OneNAND in OTP"
60 			"Syntax : otp=LOCK_TYPE"
61 			"LOCK_TYPE : Keys issued, for specific OTP Lock type"
62 			"	   : 0 -> Default (No Blocks Locked)"
63 			"	   : 1 -> OTP Block lock"
64 			"	   : 2 -> 1st Block lock"
65 			"	   : 3 -> BOTH OTP Block and 1st Block lock");
66 
67 /*
68  * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
69  * For now, we expose only 64 out of 80 ecc bytes
70  */
flexonenand_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)71 static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section,
72 				     struct mtd_oob_region *oobregion)
73 {
74 	if (section > 7)
75 		return -ERANGE;
76 
77 	oobregion->offset = (section * 16) + 6;
78 	oobregion->length = 10;
79 
80 	return 0;
81 }
82 
flexonenand_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)83 static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section,
84 				      struct mtd_oob_region *oobregion)
85 {
86 	if (section > 7)
87 		return -ERANGE;
88 
89 	oobregion->offset = (section * 16) + 2;
90 	oobregion->length = 4;
91 
92 	return 0;
93 }
94 
95 static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = {
96 	.ecc = flexonenand_ooblayout_ecc,
97 	.free = flexonenand_ooblayout_free,
98 };
99 
100 /*
101  * onenand_oob_128 - oob info for OneNAND with 4KB page
102  *
103  * Based on specification:
104  * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
105  *
106  */
onenand_ooblayout_128_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)107 static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section,
108 				     struct mtd_oob_region *oobregion)
109 {
110 	if (section > 7)
111 		return -ERANGE;
112 
113 	oobregion->offset = (section * 16) + 7;
114 	oobregion->length = 9;
115 
116 	return 0;
117 }
118 
onenand_ooblayout_128_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)119 static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section,
120 				      struct mtd_oob_region *oobregion)
121 {
122 	if (section >= 8)
123 		return -ERANGE;
124 
125 	/*
126 	 * free bytes are using the spare area fields marked as
127 	 * "Managed by internal ECC logic for Logical Sector Number area"
128 	 */
129 	oobregion->offset = (section * 16) + 2;
130 	oobregion->length = 3;
131 
132 	return 0;
133 }
134 
135 static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = {
136 	.ecc = onenand_ooblayout_128_ecc,
137 	.free = onenand_ooblayout_128_free,
138 };
139 
140 /**
141  * onenand_oob_32_64 - oob info for large (2KB) page
142  */
onenand_ooblayout_32_64_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)143 static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section,
144 				       struct mtd_oob_region *oobregion)
145 {
146 	if (section > 3)
147 		return -ERANGE;
148 
149 	oobregion->offset = (section * 16) + 8;
150 	oobregion->length = 5;
151 
152 	return 0;
153 }
154 
onenand_ooblayout_32_64_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)155 static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section,
156 					struct mtd_oob_region *oobregion)
157 {
158 	int sections = (mtd->oobsize / 32) * 2;
159 
160 	if (section >= sections)
161 		return -ERANGE;
162 
163 	if (section & 1) {
164 		oobregion->offset = ((section - 1) * 16) + 14;
165 		oobregion->length = 2;
166 	} else  {
167 		oobregion->offset = (section * 16) + 2;
168 		oobregion->length = 3;
169 	}
170 
171 	return 0;
172 }
173 
174 static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = {
175 	.ecc = onenand_ooblayout_32_64_ecc,
176 	.free = onenand_ooblayout_32_64_free,
177 };
178 
179 static const unsigned char ffchars[] = {
180 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
181 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
182 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
183 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
184 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
185 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
186 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
187 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
188 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
189 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 80 */
190 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
191 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 96 */
192 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
193 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 112 */
194 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
195 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 128 */
196 };
197 
198 /**
199  * onenand_readw - [OneNAND Interface] Read OneNAND register
200  * @param addr		address to read
201  *
202  * Read OneNAND register
203  */
onenand_readw(void __iomem * addr)204 static unsigned short onenand_readw(void __iomem *addr)
205 {
206 	return readw(addr);
207 }
208 
209 /**
210  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
211  * @param value		value to write
212  * @param addr		address to write
213  *
214  * Write OneNAND register with value
215  */
onenand_writew(unsigned short value,void __iomem * addr)216 static void onenand_writew(unsigned short value, void __iomem *addr)
217 {
218 	writew(value, addr);
219 }
220 
221 /**
222  * onenand_block_address - [DEFAULT] Get block address
223  * @param this		onenand chip data structure
224  * @param block		the block
225  * @return		translated block address if DDP, otherwise same
226  *
227  * Setup Start Address 1 Register (F100h)
228  */
onenand_block_address(struct onenand_chip * this,int block)229 static int onenand_block_address(struct onenand_chip *this, int block)
230 {
231 	/* Device Flash Core select, NAND Flash Block Address */
232 	if (block & this->density_mask)
233 		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
234 
235 	return block;
236 }
237 
238 /**
239  * onenand_bufferram_address - [DEFAULT] Get bufferram address
240  * @param this		onenand chip data structure
241  * @param block		the block
242  * @return		set DBS value if DDP, otherwise 0
243  *
244  * Setup Start Address 2 Register (F101h) for DDP
245  */
onenand_bufferram_address(struct onenand_chip * this,int block)246 static int onenand_bufferram_address(struct onenand_chip *this, int block)
247 {
248 	/* Device BufferRAM Select */
249 	if (block & this->density_mask)
250 		return ONENAND_DDP_CHIP1;
251 
252 	return ONENAND_DDP_CHIP0;
253 }
254 
255 /**
256  * onenand_page_address - [DEFAULT] Get page address
257  * @param page		the page address
258  * @param sector	the sector address
259  * @return		combined page and sector address
260  *
261  * Setup Start Address 8 Register (F107h)
262  */
onenand_page_address(int page,int sector)263 static int onenand_page_address(int page, int sector)
264 {
265 	/* Flash Page Address, Flash Sector Address */
266 	int fpa, fsa;
267 
268 	fpa = page & ONENAND_FPA_MASK;
269 	fsa = sector & ONENAND_FSA_MASK;
270 
271 	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
272 }
273 
274 /**
275  * onenand_buffer_address - [DEFAULT] Get buffer address
276  * @param dataram1	DataRAM index
277  * @param sectors	the sector address
278  * @param count		the number of sectors
279  * @return		the start buffer value
280  *
281  * Setup Start Buffer Register (F200h)
282  */
onenand_buffer_address(int dataram1,int sectors,int count)283 static int onenand_buffer_address(int dataram1, int sectors, int count)
284 {
285 	int bsa, bsc;
286 
287 	/* BufferRAM Sector Address */
288 	bsa = sectors & ONENAND_BSA_MASK;
289 
290 	if (dataram1)
291 		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
292 	else
293 		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
294 
295 	/* BufferRAM Sector Count */
296 	bsc = count & ONENAND_BSC_MASK;
297 
298 	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
299 }
300 
301 /**
302  * flexonenand_block- For given address return block number
303  * @param this         - OneNAND device structure
304  * @param addr		- Address for which block number is needed
305  */
flexonenand_block(struct onenand_chip * this,loff_t addr)306 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
307 {
308 	unsigned boundary, blk, die = 0;
309 
310 	if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
311 		die = 1;
312 		addr -= this->diesize[0];
313 	}
314 
315 	boundary = this->boundary[die];
316 
317 	blk = addr >> (this->erase_shift - 1);
318 	if (blk > boundary)
319 		blk = (blk + boundary + 1) >> 1;
320 
321 	blk += die ? this->density_mask : 0;
322 	return blk;
323 }
324 
onenand_block(struct onenand_chip * this,loff_t addr)325 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
326 {
327 	if (!FLEXONENAND(this))
328 		return addr >> this->erase_shift;
329 	return flexonenand_block(this, addr);
330 }
331 
332 /**
333  * flexonenand_addr - Return address of the block
334  * @this:		OneNAND device structure
335  * @block:		Block number on Flex-OneNAND
336  *
337  * Return address of the block
338  */
flexonenand_addr(struct onenand_chip * this,int block)339 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
340 {
341 	loff_t ofs = 0;
342 	int die = 0, boundary;
343 
344 	if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
345 		block -= this->density_mask;
346 		die = 1;
347 		ofs = this->diesize[0];
348 	}
349 
350 	boundary = this->boundary[die];
351 	ofs += (loff_t)block << (this->erase_shift - 1);
352 	if (block > (boundary + 1))
353 		ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
354 	return ofs;
355 }
356 
onenand_addr(struct onenand_chip * this,int block)357 loff_t onenand_addr(struct onenand_chip *this, int block)
358 {
359 	if (!FLEXONENAND(this))
360 		return (loff_t)block << this->erase_shift;
361 	return flexonenand_addr(this, block);
362 }
363 EXPORT_SYMBOL(onenand_addr);
364 
365 /**
366  * onenand_get_density - [DEFAULT] Get OneNAND density
367  * @param dev_id	OneNAND device ID
368  *
369  * Get OneNAND density from device ID
370  */
onenand_get_density(int dev_id)371 static inline int onenand_get_density(int dev_id)
372 {
373 	int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
374 	return (density & ONENAND_DEVICE_DENSITY_MASK);
375 }
376 
377 /**
378  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
379  * @param mtd		MTD device structure
380  * @param addr		address whose erase region needs to be identified
381  */
flexonenand_region(struct mtd_info * mtd,loff_t addr)382 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
383 {
384 	int i;
385 
386 	for (i = 0; i < mtd->numeraseregions; i++)
387 		if (addr < mtd->eraseregions[i].offset)
388 			break;
389 	return i - 1;
390 }
391 EXPORT_SYMBOL(flexonenand_region);
392 
393 /**
394  * onenand_command - [DEFAULT] Send command to OneNAND device
395  * @param mtd		MTD device structure
396  * @param cmd		the command to be sent
397  * @param addr		offset to read from or write to
398  * @param len		number of bytes to read or write
399  *
400  * Send command to OneNAND device. This function is used for middle/large page
401  * devices (1KB/2KB Bytes per page)
402  */
onenand_command(struct mtd_info * mtd,int cmd,loff_t addr,size_t len)403 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
404 {
405 	struct onenand_chip *this = mtd->priv;
406 	int value, block, page;
407 
408 	/* Address translation */
409 	switch (cmd) {
410 	case ONENAND_CMD_UNLOCK:
411 	case ONENAND_CMD_LOCK:
412 	case ONENAND_CMD_LOCK_TIGHT:
413 	case ONENAND_CMD_UNLOCK_ALL:
414 		block = -1;
415 		page = -1;
416 		break;
417 
418 	case FLEXONENAND_CMD_PI_ACCESS:
419 		/* addr contains die index */
420 		block = addr * this->density_mask;
421 		page = -1;
422 		break;
423 
424 	case ONENAND_CMD_ERASE:
425 	case ONENAND_CMD_MULTIBLOCK_ERASE:
426 	case ONENAND_CMD_ERASE_VERIFY:
427 	case ONENAND_CMD_BUFFERRAM:
428 	case ONENAND_CMD_OTP_ACCESS:
429 		block = onenand_block(this, addr);
430 		page = -1;
431 		break;
432 
433 	case FLEXONENAND_CMD_READ_PI:
434 		cmd = ONENAND_CMD_READ;
435 		block = addr * this->density_mask;
436 		page = 0;
437 		break;
438 
439 	default:
440 		block = onenand_block(this, addr);
441 		if (FLEXONENAND(this))
442 			page = (int) (addr - onenand_addr(this, block))>>\
443 				this->page_shift;
444 		else
445 			page = (int) (addr >> this->page_shift);
446 		if (ONENAND_IS_2PLANE(this)) {
447 			/* Make the even block number */
448 			block &= ~1;
449 			/* Is it the odd plane? */
450 			if (addr & this->writesize)
451 				block++;
452 			page >>= 1;
453 		}
454 		page &= this->page_mask;
455 		break;
456 	}
457 
458 	/* NOTE: The setting order of the registers is very important! */
459 	if (cmd == ONENAND_CMD_BUFFERRAM) {
460 		/* Select DataRAM for DDP */
461 		value = onenand_bufferram_address(this, block);
462 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
463 
464 		if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
465 			/* It is always BufferRAM0 */
466 			ONENAND_SET_BUFFERRAM0(this);
467 		else
468 			/* Switch to the next data buffer */
469 			ONENAND_SET_NEXT_BUFFERRAM(this);
470 
471 		return 0;
472 	}
473 
474 	if (block != -1) {
475 		/* Write 'DFS, FBA' of Flash */
476 		value = onenand_block_address(this, block);
477 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
478 
479 		/* Select DataRAM for DDP */
480 		value = onenand_bufferram_address(this, block);
481 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
482 	}
483 
484 	if (page != -1) {
485 		/* Now we use page size operation */
486 		int sectors = 0, count = 0;
487 		int dataram;
488 
489 		switch (cmd) {
490 		case FLEXONENAND_CMD_RECOVER_LSB:
491 		case ONENAND_CMD_READ:
492 		case ONENAND_CMD_READOOB:
493 			if (ONENAND_IS_4KB_PAGE(this))
494 				/* It is always BufferRAM0 */
495 				dataram = ONENAND_SET_BUFFERRAM0(this);
496 			else
497 				dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
498 			break;
499 
500 		default:
501 			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
502 				cmd = ONENAND_CMD_2X_PROG;
503 			dataram = ONENAND_CURRENT_BUFFERRAM(this);
504 			break;
505 		}
506 
507 		/* Write 'FPA, FSA' of Flash */
508 		value = onenand_page_address(page, sectors);
509 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
510 
511 		/* Write 'BSA, BSC' of DataRAM */
512 		value = onenand_buffer_address(dataram, sectors, count);
513 		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
514 	}
515 
516 	/* Interrupt clear */
517 	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
518 
519 	/* Write command */
520 	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
521 
522 	return 0;
523 }
524 
525 /**
526  * onenand_read_ecc - return ecc status
527  * @param this		onenand chip structure
528  */
onenand_read_ecc(struct onenand_chip * this)529 static inline int onenand_read_ecc(struct onenand_chip *this)
530 {
531 	int ecc, i, result = 0;
532 
533 	if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
534 		return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
535 
536 	for (i = 0; i < 4; i++) {
537 		ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
538 		if (likely(!ecc))
539 			continue;
540 		if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
541 			return ONENAND_ECC_2BIT_ALL;
542 		else
543 			result = ONENAND_ECC_1BIT_ALL;
544 	}
545 
546 	return result;
547 }
548 
549 /**
550  * onenand_wait - [DEFAULT] wait until the command is done
551  * @param mtd		MTD device structure
552  * @param state		state to select the max. timeout value
553  *
554  * Wait for command done. This applies to all OneNAND command
555  * Read can take up to 30us, erase up to 2ms and program up to 350us
556  * according to general OneNAND specs
557  */
onenand_wait(struct mtd_info * mtd,int state)558 static int onenand_wait(struct mtd_info *mtd, int state)
559 {
560 	struct onenand_chip * this = mtd->priv;
561 	unsigned long timeout;
562 	unsigned int flags = ONENAND_INT_MASTER;
563 	unsigned int interrupt = 0;
564 	unsigned int ctrl;
565 
566 	/* The 20 msec is enough */
567 	timeout = jiffies + msecs_to_jiffies(20);
568 	while (time_before(jiffies, timeout)) {
569 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
570 
571 		if (interrupt & flags)
572 			break;
573 
574 		if (state != FL_READING && state != FL_PREPARING_ERASE)
575 			cond_resched();
576 	}
577 	/* To get correct interrupt status in timeout case */
578 	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
579 
580 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
581 
582 	/*
583 	 * In the Spec. it checks the controller status first
584 	 * However if you get the correct information in case of
585 	 * power off recovery (POR) test, it should read ECC status first
586 	 */
587 	if (interrupt & ONENAND_INT_READ) {
588 		int ecc = onenand_read_ecc(this);
589 		if (ecc) {
590 			if (ecc & ONENAND_ECC_2BIT_ALL) {
591 				printk(KERN_ERR "%s: ECC error = 0x%04x\n",
592 					__func__, ecc);
593 				mtd->ecc_stats.failed++;
594 				return -EBADMSG;
595 			} else if (ecc & ONENAND_ECC_1BIT_ALL) {
596 				printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
597 					__func__, ecc);
598 				mtd->ecc_stats.corrected++;
599 			}
600 		}
601 	} else if (state == FL_READING) {
602 		printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
603 			__func__, ctrl, interrupt);
604 		return -EIO;
605 	}
606 
607 	if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
608 		printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
609 		       __func__, ctrl, interrupt);
610 		return -EIO;
611 	}
612 
613 	if (!(interrupt & ONENAND_INT_MASTER)) {
614 		printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
615 		       __func__, ctrl, interrupt);
616 		return -EIO;
617 	}
618 
619 	/* If there's controller error, it's a real error */
620 	if (ctrl & ONENAND_CTRL_ERROR) {
621 		printk(KERN_ERR "%s: controller error = 0x%04x\n",
622 			__func__, ctrl);
623 		if (ctrl & ONENAND_CTRL_LOCK)
624 			printk(KERN_ERR "%s: it's locked error.\n", __func__);
625 		return -EIO;
626 	}
627 
628 	return 0;
629 }
630 
631 /*
632  * onenand_interrupt - [DEFAULT] onenand interrupt handler
633  * @param irq		onenand interrupt number
634  * @param dev_id	interrupt data
635  *
636  * complete the work
637  */
onenand_interrupt(int irq,void * data)638 static irqreturn_t onenand_interrupt(int irq, void *data)
639 {
640 	struct onenand_chip *this = data;
641 
642 	/* To handle shared interrupt */
643 	if (!this->complete.done)
644 		complete(&this->complete);
645 
646 	return IRQ_HANDLED;
647 }
648 
649 /*
650  * onenand_interrupt_wait - [DEFAULT] wait until the command is done
651  * @param mtd		MTD device structure
652  * @param state		state to select the max. timeout value
653  *
654  * Wait for command done.
655  */
onenand_interrupt_wait(struct mtd_info * mtd,int state)656 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
657 {
658 	struct onenand_chip *this = mtd->priv;
659 
660 	wait_for_completion(&this->complete);
661 
662 	return onenand_wait(mtd, state);
663 }
664 
665 /*
666  * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
667  * @param mtd		MTD device structure
668  * @param state		state to select the max. timeout value
669  *
670  * Try interrupt based wait (It is used one-time)
671  */
onenand_try_interrupt_wait(struct mtd_info * mtd,int state)672 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
673 {
674 	struct onenand_chip *this = mtd->priv;
675 	unsigned long remain, timeout;
676 
677 	/* We use interrupt wait first */
678 	this->wait = onenand_interrupt_wait;
679 
680 	timeout = msecs_to_jiffies(100);
681 	remain = wait_for_completion_timeout(&this->complete, timeout);
682 	if (!remain) {
683 		printk(KERN_INFO "OneNAND: There's no interrupt. "
684 				"We use the normal wait\n");
685 
686 		/* Release the irq */
687 		free_irq(this->irq, this);
688 
689 		this->wait = onenand_wait;
690 	}
691 
692 	return onenand_wait(mtd, state);
693 }
694 
695 /*
696  * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
697  * @param mtd		MTD device structure
698  *
699  * There's two method to wait onenand work
700  * 1. polling - read interrupt status register
701  * 2. interrupt - use the kernel interrupt method
702  */
onenand_setup_wait(struct mtd_info * mtd)703 static void onenand_setup_wait(struct mtd_info *mtd)
704 {
705 	struct onenand_chip *this = mtd->priv;
706 	int syscfg;
707 
708 	init_completion(&this->complete);
709 
710 	if (this->irq <= 0) {
711 		this->wait = onenand_wait;
712 		return;
713 	}
714 
715 	if (request_irq(this->irq, &onenand_interrupt,
716 				IRQF_SHARED, "onenand", this)) {
717 		/* If we can't get irq, use the normal wait */
718 		this->wait = onenand_wait;
719 		return;
720 	}
721 
722 	/* Enable interrupt */
723 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
724 	syscfg |= ONENAND_SYS_CFG1_IOBE;
725 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
726 
727 	this->wait = onenand_try_interrupt_wait;
728 }
729 
730 /**
731  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
732  * @param mtd		MTD data structure
733  * @param area		BufferRAM area
734  * @return		offset given area
735  *
736  * Return BufferRAM offset given area
737  */
onenand_bufferram_offset(struct mtd_info * mtd,int area)738 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
739 {
740 	struct onenand_chip *this = mtd->priv;
741 
742 	if (ONENAND_CURRENT_BUFFERRAM(this)) {
743 		/* Note: the 'this->writesize' is a real page size */
744 		if (area == ONENAND_DATARAM)
745 			return this->writesize;
746 		if (area == ONENAND_SPARERAM)
747 			return mtd->oobsize;
748 	}
749 
750 	return 0;
751 }
752 
753 /**
754  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
755  * @param mtd		MTD data structure
756  * @param area		BufferRAM area
757  * @param buffer	the databuffer to put/get data
758  * @param offset	offset to read from or write to
759  * @param count		number of bytes to read/write
760  *
761  * Read the BufferRAM area
762  */
onenand_read_bufferram(struct mtd_info * mtd,int area,unsigned char * buffer,int offset,size_t count)763 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
764 		unsigned char *buffer, int offset, size_t count)
765 {
766 	struct onenand_chip *this = mtd->priv;
767 	void __iomem *bufferram;
768 
769 	bufferram = this->base + area;
770 
771 	bufferram += onenand_bufferram_offset(mtd, area);
772 
773 	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
774 		unsigned short word;
775 
776 		/* Align with word(16-bit) size */
777 		count--;
778 
779 		/* Read word and save byte */
780 		word = this->read_word(bufferram + offset + count);
781 		buffer[count] = (word & 0xff);
782 	}
783 
784 	memcpy(buffer, bufferram + offset, count);
785 
786 	return 0;
787 }
788 
789 /**
790  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
791  * @param mtd		MTD data structure
792  * @param area		BufferRAM area
793  * @param buffer	the databuffer to put/get data
794  * @param offset	offset to read from or write to
795  * @param count		number of bytes to read/write
796  *
797  * Read the BufferRAM area with Sync. Burst Mode
798  */
onenand_sync_read_bufferram(struct mtd_info * mtd,int area,unsigned char * buffer,int offset,size_t count)799 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
800 		unsigned char *buffer, int offset, size_t count)
801 {
802 	struct onenand_chip *this = mtd->priv;
803 	void __iomem *bufferram;
804 
805 	bufferram = this->base + area;
806 
807 	bufferram += onenand_bufferram_offset(mtd, area);
808 
809 	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
810 
811 	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
812 		unsigned short word;
813 
814 		/* Align with word(16-bit) size */
815 		count--;
816 
817 		/* Read word and save byte */
818 		word = this->read_word(bufferram + offset + count);
819 		buffer[count] = (word & 0xff);
820 	}
821 
822 	memcpy(buffer, bufferram + offset, count);
823 
824 	this->mmcontrol(mtd, 0);
825 
826 	return 0;
827 }
828 
829 /**
830  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
831  * @param mtd		MTD data structure
832  * @param area		BufferRAM area
833  * @param buffer	the databuffer to put/get data
834  * @param offset	offset to read from or write to
835  * @param count		number of bytes to read/write
836  *
837  * Write the BufferRAM area
838  */
onenand_write_bufferram(struct mtd_info * mtd,int area,const unsigned char * buffer,int offset,size_t count)839 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
840 		const unsigned char *buffer, int offset, size_t count)
841 {
842 	struct onenand_chip *this = mtd->priv;
843 	void __iomem *bufferram;
844 
845 	bufferram = this->base + area;
846 
847 	bufferram += onenand_bufferram_offset(mtd, area);
848 
849 	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
850 		unsigned short word;
851 		int byte_offset;
852 
853 		/* Align with word(16-bit) size */
854 		count--;
855 
856 		/* Calculate byte access offset */
857 		byte_offset = offset + count;
858 
859 		/* Read word and save byte */
860 		word = this->read_word(bufferram + byte_offset);
861 		word = (word & ~0xff) | buffer[count];
862 		this->write_word(word, bufferram + byte_offset);
863 	}
864 
865 	memcpy(bufferram + offset, buffer, count);
866 
867 	return 0;
868 }
869 
870 /**
871  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
872  * @param mtd		MTD data structure
873  * @param addr		address to check
874  * @return		blockpage address
875  *
876  * Get blockpage address at 2x program mode
877  */
onenand_get_2x_blockpage(struct mtd_info * mtd,loff_t addr)878 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
879 {
880 	struct onenand_chip *this = mtd->priv;
881 	int blockpage, block, page;
882 
883 	/* Calculate the even block number */
884 	block = (int) (addr >> this->erase_shift) & ~1;
885 	/* Is it the odd plane? */
886 	if (addr & this->writesize)
887 		block++;
888 	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
889 	blockpage = (block << 7) | page;
890 
891 	return blockpage;
892 }
893 
894 /**
895  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
896  * @param mtd		MTD data structure
897  * @param addr		address to check
898  * @return		1 if there are valid data, otherwise 0
899  *
900  * Check bufferram if there is data we required
901  */
onenand_check_bufferram(struct mtd_info * mtd,loff_t addr)902 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
903 {
904 	struct onenand_chip *this = mtd->priv;
905 	int blockpage, found = 0;
906 	unsigned int i;
907 
908 	if (ONENAND_IS_2PLANE(this))
909 		blockpage = onenand_get_2x_blockpage(mtd, addr);
910 	else
911 		blockpage = (int) (addr >> this->page_shift);
912 
913 	/* Is there valid data? */
914 	i = ONENAND_CURRENT_BUFFERRAM(this);
915 	if (this->bufferram[i].blockpage == blockpage)
916 		found = 1;
917 	else {
918 		/* Check another BufferRAM */
919 		i = ONENAND_NEXT_BUFFERRAM(this);
920 		if (this->bufferram[i].blockpage == blockpage) {
921 			ONENAND_SET_NEXT_BUFFERRAM(this);
922 			found = 1;
923 		}
924 	}
925 
926 	if (found && ONENAND_IS_DDP(this)) {
927 		/* Select DataRAM for DDP */
928 		int block = onenand_block(this, addr);
929 		int value = onenand_bufferram_address(this, block);
930 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
931 	}
932 
933 	return found;
934 }
935 
936 /**
937  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
938  * @param mtd		MTD data structure
939  * @param addr		address to update
940  * @param valid		valid flag
941  *
942  * Update BufferRAM information
943  */
onenand_update_bufferram(struct mtd_info * mtd,loff_t addr,int valid)944 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
945 		int valid)
946 {
947 	struct onenand_chip *this = mtd->priv;
948 	int blockpage;
949 	unsigned int i;
950 
951 	if (ONENAND_IS_2PLANE(this))
952 		blockpage = onenand_get_2x_blockpage(mtd, addr);
953 	else
954 		blockpage = (int) (addr >> this->page_shift);
955 
956 	/* Invalidate another BufferRAM */
957 	i = ONENAND_NEXT_BUFFERRAM(this);
958 	if (this->bufferram[i].blockpage == blockpage)
959 		this->bufferram[i].blockpage = -1;
960 
961 	/* Update BufferRAM */
962 	i = ONENAND_CURRENT_BUFFERRAM(this);
963 	if (valid)
964 		this->bufferram[i].blockpage = blockpage;
965 	else
966 		this->bufferram[i].blockpage = -1;
967 }
968 
969 /**
970  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
971  * @param mtd		MTD data structure
972  * @param addr		start address to invalidate
973  * @param len		length to invalidate
974  *
975  * Invalidate BufferRAM information
976  */
onenand_invalidate_bufferram(struct mtd_info * mtd,loff_t addr,unsigned int len)977 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
978 		unsigned int len)
979 {
980 	struct onenand_chip *this = mtd->priv;
981 	int i;
982 	loff_t end_addr = addr + len;
983 
984 	/* Invalidate BufferRAM */
985 	for (i = 0; i < MAX_BUFFERRAM; i++) {
986 		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
987 		if (buf_addr >= addr && buf_addr < end_addr)
988 			this->bufferram[i].blockpage = -1;
989 	}
990 }
991 
992 /**
993  * onenand_get_device - [GENERIC] Get chip for selected access
994  * @param mtd		MTD device structure
995  * @param new_state	the state which is requested
996  *
997  * Get the device and lock it for exclusive access
998  */
onenand_get_device(struct mtd_info * mtd,int new_state)999 static int onenand_get_device(struct mtd_info *mtd, int new_state)
1000 {
1001 	struct onenand_chip *this = mtd->priv;
1002 	DECLARE_WAITQUEUE(wait, current);
1003 
1004 	/*
1005 	 * Grab the lock and see if the device is available
1006 	 */
1007 	while (1) {
1008 		spin_lock(&this->chip_lock);
1009 		if (this->state == FL_READY) {
1010 			this->state = new_state;
1011 			spin_unlock(&this->chip_lock);
1012 			if (new_state != FL_PM_SUSPENDED && this->enable)
1013 				this->enable(mtd);
1014 			break;
1015 		}
1016 		if (new_state == FL_PM_SUSPENDED) {
1017 			spin_unlock(&this->chip_lock);
1018 			return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
1019 		}
1020 		set_current_state(TASK_UNINTERRUPTIBLE);
1021 		add_wait_queue(&this->wq, &wait);
1022 		spin_unlock(&this->chip_lock);
1023 		schedule();
1024 		remove_wait_queue(&this->wq, &wait);
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 /**
1031  * onenand_release_device - [GENERIC] release chip
1032  * @param mtd		MTD device structure
1033  *
1034  * Deselect, release chip lock and wake up anyone waiting on the device
1035  */
onenand_release_device(struct mtd_info * mtd)1036 static void onenand_release_device(struct mtd_info *mtd)
1037 {
1038 	struct onenand_chip *this = mtd->priv;
1039 
1040 	if (this->state != FL_PM_SUSPENDED && this->disable)
1041 		this->disable(mtd);
1042 	/* Release the chip */
1043 	spin_lock(&this->chip_lock);
1044 	this->state = FL_READY;
1045 	wake_up(&this->wq);
1046 	spin_unlock(&this->chip_lock);
1047 }
1048 
1049 /**
1050  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1051  * @param mtd		MTD device structure
1052  * @param buf		destination address
1053  * @param column	oob offset to read from
1054  * @param thislen	oob length to read
1055  */
onenand_transfer_auto_oob(struct mtd_info * mtd,uint8_t * buf,int column,int thislen)1056 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
1057 				int thislen)
1058 {
1059 	struct onenand_chip *this = mtd->priv;
1060 	int ret;
1061 
1062 	this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0,
1063 			     mtd->oobsize);
1064 	ret = mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf,
1065 					  column, thislen);
1066 	if (ret)
1067 		return ret;
1068 
1069 	return 0;
1070 }
1071 
1072 /**
1073  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1074  * @param mtd		MTD device structure
1075  * @param addr		address to recover
1076  * @param status	return value from onenand_wait / onenand_bbt_wait
1077  *
1078  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1079  * lower page address and MSB page has higher page address in paired pages.
1080  * If power off occurs during MSB page program, the paired LSB page data can
1081  * become corrupt. LSB page recovery read is a way to read LSB page though page
1082  * data are corrupted. When uncorrectable error occurs as a result of LSB page
1083  * read after power up, issue LSB page recovery read.
1084  */
onenand_recover_lsb(struct mtd_info * mtd,loff_t addr,int status)1085 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1086 {
1087 	struct onenand_chip *this = mtd->priv;
1088 	int i;
1089 
1090 	/* Recovery is only for Flex-OneNAND */
1091 	if (!FLEXONENAND(this))
1092 		return status;
1093 
1094 	/* check if we failed due to uncorrectable error */
1095 	if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
1096 		return status;
1097 
1098 	/* check if address lies in MLC region */
1099 	i = flexonenand_region(mtd, addr);
1100 	if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1101 		return status;
1102 
1103 	/* We are attempting to reread, so decrement stats.failed
1104 	 * which was incremented by onenand_wait due to read failure
1105 	 */
1106 	printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1107 		__func__);
1108 	mtd->ecc_stats.failed--;
1109 
1110 	/* Issue the LSB page recovery command */
1111 	this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1112 	return this->wait(mtd, FL_READING);
1113 }
1114 
1115 /**
1116  * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1117  * @param mtd		MTD device structure
1118  * @param from		offset to read from
1119  * @param ops:		oob operation description structure
1120  *
1121  * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1122  * So, read-while-load is not present.
1123  */
onenand_mlc_read_ops_nolock(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1124 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1125 				struct mtd_oob_ops *ops)
1126 {
1127 	struct onenand_chip *this = mtd->priv;
1128 	struct mtd_ecc_stats stats;
1129 	size_t len = ops->len;
1130 	size_t ooblen = ops->ooblen;
1131 	u_char *buf = ops->datbuf;
1132 	u_char *oobbuf = ops->oobbuf;
1133 	int read = 0, column, thislen;
1134 	int oobread = 0, oobcolumn, thisooblen, oobsize;
1135 	int ret = 0;
1136 	int writesize = this->writesize;
1137 
1138 	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1139 			(int)len);
1140 
1141 	oobsize = mtd_oobavail(mtd, ops);
1142 	oobcolumn = from & (mtd->oobsize - 1);
1143 
1144 	/* Do not allow reads past end of device */
1145 	if (from + len > mtd->size) {
1146 		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1147 			__func__);
1148 		ops->retlen = 0;
1149 		ops->oobretlen = 0;
1150 		return -EINVAL;
1151 	}
1152 
1153 	stats = mtd->ecc_stats;
1154 
1155 	while (read < len) {
1156 		cond_resched();
1157 
1158 		thislen = min_t(int, writesize, len - read);
1159 
1160 		column = from & (writesize - 1);
1161 		if (column + thislen > writesize)
1162 			thislen = writesize - column;
1163 
1164 		if (!onenand_check_bufferram(mtd, from)) {
1165 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
1166 
1167 			ret = this->wait(mtd, FL_READING);
1168 			if (unlikely(ret))
1169 				ret = onenand_recover_lsb(mtd, from, ret);
1170 			onenand_update_bufferram(mtd, from, !ret);
1171 			if (mtd_is_eccerr(ret))
1172 				ret = 0;
1173 			if (ret)
1174 				break;
1175 		}
1176 
1177 		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1178 		if (oobbuf) {
1179 			thisooblen = oobsize - oobcolumn;
1180 			thisooblen = min_t(int, thisooblen, ooblen - oobread);
1181 
1182 			if (ops->mode == MTD_OPS_AUTO_OOB)
1183 				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1184 			else
1185 				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1186 			oobread += thisooblen;
1187 			oobbuf += thisooblen;
1188 			oobcolumn = 0;
1189 		}
1190 
1191 		read += thislen;
1192 		if (read == len)
1193 			break;
1194 
1195 		from += thislen;
1196 		buf += thislen;
1197 	}
1198 
1199 	/*
1200 	 * Return success, if no ECC failures, else -EBADMSG
1201 	 * fs driver will take care of that, because
1202 	 * retlen == desired len and result == -EBADMSG
1203 	 */
1204 	ops->retlen = read;
1205 	ops->oobretlen = oobread;
1206 
1207 	if (ret)
1208 		return ret;
1209 
1210 	if (mtd->ecc_stats.failed - stats.failed)
1211 		return -EBADMSG;
1212 
1213 	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1214 	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1215 }
1216 
1217 /**
1218  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1219  * @param mtd		MTD device structure
1220  * @param from		offset to read from
1221  * @param ops:		oob operation description structure
1222  *
1223  * OneNAND read main and/or out-of-band data
1224  */
onenand_read_ops_nolock(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1225 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1226 				struct mtd_oob_ops *ops)
1227 {
1228 	struct onenand_chip *this = mtd->priv;
1229 	struct mtd_ecc_stats stats;
1230 	size_t len = ops->len;
1231 	size_t ooblen = ops->ooblen;
1232 	u_char *buf = ops->datbuf;
1233 	u_char *oobbuf = ops->oobbuf;
1234 	int read = 0, column, thislen;
1235 	int oobread = 0, oobcolumn, thisooblen, oobsize;
1236 	int ret = 0, boundary = 0;
1237 	int writesize = this->writesize;
1238 
1239 	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1240 			(int)len);
1241 
1242 	oobsize = mtd_oobavail(mtd, ops);
1243 	oobcolumn = from & (mtd->oobsize - 1);
1244 
1245 	/* Do not allow reads past end of device */
1246 	if ((from + len) > mtd->size) {
1247 		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1248 			__func__);
1249 		ops->retlen = 0;
1250 		ops->oobretlen = 0;
1251 		return -EINVAL;
1252 	}
1253 
1254 	stats = mtd->ecc_stats;
1255 
1256  	/* Read-while-load method */
1257 
1258  	/* Do first load to bufferRAM */
1259  	if (read < len) {
1260  		if (!onenand_check_bufferram(mtd, from)) {
1261 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
1262  			ret = this->wait(mtd, FL_READING);
1263  			onenand_update_bufferram(mtd, from, !ret);
1264 			if (mtd_is_eccerr(ret))
1265 				ret = 0;
1266  		}
1267  	}
1268 
1269 	thislen = min_t(int, writesize, len - read);
1270 	column = from & (writesize - 1);
1271 	if (column + thislen > writesize)
1272 		thislen = writesize - column;
1273 
1274  	while (!ret) {
1275  		/* If there is more to load then start next load */
1276  		from += thislen;
1277  		if (read + thislen < len) {
1278 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
1279  			/*
1280  			 * Chip boundary handling in DDP
1281  			 * Now we issued chip 1 read and pointed chip 1
1282 			 * bufferram so we have to point chip 0 bufferram.
1283  			 */
1284  			if (ONENAND_IS_DDP(this) &&
1285  			    unlikely(from == (this->chipsize >> 1))) {
1286  				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1287  				boundary = 1;
1288  			} else
1289  				boundary = 0;
1290  			ONENAND_SET_PREV_BUFFERRAM(this);
1291  		}
1292  		/* While load is going, read from last bufferRAM */
1293  		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1294 
1295 		/* Read oob area if needed */
1296 		if (oobbuf) {
1297 			thisooblen = oobsize - oobcolumn;
1298 			thisooblen = min_t(int, thisooblen, ooblen - oobread);
1299 
1300 			if (ops->mode == MTD_OPS_AUTO_OOB)
1301 				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1302 			else
1303 				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1304 			oobread += thisooblen;
1305 			oobbuf += thisooblen;
1306 			oobcolumn = 0;
1307 		}
1308 
1309  		/* See if we are done */
1310  		read += thislen;
1311  		if (read == len)
1312  			break;
1313  		/* Set up for next read from bufferRAM */
1314  		if (unlikely(boundary))
1315  			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1316  		ONENAND_SET_NEXT_BUFFERRAM(this);
1317  		buf += thislen;
1318 		thislen = min_t(int, writesize, len - read);
1319  		column = 0;
1320  		cond_resched();
1321  		/* Now wait for load */
1322  		ret = this->wait(mtd, FL_READING);
1323  		onenand_update_bufferram(mtd, from, !ret);
1324 		if (mtd_is_eccerr(ret))
1325 			ret = 0;
1326  	}
1327 
1328 	/*
1329 	 * Return success, if no ECC failures, else -EBADMSG
1330 	 * fs driver will take care of that, because
1331 	 * retlen == desired len and result == -EBADMSG
1332 	 */
1333 	ops->retlen = read;
1334 	ops->oobretlen = oobread;
1335 
1336 	if (ret)
1337 		return ret;
1338 
1339 	if (mtd->ecc_stats.failed - stats.failed)
1340 		return -EBADMSG;
1341 
1342 	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1343 	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1344 }
1345 
1346 /**
1347  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1348  * @param mtd		MTD device structure
1349  * @param from		offset to read from
1350  * @param ops:		oob operation description structure
1351  *
1352  * OneNAND read out-of-band data from the spare area
1353  */
onenand_read_oob_nolock(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1354 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1355 			struct mtd_oob_ops *ops)
1356 {
1357 	struct onenand_chip *this = mtd->priv;
1358 	struct mtd_ecc_stats stats;
1359 	int read = 0, thislen, column, oobsize;
1360 	size_t len = ops->ooblen;
1361 	unsigned int mode = ops->mode;
1362 	u_char *buf = ops->oobbuf;
1363 	int ret = 0, readcmd;
1364 
1365 	from += ops->ooboffs;
1366 
1367 	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1368 			(int)len);
1369 
1370 	/* Initialize return length value */
1371 	ops->oobretlen = 0;
1372 
1373 	if (mode == MTD_OPS_AUTO_OOB)
1374 		oobsize = mtd->oobavail;
1375 	else
1376 		oobsize = mtd->oobsize;
1377 
1378 	column = from & (mtd->oobsize - 1);
1379 
1380 	if (unlikely(column >= oobsize)) {
1381 		printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1382 			__func__);
1383 		return -EINVAL;
1384 	}
1385 
1386 	/* Do not allow reads past end of device */
1387 	if (unlikely(from >= mtd->size ||
1388 		     column + len > ((mtd->size >> this->page_shift) -
1389 				     (from >> this->page_shift)) * oobsize)) {
1390 		printk(KERN_ERR "%s: Attempted to read beyond end of device\n",
1391 			__func__);
1392 		return -EINVAL;
1393 	}
1394 
1395 	stats = mtd->ecc_stats;
1396 
1397 	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1398 
1399 	while (read < len) {
1400 		cond_resched();
1401 
1402 		thislen = oobsize - column;
1403 		thislen = min_t(int, thislen, len);
1404 
1405 		this->command(mtd, readcmd, from, mtd->oobsize);
1406 
1407 		onenand_update_bufferram(mtd, from, 0);
1408 
1409 		ret = this->wait(mtd, FL_READING);
1410 		if (unlikely(ret))
1411 			ret = onenand_recover_lsb(mtd, from, ret);
1412 
1413 		if (ret && !mtd_is_eccerr(ret)) {
1414 			printk(KERN_ERR "%s: read failed = 0x%x\n",
1415 				__func__, ret);
1416 			break;
1417 		}
1418 
1419 		if (mode == MTD_OPS_AUTO_OOB)
1420 			onenand_transfer_auto_oob(mtd, buf, column, thislen);
1421 		else
1422 			this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1423 
1424 		read += thislen;
1425 
1426 		if (read == len)
1427 			break;
1428 
1429 		buf += thislen;
1430 
1431 		/* Read more? */
1432 		if (read < len) {
1433 			/* Page size */
1434 			from += mtd->writesize;
1435 			column = 0;
1436 		}
1437 	}
1438 
1439 	ops->oobretlen = read;
1440 
1441 	if (ret)
1442 		return ret;
1443 
1444 	if (mtd->ecc_stats.failed - stats.failed)
1445 		return -EBADMSG;
1446 
1447 	return 0;
1448 }
1449 
1450 /**
1451  * onenand_read - [MTD Interface] Read data from flash
1452  * @param mtd		MTD device structure
1453  * @param from		offset to read from
1454  * @param len		number of bytes to read
1455  * @param retlen	pointer to variable to store the number of read bytes
1456  * @param buf		the databuffer to put data
1457  *
1458  * Read with ecc
1459 */
onenand_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1460 static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1461 	size_t *retlen, u_char *buf)
1462 {
1463 	struct onenand_chip *this = mtd->priv;
1464 	struct mtd_oob_ops ops = {
1465 		.len	= len,
1466 		.ooblen	= 0,
1467 		.datbuf	= buf,
1468 		.oobbuf	= NULL,
1469 	};
1470 	int ret;
1471 
1472 	onenand_get_device(mtd, FL_READING);
1473 	ret = ONENAND_IS_4KB_PAGE(this) ?
1474 		onenand_mlc_read_ops_nolock(mtd, from, &ops) :
1475 		onenand_read_ops_nolock(mtd, from, &ops);
1476 	onenand_release_device(mtd);
1477 
1478 	*retlen = ops.retlen;
1479 	return ret;
1480 }
1481 
1482 /**
1483  * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1484  * @param mtd:		MTD device structure
1485  * @param from:		offset to read from
1486  * @param ops:		oob operation description structure
1487 
1488  * Read main and/or out-of-band
1489  */
onenand_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1490 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1491 			    struct mtd_oob_ops *ops)
1492 {
1493 	struct onenand_chip *this = mtd->priv;
1494 	int ret;
1495 
1496 	switch (ops->mode) {
1497 	case MTD_OPS_PLACE_OOB:
1498 	case MTD_OPS_AUTO_OOB:
1499 		break;
1500 	case MTD_OPS_RAW:
1501 		/* Not implemented yet */
1502 	default:
1503 		return -EINVAL;
1504 	}
1505 
1506 	onenand_get_device(mtd, FL_READING);
1507 	if (ops->datbuf)
1508 		ret = ONENAND_IS_4KB_PAGE(this) ?
1509 			onenand_mlc_read_ops_nolock(mtd, from, ops) :
1510 			onenand_read_ops_nolock(mtd, from, ops);
1511 	else
1512 		ret = onenand_read_oob_nolock(mtd, from, ops);
1513 	onenand_release_device(mtd);
1514 
1515 	return ret;
1516 }
1517 
1518 /**
1519  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1520  * @param mtd		MTD device structure
1521  * @param state		state to select the max. timeout value
1522  *
1523  * Wait for command done.
1524  */
onenand_bbt_wait(struct mtd_info * mtd,int state)1525 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1526 {
1527 	struct onenand_chip *this = mtd->priv;
1528 	unsigned long timeout;
1529 	unsigned int interrupt, ctrl, ecc, addr1, addr8;
1530 
1531 	/* The 20 msec is enough */
1532 	timeout = jiffies + msecs_to_jiffies(20);
1533 	while (time_before(jiffies, timeout)) {
1534 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1535 		if (interrupt & ONENAND_INT_MASTER)
1536 			break;
1537 	}
1538 	/* To get correct interrupt status in timeout case */
1539 	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1540 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1541 	addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1542 	addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1543 
1544 	if (interrupt & ONENAND_INT_READ) {
1545 		ecc = onenand_read_ecc(this);
1546 		if (ecc & ONENAND_ECC_2BIT_ALL) {
1547 			printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1548 			       "intr 0x%04x addr1 %#x addr8 %#x\n",
1549 			       __func__, ecc, ctrl, interrupt, addr1, addr8);
1550 			return ONENAND_BBT_READ_ECC_ERROR;
1551 		}
1552 	} else {
1553 		printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1554 		       "intr 0x%04x addr1 %#x addr8 %#x\n",
1555 		       __func__, ctrl, interrupt, addr1, addr8);
1556 		return ONENAND_BBT_READ_FATAL_ERROR;
1557 	}
1558 
1559 	/* Initial bad block case: 0x2400 or 0x0400 */
1560 	if (ctrl & ONENAND_CTRL_ERROR) {
1561 		printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1562 		       "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1563 		return ONENAND_BBT_READ_ERROR;
1564 	}
1565 
1566 	return 0;
1567 }
1568 
1569 /**
1570  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1571  * @param mtd		MTD device structure
1572  * @param from		offset to read from
1573  * @param ops		oob operation description structure
1574  *
1575  * OneNAND read out-of-band data from the spare area for bbt scan
1576  */
onenand_bbt_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1577 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1578 			    struct mtd_oob_ops *ops)
1579 {
1580 	struct onenand_chip *this = mtd->priv;
1581 	int read = 0, thislen, column;
1582 	int ret = 0, readcmd;
1583 	size_t len = ops->ooblen;
1584 	u_char *buf = ops->oobbuf;
1585 
1586 	pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
1587 			len);
1588 
1589 	/* Initialize return value */
1590 	ops->oobretlen = 0;
1591 
1592 	/* Do not allow reads past end of device */
1593 	if (unlikely((from + len) > mtd->size)) {
1594 		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1595 			__func__);
1596 		return ONENAND_BBT_READ_FATAL_ERROR;
1597 	}
1598 
1599 	/* Grab the lock and see if the device is available */
1600 	onenand_get_device(mtd, FL_READING);
1601 
1602 	column = from & (mtd->oobsize - 1);
1603 
1604 	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1605 
1606 	while (read < len) {
1607 		cond_resched();
1608 
1609 		thislen = mtd->oobsize - column;
1610 		thislen = min_t(int, thislen, len);
1611 
1612 		this->command(mtd, readcmd, from, mtd->oobsize);
1613 
1614 		onenand_update_bufferram(mtd, from, 0);
1615 
1616 		ret = this->bbt_wait(mtd, FL_READING);
1617 		if (unlikely(ret))
1618 			ret = onenand_recover_lsb(mtd, from, ret);
1619 
1620 		if (ret)
1621 			break;
1622 
1623 		this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1624 		read += thislen;
1625 		if (read == len)
1626 			break;
1627 
1628 		buf += thislen;
1629 
1630 		/* Read more? */
1631 		if (read < len) {
1632 			/* Update Page size */
1633 			from += this->writesize;
1634 			column = 0;
1635 		}
1636 	}
1637 
1638 	/* Deselect and wake up anyone waiting on the device */
1639 	onenand_release_device(mtd);
1640 
1641 	ops->oobretlen = read;
1642 	return ret;
1643 }
1644 
1645 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1646 /**
1647  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1648  * @param mtd		MTD device structure
1649  * @param buf		the databuffer to verify
1650  * @param to		offset to read from
1651  */
onenand_verify_oob(struct mtd_info * mtd,const u_char * buf,loff_t to)1652 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1653 {
1654 	struct onenand_chip *this = mtd->priv;
1655 	u_char *oob_buf = this->oob_buf;
1656 	int status, i, readcmd;
1657 
1658 	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1659 
1660 	this->command(mtd, readcmd, to, mtd->oobsize);
1661 	onenand_update_bufferram(mtd, to, 0);
1662 	status = this->wait(mtd, FL_READING);
1663 	if (status)
1664 		return status;
1665 
1666 	this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1667 	for (i = 0; i < mtd->oobsize; i++)
1668 		if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1669 			return -EBADMSG;
1670 
1671 	return 0;
1672 }
1673 
1674 /**
1675  * onenand_verify - [GENERIC] verify the chip contents after a write
1676  * @param mtd          MTD device structure
1677  * @param buf          the databuffer to verify
1678  * @param addr         offset to read from
1679  * @param len          number of bytes to read and compare
1680  */
onenand_verify(struct mtd_info * mtd,const u_char * buf,loff_t addr,size_t len)1681 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1682 {
1683 	struct onenand_chip *this = mtd->priv;
1684 	int ret = 0;
1685 	int thislen, column;
1686 
1687 	column = addr & (this->writesize - 1);
1688 
1689 	while (len != 0) {
1690 		thislen = min_t(int, this->writesize - column, len);
1691 
1692 		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1693 
1694 		onenand_update_bufferram(mtd, addr, 0);
1695 
1696 		ret = this->wait(mtd, FL_READING);
1697 		if (ret)
1698 			return ret;
1699 
1700 		onenand_update_bufferram(mtd, addr, 1);
1701 
1702 		this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1703 
1704 		if (memcmp(buf, this->verify_buf + column, thislen))
1705 			return -EBADMSG;
1706 
1707 		len -= thislen;
1708 		buf += thislen;
1709 		addr += thislen;
1710 		column = 0;
1711 	}
1712 
1713 	return 0;
1714 }
1715 #else
1716 #define onenand_verify(...)		(0)
1717 #define onenand_verify_oob(...)		(0)
1718 #endif
1719 
1720 #define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
1721 
onenand_panic_wait(struct mtd_info * mtd)1722 static void onenand_panic_wait(struct mtd_info *mtd)
1723 {
1724 	struct onenand_chip *this = mtd->priv;
1725 	unsigned int interrupt;
1726 	int i;
1727 
1728 	for (i = 0; i < 2000; i++) {
1729 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1730 		if (interrupt & ONENAND_INT_MASTER)
1731 			break;
1732 		udelay(10);
1733 	}
1734 }
1735 
1736 /**
1737  * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1738  * @param mtd		MTD device structure
1739  * @param to		offset to write to
1740  * @param len		number of bytes to write
1741  * @param retlen	pointer to variable to store the number of written bytes
1742  * @param buf		the data to write
1743  *
1744  * Write with ECC
1745  */
onenand_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1746 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1747 			 size_t *retlen, const u_char *buf)
1748 {
1749 	struct onenand_chip *this = mtd->priv;
1750 	int column, subpage;
1751 	int written = 0;
1752 
1753 	if (this->state == FL_PM_SUSPENDED)
1754 		return -EBUSY;
1755 
1756 	/* Wait for any existing operation to clear */
1757 	onenand_panic_wait(mtd);
1758 
1759 	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1760 			(int)len);
1761 
1762 	/* Reject writes, which are not page aligned */
1763         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1764 		printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1765 			__func__);
1766                 return -EINVAL;
1767         }
1768 
1769 	column = to & (mtd->writesize - 1);
1770 
1771 	/* Loop until all data write */
1772 	while (written < len) {
1773 		int thislen = min_t(int, mtd->writesize - column, len - written);
1774 		u_char *wbuf = (u_char *) buf;
1775 
1776 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1777 
1778 		/* Partial page write */
1779 		subpage = thislen < mtd->writesize;
1780 		if (subpage) {
1781 			memset(this->page_buf, 0xff, mtd->writesize);
1782 			memcpy(this->page_buf + column, buf, thislen);
1783 			wbuf = this->page_buf;
1784 		}
1785 
1786 		this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1787 		this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1788 
1789 		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1790 
1791 		onenand_panic_wait(mtd);
1792 
1793 		/* In partial page write we don't update bufferram */
1794 		onenand_update_bufferram(mtd, to, !subpage);
1795 		if (ONENAND_IS_2PLANE(this)) {
1796 			ONENAND_SET_BUFFERRAM1(this);
1797 			onenand_update_bufferram(mtd, to + this->writesize, !subpage);
1798 		}
1799 
1800 		written += thislen;
1801 
1802 		if (written == len)
1803 			break;
1804 
1805 		column = 0;
1806 		to += thislen;
1807 		buf += thislen;
1808 	}
1809 
1810 	*retlen = written;
1811 	return 0;
1812 }
1813 
1814 /**
1815  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1816  * @param mtd		MTD device structure
1817  * @param oob_buf	oob buffer
1818  * @param buf		source address
1819  * @param column	oob offset to write to
1820  * @param thislen	oob length to write
1821  */
onenand_fill_auto_oob(struct mtd_info * mtd,u_char * oob_buf,const u_char * buf,int column,int thislen)1822 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1823 				  const u_char *buf, int column, int thislen)
1824 {
1825 	return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen);
1826 }
1827 
1828 /**
1829  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1830  * @param mtd		MTD device structure
1831  * @param to		offset to write to
1832  * @param ops		oob operation description structure
1833  *
1834  * Write main and/or oob with ECC
1835  */
onenand_write_ops_nolock(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1836 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1837 				struct mtd_oob_ops *ops)
1838 {
1839 	struct onenand_chip *this = mtd->priv;
1840 	int written = 0, column, thislen = 0, subpage = 0;
1841 	int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1842 	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1843 	size_t len = ops->len;
1844 	size_t ooblen = ops->ooblen;
1845 	const u_char *buf = ops->datbuf;
1846 	const u_char *oob = ops->oobbuf;
1847 	u_char *oobbuf;
1848 	int ret = 0, cmd;
1849 
1850 	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1851 			(int)len);
1852 
1853 	/* Initialize retlen, in case of early exit */
1854 	ops->retlen = 0;
1855 	ops->oobretlen = 0;
1856 
1857 	/* Reject writes, which are not page aligned */
1858         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1859 		printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1860 			__func__);
1861                 return -EINVAL;
1862         }
1863 
1864 	/* Check zero length */
1865 	if (!len)
1866 		return 0;
1867 	oobsize = mtd_oobavail(mtd, ops);
1868 	oobcolumn = to & (mtd->oobsize - 1);
1869 
1870 	column = to & (mtd->writesize - 1);
1871 
1872 	/* Loop until all data write */
1873 	while (1) {
1874 		if (written < len) {
1875 			u_char *wbuf = (u_char *) buf;
1876 
1877 			thislen = min_t(int, mtd->writesize - column, len - written);
1878 			thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1879 
1880 			cond_resched();
1881 
1882 			this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1883 
1884 			/* Partial page write */
1885 			subpage = thislen < mtd->writesize;
1886 			if (subpage) {
1887 				memset(this->page_buf, 0xff, mtd->writesize);
1888 				memcpy(this->page_buf + column, buf, thislen);
1889 				wbuf = this->page_buf;
1890 			}
1891 
1892 			this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1893 
1894 			if (oob) {
1895 				oobbuf = this->oob_buf;
1896 
1897 				/* We send data to spare ram with oobsize
1898 				 * to prevent byte access */
1899 				memset(oobbuf, 0xff, mtd->oobsize);
1900 				if (ops->mode == MTD_OPS_AUTO_OOB)
1901 					onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1902 				else
1903 					memcpy(oobbuf + oobcolumn, oob, thisooblen);
1904 
1905 				oobwritten += thisooblen;
1906 				oob += thisooblen;
1907 				oobcolumn = 0;
1908 			} else
1909 				oobbuf = (u_char *) ffchars;
1910 
1911 			this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1912 		} else
1913 			ONENAND_SET_NEXT_BUFFERRAM(this);
1914 
1915 		/*
1916 		 * 2 PLANE, MLC, and Flex-OneNAND do not support
1917 		 * write-while-program feature.
1918 		 */
1919 		if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1920 			ONENAND_SET_PREV_BUFFERRAM(this);
1921 
1922 			ret = this->wait(mtd, FL_WRITING);
1923 
1924 			/* In partial page write we don't update bufferram */
1925 			onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1926 			if (ret) {
1927 				written -= prevlen;
1928 				printk(KERN_ERR "%s: write failed %d\n",
1929 					__func__, ret);
1930 				break;
1931 			}
1932 
1933 			if (written == len) {
1934 				/* Only check verify write turn on */
1935 				ret = onenand_verify(mtd, buf - len, to - len, len);
1936 				if (ret)
1937 					printk(KERN_ERR "%s: verify failed %d\n",
1938 						__func__, ret);
1939 				break;
1940 			}
1941 
1942 			ONENAND_SET_NEXT_BUFFERRAM(this);
1943 		}
1944 
1945 		this->ongoing = 0;
1946 		cmd = ONENAND_CMD_PROG;
1947 
1948 		/* Exclude 1st OTP and OTP blocks for cache program feature */
1949 		if (ONENAND_IS_CACHE_PROGRAM(this) &&
1950 		    likely(onenand_block(this, to) != 0) &&
1951 		    ONENAND_IS_4KB_PAGE(this) &&
1952 		    ((written + thislen) < len)) {
1953 			cmd = ONENAND_CMD_2X_CACHE_PROG;
1954 			this->ongoing = 1;
1955 		}
1956 
1957 		this->command(mtd, cmd, to, mtd->writesize);
1958 
1959 		/*
1960 		 * 2 PLANE, MLC, and Flex-OneNAND wait here
1961 		 */
1962 		if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1963 			ret = this->wait(mtd, FL_WRITING);
1964 
1965 			/* In partial page write we don't update bufferram */
1966 			onenand_update_bufferram(mtd, to, !ret && !subpage);
1967 			if (ret) {
1968 				printk(KERN_ERR "%s: write failed %d\n",
1969 					__func__, ret);
1970 				break;
1971 			}
1972 
1973 			/* Only check verify write turn on */
1974 			ret = onenand_verify(mtd, buf, to, thislen);
1975 			if (ret) {
1976 				printk(KERN_ERR "%s: verify failed %d\n",
1977 					__func__, ret);
1978 				break;
1979 			}
1980 
1981 			written += thislen;
1982 
1983 			if (written == len)
1984 				break;
1985 
1986 		} else
1987 			written += thislen;
1988 
1989 		column = 0;
1990 		prev_subpage = subpage;
1991 		prev = to;
1992 		prevlen = thislen;
1993 		to += thislen;
1994 		buf += thislen;
1995 		first = 0;
1996 	}
1997 
1998 	/* In error case, clear all bufferrams */
1999 	if (written != len)
2000 		onenand_invalidate_bufferram(mtd, 0, -1);
2001 
2002 	ops->retlen = written;
2003 	ops->oobretlen = oobwritten;
2004 
2005 	return ret;
2006 }
2007 
2008 
2009 /**
2010  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
2011  * @param mtd		MTD device structure
2012  * @param to		offset to write to
2013  * @param len		number of bytes to write
2014  * @param retlen	pointer to variable to store the number of written bytes
2015  * @param buf		the data to write
2016  * @param mode		operation mode
2017  *
2018  * OneNAND write out-of-band
2019  */
onenand_write_oob_nolock(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2020 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2021 				    struct mtd_oob_ops *ops)
2022 {
2023 	struct onenand_chip *this = mtd->priv;
2024 	int column, ret = 0, oobsize;
2025 	int written = 0, oobcmd;
2026 	u_char *oobbuf;
2027 	size_t len = ops->ooblen;
2028 	const u_char *buf = ops->oobbuf;
2029 	unsigned int mode = ops->mode;
2030 
2031 	to += ops->ooboffs;
2032 
2033 	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
2034 			(int)len);
2035 
2036 	/* Initialize retlen, in case of early exit */
2037 	ops->oobretlen = 0;
2038 
2039 	if (mode == MTD_OPS_AUTO_OOB)
2040 		oobsize = mtd->oobavail;
2041 	else
2042 		oobsize = mtd->oobsize;
2043 
2044 	column = to & (mtd->oobsize - 1);
2045 
2046 	if (unlikely(column >= oobsize)) {
2047 		printk(KERN_ERR "%s: Attempted to start write outside oob\n",
2048 			__func__);
2049 		return -EINVAL;
2050 	}
2051 
2052 	/* For compatibility with NAND: Do not allow write past end of page */
2053 	if (unlikely(column + len > oobsize)) {
2054 		printk(KERN_ERR "%s: Attempt to write past end of page\n",
2055 			__func__);
2056 		return -EINVAL;
2057 	}
2058 
2059 	/* Do not allow reads past end of device */
2060 	if (unlikely(to >= mtd->size ||
2061 		     column + len > ((mtd->size >> this->page_shift) -
2062 				     (to >> this->page_shift)) * oobsize)) {
2063 		printk(KERN_ERR "%s: Attempted to write past end of device\n",
2064 		       __func__);
2065 		return -EINVAL;
2066 	}
2067 
2068 	oobbuf = this->oob_buf;
2069 
2070 	oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2071 
2072 	/* Loop until all data write */
2073 	while (written < len) {
2074 		int thislen = min_t(int, oobsize, len - written);
2075 
2076 		cond_resched();
2077 
2078 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2079 
2080 		/* We send data to spare ram with oobsize
2081 		 * to prevent byte access */
2082 		memset(oobbuf, 0xff, mtd->oobsize);
2083 		if (mode == MTD_OPS_AUTO_OOB)
2084 			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2085 		else
2086 			memcpy(oobbuf + column, buf, thislen);
2087 		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2088 
2089 		if (ONENAND_IS_4KB_PAGE(this)) {
2090 			/* Set main area of DataRAM to 0xff*/
2091 			memset(this->page_buf, 0xff, mtd->writesize);
2092 			this->write_bufferram(mtd, ONENAND_DATARAM,
2093 					 this->page_buf, 0, mtd->writesize);
2094 		}
2095 
2096 		this->command(mtd, oobcmd, to, mtd->oobsize);
2097 
2098 		onenand_update_bufferram(mtd, to, 0);
2099 		if (ONENAND_IS_2PLANE(this)) {
2100 			ONENAND_SET_BUFFERRAM1(this);
2101 			onenand_update_bufferram(mtd, to + this->writesize, 0);
2102 		}
2103 
2104 		ret = this->wait(mtd, FL_WRITING);
2105 		if (ret) {
2106 			printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2107 			break;
2108 		}
2109 
2110 		ret = onenand_verify_oob(mtd, oobbuf, to);
2111 		if (ret) {
2112 			printk(KERN_ERR "%s: verify failed %d\n",
2113 				__func__, ret);
2114 			break;
2115 		}
2116 
2117 		written += thislen;
2118 		if (written == len)
2119 			break;
2120 
2121 		to += mtd->writesize;
2122 		buf += thislen;
2123 		column = 0;
2124 	}
2125 
2126 	ops->oobretlen = written;
2127 
2128 	return ret;
2129 }
2130 
2131 /**
2132  * onenand_write - [MTD Interface] write buffer to FLASH
2133  * @param mtd		MTD device structure
2134  * @param to		offset to write to
2135  * @param len		number of bytes to write
2136  * @param retlen	pointer to variable to store the number of written bytes
2137  * @param buf		the data to write
2138  *
2139  * Write with ECC
2140  */
onenand_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2141 static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
2142 	size_t *retlen, const u_char *buf)
2143 {
2144 	struct mtd_oob_ops ops = {
2145 		.len	= len,
2146 		.ooblen	= 0,
2147 		.datbuf	= (u_char *) buf,
2148 		.oobbuf	= NULL,
2149 	};
2150 	int ret;
2151 
2152 	onenand_get_device(mtd, FL_WRITING);
2153 	ret = onenand_write_ops_nolock(mtd, to, &ops);
2154 	onenand_release_device(mtd);
2155 
2156 	*retlen = ops.retlen;
2157 	return ret;
2158 }
2159 
2160 /**
2161  * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2162  * @param mtd:		MTD device structure
2163  * @param to:		offset to write
2164  * @param ops:		oob operation description structure
2165  */
onenand_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2166 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2167 			     struct mtd_oob_ops *ops)
2168 {
2169 	int ret;
2170 
2171 	switch (ops->mode) {
2172 	case MTD_OPS_PLACE_OOB:
2173 	case MTD_OPS_AUTO_OOB:
2174 		break;
2175 	case MTD_OPS_RAW:
2176 		/* Not implemented yet */
2177 	default:
2178 		return -EINVAL;
2179 	}
2180 
2181 	onenand_get_device(mtd, FL_WRITING);
2182 	if (ops->datbuf)
2183 		ret = onenand_write_ops_nolock(mtd, to, ops);
2184 	else
2185 		ret = onenand_write_oob_nolock(mtd, to, ops);
2186 	onenand_release_device(mtd);
2187 
2188 	return ret;
2189 }
2190 
2191 /**
2192  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2193  * @param mtd		MTD device structure
2194  * @param ofs		offset from device start
2195  * @param allowbbt	1, if its allowed to access the bbt area
2196  *
2197  * Check, if the block is bad. Either by reading the bad block table or
2198  * calling of the scan function.
2199  */
onenand_block_isbad_nolock(struct mtd_info * mtd,loff_t ofs,int allowbbt)2200 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2201 {
2202 	struct onenand_chip *this = mtd->priv;
2203 	struct bbm_info *bbm = this->bbm;
2204 
2205 	/* Return info from the table */
2206 	return bbm->isbad_bbt(mtd, ofs, allowbbt);
2207 }
2208 
2209 
onenand_multiblock_erase_verify(struct mtd_info * mtd,struct erase_info * instr)2210 static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2211 					   struct erase_info *instr)
2212 {
2213 	struct onenand_chip *this = mtd->priv;
2214 	loff_t addr = instr->addr;
2215 	int len = instr->len;
2216 	unsigned int block_size = (1 << this->erase_shift);
2217 	int ret = 0;
2218 
2219 	while (len) {
2220 		this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2221 		ret = this->wait(mtd, FL_VERIFYING_ERASE);
2222 		if (ret) {
2223 			printk(KERN_ERR "%s: Failed verify, block %d\n",
2224 			       __func__, onenand_block(this, addr));
2225 			instr->state = MTD_ERASE_FAILED;
2226 			instr->fail_addr = addr;
2227 			return -1;
2228 		}
2229 		len -= block_size;
2230 		addr += block_size;
2231 	}
2232 	return 0;
2233 }
2234 
2235 /**
2236  * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2237  * @param mtd		MTD device structure
2238  * @param instr		erase instruction
2239  * @param region	erase region
2240  *
2241  * Erase one or more blocks up to 64 block at a time
2242  */
onenand_multiblock_erase(struct mtd_info * mtd,struct erase_info * instr,unsigned int block_size)2243 static int onenand_multiblock_erase(struct mtd_info *mtd,
2244 				    struct erase_info *instr,
2245 				    unsigned int block_size)
2246 {
2247 	struct onenand_chip *this = mtd->priv;
2248 	loff_t addr = instr->addr;
2249 	int len = instr->len;
2250 	int eb_count = 0;
2251 	int ret = 0;
2252 	int bdry_block = 0;
2253 
2254 	instr->state = MTD_ERASING;
2255 
2256 	if (ONENAND_IS_DDP(this)) {
2257 		loff_t bdry_addr = this->chipsize >> 1;
2258 		if (addr < bdry_addr && (addr + len) > bdry_addr)
2259 			bdry_block = bdry_addr >> this->erase_shift;
2260 	}
2261 
2262 	/* Pre-check bbs */
2263 	while (len) {
2264 		/* Check if we have a bad block, we do not erase bad blocks */
2265 		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2266 			printk(KERN_WARNING "%s: attempt to erase a bad block "
2267 			       "at addr 0x%012llx\n",
2268 			       __func__, (unsigned long long) addr);
2269 			instr->state = MTD_ERASE_FAILED;
2270 			return -EIO;
2271 		}
2272 		len -= block_size;
2273 		addr += block_size;
2274 	}
2275 
2276 	len = instr->len;
2277 	addr = instr->addr;
2278 
2279 	/* loop over 64 eb batches */
2280 	while (len) {
2281 		struct erase_info verify_instr = *instr;
2282 		int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2283 
2284 		verify_instr.addr = addr;
2285 		verify_instr.len = 0;
2286 
2287 		/* do not cross chip boundary */
2288 		if (bdry_block) {
2289 			int this_block = (addr >> this->erase_shift);
2290 
2291 			if (this_block < bdry_block) {
2292 				max_eb_count = min(max_eb_count,
2293 						   (bdry_block - this_block));
2294 			}
2295 		}
2296 
2297 		eb_count = 0;
2298 
2299 		while (len > block_size && eb_count < (max_eb_count - 1)) {
2300 			this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2301 				      addr, block_size);
2302 			onenand_invalidate_bufferram(mtd, addr, block_size);
2303 
2304 			ret = this->wait(mtd, FL_PREPARING_ERASE);
2305 			if (ret) {
2306 				printk(KERN_ERR "%s: Failed multiblock erase, "
2307 				       "block %d\n", __func__,
2308 				       onenand_block(this, addr));
2309 				instr->state = MTD_ERASE_FAILED;
2310 				instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2311 				return -EIO;
2312 			}
2313 
2314 			len -= block_size;
2315 			addr += block_size;
2316 			eb_count++;
2317 		}
2318 
2319 		/* last block of 64-eb series */
2320 		cond_resched();
2321 		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2322 		onenand_invalidate_bufferram(mtd, addr, block_size);
2323 
2324 		ret = this->wait(mtd, FL_ERASING);
2325 		/* Check if it is write protected */
2326 		if (ret) {
2327 			printk(KERN_ERR "%s: Failed erase, block %d\n",
2328 			       __func__, onenand_block(this, addr));
2329 			instr->state = MTD_ERASE_FAILED;
2330 			instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2331 			return -EIO;
2332 		}
2333 
2334 		len -= block_size;
2335 		addr += block_size;
2336 		eb_count++;
2337 
2338 		/* verify */
2339 		verify_instr.len = eb_count * block_size;
2340 		if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2341 			instr->state = verify_instr.state;
2342 			instr->fail_addr = verify_instr.fail_addr;
2343 			return -EIO;
2344 		}
2345 
2346 	}
2347 	return 0;
2348 }
2349 
2350 
2351 /**
2352  * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2353  * @param mtd		MTD device structure
2354  * @param instr		erase instruction
2355  * @param region	erase region
2356  * @param block_size	erase block size
2357  *
2358  * Erase one or more blocks one block at a time
2359  */
onenand_block_by_block_erase(struct mtd_info * mtd,struct erase_info * instr,struct mtd_erase_region_info * region,unsigned int block_size)2360 static int onenand_block_by_block_erase(struct mtd_info *mtd,
2361 					struct erase_info *instr,
2362 					struct mtd_erase_region_info *region,
2363 					unsigned int block_size)
2364 {
2365 	struct onenand_chip *this = mtd->priv;
2366 	loff_t addr = instr->addr;
2367 	int len = instr->len;
2368 	loff_t region_end = 0;
2369 	int ret = 0;
2370 
2371 	if (region) {
2372 		/* region is set for Flex-OneNAND */
2373 		region_end = region->offset + region->erasesize * region->numblocks;
2374 	}
2375 
2376 	instr->state = MTD_ERASING;
2377 
2378 	/* Loop through the blocks */
2379 	while (len) {
2380 		cond_resched();
2381 
2382 		/* Check if we have a bad block, we do not erase bad blocks */
2383 		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2384 			printk(KERN_WARNING "%s: attempt to erase a bad block "
2385 					"at addr 0x%012llx\n",
2386 					__func__, (unsigned long long) addr);
2387 			instr->state = MTD_ERASE_FAILED;
2388 			return -EIO;
2389 		}
2390 
2391 		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2392 
2393 		onenand_invalidate_bufferram(mtd, addr, block_size);
2394 
2395 		ret = this->wait(mtd, FL_ERASING);
2396 		/* Check, if it is write protected */
2397 		if (ret) {
2398 			printk(KERN_ERR "%s: Failed erase, block %d\n",
2399 				__func__, onenand_block(this, addr));
2400 			instr->state = MTD_ERASE_FAILED;
2401 			instr->fail_addr = addr;
2402 			return -EIO;
2403 		}
2404 
2405 		len -= block_size;
2406 		addr += block_size;
2407 
2408 		if (region && addr == region_end) {
2409 			if (!len)
2410 				break;
2411 			region++;
2412 
2413 			block_size = region->erasesize;
2414 			region_end = region->offset + region->erasesize * region->numblocks;
2415 
2416 			if (len & (block_size - 1)) {
2417 				/* FIXME: This should be handled at MTD partitioning level. */
2418 				printk(KERN_ERR "%s: Unaligned address\n",
2419 					__func__);
2420 				return -EIO;
2421 			}
2422 		}
2423 	}
2424 	return 0;
2425 }
2426 
2427 /**
2428  * onenand_erase - [MTD Interface] erase block(s)
2429  * @param mtd		MTD device structure
2430  * @param instr		erase instruction
2431  *
2432  * Erase one or more blocks
2433  */
onenand_erase(struct mtd_info * mtd,struct erase_info * instr)2434 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2435 {
2436 	struct onenand_chip *this = mtd->priv;
2437 	unsigned int block_size;
2438 	loff_t addr = instr->addr;
2439 	loff_t len = instr->len;
2440 	int ret = 0;
2441 	struct mtd_erase_region_info *region = NULL;
2442 	loff_t region_offset = 0;
2443 
2444 	pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
2445 			(unsigned long long)instr->addr,
2446 			(unsigned long long)instr->len);
2447 
2448 	if (FLEXONENAND(this)) {
2449 		/* Find the eraseregion of this address */
2450 		int i = flexonenand_region(mtd, addr);
2451 
2452 		region = &mtd->eraseregions[i];
2453 		block_size = region->erasesize;
2454 
2455 		/* Start address within region must align on block boundary.
2456 		 * Erase region's start offset is always block start address.
2457 		 */
2458 		region_offset = region->offset;
2459 	} else
2460 		block_size = 1 << this->erase_shift;
2461 
2462 	/* Start address must align on block boundary */
2463 	if (unlikely((addr - region_offset) & (block_size - 1))) {
2464 		printk(KERN_ERR "%s: Unaligned address\n", __func__);
2465 		return -EINVAL;
2466 	}
2467 
2468 	/* Length must align on block boundary */
2469 	if (unlikely(len & (block_size - 1))) {
2470 		printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2471 		return -EINVAL;
2472 	}
2473 
2474 	/* Grab the lock and see if the device is available */
2475 	onenand_get_device(mtd, FL_ERASING);
2476 
2477 	if (ONENAND_IS_4KB_PAGE(this) || region ||
2478 	    instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2479 		/* region is set for Flex-OneNAND (no mb erase) */
2480 		ret = onenand_block_by_block_erase(mtd, instr,
2481 						   region, block_size);
2482 	} else {
2483 		ret = onenand_multiblock_erase(mtd, instr, block_size);
2484 	}
2485 
2486 	/* Deselect and wake up anyone waiting on the device */
2487 	onenand_release_device(mtd);
2488 
2489 	/* Do call back function */
2490 	if (!ret) {
2491 		instr->state = MTD_ERASE_DONE;
2492 		mtd_erase_callback(instr);
2493 	}
2494 
2495 	return ret;
2496 }
2497 
2498 /**
2499  * onenand_sync - [MTD Interface] sync
2500  * @param mtd		MTD device structure
2501  *
2502  * Sync is actually a wait for chip ready function
2503  */
onenand_sync(struct mtd_info * mtd)2504 static void onenand_sync(struct mtd_info *mtd)
2505 {
2506 	pr_debug("%s: called\n", __func__);
2507 
2508 	/* Grab the lock and see if the device is available */
2509 	onenand_get_device(mtd, FL_SYNCING);
2510 
2511 	/* Release it and go back */
2512 	onenand_release_device(mtd);
2513 }
2514 
2515 /**
2516  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2517  * @param mtd		MTD device structure
2518  * @param ofs		offset relative to mtd start
2519  *
2520  * Check whether the block is bad
2521  */
onenand_block_isbad(struct mtd_info * mtd,loff_t ofs)2522 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2523 {
2524 	int ret;
2525 
2526 	onenand_get_device(mtd, FL_READING);
2527 	ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2528 	onenand_release_device(mtd);
2529 	return ret;
2530 }
2531 
2532 /**
2533  * onenand_default_block_markbad - [DEFAULT] mark a block bad
2534  * @param mtd		MTD device structure
2535  * @param ofs		offset from device start
2536  *
2537  * This is the default implementation, which can be overridden by
2538  * a hardware specific driver.
2539  */
onenand_default_block_markbad(struct mtd_info * mtd,loff_t ofs)2540 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2541 {
2542 	struct onenand_chip *this = mtd->priv;
2543 	struct bbm_info *bbm = this->bbm;
2544 	u_char buf[2] = {0, 0};
2545 	struct mtd_oob_ops ops = {
2546 		.mode = MTD_OPS_PLACE_OOB,
2547 		.ooblen = 2,
2548 		.oobbuf = buf,
2549 		.ooboffs = 0,
2550 	};
2551 	int block;
2552 
2553 	/* Get block number */
2554 	block = onenand_block(this, ofs);
2555         if (bbm->bbt)
2556                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2557 
2558         /* We write two bytes, so we don't have to mess with 16-bit access */
2559         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
2560 	/* FIXME : What to do when marking SLC block in partition
2561 	 * 	   with MLC erasesize? For now, it is not advisable to
2562 	 *	   create partitions containing both SLC and MLC regions.
2563 	 */
2564 	return onenand_write_oob_nolock(mtd, ofs, &ops);
2565 }
2566 
2567 /**
2568  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2569  * @param mtd		MTD device structure
2570  * @param ofs		offset relative to mtd start
2571  *
2572  * Mark the block as bad
2573  */
onenand_block_markbad(struct mtd_info * mtd,loff_t ofs)2574 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2575 {
2576 	struct onenand_chip *this = mtd->priv;
2577 	int ret;
2578 
2579 	ret = onenand_block_isbad(mtd, ofs);
2580 	if (ret) {
2581 		/* If it was bad already, return success and do nothing */
2582 		if (ret > 0)
2583 			return 0;
2584 		return ret;
2585 	}
2586 
2587 	onenand_get_device(mtd, FL_WRITING);
2588 	ret = this->block_markbad(mtd, ofs);
2589 	onenand_release_device(mtd);
2590 	return ret;
2591 }
2592 
2593 /**
2594  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2595  * @param mtd		MTD device structure
2596  * @param ofs		offset relative to mtd start
2597  * @param len		number of bytes to lock or unlock
2598  * @param cmd		lock or unlock command
2599  *
2600  * Lock or unlock one or more blocks
2601  */
onenand_do_lock_cmd(struct mtd_info * mtd,loff_t ofs,size_t len,int cmd)2602 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2603 {
2604 	struct onenand_chip *this = mtd->priv;
2605 	int start, end, block, value, status;
2606 	int wp_status_mask;
2607 
2608 	start = onenand_block(this, ofs);
2609 	end = onenand_block(this, ofs + len) - 1;
2610 
2611 	if (cmd == ONENAND_CMD_LOCK)
2612 		wp_status_mask = ONENAND_WP_LS;
2613 	else
2614 		wp_status_mask = ONENAND_WP_US;
2615 
2616 	/* Continuous lock scheme */
2617 	if (this->options & ONENAND_HAS_CONT_LOCK) {
2618 		/* Set start block address */
2619 		this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2620 		/* Set end block address */
2621 		this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2622 		/* Write lock command */
2623 		this->command(mtd, cmd, 0, 0);
2624 
2625 		/* There's no return value */
2626 		this->wait(mtd, FL_LOCKING);
2627 
2628 		/* Sanity check */
2629 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2630 		    & ONENAND_CTRL_ONGO)
2631 			continue;
2632 
2633 		/* Check lock status */
2634 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2635 		if (!(status & wp_status_mask))
2636 			printk(KERN_ERR "%s: wp status = 0x%x\n",
2637 				__func__, status);
2638 
2639 		return 0;
2640 	}
2641 
2642 	/* Block lock scheme */
2643 	for (block = start; block < end + 1; block++) {
2644 		/* Set block address */
2645 		value = onenand_block_address(this, block);
2646 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2647 		/* Select DataRAM for DDP */
2648 		value = onenand_bufferram_address(this, block);
2649 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2650 		/* Set start block address */
2651 		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2652 		/* Write lock command */
2653 		this->command(mtd, cmd, 0, 0);
2654 
2655 		/* There's no return value */
2656 		this->wait(mtd, FL_LOCKING);
2657 
2658 		/* Sanity check */
2659 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2660 		    & ONENAND_CTRL_ONGO)
2661 			continue;
2662 
2663 		/* Check lock status */
2664 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2665 		if (!(status & wp_status_mask))
2666 			printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2667 				__func__, block, status);
2668 	}
2669 
2670 	return 0;
2671 }
2672 
2673 /**
2674  * onenand_lock - [MTD Interface] Lock block(s)
2675  * @param mtd		MTD device structure
2676  * @param ofs		offset relative to mtd start
2677  * @param len		number of bytes to unlock
2678  *
2679  * Lock one or more blocks
2680  */
onenand_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2681 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2682 {
2683 	int ret;
2684 
2685 	onenand_get_device(mtd, FL_LOCKING);
2686 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2687 	onenand_release_device(mtd);
2688 	return ret;
2689 }
2690 
2691 /**
2692  * onenand_unlock - [MTD Interface] Unlock block(s)
2693  * @param mtd		MTD device structure
2694  * @param ofs		offset relative to mtd start
2695  * @param len		number of bytes to unlock
2696  *
2697  * Unlock one or more blocks
2698  */
onenand_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2699 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2700 {
2701 	int ret;
2702 
2703 	onenand_get_device(mtd, FL_LOCKING);
2704 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2705 	onenand_release_device(mtd);
2706 	return ret;
2707 }
2708 
2709 /**
2710  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2711  * @param this		onenand chip data structure
2712  *
2713  * Check lock status
2714  */
onenand_check_lock_status(struct onenand_chip * this)2715 static int onenand_check_lock_status(struct onenand_chip *this)
2716 {
2717 	unsigned int value, block, status;
2718 	unsigned int end;
2719 
2720 	end = this->chipsize >> this->erase_shift;
2721 	for (block = 0; block < end; block++) {
2722 		/* Set block address */
2723 		value = onenand_block_address(this, block);
2724 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2725 		/* Select DataRAM for DDP */
2726 		value = onenand_bufferram_address(this, block);
2727 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2728 		/* Set start block address */
2729 		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2730 
2731 		/* Check lock status */
2732 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2733 		if (!(status & ONENAND_WP_US)) {
2734 			printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2735 				__func__, block, status);
2736 			return 0;
2737 		}
2738 	}
2739 
2740 	return 1;
2741 }
2742 
2743 /**
2744  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2745  * @param mtd		MTD device structure
2746  *
2747  * Unlock all blocks
2748  */
onenand_unlock_all(struct mtd_info * mtd)2749 static void onenand_unlock_all(struct mtd_info *mtd)
2750 {
2751 	struct onenand_chip *this = mtd->priv;
2752 	loff_t ofs = 0;
2753 	loff_t len = mtd->size;
2754 
2755 	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2756 		/* Set start block address */
2757 		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2758 		/* Write unlock command */
2759 		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2760 
2761 		/* There's no return value */
2762 		this->wait(mtd, FL_LOCKING);
2763 
2764 		/* Sanity check */
2765 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2766 		    & ONENAND_CTRL_ONGO)
2767 			continue;
2768 
2769 		/* Don't check lock status */
2770 		if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2771 			return;
2772 
2773 		/* Check lock status */
2774 		if (onenand_check_lock_status(this))
2775 			return;
2776 
2777 		/* Workaround for all block unlock in DDP */
2778 		if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2779 			/* All blocks on another chip */
2780 			ofs = this->chipsize >> 1;
2781 			len = this->chipsize >> 1;
2782 		}
2783 	}
2784 
2785 	onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2786 }
2787 
2788 #ifdef CONFIG_MTD_ONENAND_OTP
2789 
2790 /**
2791  * onenand_otp_command - Send OTP specific command to OneNAND device
2792  * @param mtd	 MTD device structure
2793  * @param cmd	 the command to be sent
2794  * @param addr	 offset to read from or write to
2795  * @param len	 number of bytes to read or write
2796  */
onenand_otp_command(struct mtd_info * mtd,int cmd,loff_t addr,size_t len)2797 static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2798 				size_t len)
2799 {
2800 	struct onenand_chip *this = mtd->priv;
2801 	int value, block, page;
2802 
2803 	/* Address translation */
2804 	switch (cmd) {
2805 	case ONENAND_CMD_OTP_ACCESS:
2806 		block = (int) (addr >> this->erase_shift);
2807 		page = -1;
2808 		break;
2809 
2810 	default:
2811 		block = (int) (addr >> this->erase_shift);
2812 		page = (int) (addr >> this->page_shift);
2813 
2814 		if (ONENAND_IS_2PLANE(this)) {
2815 			/* Make the even block number */
2816 			block &= ~1;
2817 			/* Is it the odd plane? */
2818 			if (addr & this->writesize)
2819 				block++;
2820 			page >>= 1;
2821 		}
2822 		page &= this->page_mask;
2823 		break;
2824 	}
2825 
2826 	if (block != -1) {
2827 		/* Write 'DFS, FBA' of Flash */
2828 		value = onenand_block_address(this, block);
2829 		this->write_word(value, this->base +
2830 				ONENAND_REG_START_ADDRESS1);
2831 	}
2832 
2833 	if (page != -1) {
2834 		/* Now we use page size operation */
2835 		int sectors = 4, count = 4;
2836 		int dataram;
2837 
2838 		switch (cmd) {
2839 		default:
2840 			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2841 				cmd = ONENAND_CMD_2X_PROG;
2842 			dataram = ONENAND_CURRENT_BUFFERRAM(this);
2843 			break;
2844 		}
2845 
2846 		/* Write 'FPA, FSA' of Flash */
2847 		value = onenand_page_address(page, sectors);
2848 		this->write_word(value, this->base +
2849 				ONENAND_REG_START_ADDRESS8);
2850 
2851 		/* Write 'BSA, BSC' of DataRAM */
2852 		value = onenand_buffer_address(dataram, sectors, count);
2853 		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2854 	}
2855 
2856 	/* Interrupt clear */
2857 	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2858 
2859 	/* Write command */
2860 	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2861 
2862 	return 0;
2863 }
2864 
2865 /**
2866  * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2867  * @param mtd		MTD device structure
2868  * @param to		offset to write to
2869  * @param len		number of bytes to write
2870  * @param retlen	pointer to variable to store the number of written bytes
2871  * @param buf		the data to write
2872  *
2873  * OneNAND write out-of-band only for OTP
2874  */
onenand_otp_write_oob_nolock(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2875 static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2876 				    struct mtd_oob_ops *ops)
2877 {
2878 	struct onenand_chip *this = mtd->priv;
2879 	int column, ret = 0, oobsize;
2880 	int written = 0;
2881 	u_char *oobbuf;
2882 	size_t len = ops->ooblen;
2883 	const u_char *buf = ops->oobbuf;
2884 	int block, value, status;
2885 
2886 	to += ops->ooboffs;
2887 
2888 	/* Initialize retlen, in case of early exit */
2889 	ops->oobretlen = 0;
2890 
2891 	oobsize = mtd->oobsize;
2892 
2893 	column = to & (mtd->oobsize - 1);
2894 
2895 	oobbuf = this->oob_buf;
2896 
2897 	/* Loop until all data write */
2898 	while (written < len) {
2899 		int thislen = min_t(int, oobsize, len - written);
2900 
2901 		cond_resched();
2902 
2903 		block = (int) (to >> this->erase_shift);
2904 		/*
2905 		 * Write 'DFS, FBA' of Flash
2906 		 * Add: F100h DQ=DFS, FBA
2907 		 */
2908 
2909 		value = onenand_block_address(this, block);
2910 		this->write_word(value, this->base +
2911 				ONENAND_REG_START_ADDRESS1);
2912 
2913 		/*
2914 		 * Select DataRAM for DDP
2915 		 * Add: F101h DQ=DBS
2916 		 */
2917 
2918 		value = onenand_bufferram_address(this, block);
2919 		this->write_word(value, this->base +
2920 				ONENAND_REG_START_ADDRESS2);
2921 		ONENAND_SET_NEXT_BUFFERRAM(this);
2922 
2923 		/*
2924 		 * Enter OTP access mode
2925 		 */
2926 		this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2927 		this->wait(mtd, FL_OTPING);
2928 
2929 		/* We send data to spare ram with oobsize
2930 		 * to prevent byte access */
2931 		memcpy(oobbuf + column, buf, thislen);
2932 
2933 		/*
2934 		 * Write Data into DataRAM
2935 		 * Add: 8th Word
2936 		 * in sector0/spare/page0
2937 		 * DQ=XXFCh
2938 		 */
2939 		this->write_bufferram(mtd, ONENAND_SPARERAM,
2940 					oobbuf, 0, mtd->oobsize);
2941 
2942 		onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2943 		onenand_update_bufferram(mtd, to, 0);
2944 		if (ONENAND_IS_2PLANE(this)) {
2945 			ONENAND_SET_BUFFERRAM1(this);
2946 			onenand_update_bufferram(mtd, to + this->writesize, 0);
2947 		}
2948 
2949 		ret = this->wait(mtd, FL_WRITING);
2950 		if (ret) {
2951 			printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2952 			break;
2953 		}
2954 
2955 		/* Exit OTP access mode */
2956 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2957 		this->wait(mtd, FL_RESETING);
2958 
2959 		status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2960 		status &= 0x60;
2961 
2962 		if (status == 0x60) {
2963 			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2964 			printk(KERN_DEBUG "1st Block\tLOCKED\n");
2965 			printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2966 		} else if (status == 0x20) {
2967 			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2968 			printk(KERN_DEBUG "1st Block\tLOCKED\n");
2969 			printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2970 		} else if (status == 0x40) {
2971 			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2972 			printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
2973 			printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2974 		} else {
2975 			printk(KERN_DEBUG "Reboot to check\n");
2976 		}
2977 
2978 		written += thislen;
2979 		if (written == len)
2980 			break;
2981 
2982 		to += mtd->writesize;
2983 		buf += thislen;
2984 		column = 0;
2985 	}
2986 
2987 	ops->oobretlen = written;
2988 
2989 	return ret;
2990 }
2991 
2992 /* Internal OTP operation */
2993 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2994 		size_t *retlen, u_char *buf);
2995 
2996 /**
2997  * do_otp_read - [DEFAULT] Read OTP block area
2998  * @param mtd		MTD device structure
2999  * @param from		The offset to read
3000  * @param len		number of bytes to read
3001  * @param retlen	pointer to variable to store the number of readbytes
3002  * @param buf		the databuffer to put/get data
3003  *
3004  * Read OTP block area.
3005  */
do_otp_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)3006 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
3007 		size_t *retlen, u_char *buf)
3008 {
3009 	struct onenand_chip *this = mtd->priv;
3010 	struct mtd_oob_ops ops = {
3011 		.len	= len,
3012 		.ooblen	= 0,
3013 		.datbuf	= buf,
3014 		.oobbuf	= NULL,
3015 	};
3016 	int ret;
3017 
3018 	/* Enter OTP access mode */
3019 	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3020 	this->wait(mtd, FL_OTPING);
3021 
3022 	ret = ONENAND_IS_4KB_PAGE(this) ?
3023 		onenand_mlc_read_ops_nolock(mtd, from, &ops) :
3024 		onenand_read_ops_nolock(mtd, from, &ops);
3025 
3026 	/* Exit OTP access mode */
3027 	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3028 	this->wait(mtd, FL_RESETING);
3029 
3030 	return ret;
3031 }
3032 
3033 /**
3034  * do_otp_write - [DEFAULT] Write OTP block area
3035  * @param mtd		MTD device structure
3036  * @param to		The offset to write
3037  * @param len		number of bytes to write
3038  * @param retlen	pointer to variable to store the number of write bytes
3039  * @param buf		the databuffer to put/get data
3040  *
3041  * Write OTP block area.
3042  */
do_otp_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,u_char * buf)3043 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
3044 		size_t *retlen, u_char *buf)
3045 {
3046 	struct onenand_chip *this = mtd->priv;
3047 	unsigned char *pbuf = buf;
3048 	int ret;
3049 	struct mtd_oob_ops ops;
3050 
3051 	/* Force buffer page aligned */
3052 	if (len < mtd->writesize) {
3053 		memcpy(this->page_buf, buf, len);
3054 		memset(this->page_buf + len, 0xff, mtd->writesize - len);
3055 		pbuf = this->page_buf;
3056 		len = mtd->writesize;
3057 	}
3058 
3059 	/* Enter OTP access mode */
3060 	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3061 	this->wait(mtd, FL_OTPING);
3062 
3063 	ops.len = len;
3064 	ops.ooblen = 0;
3065 	ops.datbuf = pbuf;
3066 	ops.oobbuf = NULL;
3067 	ret = onenand_write_ops_nolock(mtd, to, &ops);
3068 	*retlen = ops.retlen;
3069 
3070 	/* Exit OTP access mode */
3071 	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3072 	this->wait(mtd, FL_RESETING);
3073 
3074 	return ret;
3075 }
3076 
3077 /**
3078  * do_otp_lock - [DEFAULT] Lock OTP block area
3079  * @param mtd		MTD device structure
3080  * @param from		The offset to lock
3081  * @param len		number of bytes to lock
3082  * @param retlen	pointer to variable to store the number of lock bytes
3083  * @param buf		the databuffer to put/get data
3084  *
3085  * Lock OTP block area.
3086  */
do_otp_lock(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)3087 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
3088 		size_t *retlen, u_char *buf)
3089 {
3090 	struct onenand_chip *this = mtd->priv;
3091 	struct mtd_oob_ops ops;
3092 	int ret;
3093 
3094 	if (FLEXONENAND(this)) {
3095 
3096 		/* Enter OTP access mode */
3097 		this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3098 		this->wait(mtd, FL_OTPING);
3099 		/*
3100 		 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3101 		 * main area of page 49.
3102 		 */
3103 		ops.len = mtd->writesize;
3104 		ops.ooblen = 0;
3105 		ops.datbuf = buf;
3106 		ops.oobbuf = NULL;
3107 		ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3108 		*retlen = ops.retlen;
3109 
3110 		/* Exit OTP access mode */
3111 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3112 		this->wait(mtd, FL_RESETING);
3113 	} else {
3114 		ops.mode = MTD_OPS_PLACE_OOB;
3115 		ops.ooblen = len;
3116 		ops.oobbuf = buf;
3117 		ops.ooboffs = 0;
3118 		ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3119 		*retlen = ops.oobretlen;
3120 	}
3121 
3122 	return ret;
3123 }
3124 
3125 /**
3126  * onenand_otp_walk - [DEFAULT] Handle OTP operation
3127  * @param mtd		MTD device structure
3128  * @param from		The offset to read/write
3129  * @param len		number of bytes to read/write
3130  * @param retlen	pointer to variable to store the number of read bytes
3131  * @param buf		the databuffer to put/get data
3132  * @param action	do given action
3133  * @param mode		specify user and factory
3134  *
3135  * Handle OTP operation.
3136  */
onenand_otp_walk(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf,otp_op_t action,int mode)3137 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3138 			size_t *retlen, u_char *buf,
3139 			otp_op_t action, int mode)
3140 {
3141 	struct onenand_chip *this = mtd->priv;
3142 	int otp_pages;
3143 	int density;
3144 	int ret = 0;
3145 
3146 	*retlen = 0;
3147 
3148 	density = onenand_get_density(this->device_id);
3149 	if (density < ONENAND_DEVICE_DENSITY_512Mb)
3150 		otp_pages = 20;
3151 	else
3152 		otp_pages = 50;
3153 
3154 	if (mode == MTD_OTP_FACTORY) {
3155 		from += mtd->writesize * otp_pages;
3156 		otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3157 	}
3158 
3159 	/* Check User/Factory boundary */
3160 	if (mode == MTD_OTP_USER) {
3161 		if (mtd->writesize * otp_pages < from + len)
3162 			return 0;
3163 	} else {
3164 		if (mtd->writesize * otp_pages <  len)
3165 			return 0;
3166 	}
3167 
3168 	onenand_get_device(mtd, FL_OTPING);
3169 	while (len > 0 && otp_pages > 0) {
3170 		if (!action) {	/* OTP Info functions */
3171 			struct otp_info *otpinfo;
3172 
3173 			len -= sizeof(struct otp_info);
3174 			if (len <= 0) {
3175 				ret = -ENOSPC;
3176 				break;
3177 			}
3178 
3179 			otpinfo = (struct otp_info *) buf;
3180 			otpinfo->start = from;
3181 			otpinfo->length = mtd->writesize;
3182 			otpinfo->locked = 0;
3183 
3184 			from += mtd->writesize;
3185 			buf += sizeof(struct otp_info);
3186 			*retlen += sizeof(struct otp_info);
3187 		} else {
3188 			size_t tmp_retlen;
3189 
3190 			ret = action(mtd, from, len, &tmp_retlen, buf);
3191 			if (ret)
3192 				break;
3193 
3194 			buf += tmp_retlen;
3195 			len -= tmp_retlen;
3196 			*retlen += tmp_retlen;
3197 
3198 		}
3199 		otp_pages--;
3200 	}
3201 	onenand_release_device(mtd);
3202 
3203 	return ret;
3204 }
3205 
3206 /**
3207  * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3208  * @param mtd		MTD device structure
3209  * @param len		number of bytes to read
3210  * @param retlen	pointer to variable to store the number of read bytes
3211  * @param buf		the databuffer to put/get data
3212  *
3213  * Read factory OTP info.
3214  */
onenand_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)3215 static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len,
3216 				      size_t *retlen, struct otp_info *buf)
3217 {
3218 	return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3219 				MTD_OTP_FACTORY);
3220 }
3221 
3222 /**
3223  * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3224  * @param mtd		MTD device structure
3225  * @param from		The offset to read
3226  * @param len		number of bytes to read
3227  * @param retlen	pointer to variable to store the number of read bytes
3228  * @param buf		the databuffer to put/get data
3229  *
3230  * Read factory OTP area.
3231  */
onenand_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)3232 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3233 			size_t len, size_t *retlen, u_char *buf)
3234 {
3235 	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3236 }
3237 
3238 /**
3239  * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3240  * @param mtd		MTD device structure
3241  * @param retlen	pointer to variable to store the number of read bytes
3242  * @param len		number of bytes to read
3243  * @param buf		the databuffer to put/get data
3244  *
3245  * Read user OTP info.
3246  */
onenand_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)3247 static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len,
3248 				      size_t *retlen, struct otp_info *buf)
3249 {
3250 	return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3251 				MTD_OTP_USER);
3252 }
3253 
3254 /**
3255  * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3256  * @param mtd		MTD device structure
3257  * @param from		The offset to read
3258  * @param len		number of bytes to read
3259  * @param retlen	pointer to variable to store the number of read bytes
3260  * @param buf		the databuffer to put/get data
3261  *
3262  * Read user OTP area.
3263  */
onenand_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)3264 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3265 			size_t len, size_t *retlen, u_char *buf)
3266 {
3267 	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3268 }
3269 
3270 /**
3271  * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3272  * @param mtd		MTD device structure
3273  * @param from		The offset to write
3274  * @param len		number of bytes to write
3275  * @param retlen	pointer to variable to store the number of write bytes
3276  * @param buf		the databuffer to put/get data
3277  *
3278  * Write user OTP area.
3279  */
onenand_write_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)3280 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3281 			size_t len, size_t *retlen, u_char *buf)
3282 {
3283 	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
3284 }
3285 
3286 /**
3287  * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3288  * @param mtd		MTD device structure
3289  * @param from		The offset to lock
3290  * @param len		number of bytes to unlock
3291  *
3292  * Write lock mark on spare area in page 0 in OTP block
3293  */
onenand_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)3294 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3295 			size_t len)
3296 {
3297 	struct onenand_chip *this = mtd->priv;
3298 	u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3299 	size_t retlen;
3300 	int ret;
3301 	unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3302 
3303 	memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3304 						 : mtd->oobsize);
3305 	/*
3306 	 * Write lock mark to 8th word of sector0 of page0 of the spare0.
3307 	 * We write 16 bytes spare area instead of 2 bytes.
3308 	 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3309 	 * main area of page 49.
3310 	 */
3311 
3312 	from = 0;
3313 	len = FLEXONENAND(this) ? mtd->writesize : 16;
3314 
3315 	/*
3316 	 * Note: OTP lock operation
3317 	 *       OTP block : 0xXXFC			XX 1111 1100
3318 	 *       1st block : 0xXXF3 (If chip support)	XX 1111 0011
3319 	 *       Both      : 0xXXF0 (If chip support)	XX 1111 0000
3320 	 */
3321 	if (FLEXONENAND(this))
3322 		otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3323 
3324 	/* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3325 	if (otp == 1)
3326 		buf[otp_lock_offset] = 0xFC;
3327 	else if (otp == 2)
3328 		buf[otp_lock_offset] = 0xF3;
3329 	else if (otp == 3)
3330 		buf[otp_lock_offset] = 0xF0;
3331 	else if (otp != 0)
3332 		printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3333 
3334 	ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3335 
3336 	return ret ? : retlen;
3337 }
3338 
3339 #endif	/* CONFIG_MTD_ONENAND_OTP */
3340 
3341 /**
3342  * onenand_check_features - Check and set OneNAND features
3343  * @param mtd		MTD data structure
3344  *
3345  * Check and set OneNAND features
3346  * - lock scheme
3347  * - two plane
3348  */
onenand_check_features(struct mtd_info * mtd)3349 static void onenand_check_features(struct mtd_info *mtd)
3350 {
3351 	struct onenand_chip *this = mtd->priv;
3352 	unsigned int density, process, numbufs;
3353 
3354 	/* Lock scheme depends on density and process */
3355 	density = onenand_get_density(this->device_id);
3356 	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3357 	numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3358 
3359 	/* Lock scheme */
3360 	switch (density) {
3361 	case ONENAND_DEVICE_DENSITY_4Gb:
3362 		if (ONENAND_IS_DDP(this))
3363 			this->options |= ONENAND_HAS_2PLANE;
3364 		else if (numbufs == 1) {
3365 			this->options |= ONENAND_HAS_4KB_PAGE;
3366 			this->options |= ONENAND_HAS_CACHE_PROGRAM;
3367 			/*
3368 			 * There are two different 4KiB pagesize chips
3369 			 * and no way to detect it by H/W config values.
3370 			 *
3371 			 * To detect the correct NOP for each chips,
3372 			 * It should check the version ID as workaround.
3373 			 *
3374 			 * Now it has as following
3375 			 * KFM4G16Q4M has NOP 4 with version ID 0x0131
3376 			 * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3377 			 */
3378 			if ((this->version_id & 0xf) == 0xe)
3379 				this->options |= ONENAND_HAS_NOP_1;
3380 		}
3381 
3382 	case ONENAND_DEVICE_DENSITY_2Gb:
3383 		/* 2Gb DDP does not have 2 plane */
3384 		if (!ONENAND_IS_DDP(this))
3385 			this->options |= ONENAND_HAS_2PLANE;
3386 		this->options |= ONENAND_HAS_UNLOCK_ALL;
3387 
3388 	case ONENAND_DEVICE_DENSITY_1Gb:
3389 		/* A-Die has all block unlock */
3390 		if (process)
3391 			this->options |= ONENAND_HAS_UNLOCK_ALL;
3392 		break;
3393 
3394 	default:
3395 		/* Some OneNAND has continuous lock scheme */
3396 		if (!process)
3397 			this->options |= ONENAND_HAS_CONT_LOCK;
3398 		break;
3399 	}
3400 
3401 	/* The MLC has 4KiB pagesize. */
3402 	if (ONENAND_IS_MLC(this))
3403 		this->options |= ONENAND_HAS_4KB_PAGE;
3404 
3405 	if (ONENAND_IS_4KB_PAGE(this))
3406 		this->options &= ~ONENAND_HAS_2PLANE;
3407 
3408 	if (FLEXONENAND(this)) {
3409 		this->options &= ~ONENAND_HAS_CONT_LOCK;
3410 		this->options |= ONENAND_HAS_UNLOCK_ALL;
3411 	}
3412 
3413 	if (this->options & ONENAND_HAS_CONT_LOCK)
3414 		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3415 	if (this->options & ONENAND_HAS_UNLOCK_ALL)
3416 		printk(KERN_DEBUG "Chip support all block unlock\n");
3417 	if (this->options & ONENAND_HAS_2PLANE)
3418 		printk(KERN_DEBUG "Chip has 2 plane\n");
3419 	if (this->options & ONENAND_HAS_4KB_PAGE)
3420 		printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3421 	if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3422 		printk(KERN_DEBUG "Chip has cache program feature\n");
3423 }
3424 
3425 /**
3426  * onenand_print_device_info - Print device & version ID
3427  * @param device        device ID
3428  * @param version	version ID
3429  *
3430  * Print device & version ID
3431  */
onenand_print_device_info(int device,int version)3432 static void onenand_print_device_info(int device, int version)
3433 {
3434 	int vcc, demuxed, ddp, density, flexonenand;
3435 
3436         vcc = device & ONENAND_DEVICE_VCC_MASK;
3437         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3438         ddp = device & ONENAND_DEVICE_IS_DDP;
3439         density = onenand_get_density(device);
3440 	flexonenand = device & DEVICE_IS_FLEXONENAND;
3441 	printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3442 		demuxed ? "" : "Muxed ",
3443 		flexonenand ? "Flex-" : "",
3444                 ddp ? "(DDP)" : "",
3445                 (16 << density),
3446                 vcc ? "2.65/3.3" : "1.8",
3447                 device);
3448 	printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3449 }
3450 
3451 static const struct onenand_manufacturers onenand_manuf_ids[] = {
3452         {ONENAND_MFR_SAMSUNG, "Samsung"},
3453 	{ONENAND_MFR_NUMONYX, "Numonyx"},
3454 };
3455 
3456 /**
3457  * onenand_check_maf - Check manufacturer ID
3458  * @param manuf         manufacturer ID
3459  *
3460  * Check manufacturer ID
3461  */
onenand_check_maf(int manuf)3462 static int onenand_check_maf(int manuf)
3463 {
3464 	int size = ARRAY_SIZE(onenand_manuf_ids);
3465 	char *name;
3466         int i;
3467 
3468 	for (i = 0; i < size; i++)
3469                 if (manuf == onenand_manuf_ids[i].id)
3470                         break;
3471 
3472 	if (i < size)
3473 		name = onenand_manuf_ids[i].name;
3474 	else
3475 		name = "Unknown";
3476 
3477 	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3478 
3479 	return (i == size);
3480 }
3481 
3482 /**
3483 * flexonenand_get_boundary	- Reads the SLC boundary
3484 * @param onenand_info		- onenand info structure
3485 **/
flexonenand_get_boundary(struct mtd_info * mtd)3486 static int flexonenand_get_boundary(struct mtd_info *mtd)
3487 {
3488 	struct onenand_chip *this = mtd->priv;
3489 	unsigned die, bdry;
3490 	int syscfg, locked;
3491 
3492 	/* Disable ECC */
3493 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3494 	this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3495 
3496 	for (die = 0; die < this->dies; die++) {
3497 		this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3498 		this->wait(mtd, FL_SYNCING);
3499 
3500 		this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3501 		this->wait(mtd, FL_READING);
3502 
3503 		bdry = this->read_word(this->base + ONENAND_DATARAM);
3504 		if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3505 			locked = 0;
3506 		else
3507 			locked = 1;
3508 		this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3509 
3510 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3511 		this->wait(mtd, FL_RESETING);
3512 
3513 		printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3514 		       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3515 	}
3516 
3517 	/* Enable ECC */
3518 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3519 	return 0;
3520 }
3521 
3522 /**
3523  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3524  * 			  boundary[], diesize[], mtd->size, mtd->erasesize
3525  * @param mtd		- MTD device structure
3526  */
flexonenand_get_size(struct mtd_info * mtd)3527 static void flexonenand_get_size(struct mtd_info *mtd)
3528 {
3529 	struct onenand_chip *this = mtd->priv;
3530 	int die, i, eraseshift, density;
3531 	int blksperdie, maxbdry;
3532 	loff_t ofs;
3533 
3534 	density = onenand_get_density(this->device_id);
3535 	blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3536 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3537 	maxbdry = blksperdie - 1;
3538 	eraseshift = this->erase_shift - 1;
3539 
3540 	mtd->numeraseregions = this->dies << 1;
3541 
3542 	/* This fills up the device boundary */
3543 	flexonenand_get_boundary(mtd);
3544 	die = ofs = 0;
3545 	i = -1;
3546 	for (; die < this->dies; die++) {
3547 		if (!die || this->boundary[die-1] != maxbdry) {
3548 			i++;
3549 			mtd->eraseregions[i].offset = ofs;
3550 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
3551 			mtd->eraseregions[i].numblocks =
3552 							this->boundary[die] + 1;
3553 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
3554 			eraseshift++;
3555 		} else {
3556 			mtd->numeraseregions -= 1;
3557 			mtd->eraseregions[i].numblocks +=
3558 							this->boundary[die] + 1;
3559 			ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3560 		}
3561 		if (this->boundary[die] != maxbdry) {
3562 			i++;
3563 			mtd->eraseregions[i].offset = ofs;
3564 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
3565 			mtd->eraseregions[i].numblocks = maxbdry ^
3566 							 this->boundary[die];
3567 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
3568 			eraseshift--;
3569 		} else
3570 			mtd->numeraseregions -= 1;
3571 	}
3572 
3573 	/* Expose MLC erase size except when all blocks are SLC */
3574 	mtd->erasesize = 1 << this->erase_shift;
3575 	if (mtd->numeraseregions == 1)
3576 		mtd->erasesize >>= 1;
3577 
3578 	printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3579 	for (i = 0; i < mtd->numeraseregions; i++)
3580 		printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3581 			" numblocks: %04u]\n",
3582 			(unsigned int) mtd->eraseregions[i].offset,
3583 			mtd->eraseregions[i].erasesize,
3584 			mtd->eraseregions[i].numblocks);
3585 
3586 	for (die = 0, mtd->size = 0; die < this->dies; die++) {
3587 		this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3588 		this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3589 						 << (this->erase_shift - 1);
3590 		mtd->size += this->diesize[die];
3591 	}
3592 }
3593 
3594 /**
3595  * flexonenand_check_blocks_erased - Check if blocks are erased
3596  * @param mtd_info	- mtd info structure
3597  * @param start		- first erase block to check
3598  * @param end		- last erase block to check
3599  *
3600  * Converting an unerased block from MLC to SLC
3601  * causes byte values to change. Since both data and its ECC
3602  * have changed, reads on the block give uncorrectable error.
3603  * This might lead to the block being detected as bad.
3604  *
3605  * Avoid this by ensuring that the block to be converted is
3606  * erased.
3607  */
flexonenand_check_blocks_erased(struct mtd_info * mtd,int start,int end)3608 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3609 {
3610 	struct onenand_chip *this = mtd->priv;
3611 	int i, ret;
3612 	int block;
3613 	struct mtd_oob_ops ops = {
3614 		.mode = MTD_OPS_PLACE_OOB,
3615 		.ooboffs = 0,
3616 		.ooblen	= mtd->oobsize,
3617 		.datbuf	= NULL,
3618 		.oobbuf	= this->oob_buf,
3619 	};
3620 	loff_t addr;
3621 
3622 	printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3623 
3624 	for (block = start; block <= end; block++) {
3625 		addr = flexonenand_addr(this, block);
3626 		if (onenand_block_isbad_nolock(mtd, addr, 0))
3627 			continue;
3628 
3629 		/*
3630 		 * Since main area write results in ECC write to spare,
3631 		 * it is sufficient to check only ECC bytes for change.
3632 		 */
3633 		ret = onenand_read_oob_nolock(mtd, addr, &ops);
3634 		if (ret)
3635 			return ret;
3636 
3637 		for (i = 0; i < mtd->oobsize; i++)
3638 			if (this->oob_buf[i] != 0xff)
3639 				break;
3640 
3641 		if (i != mtd->oobsize) {
3642 			printk(KERN_WARNING "%s: Block %d not erased.\n",
3643 				__func__, block);
3644 			return 1;
3645 		}
3646 	}
3647 
3648 	return 0;
3649 }
3650 
3651 /**
3652  * flexonenand_set_boundary	- Writes the SLC boundary
3653  * @param mtd			- mtd info structure
3654  */
flexonenand_set_boundary(struct mtd_info * mtd,int die,int boundary,int lock)3655 static int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3656 				    int boundary, int lock)
3657 {
3658 	struct onenand_chip *this = mtd->priv;
3659 	int ret, density, blksperdie, old, new, thisboundary;
3660 	loff_t addr;
3661 
3662 	/* Change only once for SDP Flex-OneNAND */
3663 	if (die && (!ONENAND_IS_DDP(this)))
3664 		return 0;
3665 
3666 	/* boundary value of -1 indicates no required change */
3667 	if (boundary < 0 || boundary == this->boundary[die])
3668 		return 0;
3669 
3670 	density = onenand_get_density(this->device_id);
3671 	blksperdie = ((16 << density) << 20) >> this->erase_shift;
3672 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3673 
3674 	if (boundary >= blksperdie) {
3675 		printk(KERN_ERR "%s: Invalid boundary value. "
3676 				"Boundary not changed.\n", __func__);
3677 		return -EINVAL;
3678 	}
3679 
3680 	/* Check if converting blocks are erased */
3681 	old = this->boundary[die] + (die * this->density_mask);
3682 	new = boundary + (die * this->density_mask);
3683 	ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3684 	if (ret) {
3685 		printk(KERN_ERR "%s: Please erase blocks "
3686 				"before boundary change\n", __func__);
3687 		return ret;
3688 	}
3689 
3690 	this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3691 	this->wait(mtd, FL_SYNCING);
3692 
3693 	/* Check is boundary is locked */
3694 	this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3695 	this->wait(mtd, FL_READING);
3696 
3697 	thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3698 	if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3699 		printk(KERN_ERR "%s: boundary locked\n", __func__);
3700 		ret = 1;
3701 		goto out;
3702 	}
3703 
3704 	printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3705 			die, boundary, lock ? "(Locked)" : "(Unlocked)");
3706 
3707 	addr = die ? this->diesize[0] : 0;
3708 
3709 	boundary &= FLEXONENAND_PI_MASK;
3710 	boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3711 
3712 	this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3713 	ret = this->wait(mtd, FL_ERASING);
3714 	if (ret) {
3715 		printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3716 		       __func__, die);
3717 		goto out;
3718 	}
3719 
3720 	this->write_word(boundary, this->base + ONENAND_DATARAM);
3721 	this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3722 	ret = this->wait(mtd, FL_WRITING);
3723 	if (ret) {
3724 		printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3725 			__func__, die);
3726 		goto out;
3727 	}
3728 
3729 	this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3730 	ret = this->wait(mtd, FL_WRITING);
3731 out:
3732 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3733 	this->wait(mtd, FL_RESETING);
3734 	if (!ret)
3735 		/* Recalculate device size on boundary change*/
3736 		flexonenand_get_size(mtd);
3737 
3738 	return ret;
3739 }
3740 
3741 /**
3742  * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3743  * @param mtd		MTD device structure
3744  *
3745  * OneNAND detection method:
3746  *   Compare the values from command with ones from register
3747  */
onenand_chip_probe(struct mtd_info * mtd)3748 static int onenand_chip_probe(struct mtd_info *mtd)
3749 {
3750 	struct onenand_chip *this = mtd->priv;
3751 	int bram_maf_id, bram_dev_id, maf_id, dev_id;
3752 	int syscfg;
3753 
3754 	/* Save system configuration 1 */
3755 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3756 	/* Clear Sync. Burst Read mode to read BootRAM */
3757 	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3758 
3759 	/* Send the command for reading device ID from BootRAM */
3760 	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3761 
3762 	/* Read manufacturer and device IDs from BootRAM */
3763 	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3764 	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3765 
3766 	/* Reset OneNAND to read default register values */
3767 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3768 	/* Wait reset */
3769 	this->wait(mtd, FL_RESETING);
3770 
3771 	/* Restore system configuration 1 */
3772 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3773 
3774 	/* Check manufacturer ID */
3775 	if (onenand_check_maf(bram_maf_id))
3776 		return -ENXIO;
3777 
3778 	/* Read manufacturer and device IDs from Register */
3779 	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3780 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3781 
3782 	/* Check OneNAND device */
3783 	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3784 		return -ENXIO;
3785 
3786 	return 0;
3787 }
3788 
3789 /**
3790  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3791  * @param mtd		MTD device structure
3792  */
onenand_probe(struct mtd_info * mtd)3793 static int onenand_probe(struct mtd_info *mtd)
3794 {
3795 	struct onenand_chip *this = mtd->priv;
3796 	int dev_id, ver_id;
3797 	int density;
3798 	int ret;
3799 
3800 	ret = this->chip_probe(mtd);
3801 	if (ret)
3802 		return ret;
3803 
3804 	/* Device and version IDs from Register */
3805 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3806 	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3807 	this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3808 
3809 	/* Flash device information */
3810 	onenand_print_device_info(dev_id, ver_id);
3811 	this->device_id = dev_id;
3812 	this->version_id = ver_id;
3813 
3814 	/* Check OneNAND features */
3815 	onenand_check_features(mtd);
3816 
3817 	density = onenand_get_density(dev_id);
3818 	if (FLEXONENAND(this)) {
3819 		this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3820 		/* Maximum possible erase regions */
3821 		mtd->numeraseregions = this->dies << 1;
3822 		mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
3823 					* (this->dies << 1), GFP_KERNEL);
3824 		if (!mtd->eraseregions)
3825 			return -ENOMEM;
3826 	}
3827 
3828 	/*
3829 	 * For Flex-OneNAND, chipsize represents maximum possible device size.
3830 	 * mtd->size represents the actual device size.
3831 	 */
3832 	this->chipsize = (16 << density) << 20;
3833 
3834 	/* OneNAND page size & block size */
3835 	/* The data buffer size is equal to page size */
3836 	mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3837 	/* We use the full BufferRAM */
3838 	if (ONENAND_IS_4KB_PAGE(this))
3839 		mtd->writesize <<= 1;
3840 
3841 	mtd->oobsize = mtd->writesize >> 5;
3842 	/* Pages per a block are always 64 in OneNAND */
3843 	mtd->erasesize = mtd->writesize << 6;
3844 	/*
3845 	 * Flex-OneNAND SLC area has 64 pages per block.
3846 	 * Flex-OneNAND MLC area has 128 pages per block.
3847 	 * Expose MLC erase size to find erase_shift and page_mask.
3848 	 */
3849 	if (FLEXONENAND(this))
3850 		mtd->erasesize <<= 1;
3851 
3852 	this->erase_shift = ffs(mtd->erasesize) - 1;
3853 	this->page_shift = ffs(mtd->writesize) - 1;
3854 	this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3855 	/* Set density mask. it is used for DDP */
3856 	if (ONENAND_IS_DDP(this))
3857 		this->density_mask = this->chipsize >> (this->erase_shift + 1);
3858 	/* It's real page size */
3859 	this->writesize = mtd->writesize;
3860 
3861 	/* REVISIT: Multichip handling */
3862 
3863 	if (FLEXONENAND(this))
3864 		flexonenand_get_size(mtd);
3865 	else
3866 		mtd->size = this->chipsize;
3867 
3868 	/*
3869 	 * We emulate the 4KiB page and 256KiB erase block size
3870 	 * But oobsize is still 64 bytes.
3871 	 * It is only valid if you turn on 2X program support,
3872 	 * Otherwise it will be ignored by compiler.
3873 	 */
3874 	if (ONENAND_IS_2PLANE(this)) {
3875 		mtd->writesize <<= 1;
3876 		mtd->erasesize <<= 1;
3877 	}
3878 
3879 	return 0;
3880 }
3881 
3882 /**
3883  * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3884  * @param mtd		MTD device structure
3885  */
onenand_suspend(struct mtd_info * mtd)3886 static int onenand_suspend(struct mtd_info *mtd)
3887 {
3888 	return onenand_get_device(mtd, FL_PM_SUSPENDED);
3889 }
3890 
3891 /**
3892  * onenand_resume - [MTD Interface] Resume the OneNAND flash
3893  * @param mtd		MTD device structure
3894  */
onenand_resume(struct mtd_info * mtd)3895 static void onenand_resume(struct mtd_info *mtd)
3896 {
3897 	struct onenand_chip *this = mtd->priv;
3898 
3899 	if (this->state == FL_PM_SUSPENDED)
3900 		onenand_release_device(mtd);
3901 	else
3902 		printk(KERN_ERR "%s: resume() called for the chip which is not "
3903 				"in suspended state\n", __func__);
3904 }
3905 
3906 /**
3907  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3908  * @param mtd		MTD device structure
3909  * @param maxchips	Number of chips to scan for
3910  *
3911  * This fills out all the not initialized function pointers
3912  * with the defaults.
3913  * The flash ID is read and the mtd/chip structures are
3914  * filled with the appropriate values.
3915  */
onenand_scan(struct mtd_info * mtd,int maxchips)3916 int onenand_scan(struct mtd_info *mtd, int maxchips)
3917 {
3918 	int i, ret;
3919 	struct onenand_chip *this = mtd->priv;
3920 
3921 	if (!this->read_word)
3922 		this->read_word = onenand_readw;
3923 	if (!this->write_word)
3924 		this->write_word = onenand_writew;
3925 
3926 	if (!this->command)
3927 		this->command = onenand_command;
3928 	if (!this->wait)
3929 		onenand_setup_wait(mtd);
3930 	if (!this->bbt_wait)
3931 		this->bbt_wait = onenand_bbt_wait;
3932 	if (!this->unlock_all)
3933 		this->unlock_all = onenand_unlock_all;
3934 
3935 	if (!this->chip_probe)
3936 		this->chip_probe = onenand_chip_probe;
3937 
3938 	if (!this->read_bufferram)
3939 		this->read_bufferram = onenand_read_bufferram;
3940 	if (!this->write_bufferram)
3941 		this->write_bufferram = onenand_write_bufferram;
3942 
3943 	if (!this->block_markbad)
3944 		this->block_markbad = onenand_default_block_markbad;
3945 	if (!this->scan_bbt)
3946 		this->scan_bbt = onenand_default_bbt;
3947 
3948 	if (onenand_probe(mtd))
3949 		return -ENXIO;
3950 
3951 	/* Set Sync. Burst Read after probing */
3952 	if (this->mmcontrol) {
3953 		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3954 		this->read_bufferram = onenand_sync_read_bufferram;
3955 	}
3956 
3957 	/* Allocate buffers, if necessary */
3958 	if (!this->page_buf) {
3959 		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3960 		if (!this->page_buf)
3961 			return -ENOMEM;
3962 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3963 		this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3964 		if (!this->verify_buf) {
3965 			kfree(this->page_buf);
3966 			return -ENOMEM;
3967 		}
3968 #endif
3969 		this->options |= ONENAND_PAGEBUF_ALLOC;
3970 	}
3971 	if (!this->oob_buf) {
3972 		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3973 		if (!this->oob_buf) {
3974 			if (this->options & ONENAND_PAGEBUF_ALLOC) {
3975 				this->options &= ~ONENAND_PAGEBUF_ALLOC;
3976 				kfree(this->page_buf);
3977 			}
3978 			return -ENOMEM;
3979 		}
3980 		this->options |= ONENAND_OOBBUF_ALLOC;
3981 	}
3982 
3983 	this->state = FL_READY;
3984 	init_waitqueue_head(&this->wq);
3985 	spin_lock_init(&this->chip_lock);
3986 
3987 	/*
3988 	 * Allow subpage writes up to oobsize.
3989 	 */
3990 	switch (mtd->oobsize) {
3991 	case 128:
3992 		if (FLEXONENAND(this)) {
3993 			mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops);
3994 			mtd->subpage_sft = 0;
3995 		} else {
3996 			mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops);
3997 			mtd->subpage_sft = 2;
3998 		}
3999 		if (ONENAND_IS_NOP_1(this))
4000 			mtd->subpage_sft = 0;
4001 		break;
4002 	case 64:
4003 		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
4004 		mtd->subpage_sft = 2;
4005 		break;
4006 
4007 	case 32:
4008 		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
4009 		mtd->subpage_sft = 1;
4010 		break;
4011 
4012 	default:
4013 		printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
4014 			__func__, mtd->oobsize);
4015 		mtd->subpage_sft = 0;
4016 		/* To prevent kernel oops */
4017 		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
4018 		break;
4019 	}
4020 
4021 	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
4022 
4023 	/*
4024 	 * The number of bytes available for a client to place data into
4025 	 * the out of band area
4026 	 */
4027 	ret = mtd_ooblayout_count_freebytes(mtd);
4028 	if (ret < 0)
4029 		ret = 0;
4030 
4031 	mtd->oobavail = ret;
4032 
4033 	mtd->ecc_strength = 1;
4034 
4035 	/* Fill in remaining MTD driver data */
4036 	mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
4037 	mtd->flags = MTD_CAP_NANDFLASH;
4038 	mtd->_erase = onenand_erase;
4039 	mtd->_point = NULL;
4040 	mtd->_unpoint = NULL;
4041 	mtd->_read = onenand_read;
4042 	mtd->_write = onenand_write;
4043 	mtd->_read_oob = onenand_read_oob;
4044 	mtd->_write_oob = onenand_write_oob;
4045 	mtd->_panic_write = onenand_panic_write;
4046 #ifdef CONFIG_MTD_ONENAND_OTP
4047 	mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
4048 	mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
4049 	mtd->_get_user_prot_info = onenand_get_user_prot_info;
4050 	mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
4051 	mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
4052 	mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
4053 #endif
4054 	mtd->_sync = onenand_sync;
4055 	mtd->_lock = onenand_lock;
4056 	mtd->_unlock = onenand_unlock;
4057 	mtd->_suspend = onenand_suspend;
4058 	mtd->_resume = onenand_resume;
4059 	mtd->_block_isbad = onenand_block_isbad;
4060 	mtd->_block_markbad = onenand_block_markbad;
4061 	mtd->owner = THIS_MODULE;
4062 	mtd->writebufsize = mtd->writesize;
4063 
4064 	/* Unlock whole block */
4065 	if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
4066 		this->unlock_all(mtd);
4067 
4068 	ret = this->scan_bbt(mtd);
4069 	if ((!FLEXONENAND(this)) || ret)
4070 		return ret;
4071 
4072 	/* Change Flex-OneNAND boundaries if required */
4073 	for (i = 0; i < MAX_DIES; i++)
4074 		flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
4075 						 flex_bdry[(2 * i) + 1]);
4076 
4077 	return 0;
4078 }
4079 
4080 /**
4081  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
4082  * @param mtd		MTD device structure
4083  */
onenand_release(struct mtd_info * mtd)4084 void onenand_release(struct mtd_info *mtd)
4085 {
4086 	struct onenand_chip *this = mtd->priv;
4087 
4088 	/* Deregister partitions */
4089 	mtd_device_unregister(mtd);
4090 
4091 	/* Free bad block table memory, if allocated */
4092 	if (this->bbm) {
4093 		struct bbm_info *bbm = this->bbm;
4094 		kfree(bbm->bbt);
4095 		kfree(this->bbm);
4096 	}
4097 	/* Buffers allocated by onenand_scan */
4098 	if (this->options & ONENAND_PAGEBUF_ALLOC) {
4099 		kfree(this->page_buf);
4100 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4101 		kfree(this->verify_buf);
4102 #endif
4103 	}
4104 	if (this->options & ONENAND_OOBBUF_ALLOC)
4105 		kfree(this->oob_buf);
4106 	kfree(mtd->eraseregions);
4107 }
4108 
4109 EXPORT_SYMBOL_GPL(onenand_scan);
4110 EXPORT_SYMBOL_GPL(onenand_release);
4111 
4112 MODULE_LICENSE("GPL");
4113 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4114 MODULE_DESCRIPTION("Generic OneNAND flash driver code");
4115