1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21 /*
22 * The UBI Eraseblock Association (EBA) sub-system.
23 *
24 * This sub-system is responsible for I/O to/from logical eraseblock.
25 *
26 * Although in this implementation the EBA table is fully kept and managed in
27 * RAM, which assumes poor scalability, it might be (partially) maintained on
28 * flash in future implementations.
29 *
30 * The EBA sub-system implements per-logical eraseblock locking. Before
31 * accessing a logical eraseblock it is locked for reading or writing. The
32 * per-logical eraseblock locking is implemented by means of the lock tree. The
33 * lock tree is an RB-tree which refers all the currently locked logical
34 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
35 * They are indexed by (@vol_id, @lnum) pairs.
36 *
37 * EBA also maintains the global sequence counter which is incremented each
38 * time a logical eraseblock is mapped to a physical eraseblock and it is
39 * stored in the volume identifier header. This means that each VID header has
40 * a unique sequence number. The sequence number is only increased an we assume
41 * 64 bits is enough to never overflow.
42 */
43
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/err.h>
47 #include "ubi.h"
48
49 /* Number of physical eraseblocks reserved for atomic LEB change operation */
50 #define EBA_RESERVED_PEBS 1
51
52 /**
53 * struct ubi_eba_entry - structure encoding a single LEB -> PEB association
54 * @pnum: the physical eraseblock number attached to the LEB
55 *
56 * This structure is encoding a LEB -> PEB association. Note that the LEB
57 * number is not stored here, because it is the index used to access the
58 * entries table.
59 */
60 struct ubi_eba_entry {
61 int pnum;
62 };
63
64 /**
65 * struct ubi_eba_table - LEB -> PEB association information
66 * @entries: the LEB to PEB mapping (one entry per LEB).
67 *
68 * This structure is private to the EBA logic and should be kept here.
69 * It is encoding the LEB to PEB association table, and is subject to
70 * changes.
71 */
72 struct ubi_eba_table {
73 struct ubi_eba_entry *entries;
74 };
75
76 /**
77 * next_sqnum - get next sequence number.
78 * @ubi: UBI device description object
79 *
80 * This function returns next sequence number to use, which is just the current
81 * global sequence counter value. It also increases the global sequence
82 * counter.
83 */
ubi_next_sqnum(struct ubi_device * ubi)84 unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
85 {
86 unsigned long long sqnum;
87
88 spin_lock(&ubi->ltree_lock);
89 sqnum = ubi->global_sqnum++;
90 spin_unlock(&ubi->ltree_lock);
91
92 return sqnum;
93 }
94
95 /**
96 * ubi_get_compat - get compatibility flags of a volume.
97 * @ubi: UBI device description object
98 * @vol_id: volume ID
99 *
100 * This function returns compatibility flags for an internal volume. User
101 * volumes have no compatibility flags, so %0 is returned.
102 */
ubi_get_compat(const struct ubi_device * ubi,int vol_id)103 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
104 {
105 if (vol_id == UBI_LAYOUT_VOLUME_ID)
106 return UBI_LAYOUT_VOLUME_COMPAT;
107 return 0;
108 }
109
110 /**
111 * ubi_eba_get_ldesc - get information about a LEB
112 * @vol: volume description object
113 * @lnum: logical eraseblock number
114 * @ldesc: the LEB descriptor to fill
115 *
116 * Used to query information about a specific LEB.
117 * It is currently only returning the physical position of the LEB, but will be
118 * extended to provide more information.
119 */
ubi_eba_get_ldesc(struct ubi_volume * vol,int lnum,struct ubi_eba_leb_desc * ldesc)120 void ubi_eba_get_ldesc(struct ubi_volume *vol, int lnum,
121 struct ubi_eba_leb_desc *ldesc)
122 {
123 ldesc->lnum = lnum;
124 ldesc->pnum = vol->eba_tbl->entries[lnum].pnum;
125 }
126
127 /**
128 * ubi_eba_create_table - allocate a new EBA table and initialize it with all
129 * LEBs unmapped
130 * @vol: volume containing the EBA table to copy
131 * @nentries: number of entries in the table
132 *
133 * Allocate a new EBA table and initialize it with all LEBs unmapped.
134 * Returns a valid pointer if it succeed, an ERR_PTR() otherwise.
135 */
ubi_eba_create_table(struct ubi_volume * vol,int nentries)136 struct ubi_eba_table *ubi_eba_create_table(struct ubi_volume *vol,
137 int nentries)
138 {
139 struct ubi_eba_table *tbl;
140 int err = -ENOMEM;
141 int i;
142
143 tbl = kzalloc(sizeof(*tbl), GFP_KERNEL);
144 if (!tbl)
145 return ERR_PTR(-ENOMEM);
146
147 tbl->entries = kmalloc_array(nentries, sizeof(*tbl->entries),
148 GFP_KERNEL);
149 if (!tbl->entries)
150 goto err;
151
152 for (i = 0; i < nentries; i++)
153 tbl->entries[i].pnum = UBI_LEB_UNMAPPED;
154
155 return tbl;
156
157 err:
158 kfree(tbl->entries);
159 kfree(tbl);
160
161 return ERR_PTR(err);
162 }
163
164 /**
165 * ubi_eba_destroy_table - destroy an EBA table
166 * @tbl: the table to destroy
167 *
168 * Destroy an EBA table.
169 */
ubi_eba_destroy_table(struct ubi_eba_table * tbl)170 void ubi_eba_destroy_table(struct ubi_eba_table *tbl)
171 {
172 if (!tbl)
173 return;
174
175 kfree(tbl->entries);
176 kfree(tbl);
177 }
178
179 /**
180 * ubi_eba_copy_table - copy the EBA table attached to vol into another table
181 * @vol: volume containing the EBA table to copy
182 * @dst: destination
183 * @nentries: number of entries to copy
184 *
185 * Copy the EBA table stored in vol into the one pointed by dst.
186 */
ubi_eba_copy_table(struct ubi_volume * vol,struct ubi_eba_table * dst,int nentries)187 void ubi_eba_copy_table(struct ubi_volume *vol, struct ubi_eba_table *dst,
188 int nentries)
189 {
190 struct ubi_eba_table *src;
191 int i;
192
193 ubi_assert(dst && vol && vol->eba_tbl);
194
195 src = vol->eba_tbl;
196
197 for (i = 0; i < nentries; i++)
198 dst->entries[i].pnum = src->entries[i].pnum;
199 }
200
201 /**
202 * ubi_eba_replace_table - assign a new EBA table to a volume
203 * @vol: volume containing the EBA table to copy
204 * @tbl: new EBA table
205 *
206 * Assign a new EBA table to the volume and release the old one.
207 */
ubi_eba_replace_table(struct ubi_volume * vol,struct ubi_eba_table * tbl)208 void ubi_eba_replace_table(struct ubi_volume *vol, struct ubi_eba_table *tbl)
209 {
210 ubi_eba_destroy_table(vol->eba_tbl);
211 vol->eba_tbl = tbl;
212 }
213
214 /**
215 * ltree_lookup - look up the lock tree.
216 * @ubi: UBI device description object
217 * @vol_id: volume ID
218 * @lnum: logical eraseblock number
219 *
220 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
221 * object if the logical eraseblock is locked and %NULL if it is not.
222 * @ubi->ltree_lock has to be locked.
223 */
ltree_lookup(struct ubi_device * ubi,int vol_id,int lnum)224 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
225 int lnum)
226 {
227 struct rb_node *p;
228
229 p = ubi->ltree.rb_node;
230 while (p) {
231 struct ubi_ltree_entry *le;
232
233 le = rb_entry(p, struct ubi_ltree_entry, rb);
234
235 if (vol_id < le->vol_id)
236 p = p->rb_left;
237 else if (vol_id > le->vol_id)
238 p = p->rb_right;
239 else {
240 if (lnum < le->lnum)
241 p = p->rb_left;
242 else if (lnum > le->lnum)
243 p = p->rb_right;
244 else
245 return le;
246 }
247 }
248
249 return NULL;
250 }
251
252 /**
253 * ltree_add_entry - add new entry to the lock tree.
254 * @ubi: UBI device description object
255 * @vol_id: volume ID
256 * @lnum: logical eraseblock number
257 *
258 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
259 * lock tree. If such entry is already there, its usage counter is increased.
260 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
261 * failed.
262 */
ltree_add_entry(struct ubi_device * ubi,int vol_id,int lnum)263 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
264 int vol_id, int lnum)
265 {
266 struct ubi_ltree_entry *le, *le1, *le_free;
267
268 le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
269 if (!le)
270 return ERR_PTR(-ENOMEM);
271
272 le->users = 0;
273 init_rwsem(&le->mutex);
274 le->vol_id = vol_id;
275 le->lnum = lnum;
276
277 spin_lock(&ubi->ltree_lock);
278 le1 = ltree_lookup(ubi, vol_id, lnum);
279
280 if (le1) {
281 /*
282 * This logical eraseblock is already locked. The newly
283 * allocated lock entry is not needed.
284 */
285 le_free = le;
286 le = le1;
287 } else {
288 struct rb_node **p, *parent = NULL;
289
290 /*
291 * No lock entry, add the newly allocated one to the
292 * @ubi->ltree RB-tree.
293 */
294 le_free = NULL;
295
296 p = &ubi->ltree.rb_node;
297 while (*p) {
298 parent = *p;
299 le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
300
301 if (vol_id < le1->vol_id)
302 p = &(*p)->rb_left;
303 else if (vol_id > le1->vol_id)
304 p = &(*p)->rb_right;
305 else {
306 ubi_assert(lnum != le1->lnum);
307 if (lnum < le1->lnum)
308 p = &(*p)->rb_left;
309 else
310 p = &(*p)->rb_right;
311 }
312 }
313
314 rb_link_node(&le->rb, parent, p);
315 rb_insert_color(&le->rb, &ubi->ltree);
316 }
317 le->users += 1;
318 spin_unlock(&ubi->ltree_lock);
319
320 kfree(le_free);
321 return le;
322 }
323
324 /**
325 * leb_read_lock - lock logical eraseblock for reading.
326 * @ubi: UBI device description object
327 * @vol_id: volume ID
328 * @lnum: logical eraseblock number
329 *
330 * This function locks a logical eraseblock for reading. Returns zero in case
331 * of success and a negative error code in case of failure.
332 */
leb_read_lock(struct ubi_device * ubi,int vol_id,int lnum)333 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
334 {
335 struct ubi_ltree_entry *le;
336
337 le = ltree_add_entry(ubi, vol_id, lnum);
338 if (IS_ERR(le))
339 return PTR_ERR(le);
340 down_read(&le->mutex);
341 return 0;
342 }
343
344 /**
345 * leb_read_unlock - unlock logical eraseblock.
346 * @ubi: UBI device description object
347 * @vol_id: volume ID
348 * @lnum: logical eraseblock number
349 */
leb_read_unlock(struct ubi_device * ubi,int vol_id,int lnum)350 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
351 {
352 struct ubi_ltree_entry *le;
353
354 spin_lock(&ubi->ltree_lock);
355 le = ltree_lookup(ubi, vol_id, lnum);
356 le->users -= 1;
357 ubi_assert(le->users >= 0);
358 up_read(&le->mutex);
359 if (le->users == 0) {
360 rb_erase(&le->rb, &ubi->ltree);
361 kfree(le);
362 }
363 spin_unlock(&ubi->ltree_lock);
364 }
365
366 /**
367 * leb_write_lock - lock logical eraseblock for writing.
368 * @ubi: UBI device description object
369 * @vol_id: volume ID
370 * @lnum: logical eraseblock number
371 *
372 * This function locks a logical eraseblock for writing. Returns zero in case
373 * of success and a negative error code in case of failure.
374 */
leb_write_lock(struct ubi_device * ubi,int vol_id,int lnum)375 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
376 {
377 struct ubi_ltree_entry *le;
378
379 le = ltree_add_entry(ubi, vol_id, lnum);
380 if (IS_ERR(le))
381 return PTR_ERR(le);
382 down_write(&le->mutex);
383 return 0;
384 }
385
386 /**
387 * leb_write_lock - lock logical eraseblock for writing.
388 * @ubi: UBI device description object
389 * @vol_id: volume ID
390 * @lnum: logical eraseblock number
391 *
392 * This function locks a logical eraseblock for writing if there is no
393 * contention and does nothing if there is contention. Returns %0 in case of
394 * success, %1 in case of contention, and and a negative error code in case of
395 * failure.
396 */
leb_write_trylock(struct ubi_device * ubi,int vol_id,int lnum)397 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
398 {
399 struct ubi_ltree_entry *le;
400
401 le = ltree_add_entry(ubi, vol_id, lnum);
402 if (IS_ERR(le))
403 return PTR_ERR(le);
404 if (down_write_trylock(&le->mutex))
405 return 0;
406
407 /* Contention, cancel */
408 spin_lock(&ubi->ltree_lock);
409 le->users -= 1;
410 ubi_assert(le->users >= 0);
411 if (le->users == 0) {
412 rb_erase(&le->rb, &ubi->ltree);
413 kfree(le);
414 }
415 spin_unlock(&ubi->ltree_lock);
416
417 return 1;
418 }
419
420 /**
421 * leb_write_unlock - unlock logical eraseblock.
422 * @ubi: UBI device description object
423 * @vol_id: volume ID
424 * @lnum: logical eraseblock number
425 */
leb_write_unlock(struct ubi_device * ubi,int vol_id,int lnum)426 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
427 {
428 struct ubi_ltree_entry *le;
429
430 spin_lock(&ubi->ltree_lock);
431 le = ltree_lookup(ubi, vol_id, lnum);
432 le->users -= 1;
433 ubi_assert(le->users >= 0);
434 up_write(&le->mutex);
435 if (le->users == 0) {
436 rb_erase(&le->rb, &ubi->ltree);
437 kfree(le);
438 }
439 spin_unlock(&ubi->ltree_lock);
440 }
441
442 /**
443 * ubi_eba_is_mapped - check if a LEB is mapped.
444 * @vol: volume description object
445 * @lnum: logical eraseblock number
446 *
447 * This function returns true if the LEB is mapped, false otherwise.
448 */
ubi_eba_is_mapped(struct ubi_volume * vol,int lnum)449 bool ubi_eba_is_mapped(struct ubi_volume *vol, int lnum)
450 {
451 return vol->eba_tbl->entries[lnum].pnum >= 0;
452 }
453
454 /**
455 * ubi_eba_unmap_leb - un-map logical eraseblock.
456 * @ubi: UBI device description object
457 * @vol: volume description object
458 * @lnum: logical eraseblock number
459 *
460 * This function un-maps logical eraseblock @lnum and schedules corresponding
461 * physical eraseblock for erasure. Returns zero in case of success and a
462 * negative error code in case of failure.
463 */
ubi_eba_unmap_leb(struct ubi_device * ubi,struct ubi_volume * vol,int lnum)464 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
465 int lnum)
466 {
467 int err, pnum, vol_id = vol->vol_id;
468
469 if (ubi->ro_mode)
470 return -EROFS;
471
472 err = leb_write_lock(ubi, vol_id, lnum);
473 if (err)
474 return err;
475
476 pnum = vol->eba_tbl->entries[lnum].pnum;
477 if (pnum < 0)
478 /* This logical eraseblock is already unmapped */
479 goto out_unlock;
480
481 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
482
483 down_read(&ubi->fm_eba_sem);
484 vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
485 up_read(&ubi->fm_eba_sem);
486 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
487
488 out_unlock:
489 leb_write_unlock(ubi, vol_id, lnum);
490 return err;
491 }
492
493 #ifdef CONFIG_MTD_UBI_FASTMAP
494 /**
495 * check_mapping - check and fixup a mapping
496 * @ubi: UBI device description object
497 * @vol: volume description object
498 * @lnum: logical eraseblock number
499 * @pnum: physical eraseblock number
500 *
501 * Checks whether a given mapping is valid. Fastmap cannot track LEB unmap
502 * operations, if such an operation is interrupted the mapping still looks
503 * good, but upon first read an ECC is reported to the upper layer.
504 * Normaly during the full-scan at attach time this is fixed, for Fastmap
505 * we have to deal with it while reading.
506 * If the PEB behind a LEB shows this symthom we change the mapping to
507 * %UBI_LEB_UNMAPPED and schedule the PEB for erasure.
508 *
509 * Returns 0 on success, negative error code in case of failure.
510 */
check_mapping(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,int * pnum)511 static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
512 int *pnum)
513 {
514 int err;
515 struct ubi_vid_io_buf *vidb;
516
517 if (!ubi->fast_attach)
518 return 0;
519
520 if (!vol->checkmap || test_bit(lnum, vol->checkmap))
521 return 0;
522
523 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
524 if (!vidb)
525 return -ENOMEM;
526
527 err = ubi_io_read_vid_hdr(ubi, *pnum, vidb, 0);
528 if (err > 0 && err != UBI_IO_BITFLIPS) {
529 int torture = 0;
530
531 switch (err) {
532 case UBI_IO_FF:
533 case UBI_IO_FF_BITFLIPS:
534 case UBI_IO_BAD_HDR:
535 case UBI_IO_BAD_HDR_EBADMSG:
536 break;
537 default:
538 ubi_assert(0);
539 }
540
541 if (err == UBI_IO_BAD_HDR_EBADMSG || err == UBI_IO_FF_BITFLIPS)
542 torture = 1;
543
544 down_read(&ubi->fm_eba_sem);
545 vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
546 up_read(&ubi->fm_eba_sem);
547 ubi_wl_put_peb(ubi, vol->vol_id, lnum, *pnum, torture);
548
549 *pnum = UBI_LEB_UNMAPPED;
550 } else if (err < 0) {
551 ubi_err(ubi, "unable to read VID header back from PEB %i: %i",
552 *pnum, err);
553
554 goto out_free;
555 }
556
557 set_bit(lnum, vol->checkmap);
558 err = 0;
559
560 out_free:
561 ubi_free_vid_buf(vidb);
562
563 return err;
564 }
565 #else
check_mapping(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,int * pnum)566 static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
567 int *pnum)
568 {
569 return 0;
570 }
571 #endif
572
573 /**
574 * ubi_eba_read_leb - read data.
575 * @ubi: UBI device description object
576 * @vol: volume description object
577 * @lnum: logical eraseblock number
578 * @buf: buffer to store the read data
579 * @offset: offset from where to read
580 * @len: how many bytes to read
581 * @check: data CRC check flag
582 *
583 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
584 * bytes. The @check flag only makes sense for static volumes and forces
585 * eraseblock data CRC checking.
586 *
587 * In case of success this function returns zero. In case of a static volume,
588 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
589 * returned for any volume type if an ECC error was detected by the MTD device
590 * driver. Other negative error cored may be returned in case of other errors.
591 */
ubi_eba_read_leb(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,void * buf,int offset,int len,int check)592 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
593 void *buf, int offset, int len, int check)
594 {
595 int err, pnum, scrub = 0, vol_id = vol->vol_id;
596 struct ubi_vid_io_buf *vidb;
597 struct ubi_vid_hdr *vid_hdr;
598 uint32_t uninitialized_var(crc);
599
600 err = leb_read_lock(ubi, vol_id, lnum);
601 if (err)
602 return err;
603
604 pnum = vol->eba_tbl->entries[lnum].pnum;
605 if (pnum >= 0) {
606 err = check_mapping(ubi, vol, lnum, &pnum);
607 if (err < 0)
608 goto out_unlock;
609 }
610
611 if (pnum == UBI_LEB_UNMAPPED) {
612 /*
613 * The logical eraseblock is not mapped, fill the whole buffer
614 * with 0xFF bytes. The exception is static volumes for which
615 * it is an error to read unmapped logical eraseblocks.
616 */
617 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
618 len, offset, vol_id, lnum);
619 leb_read_unlock(ubi, vol_id, lnum);
620 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
621 memset(buf, 0xFF, len);
622 return 0;
623 }
624
625 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
626 len, offset, vol_id, lnum, pnum);
627
628 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
629 check = 0;
630
631 retry:
632 if (check) {
633 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
634 if (!vidb) {
635 err = -ENOMEM;
636 goto out_unlock;
637 }
638
639 vid_hdr = ubi_get_vid_hdr(vidb);
640
641 err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
642 if (err && err != UBI_IO_BITFLIPS) {
643 if (err > 0) {
644 /*
645 * The header is either absent or corrupted.
646 * The former case means there is a bug -
647 * switch to read-only mode just in case.
648 * The latter case means a real corruption - we
649 * may try to recover data. FIXME: but this is
650 * not implemented.
651 */
652 if (err == UBI_IO_BAD_HDR_EBADMSG ||
653 err == UBI_IO_BAD_HDR) {
654 ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
655 pnum, vol_id, lnum);
656 err = -EBADMSG;
657 } else {
658 /*
659 * Ending up here in the non-Fastmap case
660 * is a clear bug as the VID header had to
661 * be present at scan time to have it referenced.
662 * With fastmap the story is more complicated.
663 * Fastmap has the mapping info without the need
664 * of a full scan. So the LEB could have been
665 * unmapped, Fastmap cannot know this and keeps
666 * the LEB referenced.
667 * This is valid and works as the layer above UBI
668 * has to do bookkeeping about used/referenced
669 * LEBs in any case.
670 */
671 if (ubi->fast_attach) {
672 err = -EBADMSG;
673 } else {
674 err = -EINVAL;
675 ubi_ro_mode(ubi);
676 }
677 }
678 }
679 goto out_free;
680 } else if (err == UBI_IO_BITFLIPS)
681 scrub = 1;
682
683 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
684 ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
685
686 crc = be32_to_cpu(vid_hdr->data_crc);
687 ubi_free_vid_buf(vidb);
688 }
689
690 err = ubi_io_read_data(ubi, buf, pnum, offset, len);
691 if (err) {
692 if (err == UBI_IO_BITFLIPS)
693 scrub = 1;
694 else if (mtd_is_eccerr(err)) {
695 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
696 goto out_unlock;
697 scrub = 1;
698 if (!check) {
699 ubi_msg(ubi, "force data checking");
700 check = 1;
701 goto retry;
702 }
703 } else
704 goto out_unlock;
705 }
706
707 if (check) {
708 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
709 if (crc1 != crc) {
710 ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
711 crc1, crc);
712 err = -EBADMSG;
713 goto out_unlock;
714 }
715 }
716
717 if (scrub)
718 err = ubi_wl_scrub_peb(ubi, pnum);
719
720 leb_read_unlock(ubi, vol_id, lnum);
721 return err;
722
723 out_free:
724 ubi_free_vid_buf(vidb);
725 out_unlock:
726 leb_read_unlock(ubi, vol_id, lnum);
727 return err;
728 }
729
730 /**
731 * ubi_eba_read_leb_sg - read data into a scatter gather list.
732 * @ubi: UBI device description object
733 * @vol: volume description object
734 * @lnum: logical eraseblock number
735 * @sgl: UBI scatter gather list to store the read data
736 * @offset: offset from where to read
737 * @len: how many bytes to read
738 * @check: data CRC check flag
739 *
740 * This function works exactly like ubi_eba_read_leb(). But instead of
741 * storing the read data into a buffer it writes to an UBI scatter gather
742 * list.
743 */
ubi_eba_read_leb_sg(struct ubi_device * ubi,struct ubi_volume * vol,struct ubi_sgl * sgl,int lnum,int offset,int len,int check)744 int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
745 struct ubi_sgl *sgl, int lnum, int offset, int len,
746 int check)
747 {
748 int to_read;
749 int ret;
750 struct scatterlist *sg;
751
752 for (;;) {
753 ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
754 sg = &sgl->sg[sgl->list_pos];
755 if (len < sg->length - sgl->page_pos)
756 to_read = len;
757 else
758 to_read = sg->length - sgl->page_pos;
759
760 ret = ubi_eba_read_leb(ubi, vol, lnum,
761 sg_virt(sg) + sgl->page_pos, offset,
762 to_read, check);
763 if (ret < 0)
764 return ret;
765
766 offset += to_read;
767 len -= to_read;
768 if (!len) {
769 sgl->page_pos += to_read;
770 if (sgl->page_pos == sg->length) {
771 sgl->list_pos++;
772 sgl->page_pos = 0;
773 }
774
775 break;
776 }
777
778 sgl->list_pos++;
779 sgl->page_pos = 0;
780 }
781
782 return ret;
783 }
784
785 /**
786 * try_recover_peb - try to recover from write failure.
787 * @vol: volume description object
788 * @pnum: the physical eraseblock to recover
789 * @lnum: logical eraseblock number
790 * @buf: data which was not written because of the write failure
791 * @offset: offset of the failed write
792 * @len: how many bytes should have been written
793 * @vidb: VID buffer
794 * @retry: whether the caller should retry in case of failure
795 *
796 * This function is called in case of a write failure and moves all good data
797 * from the potentially bad physical eraseblock to a good physical eraseblock.
798 * This function also writes the data which was not written due to the failure.
799 * Returns 0 in case of success, and a negative error code in case of failure.
800 * In case of failure, the %retry parameter is set to false if this is a fatal
801 * error (retrying won't help), and true otherwise.
802 */
try_recover_peb(struct ubi_volume * vol,int pnum,int lnum,const void * buf,int offset,int len,struct ubi_vid_io_buf * vidb,bool * retry)803 static int try_recover_peb(struct ubi_volume *vol, int pnum, int lnum,
804 const void *buf, int offset, int len,
805 struct ubi_vid_io_buf *vidb, bool *retry)
806 {
807 struct ubi_device *ubi = vol->ubi;
808 struct ubi_vid_hdr *vid_hdr;
809 int new_pnum, err, vol_id = vol->vol_id, data_size;
810 uint32_t crc;
811
812 *retry = false;
813
814 new_pnum = ubi_wl_get_peb(ubi);
815 if (new_pnum < 0) {
816 err = new_pnum;
817 goto out_put;
818 }
819
820 ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
821 pnum, new_pnum);
822
823 err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
824 if (err && err != UBI_IO_BITFLIPS) {
825 if (err > 0)
826 err = -EIO;
827 goto out_put;
828 }
829
830 vid_hdr = ubi_get_vid_hdr(vidb);
831 ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC);
832
833 mutex_lock(&ubi->buf_mutex);
834 memset(ubi->peb_buf + offset, 0xFF, len);
835
836 /* Read everything before the area where the write failure happened */
837 if (offset > 0) {
838 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
839 if (err && err != UBI_IO_BITFLIPS)
840 goto out_unlock;
841 }
842
843 *retry = true;
844
845 memcpy(ubi->peb_buf + offset, buf, len);
846
847 data_size = offset + len;
848 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
849 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
850 vid_hdr->copy_flag = 1;
851 vid_hdr->data_size = cpu_to_be32(data_size);
852 vid_hdr->data_crc = cpu_to_be32(crc);
853 err = ubi_io_write_vid_hdr(ubi, new_pnum, vidb);
854 if (err)
855 goto out_unlock;
856
857 err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
858
859 out_unlock:
860 mutex_unlock(&ubi->buf_mutex);
861
862 if (!err)
863 vol->eba_tbl->entries[lnum].pnum = new_pnum;
864
865 out_put:
866 up_read(&ubi->fm_eba_sem);
867
868 if (!err) {
869 ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
870 ubi_msg(ubi, "data was successfully recovered");
871 } else if (new_pnum >= 0) {
872 /*
873 * Bad luck? This physical eraseblock is bad too? Crud. Let's
874 * try to get another one.
875 */
876 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
877 ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
878 }
879
880 return err;
881 }
882
883 /**
884 * recover_peb - recover from write failure.
885 * @ubi: UBI device description object
886 * @pnum: the physical eraseblock to recover
887 * @vol_id: volume ID
888 * @lnum: logical eraseblock number
889 * @buf: data which was not written because of the write failure
890 * @offset: offset of the failed write
891 * @len: how many bytes should have been written
892 *
893 * This function is called in case of a write failure and moves all good data
894 * from the potentially bad physical eraseblock to a good physical eraseblock.
895 * This function also writes the data which was not written due to the failure.
896 * Returns 0 in case of success, and a negative error code in case of failure.
897 * This function tries %UBI_IO_RETRIES before giving up.
898 */
recover_peb(struct ubi_device * ubi,int pnum,int vol_id,int lnum,const void * buf,int offset,int len)899 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
900 const void *buf, int offset, int len)
901 {
902 int err, idx = vol_id2idx(ubi, vol_id), tries;
903 struct ubi_volume *vol = ubi->volumes[idx];
904 struct ubi_vid_io_buf *vidb;
905
906 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
907 if (!vidb)
908 return -ENOMEM;
909
910 for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
911 bool retry;
912
913 err = try_recover_peb(vol, pnum, lnum, buf, offset, len, vidb,
914 &retry);
915 if (!err || !retry)
916 break;
917
918 ubi_msg(ubi, "try again");
919 }
920
921 ubi_free_vid_buf(vidb);
922
923 return err;
924 }
925
926 /**
927 * try_write_vid_and_data - try to write VID header and data to a new PEB.
928 * @vol: volume description object
929 * @lnum: logical eraseblock number
930 * @vidb: the VID buffer to write
931 * @buf: buffer containing the data
932 * @offset: where to start writing data
933 * @len: how many bytes should be written
934 *
935 * This function tries to write VID header and data belonging to logical
936 * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero
937 * in case of success and a negative error code in case of failure.
938 * In case of error, it is possible that something was still written to the
939 * flash media, but may be some garbage.
940 */
try_write_vid_and_data(struct ubi_volume * vol,int lnum,struct ubi_vid_io_buf * vidb,const void * buf,int offset,int len)941 static int try_write_vid_and_data(struct ubi_volume *vol, int lnum,
942 struct ubi_vid_io_buf *vidb, const void *buf,
943 int offset, int len)
944 {
945 struct ubi_device *ubi = vol->ubi;
946 int pnum, opnum, err, vol_id = vol->vol_id;
947
948 pnum = ubi_wl_get_peb(ubi);
949 if (pnum < 0) {
950 err = pnum;
951 goto out_put;
952 }
953
954 opnum = vol->eba_tbl->entries[lnum].pnum;
955
956 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
957 len, offset, vol_id, lnum, pnum);
958
959 err = ubi_io_write_vid_hdr(ubi, pnum, vidb);
960 if (err) {
961 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
962 vol_id, lnum, pnum);
963 goto out_put;
964 }
965
966 if (len) {
967 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
968 if (err) {
969 ubi_warn(ubi,
970 "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
971 len, offset, vol_id, lnum, pnum);
972 goto out_put;
973 }
974 }
975
976 vol->eba_tbl->entries[lnum].pnum = pnum;
977
978 out_put:
979 up_read(&ubi->fm_eba_sem);
980
981 if (err && pnum >= 0)
982 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
983 else if (!err && opnum >= 0)
984 err = ubi_wl_put_peb(ubi, vol_id, lnum, opnum, 0);
985
986 return err;
987 }
988
989 /**
990 * ubi_eba_write_leb - write data to dynamic volume.
991 * @ubi: UBI device description object
992 * @vol: volume description object
993 * @lnum: logical eraseblock number
994 * @buf: the data to write
995 * @offset: offset within the logical eraseblock where to write
996 * @len: how many bytes to write
997 *
998 * This function writes data to logical eraseblock @lnum of a dynamic volume
999 * @vol. Returns zero in case of success and a negative error code in case
1000 * of failure. In case of error, it is possible that something was still
1001 * written to the flash media, but may be some garbage.
1002 * This function retries %UBI_IO_RETRIES times before giving up.
1003 */
ubi_eba_write_leb(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,const void * buf,int offset,int len)1004 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
1005 const void *buf, int offset, int len)
1006 {
1007 int err, pnum, tries, vol_id = vol->vol_id;
1008 struct ubi_vid_io_buf *vidb;
1009 struct ubi_vid_hdr *vid_hdr;
1010
1011 if (ubi->ro_mode)
1012 return -EROFS;
1013
1014 err = leb_write_lock(ubi, vol_id, lnum);
1015 if (err)
1016 return err;
1017
1018 pnum = vol->eba_tbl->entries[lnum].pnum;
1019 if (pnum >= 0) {
1020 err = check_mapping(ubi, vol, lnum, &pnum);
1021 if (err < 0)
1022 goto out;
1023 }
1024
1025 if (pnum >= 0) {
1026 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
1027 len, offset, vol_id, lnum, pnum);
1028
1029 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
1030 if (err) {
1031 ubi_warn(ubi, "failed to write data to PEB %d", pnum);
1032 if (err == -EIO && ubi->bad_allowed)
1033 err = recover_peb(ubi, pnum, vol_id, lnum, buf,
1034 offset, len);
1035 }
1036
1037 goto out;
1038 }
1039
1040 /*
1041 * The logical eraseblock is not mapped. We have to get a free physical
1042 * eraseblock and write the volume identifier header there first.
1043 */
1044 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1045 if (!vidb) {
1046 leb_write_unlock(ubi, vol_id, lnum);
1047 return -ENOMEM;
1048 }
1049
1050 vid_hdr = ubi_get_vid_hdr(vidb);
1051
1052 vid_hdr->vol_type = UBI_VID_DYNAMIC;
1053 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1054 vid_hdr->vol_id = cpu_to_be32(vol_id);
1055 vid_hdr->lnum = cpu_to_be32(lnum);
1056 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1057 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1058
1059 for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1060 err = try_write_vid_and_data(vol, lnum, vidb, buf, offset, len);
1061 if (err != -EIO || !ubi->bad_allowed)
1062 break;
1063
1064 /*
1065 * Fortunately, this is the first write operation to this
1066 * physical eraseblock, so just put it and request a new one.
1067 * We assume that if this physical eraseblock went bad, the
1068 * erase code will handle that.
1069 */
1070 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1071 ubi_msg(ubi, "try another PEB");
1072 }
1073
1074 ubi_free_vid_buf(vidb);
1075
1076 out:
1077 if (err)
1078 ubi_ro_mode(ubi);
1079
1080 leb_write_unlock(ubi, vol_id, lnum);
1081
1082 return err;
1083 }
1084
1085 /**
1086 * ubi_eba_write_leb_st - write data to static volume.
1087 * @ubi: UBI device description object
1088 * @vol: volume description object
1089 * @lnum: logical eraseblock number
1090 * @buf: data to write
1091 * @len: how many bytes to write
1092 * @used_ebs: how many logical eraseblocks will this volume contain
1093 *
1094 * This function writes data to logical eraseblock @lnum of static volume
1095 * @vol. The @used_ebs argument should contain total number of logical
1096 * eraseblock in this static volume.
1097 *
1098 * When writing to the last logical eraseblock, the @len argument doesn't have
1099 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
1100 * to the real data size, although the @buf buffer has to contain the
1101 * alignment. In all other cases, @len has to be aligned.
1102 *
1103 * It is prohibited to write more than once to logical eraseblocks of static
1104 * volumes. This function returns zero in case of success and a negative error
1105 * code in case of failure.
1106 */
ubi_eba_write_leb_st(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,const void * buf,int len,int used_ebs)1107 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
1108 int lnum, const void *buf, int len, int used_ebs)
1109 {
1110 int err, tries, data_size = len, vol_id = vol->vol_id;
1111 struct ubi_vid_io_buf *vidb;
1112 struct ubi_vid_hdr *vid_hdr;
1113 uint32_t crc;
1114
1115 if (ubi->ro_mode)
1116 return -EROFS;
1117
1118 if (lnum == used_ebs - 1)
1119 /* If this is the last LEB @len may be unaligned */
1120 len = ALIGN(data_size, ubi->min_io_size);
1121 else
1122 ubi_assert(!(len & (ubi->min_io_size - 1)));
1123
1124 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1125 if (!vidb)
1126 return -ENOMEM;
1127
1128 vid_hdr = ubi_get_vid_hdr(vidb);
1129
1130 err = leb_write_lock(ubi, vol_id, lnum);
1131 if (err)
1132 goto out;
1133
1134 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1135 vid_hdr->vol_id = cpu_to_be32(vol_id);
1136 vid_hdr->lnum = cpu_to_be32(lnum);
1137 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1138 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1139
1140 crc = crc32(UBI_CRC32_INIT, buf, data_size);
1141 vid_hdr->vol_type = UBI_VID_STATIC;
1142 vid_hdr->data_size = cpu_to_be32(data_size);
1143 vid_hdr->used_ebs = cpu_to_be32(used_ebs);
1144 vid_hdr->data_crc = cpu_to_be32(crc);
1145
1146 ubi_assert(vol->eba_tbl->entries[lnum].pnum < 0);
1147
1148 for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1149 err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
1150 if (err != -EIO || !ubi->bad_allowed)
1151 break;
1152
1153 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1154 ubi_msg(ubi, "try another PEB");
1155 }
1156
1157 if (err)
1158 ubi_ro_mode(ubi);
1159
1160 leb_write_unlock(ubi, vol_id, lnum);
1161
1162 out:
1163 ubi_free_vid_buf(vidb);
1164
1165 return err;
1166 }
1167
1168 /*
1169 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
1170 * @ubi: UBI device description object
1171 * @vol: volume description object
1172 * @lnum: logical eraseblock number
1173 * @buf: data to write
1174 * @len: how many bytes to write
1175 *
1176 * This function changes the contents of a logical eraseblock atomically. @buf
1177 * has to contain new logical eraseblock data, and @len - the length of the
1178 * data, which has to be aligned. This function guarantees that in case of an
1179 * unclean reboot the old contents is preserved. Returns zero in case of
1180 * success and a negative error code in case of failure.
1181 *
1182 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
1183 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
1184 */
ubi_eba_atomic_leb_change(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,const void * buf,int len)1185 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
1186 int lnum, const void *buf, int len)
1187 {
1188 int err, tries, vol_id = vol->vol_id;
1189 struct ubi_vid_io_buf *vidb;
1190 struct ubi_vid_hdr *vid_hdr;
1191 uint32_t crc;
1192
1193 if (ubi->ro_mode)
1194 return -EROFS;
1195
1196 if (len == 0) {
1197 /*
1198 * Special case when data length is zero. In this case the LEB
1199 * has to be unmapped and mapped somewhere else.
1200 */
1201 err = ubi_eba_unmap_leb(ubi, vol, lnum);
1202 if (err)
1203 return err;
1204 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
1205 }
1206
1207 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1208 if (!vidb)
1209 return -ENOMEM;
1210
1211 vid_hdr = ubi_get_vid_hdr(vidb);
1212
1213 mutex_lock(&ubi->alc_mutex);
1214 err = leb_write_lock(ubi, vol_id, lnum);
1215 if (err)
1216 goto out_mutex;
1217
1218 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1219 vid_hdr->vol_id = cpu_to_be32(vol_id);
1220 vid_hdr->lnum = cpu_to_be32(lnum);
1221 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1222 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1223
1224 crc = crc32(UBI_CRC32_INIT, buf, len);
1225 vid_hdr->vol_type = UBI_VID_DYNAMIC;
1226 vid_hdr->data_size = cpu_to_be32(len);
1227 vid_hdr->copy_flag = 1;
1228 vid_hdr->data_crc = cpu_to_be32(crc);
1229
1230 dbg_eba("change LEB %d:%d", vol_id, lnum);
1231
1232 for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1233 err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
1234 if (err != -EIO || !ubi->bad_allowed)
1235 break;
1236
1237 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1238 ubi_msg(ubi, "try another PEB");
1239 }
1240
1241 /*
1242 * This flash device does not admit of bad eraseblocks or
1243 * something nasty and unexpected happened. Switch to read-only
1244 * mode just in case.
1245 */
1246 if (err)
1247 ubi_ro_mode(ubi);
1248
1249 leb_write_unlock(ubi, vol_id, lnum);
1250
1251 out_mutex:
1252 mutex_unlock(&ubi->alc_mutex);
1253 ubi_free_vid_buf(vidb);
1254 return err;
1255 }
1256
1257 /**
1258 * is_error_sane - check whether a read error is sane.
1259 * @err: code of the error happened during reading
1260 *
1261 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1262 * cannot read data from the target PEB (an error @err happened). If the error
1263 * code is sane, then we treat this error as non-fatal. Otherwise the error is
1264 * fatal and UBI will be switched to R/O mode later.
1265 *
1266 * The idea is that we try not to switch to R/O mode if the read error is
1267 * something which suggests there was a real read problem. E.g., %-EIO. Or a
1268 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1269 * mode, simply because we do not know what happened at the MTD level, and we
1270 * cannot handle this. E.g., the underlying driver may have become crazy, and
1271 * it is safer to switch to R/O mode to preserve the data.
1272 *
1273 * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1274 * which we have just written.
1275 */
is_error_sane(int err)1276 static int is_error_sane(int err)
1277 {
1278 if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
1279 err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
1280 return 0;
1281 return 1;
1282 }
1283
1284 /**
1285 * ubi_eba_copy_leb - copy logical eraseblock.
1286 * @ubi: UBI device description object
1287 * @from: physical eraseblock number from where to copy
1288 * @to: physical eraseblock number where to copy
1289 * @vid_hdr: VID header of the @from physical eraseblock
1290 *
1291 * This function copies logical eraseblock from physical eraseblock @from to
1292 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1293 * function. Returns:
1294 * o %0 in case of success;
1295 * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1296 * o a negative error code in case of failure.
1297 */
ubi_eba_copy_leb(struct ubi_device * ubi,int from,int to,struct ubi_vid_io_buf * vidb)1298 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1299 struct ubi_vid_io_buf *vidb)
1300 {
1301 int err, vol_id, lnum, data_size, aldata_size, idx;
1302 struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1303 struct ubi_volume *vol;
1304 uint32_t crc;
1305
1306 ubi_assert(rwsem_is_locked(&ubi->fm_eba_sem));
1307
1308 vol_id = be32_to_cpu(vid_hdr->vol_id);
1309 lnum = be32_to_cpu(vid_hdr->lnum);
1310
1311 dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1312
1313 if (vid_hdr->vol_type == UBI_VID_STATIC) {
1314 data_size = be32_to_cpu(vid_hdr->data_size);
1315 aldata_size = ALIGN(data_size, ubi->min_io_size);
1316 } else
1317 data_size = aldata_size =
1318 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1319
1320 idx = vol_id2idx(ubi, vol_id);
1321 spin_lock(&ubi->volumes_lock);
1322 /*
1323 * Note, we may race with volume deletion, which means that the volume
1324 * this logical eraseblock belongs to might be being deleted. Since the
1325 * volume deletion un-maps all the volume's logical eraseblocks, it will
1326 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1327 */
1328 vol = ubi->volumes[idx];
1329 spin_unlock(&ubi->volumes_lock);
1330 if (!vol) {
1331 /* No need to do further work, cancel */
1332 dbg_wl("volume %d is being removed, cancel", vol_id);
1333 return MOVE_CANCEL_RACE;
1334 }
1335
1336 /*
1337 * We do not want anybody to write to this logical eraseblock while we
1338 * are moving it, so lock it.
1339 *
1340 * Note, we are using non-waiting locking here, because we cannot sleep
1341 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1342 * unmapping the LEB which is mapped to the PEB we are going to move
1343 * (@from). This task locks the LEB and goes sleep in the
1344 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1345 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1346 * LEB is already locked, we just do not move it and return
1347 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1348 * we do not know the reasons of the contention - it may be just a
1349 * normal I/O on this LEB, so we want to re-try.
1350 */
1351 err = leb_write_trylock(ubi, vol_id, lnum);
1352 if (err) {
1353 dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1354 return MOVE_RETRY;
1355 }
1356
1357 /*
1358 * The LEB might have been put meanwhile, and the task which put it is
1359 * probably waiting on @ubi->move_mutex. No need to continue the work,
1360 * cancel it.
1361 */
1362 if (vol->eba_tbl->entries[lnum].pnum != from) {
1363 dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1364 vol_id, lnum, from, vol->eba_tbl->entries[lnum].pnum);
1365 err = MOVE_CANCEL_RACE;
1366 goto out_unlock_leb;
1367 }
1368
1369 /*
1370 * OK, now the LEB is locked and we can safely start moving it. Since
1371 * this function utilizes the @ubi->peb_buf buffer which is shared
1372 * with some other functions - we lock the buffer by taking the
1373 * @ubi->buf_mutex.
1374 */
1375 mutex_lock(&ubi->buf_mutex);
1376 dbg_wl("read %d bytes of data", aldata_size);
1377 err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1378 if (err && err != UBI_IO_BITFLIPS) {
1379 ubi_warn(ubi, "error %d while reading data from PEB %d",
1380 err, from);
1381 err = MOVE_SOURCE_RD_ERR;
1382 goto out_unlock_buf;
1383 }
1384
1385 /*
1386 * Now we have got to calculate how much data we have to copy. In
1387 * case of a static volume it is fairly easy - the VID header contains
1388 * the data size. In case of a dynamic volume it is more difficult - we
1389 * have to read the contents, cut 0xFF bytes from the end and copy only
1390 * the first part. We must do this to avoid writing 0xFF bytes as it
1391 * may have some side-effects. And not only this. It is important not
1392 * to include those 0xFFs to CRC because later the they may be filled
1393 * by data.
1394 */
1395 if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1396 aldata_size = data_size =
1397 ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1398
1399 cond_resched();
1400 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1401 cond_resched();
1402
1403 /*
1404 * It may turn out to be that the whole @from physical eraseblock
1405 * contains only 0xFF bytes. Then we have to only write the VID header
1406 * and do not write any data. This also means we should not set
1407 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1408 */
1409 if (data_size > 0) {
1410 vid_hdr->copy_flag = 1;
1411 vid_hdr->data_size = cpu_to_be32(data_size);
1412 vid_hdr->data_crc = cpu_to_be32(crc);
1413 }
1414 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1415
1416 err = ubi_io_write_vid_hdr(ubi, to, vidb);
1417 if (err) {
1418 if (err == -EIO)
1419 err = MOVE_TARGET_WR_ERR;
1420 goto out_unlock_buf;
1421 }
1422
1423 cond_resched();
1424
1425 /* Read the VID header back and check if it was written correctly */
1426 err = ubi_io_read_vid_hdr(ubi, to, vidb, 1);
1427 if (err) {
1428 if (err != UBI_IO_BITFLIPS) {
1429 ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1430 err, to);
1431 if (is_error_sane(err))
1432 err = MOVE_TARGET_RD_ERR;
1433 } else
1434 err = MOVE_TARGET_BITFLIPS;
1435 goto out_unlock_buf;
1436 }
1437
1438 if (data_size > 0) {
1439 err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1440 if (err) {
1441 if (err == -EIO)
1442 err = MOVE_TARGET_WR_ERR;
1443 goto out_unlock_buf;
1444 }
1445
1446 cond_resched();
1447 }
1448
1449 ubi_assert(vol->eba_tbl->entries[lnum].pnum == from);
1450 vol->eba_tbl->entries[lnum].pnum = to;
1451
1452 out_unlock_buf:
1453 mutex_unlock(&ubi->buf_mutex);
1454 out_unlock_leb:
1455 leb_write_unlock(ubi, vol_id, lnum);
1456 return err;
1457 }
1458
1459 /**
1460 * print_rsvd_warning - warn about not having enough reserved PEBs.
1461 * @ubi: UBI device description object
1462 *
1463 * This is a helper function for 'ubi_eba_init()' which is called when UBI
1464 * cannot reserve enough PEBs for bad block handling. This function makes a
1465 * decision whether we have to print a warning or not. The algorithm is as
1466 * follows:
1467 * o if this is a new UBI image, then just print the warning
1468 * o if this is an UBI image which has already been used for some time, print
1469 * a warning only if we can reserve less than 10% of the expected amount of
1470 * the reserved PEB.
1471 *
1472 * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1473 * of PEBs becomes smaller, which is normal and we do not want to scare users
1474 * with a warning every time they attach the MTD device. This was an issue
1475 * reported by real users.
1476 */
print_rsvd_warning(struct ubi_device * ubi,struct ubi_attach_info * ai)1477 static void print_rsvd_warning(struct ubi_device *ubi,
1478 struct ubi_attach_info *ai)
1479 {
1480 /*
1481 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1482 * large number to distinguish between newly flashed and used images.
1483 */
1484 if (ai->max_sqnum > (1 << 18)) {
1485 int min = ubi->beb_rsvd_level / 10;
1486
1487 if (!min)
1488 min = 1;
1489 if (ubi->beb_rsvd_pebs > min)
1490 return;
1491 }
1492
1493 ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1494 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1495 if (ubi->corr_peb_count)
1496 ubi_warn(ubi, "%d PEBs are corrupted and not used",
1497 ubi->corr_peb_count);
1498 }
1499
1500 /**
1501 * self_check_eba - run a self check on the EBA table constructed by fastmap.
1502 * @ubi: UBI device description object
1503 * @ai_fastmap: UBI attach info object created by fastmap
1504 * @ai_scan: UBI attach info object created by scanning
1505 *
1506 * Returns < 0 in case of an internal error, 0 otherwise.
1507 * If a bad EBA table entry was found it will be printed out and
1508 * ubi_assert() triggers.
1509 */
self_check_eba(struct ubi_device * ubi,struct ubi_attach_info * ai_fastmap,struct ubi_attach_info * ai_scan)1510 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1511 struct ubi_attach_info *ai_scan)
1512 {
1513 int i, j, num_volumes, ret = 0;
1514 int **scan_eba, **fm_eba;
1515 struct ubi_ainf_volume *av;
1516 struct ubi_volume *vol;
1517 struct ubi_ainf_peb *aeb;
1518 struct rb_node *rb;
1519
1520 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1521
1522 scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
1523 if (!scan_eba)
1524 return -ENOMEM;
1525
1526 fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
1527 if (!fm_eba) {
1528 kfree(scan_eba);
1529 return -ENOMEM;
1530 }
1531
1532 for (i = 0; i < num_volumes; i++) {
1533 vol = ubi->volumes[i];
1534 if (!vol)
1535 continue;
1536
1537 scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
1538 GFP_KERNEL);
1539 if (!scan_eba[i]) {
1540 ret = -ENOMEM;
1541 goto out_free;
1542 }
1543
1544 fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
1545 GFP_KERNEL);
1546 if (!fm_eba[i]) {
1547 ret = -ENOMEM;
1548 goto out_free;
1549 }
1550
1551 for (j = 0; j < vol->reserved_pebs; j++)
1552 scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1553
1554 av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1555 if (!av)
1556 continue;
1557
1558 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1559 scan_eba[i][aeb->lnum] = aeb->pnum;
1560
1561 av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1562 if (!av)
1563 continue;
1564
1565 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1566 fm_eba[i][aeb->lnum] = aeb->pnum;
1567
1568 for (j = 0; j < vol->reserved_pebs; j++) {
1569 if (scan_eba[i][j] != fm_eba[i][j]) {
1570 if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1571 fm_eba[i][j] == UBI_LEB_UNMAPPED)
1572 continue;
1573
1574 ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1575 vol->vol_id, j, fm_eba[i][j],
1576 scan_eba[i][j]);
1577 ubi_assert(0);
1578 }
1579 }
1580 }
1581
1582 out_free:
1583 for (i = 0; i < num_volumes; i++) {
1584 if (!ubi->volumes[i])
1585 continue;
1586
1587 kfree(scan_eba[i]);
1588 kfree(fm_eba[i]);
1589 }
1590
1591 kfree(scan_eba);
1592 kfree(fm_eba);
1593 return ret;
1594 }
1595
1596 /**
1597 * ubi_eba_init - initialize the EBA sub-system using attaching information.
1598 * @ubi: UBI device description object
1599 * @ai: attaching information
1600 *
1601 * This function returns zero in case of success and a negative error code in
1602 * case of failure.
1603 */
ubi_eba_init(struct ubi_device * ubi,struct ubi_attach_info * ai)1604 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1605 {
1606 int i, err, num_volumes;
1607 struct ubi_ainf_volume *av;
1608 struct ubi_volume *vol;
1609 struct ubi_ainf_peb *aeb;
1610 struct rb_node *rb;
1611
1612 dbg_eba("initialize EBA sub-system");
1613
1614 spin_lock_init(&ubi->ltree_lock);
1615 mutex_init(&ubi->alc_mutex);
1616 ubi->ltree = RB_ROOT;
1617
1618 ubi->global_sqnum = ai->max_sqnum + 1;
1619 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1620
1621 for (i = 0; i < num_volumes; i++) {
1622 struct ubi_eba_table *tbl;
1623
1624 vol = ubi->volumes[i];
1625 if (!vol)
1626 continue;
1627
1628 cond_resched();
1629
1630 tbl = ubi_eba_create_table(vol, vol->reserved_pebs);
1631 if (IS_ERR(tbl)) {
1632 err = PTR_ERR(tbl);
1633 goto out_free;
1634 }
1635
1636 ubi_eba_replace_table(vol, tbl);
1637
1638 av = ubi_find_av(ai, idx2vol_id(ubi, i));
1639 if (!av)
1640 continue;
1641
1642 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1643 if (aeb->lnum >= vol->reserved_pebs) {
1644 /*
1645 * This may happen in case of an unclean reboot
1646 * during re-size.
1647 */
1648 ubi_move_aeb_to_list(av, aeb, &ai->erase);
1649 } else {
1650 struct ubi_eba_entry *entry;
1651
1652 entry = &vol->eba_tbl->entries[aeb->lnum];
1653 entry->pnum = aeb->pnum;
1654 }
1655 }
1656 }
1657
1658 if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1659 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1660 ubi->avail_pebs, EBA_RESERVED_PEBS);
1661 if (ubi->corr_peb_count)
1662 ubi_err(ubi, "%d PEBs are corrupted and not used",
1663 ubi->corr_peb_count);
1664 err = -ENOSPC;
1665 goto out_free;
1666 }
1667 ubi->avail_pebs -= EBA_RESERVED_PEBS;
1668 ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1669
1670 if (ubi->bad_allowed) {
1671 ubi_calculate_reserved(ubi);
1672
1673 if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1674 /* No enough free physical eraseblocks */
1675 ubi->beb_rsvd_pebs = ubi->avail_pebs;
1676 print_rsvd_warning(ubi, ai);
1677 } else
1678 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1679
1680 ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1681 ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
1682 }
1683
1684 dbg_eba("EBA sub-system is initialized");
1685 return 0;
1686
1687 out_free:
1688 for (i = 0; i < num_volumes; i++) {
1689 if (!ubi->volumes[i])
1690 continue;
1691 ubi_eba_replace_table(ubi->volumes[i], NULL);
1692 }
1693 return err;
1694 }
1695