1 /*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_arp.h>
34 #include <linux/if_ether.h>
35 #include <linux/list.h>
36 #include <linux/io.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/pinctrl/consumer.h>
39
40 #include <linux/can.h>
41 #include <linux/can/dev.h>
42 #include <linux/can/error.h>
43 #include <linux/can/led.h>
44
45 #include "c_can.h"
46
47 /* Number of interface registers */
48 #define IF_ENUM_REG_LEN 11
49 #define C_CAN_IFACE(reg, iface) (C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
50
51 /* control extension register D_CAN specific */
52 #define CONTROL_EX_PDR BIT(8)
53
54 /* control register */
55 #define CONTROL_SWR BIT(15)
56 #define CONTROL_TEST BIT(7)
57 #define CONTROL_CCE BIT(6)
58 #define CONTROL_DISABLE_AR BIT(5)
59 #define CONTROL_ENABLE_AR (0 << 5)
60 #define CONTROL_EIE BIT(3)
61 #define CONTROL_SIE BIT(2)
62 #define CONTROL_IE BIT(1)
63 #define CONTROL_INIT BIT(0)
64
65 #define CONTROL_IRQMSK (CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
66
67 /* test register */
68 #define TEST_RX BIT(7)
69 #define TEST_TX1 BIT(6)
70 #define TEST_TX2 BIT(5)
71 #define TEST_LBACK BIT(4)
72 #define TEST_SILENT BIT(3)
73 #define TEST_BASIC BIT(2)
74
75 /* status register */
76 #define STATUS_PDA BIT(10)
77 #define STATUS_BOFF BIT(7)
78 #define STATUS_EWARN BIT(6)
79 #define STATUS_EPASS BIT(5)
80 #define STATUS_RXOK BIT(4)
81 #define STATUS_TXOK BIT(3)
82
83 /* error counter register */
84 #define ERR_CNT_TEC_MASK 0xff
85 #define ERR_CNT_TEC_SHIFT 0
86 #define ERR_CNT_REC_SHIFT 8
87 #define ERR_CNT_REC_MASK (0x7f << ERR_CNT_REC_SHIFT)
88 #define ERR_CNT_RP_SHIFT 15
89 #define ERR_CNT_RP_MASK (0x1 << ERR_CNT_RP_SHIFT)
90
91 /* bit-timing register */
92 #define BTR_BRP_MASK 0x3f
93 #define BTR_BRP_SHIFT 0
94 #define BTR_SJW_SHIFT 6
95 #define BTR_SJW_MASK (0x3 << BTR_SJW_SHIFT)
96 #define BTR_TSEG1_SHIFT 8
97 #define BTR_TSEG1_MASK (0xf << BTR_TSEG1_SHIFT)
98 #define BTR_TSEG2_SHIFT 12
99 #define BTR_TSEG2_MASK (0x7 << BTR_TSEG2_SHIFT)
100
101 /* interrupt register */
102 #define INT_STS_PENDING 0x8000
103
104 /* brp extension register */
105 #define BRP_EXT_BRPE_MASK 0x0f
106 #define BRP_EXT_BRPE_SHIFT 0
107
108 /* IFx command request */
109 #define IF_COMR_BUSY BIT(15)
110
111 /* IFx command mask */
112 #define IF_COMM_WR BIT(7)
113 #define IF_COMM_MASK BIT(6)
114 #define IF_COMM_ARB BIT(5)
115 #define IF_COMM_CONTROL BIT(4)
116 #define IF_COMM_CLR_INT_PND BIT(3)
117 #define IF_COMM_TXRQST BIT(2)
118 #define IF_COMM_CLR_NEWDAT IF_COMM_TXRQST
119 #define IF_COMM_DATAA BIT(1)
120 #define IF_COMM_DATAB BIT(0)
121
122 /* TX buffer setup */
123 #define IF_COMM_TX (IF_COMM_ARB | IF_COMM_CONTROL | \
124 IF_COMM_TXRQST | \
125 IF_COMM_DATAA | IF_COMM_DATAB)
126
127 /* For the low buffers we clear the interrupt bit, but keep newdat */
128 #define IF_COMM_RCV_LOW (IF_COMM_MASK | IF_COMM_ARB | \
129 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
130 IF_COMM_DATAA | IF_COMM_DATAB)
131
132 /* For the high buffers we clear the interrupt bit and newdat */
133 #define IF_COMM_RCV_HIGH (IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
134
135
136 /* Receive setup of message objects */
137 #define IF_COMM_RCV_SETUP (IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
138
139 /* Invalidation of message objects */
140 #define IF_COMM_INVAL (IF_COMM_ARB | IF_COMM_CONTROL)
141
142 /* IFx arbitration */
143 #define IF_ARB_MSGVAL BIT(31)
144 #define IF_ARB_MSGXTD BIT(30)
145 #define IF_ARB_TRANSMIT BIT(29)
146
147 /* IFx message control */
148 #define IF_MCONT_NEWDAT BIT(15)
149 #define IF_MCONT_MSGLST BIT(14)
150 #define IF_MCONT_INTPND BIT(13)
151 #define IF_MCONT_UMASK BIT(12)
152 #define IF_MCONT_TXIE BIT(11)
153 #define IF_MCONT_RXIE BIT(10)
154 #define IF_MCONT_RMTEN BIT(9)
155 #define IF_MCONT_TXRQST BIT(8)
156 #define IF_MCONT_EOB BIT(7)
157 #define IF_MCONT_DLC_MASK 0xf
158
159 #define IF_MCONT_RCV (IF_MCONT_RXIE | IF_MCONT_UMASK)
160 #define IF_MCONT_RCV_EOB (IF_MCONT_RCV | IF_MCONT_EOB)
161
162 #define IF_MCONT_TX (IF_MCONT_TXIE | IF_MCONT_EOB)
163
164 /*
165 * Use IF1 for RX and IF2 for TX
166 */
167 #define IF_RX 0
168 #define IF_TX 1
169
170 /* minimum timeout for checking BUSY status */
171 #define MIN_TIMEOUT_VALUE 6
172
173 /* Wait for ~1 sec for INIT bit */
174 #define INIT_WAIT_MS 1000
175
176 /* napi related */
177 #define C_CAN_NAPI_WEIGHT C_CAN_MSG_OBJ_RX_NUM
178
179 /* c_can lec values */
180 enum c_can_lec_type {
181 LEC_NO_ERROR = 0,
182 LEC_STUFF_ERROR,
183 LEC_FORM_ERROR,
184 LEC_ACK_ERROR,
185 LEC_BIT1_ERROR,
186 LEC_BIT0_ERROR,
187 LEC_CRC_ERROR,
188 LEC_UNUSED,
189 LEC_MASK = LEC_UNUSED,
190 };
191
192 /*
193 * c_can error types:
194 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
195 */
196 enum c_can_bus_error_types {
197 C_CAN_NO_ERROR = 0,
198 C_CAN_BUS_OFF,
199 C_CAN_ERROR_WARNING,
200 C_CAN_ERROR_PASSIVE,
201 };
202
203 static const struct can_bittiming_const c_can_bittiming_const = {
204 .name = KBUILD_MODNAME,
205 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
206 .tseg1_max = 16,
207 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
208 .tseg2_max = 8,
209 .sjw_max = 4,
210 .brp_min = 1,
211 .brp_max = 1024, /* 6-bit BRP field + 4-bit BRPE field*/
212 .brp_inc = 1,
213 };
214
c_can_pm_runtime_enable(const struct c_can_priv * priv)215 static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
216 {
217 if (priv->device)
218 pm_runtime_enable(priv->device);
219 }
220
c_can_pm_runtime_disable(const struct c_can_priv * priv)221 static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
222 {
223 if (priv->device)
224 pm_runtime_disable(priv->device);
225 }
226
c_can_pm_runtime_get_sync(const struct c_can_priv * priv)227 static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
228 {
229 if (priv->device)
230 pm_runtime_get_sync(priv->device);
231 }
232
c_can_pm_runtime_put_sync(const struct c_can_priv * priv)233 static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
234 {
235 if (priv->device)
236 pm_runtime_put_sync(priv->device);
237 }
238
c_can_reset_ram(const struct c_can_priv * priv,bool enable)239 static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
240 {
241 if (priv->raminit)
242 priv->raminit(priv, enable);
243 }
244
c_can_irq_control(struct c_can_priv * priv,bool enable)245 static void c_can_irq_control(struct c_can_priv *priv, bool enable)
246 {
247 u32 ctrl = priv->read_reg(priv, C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
248
249 if (enable)
250 ctrl |= CONTROL_IRQMSK;
251
252 priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
253 }
254
c_can_obj_update(struct net_device * dev,int iface,u32 cmd,u32 obj)255 static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
256 {
257 struct c_can_priv *priv = netdev_priv(dev);
258 int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
259
260 priv->write_reg32(priv, reg, (cmd << 16) | obj);
261
262 for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
263 if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
264 return;
265 udelay(1);
266 }
267 netdev_err(dev, "Updating object timed out\n");
268
269 }
270
c_can_object_get(struct net_device * dev,int iface,u32 obj,u32 cmd)271 static inline void c_can_object_get(struct net_device *dev, int iface,
272 u32 obj, u32 cmd)
273 {
274 c_can_obj_update(dev, iface, cmd, obj);
275 }
276
c_can_object_put(struct net_device * dev,int iface,u32 obj,u32 cmd)277 static inline void c_can_object_put(struct net_device *dev, int iface,
278 u32 obj, u32 cmd)
279 {
280 c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
281 }
282
283 /*
284 * Note: According to documentation clearing TXIE while MSGVAL is set
285 * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
286 * load significantly.
287 */
c_can_inval_tx_object(struct net_device * dev,int iface,int obj)288 static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
289 {
290 struct c_can_priv *priv = netdev_priv(dev);
291
292 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
293 c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
294 }
295
c_can_inval_msg_object(struct net_device * dev,int iface,int obj)296 static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
297 {
298 struct c_can_priv *priv = netdev_priv(dev);
299
300 priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
301 priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
302 c_can_inval_tx_object(dev, iface, obj);
303 }
304
c_can_setup_tx_object(struct net_device * dev,int iface,struct can_frame * frame,int idx)305 static void c_can_setup_tx_object(struct net_device *dev, int iface,
306 struct can_frame *frame, int idx)
307 {
308 struct c_can_priv *priv = netdev_priv(dev);
309 u16 ctrl = IF_MCONT_TX | frame->can_dlc;
310 bool rtr = frame->can_id & CAN_RTR_FLAG;
311 u32 arb = IF_ARB_MSGVAL;
312 int i;
313
314 if (frame->can_id & CAN_EFF_FLAG) {
315 arb |= frame->can_id & CAN_EFF_MASK;
316 arb |= IF_ARB_MSGXTD;
317 } else {
318 arb |= (frame->can_id & CAN_SFF_MASK) << 18;
319 }
320
321 if (!rtr)
322 arb |= IF_ARB_TRANSMIT;
323
324 /*
325 * If we change the DIR bit, we need to invalidate the buffer
326 * first, i.e. clear the MSGVAL flag in the arbiter.
327 */
328 if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
329 u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
330
331 c_can_inval_msg_object(dev, iface, obj);
332 change_bit(idx, &priv->tx_dir);
333 }
334
335 priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
336
337 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
338
339 if (priv->type == BOSCH_D_CAN) {
340 u32 data = 0, dreg = C_CAN_IFACE(DATA1_REG, iface);
341
342 for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
343 data = (u32)frame->data[i];
344 data |= (u32)frame->data[i + 1] << 8;
345 data |= (u32)frame->data[i + 2] << 16;
346 data |= (u32)frame->data[i + 3] << 24;
347 priv->write_reg32(priv, dreg, data);
348 }
349 } else {
350 for (i = 0; i < frame->can_dlc; i += 2) {
351 priv->write_reg(priv,
352 C_CAN_IFACE(DATA1_REG, iface) + i / 2,
353 frame->data[i] |
354 (frame->data[i + 1] << 8));
355 }
356 }
357 }
358
c_can_activate_all_lower_rx_msg_obj(struct net_device * dev,int iface)359 static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
360 int iface)
361 {
362 int i;
363
364 for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++)
365 c_can_object_get(dev, iface, i, IF_COMM_CLR_NEWDAT);
366 }
367
c_can_handle_lost_msg_obj(struct net_device * dev,int iface,int objno,u32 ctrl)368 static int c_can_handle_lost_msg_obj(struct net_device *dev,
369 int iface, int objno, u32 ctrl)
370 {
371 struct net_device_stats *stats = &dev->stats;
372 struct c_can_priv *priv = netdev_priv(dev);
373 struct can_frame *frame;
374 struct sk_buff *skb;
375
376 ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
377 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
378 c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
379
380 stats->rx_errors++;
381 stats->rx_over_errors++;
382
383 /* create an error msg */
384 skb = alloc_can_err_skb(dev, &frame);
385 if (unlikely(!skb))
386 return 0;
387
388 frame->can_id |= CAN_ERR_CRTL;
389 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
390
391 netif_receive_skb(skb);
392 return 1;
393 }
394
c_can_read_msg_object(struct net_device * dev,int iface,u32 ctrl)395 static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
396 {
397 struct net_device_stats *stats = &dev->stats;
398 struct c_can_priv *priv = netdev_priv(dev);
399 struct can_frame *frame;
400 struct sk_buff *skb;
401 u32 arb, data;
402
403 skb = alloc_can_skb(dev, &frame);
404 if (!skb) {
405 stats->rx_dropped++;
406 return -ENOMEM;
407 }
408
409 frame->can_dlc = get_can_dlc(ctrl & 0x0F);
410
411 arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
412
413 if (arb & IF_ARB_MSGXTD)
414 frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
415 else
416 frame->can_id = (arb >> 18) & CAN_SFF_MASK;
417
418 if (arb & IF_ARB_TRANSMIT) {
419 frame->can_id |= CAN_RTR_FLAG;
420 } else {
421 int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
422
423 if (priv->type == BOSCH_D_CAN) {
424 for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
425 data = priv->read_reg32(priv, dreg);
426 frame->data[i] = data;
427 frame->data[i + 1] = data >> 8;
428 frame->data[i + 2] = data >> 16;
429 frame->data[i + 3] = data >> 24;
430 }
431 } else {
432 for (i = 0; i < frame->can_dlc; i += 2, dreg++) {
433 data = priv->read_reg(priv, dreg);
434 frame->data[i] = data;
435 frame->data[i + 1] = data >> 8;
436 }
437 }
438 }
439
440 stats->rx_packets++;
441 stats->rx_bytes += frame->can_dlc;
442
443 netif_receive_skb(skb);
444 return 0;
445 }
446
c_can_setup_receive_object(struct net_device * dev,int iface,u32 obj,u32 mask,u32 id,u32 mcont)447 static void c_can_setup_receive_object(struct net_device *dev, int iface,
448 u32 obj, u32 mask, u32 id, u32 mcont)
449 {
450 struct c_can_priv *priv = netdev_priv(dev);
451
452 mask |= BIT(29);
453 priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
454
455 id |= IF_ARB_MSGVAL;
456 priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
457
458 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
459 c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
460 }
461
c_can_start_xmit(struct sk_buff * skb,struct net_device * dev)462 static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
463 struct net_device *dev)
464 {
465 struct can_frame *frame = (struct can_frame *)skb->data;
466 struct c_can_priv *priv = netdev_priv(dev);
467 u32 idx, obj;
468
469 if (can_dropped_invalid_skb(dev, skb))
470 return NETDEV_TX_OK;
471 /*
472 * This is not a FIFO. C/D_CAN sends out the buffers
473 * prioritized. The lowest buffer number wins.
474 */
475 idx = fls(atomic_read(&priv->tx_active));
476 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
477
478 /* If this is the last buffer, stop the xmit queue */
479 if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
480 netif_stop_queue(dev);
481 /*
482 * Store the message in the interface so we can call
483 * can_put_echo_skb(). We must do this before we enable
484 * transmit as we might race against do_tx().
485 */
486 c_can_setup_tx_object(dev, IF_TX, frame, idx);
487 priv->dlc[idx] = frame->can_dlc;
488 can_put_echo_skb(skb, dev, idx);
489
490 /* Update the active bits */
491 atomic_add((1 << idx), &priv->tx_active);
492 /* Start transmission */
493 c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
494
495 return NETDEV_TX_OK;
496 }
497
c_can_wait_for_ctrl_init(struct net_device * dev,struct c_can_priv * priv,u32 init)498 static int c_can_wait_for_ctrl_init(struct net_device *dev,
499 struct c_can_priv *priv, u32 init)
500 {
501 int retry = 0;
502
503 while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
504 udelay(10);
505 if (retry++ > 1000) {
506 netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
507 return -EIO;
508 }
509 }
510 return 0;
511 }
512
c_can_set_bittiming(struct net_device * dev)513 static int c_can_set_bittiming(struct net_device *dev)
514 {
515 unsigned int reg_btr, reg_brpe, ctrl_save;
516 u8 brp, brpe, sjw, tseg1, tseg2;
517 u32 ten_bit_brp;
518 struct c_can_priv *priv = netdev_priv(dev);
519 const struct can_bittiming *bt = &priv->can.bittiming;
520 int res;
521
522 /* c_can provides a 6-bit brp and 4-bit brpe fields */
523 ten_bit_brp = bt->brp - 1;
524 brp = ten_bit_brp & BTR_BRP_MASK;
525 brpe = ten_bit_brp >> 6;
526
527 sjw = bt->sjw - 1;
528 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
529 tseg2 = bt->phase_seg2 - 1;
530 reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
531 (tseg2 << BTR_TSEG2_SHIFT);
532 reg_brpe = brpe & BRP_EXT_BRPE_MASK;
533
534 netdev_info(dev,
535 "setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
536
537 ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
538 ctrl_save &= ~CONTROL_INIT;
539 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
540 res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
541 if (res)
542 return res;
543
544 priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
545 priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
546 priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
547
548 return c_can_wait_for_ctrl_init(dev, priv, 0);
549 }
550
551 /*
552 * Configure C_CAN message objects for Tx and Rx purposes:
553 * C_CAN provides a total of 32 message objects that can be configured
554 * either for Tx or Rx purposes. Here the first 16 message objects are used as
555 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
556 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
557 * See user guide document for further details on configuring message
558 * objects.
559 */
c_can_configure_msg_objects(struct net_device * dev)560 static void c_can_configure_msg_objects(struct net_device *dev)
561 {
562 int i;
563
564 /* first invalidate all message objects */
565 for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
566 c_can_inval_msg_object(dev, IF_RX, i);
567
568 /* setup receive message objects */
569 for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
570 c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
571
572 c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
573 IF_MCONT_RCV_EOB);
574 }
575
c_can_software_reset(struct net_device * dev)576 static int c_can_software_reset(struct net_device *dev)
577 {
578 struct c_can_priv *priv = netdev_priv(dev);
579 int retry = 0;
580
581 if (priv->type != BOSCH_D_CAN)
582 return 0;
583
584 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_SWR | CONTROL_INIT);
585 while (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_SWR) {
586 msleep(20);
587 if (retry++ > 100) {
588 netdev_err(dev, "CCTRL: software reset failed\n");
589 return -EIO;
590 }
591 }
592
593 return 0;
594 }
595
596 /*
597 * Configure C_CAN chip:
598 * - enable/disable auto-retransmission
599 * - set operating mode
600 * - configure message objects
601 */
c_can_chip_config(struct net_device * dev)602 static int c_can_chip_config(struct net_device *dev)
603 {
604 struct c_can_priv *priv = netdev_priv(dev);
605 int err;
606
607 err = c_can_software_reset(dev);
608 if (err)
609 return err;
610
611 /* enable automatic retransmission */
612 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
613
614 if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
615 (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
616 /* loopback + silent mode : useful for hot self-test */
617 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
618 priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
619 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
620 /* loopback mode : useful for self-test function */
621 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
622 priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
623 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
624 /* silent mode : bus-monitoring mode */
625 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
626 priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
627 }
628
629 /* configure message objects */
630 c_can_configure_msg_objects(dev);
631
632 /* set a `lec` value so that we can check for updates later */
633 priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
634
635 /* Clear all internal status */
636 atomic_set(&priv->tx_active, 0);
637 priv->rxmasked = 0;
638 priv->tx_dir = 0;
639
640 /* set bittiming params */
641 return c_can_set_bittiming(dev);
642 }
643
c_can_start(struct net_device * dev)644 static int c_can_start(struct net_device *dev)
645 {
646 struct c_can_priv *priv = netdev_priv(dev);
647 int err;
648 struct pinctrl *p;
649
650 /* basic c_can configuration */
651 err = c_can_chip_config(dev);
652 if (err)
653 return err;
654
655 /* Setup the command for new messages */
656 priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
657 IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
658
659 priv->can.state = CAN_STATE_ERROR_ACTIVE;
660
661 /* Attempt to use "active" if available else use "default" */
662 p = pinctrl_get_select(priv->device, "active");
663 if (!IS_ERR(p))
664 pinctrl_put(p);
665 else
666 pinctrl_pm_select_default_state(priv->device);
667
668 return 0;
669 }
670
c_can_stop(struct net_device * dev)671 static void c_can_stop(struct net_device *dev)
672 {
673 struct c_can_priv *priv = netdev_priv(dev);
674
675 c_can_irq_control(priv, false);
676
677 /* put ctrl to init on stop to end ongoing transmission */
678 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
679
680 /* deactivate pins */
681 pinctrl_pm_select_sleep_state(dev->dev.parent);
682 priv->can.state = CAN_STATE_STOPPED;
683 }
684
c_can_set_mode(struct net_device * dev,enum can_mode mode)685 static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
686 {
687 struct c_can_priv *priv = netdev_priv(dev);
688 int err;
689
690 switch (mode) {
691 case CAN_MODE_START:
692 err = c_can_start(dev);
693 if (err)
694 return err;
695 netif_wake_queue(dev);
696 c_can_irq_control(priv, true);
697 break;
698 default:
699 return -EOPNOTSUPP;
700 }
701
702 return 0;
703 }
704
__c_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)705 static int __c_can_get_berr_counter(const struct net_device *dev,
706 struct can_berr_counter *bec)
707 {
708 unsigned int reg_err_counter;
709 struct c_can_priv *priv = netdev_priv(dev);
710
711 reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
712 bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
713 ERR_CNT_REC_SHIFT;
714 bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
715
716 return 0;
717 }
718
c_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)719 static int c_can_get_berr_counter(const struct net_device *dev,
720 struct can_berr_counter *bec)
721 {
722 struct c_can_priv *priv = netdev_priv(dev);
723 int err;
724
725 c_can_pm_runtime_get_sync(priv);
726 err = __c_can_get_berr_counter(dev, bec);
727 c_can_pm_runtime_put_sync(priv);
728
729 return err;
730 }
731
c_can_do_tx(struct net_device * dev)732 static void c_can_do_tx(struct net_device *dev)
733 {
734 struct c_can_priv *priv = netdev_priv(dev);
735 struct net_device_stats *stats = &dev->stats;
736 u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
737
738 clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
739
740 while ((idx = ffs(pend))) {
741 idx--;
742 pend &= ~(1 << idx);
743 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
744 c_can_inval_tx_object(dev, IF_RX, obj);
745 can_get_echo_skb(dev, idx);
746 bytes += priv->dlc[idx];
747 pkts++;
748 }
749
750 /* Clear the bits in the tx_active mask */
751 atomic_sub(clr, &priv->tx_active);
752
753 if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
754 netif_wake_queue(dev);
755
756 if (pkts) {
757 stats->tx_bytes += bytes;
758 stats->tx_packets += pkts;
759 can_led_event(dev, CAN_LED_EVENT_TX);
760 }
761 }
762
763 /*
764 * If we have a gap in the pending bits, that means we either
765 * raced with the hardware or failed to readout all upper
766 * objects in the last run due to quota limit.
767 */
c_can_adjust_pending(u32 pend)768 static u32 c_can_adjust_pending(u32 pend)
769 {
770 u32 weight, lasts;
771
772 if (pend == RECEIVE_OBJECT_BITS)
773 return pend;
774
775 /*
776 * If the last set bit is larger than the number of pending
777 * bits we have a gap.
778 */
779 weight = hweight32(pend);
780 lasts = fls(pend);
781
782 /* If the bits are linear, nothing to do */
783 if (lasts == weight)
784 return pend;
785
786 /*
787 * Find the first set bit after the gap. We walk backwards
788 * from the last set bit.
789 */
790 for (lasts--; pend & (1 << (lasts - 1)); lasts--);
791
792 return pend & ~((1 << lasts) - 1);
793 }
794
c_can_rx_object_get(struct net_device * dev,struct c_can_priv * priv,u32 obj)795 static inline void c_can_rx_object_get(struct net_device *dev,
796 struct c_can_priv *priv, u32 obj)
797 {
798 c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
799 }
800
c_can_rx_finalize(struct net_device * dev,struct c_can_priv * priv,u32 obj)801 static inline void c_can_rx_finalize(struct net_device *dev,
802 struct c_can_priv *priv, u32 obj)
803 {
804 if (priv->type != BOSCH_D_CAN)
805 c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
806 }
807
c_can_read_objects(struct net_device * dev,struct c_can_priv * priv,u32 pend,int quota)808 static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
809 u32 pend, int quota)
810 {
811 u32 pkts = 0, ctrl, obj;
812
813 while ((obj = ffs(pend)) && quota > 0) {
814 pend &= ~BIT(obj - 1);
815
816 c_can_rx_object_get(dev, priv, obj);
817 ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
818
819 if (ctrl & IF_MCONT_MSGLST) {
820 int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
821
822 pkts += n;
823 quota -= n;
824 continue;
825 }
826
827 /*
828 * This really should not happen, but this covers some
829 * odd HW behaviour. Do not remove that unless you
830 * want to brick your machine.
831 */
832 if (!(ctrl & IF_MCONT_NEWDAT))
833 continue;
834
835 /* read the data from the message object */
836 c_can_read_msg_object(dev, IF_RX, ctrl);
837
838 c_can_rx_finalize(dev, priv, obj);
839
840 pkts++;
841 quota--;
842 }
843
844 return pkts;
845 }
846
c_can_get_pending(struct c_can_priv * priv)847 static inline u32 c_can_get_pending(struct c_can_priv *priv)
848 {
849 u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
850
851 return pend;
852 }
853
854 /*
855 * theory of operation:
856 *
857 * c_can core saves a received CAN message into the first free message
858 * object it finds free (starting with the lowest). Bits NEWDAT and
859 * INTPND are set for this message object indicating that a new message
860 * has arrived. To work-around this issue, we keep two groups of message
861 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
862 *
863 * We clear the newdat bit right away.
864 *
865 * This can result in packet reordering when the readout is slow.
866 */
c_can_do_rx_poll(struct net_device * dev,int quota)867 static int c_can_do_rx_poll(struct net_device *dev, int quota)
868 {
869 struct c_can_priv *priv = netdev_priv(dev);
870 u32 pkts = 0, pend = 0, toread, n;
871
872 /*
873 * It is faster to read only one 16bit register. This is only possible
874 * for a maximum number of 16 objects.
875 */
876 BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
877 "Implementation does not support more message objects than 16");
878
879 while (quota > 0) {
880 if (!pend) {
881 pend = c_can_get_pending(priv);
882 if (!pend)
883 break;
884 /*
885 * If the pending field has a gap, handle the
886 * bits above the gap first.
887 */
888 toread = c_can_adjust_pending(pend);
889 } else {
890 toread = pend;
891 }
892 /* Remove the bits from pend */
893 pend &= ~toread;
894 /* Read the objects */
895 n = c_can_read_objects(dev, priv, toread, quota);
896 pkts += n;
897 quota -= n;
898 }
899
900 if (pkts)
901 can_led_event(dev, CAN_LED_EVENT_RX);
902
903 return pkts;
904 }
905
c_can_handle_state_change(struct net_device * dev,enum c_can_bus_error_types error_type)906 static int c_can_handle_state_change(struct net_device *dev,
907 enum c_can_bus_error_types error_type)
908 {
909 unsigned int reg_err_counter;
910 unsigned int rx_err_passive;
911 struct c_can_priv *priv = netdev_priv(dev);
912 struct net_device_stats *stats = &dev->stats;
913 struct can_frame *cf;
914 struct sk_buff *skb;
915 struct can_berr_counter bec;
916
917 switch (error_type) {
918 case C_CAN_ERROR_WARNING:
919 /* error warning state */
920 priv->can.can_stats.error_warning++;
921 priv->can.state = CAN_STATE_ERROR_WARNING;
922 break;
923 case C_CAN_ERROR_PASSIVE:
924 /* error passive state */
925 priv->can.can_stats.error_passive++;
926 priv->can.state = CAN_STATE_ERROR_PASSIVE;
927 break;
928 case C_CAN_BUS_OFF:
929 /* bus-off state */
930 priv->can.state = CAN_STATE_BUS_OFF;
931 priv->can.can_stats.bus_off++;
932 break;
933 default:
934 break;
935 }
936
937 /* propagate the error condition to the CAN stack */
938 skb = alloc_can_err_skb(dev, &cf);
939 if (unlikely(!skb))
940 return 0;
941
942 __c_can_get_berr_counter(dev, &bec);
943 reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
944 rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
945 ERR_CNT_RP_SHIFT;
946
947 switch (error_type) {
948 case C_CAN_ERROR_WARNING:
949 /* error warning state */
950 cf->can_id |= CAN_ERR_CRTL;
951 cf->data[1] = (bec.txerr > bec.rxerr) ?
952 CAN_ERR_CRTL_TX_WARNING :
953 CAN_ERR_CRTL_RX_WARNING;
954 cf->data[6] = bec.txerr;
955 cf->data[7] = bec.rxerr;
956
957 break;
958 case C_CAN_ERROR_PASSIVE:
959 /* error passive state */
960 cf->can_id |= CAN_ERR_CRTL;
961 if (rx_err_passive)
962 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
963 if (bec.txerr > 127)
964 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
965
966 cf->data[6] = bec.txerr;
967 cf->data[7] = bec.rxerr;
968 break;
969 case C_CAN_BUS_OFF:
970 /* bus-off state */
971 cf->can_id |= CAN_ERR_BUSOFF;
972 can_bus_off(dev);
973 break;
974 default:
975 break;
976 }
977
978 stats->rx_packets++;
979 stats->rx_bytes += cf->can_dlc;
980 netif_receive_skb(skb);
981
982 return 1;
983 }
984
c_can_handle_bus_err(struct net_device * dev,enum c_can_lec_type lec_type)985 static int c_can_handle_bus_err(struct net_device *dev,
986 enum c_can_lec_type lec_type)
987 {
988 struct c_can_priv *priv = netdev_priv(dev);
989 struct net_device_stats *stats = &dev->stats;
990 struct can_frame *cf;
991 struct sk_buff *skb;
992
993 /*
994 * early exit if no lec update or no error.
995 * no lec update means that no CAN bus event has been detected
996 * since CPU wrote 0x7 value to status reg.
997 */
998 if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
999 return 0;
1000
1001 if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1002 return 0;
1003
1004 /* common for all type of bus errors */
1005 priv->can.can_stats.bus_error++;
1006 stats->rx_errors++;
1007
1008 /* propagate the error condition to the CAN stack */
1009 skb = alloc_can_err_skb(dev, &cf);
1010 if (unlikely(!skb))
1011 return 0;
1012
1013 /*
1014 * check for 'last error code' which tells us the
1015 * type of the last error to occur on the CAN bus
1016 */
1017 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1018
1019 switch (lec_type) {
1020 case LEC_STUFF_ERROR:
1021 netdev_dbg(dev, "stuff error\n");
1022 cf->data[2] |= CAN_ERR_PROT_STUFF;
1023 break;
1024 case LEC_FORM_ERROR:
1025 netdev_dbg(dev, "form error\n");
1026 cf->data[2] |= CAN_ERR_PROT_FORM;
1027 break;
1028 case LEC_ACK_ERROR:
1029 netdev_dbg(dev, "ack error\n");
1030 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
1031 break;
1032 case LEC_BIT1_ERROR:
1033 netdev_dbg(dev, "bit1 error\n");
1034 cf->data[2] |= CAN_ERR_PROT_BIT1;
1035 break;
1036 case LEC_BIT0_ERROR:
1037 netdev_dbg(dev, "bit0 error\n");
1038 cf->data[2] |= CAN_ERR_PROT_BIT0;
1039 break;
1040 case LEC_CRC_ERROR:
1041 netdev_dbg(dev, "CRC error\n");
1042 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1043 break;
1044 default:
1045 break;
1046 }
1047
1048 stats->rx_packets++;
1049 stats->rx_bytes += cf->can_dlc;
1050 netif_receive_skb(skb);
1051 return 1;
1052 }
1053
c_can_poll(struct napi_struct * napi,int quota)1054 static int c_can_poll(struct napi_struct *napi, int quota)
1055 {
1056 struct net_device *dev = napi->dev;
1057 struct c_can_priv *priv = netdev_priv(dev);
1058 u16 curr, last = priv->last_status;
1059 int work_done = 0;
1060
1061 /* Only read the status register if a status interrupt was pending */
1062 if (atomic_xchg(&priv->sie_pending, 0)) {
1063 priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
1064 /* Ack status on C_CAN. D_CAN is self clearing */
1065 if (priv->type != BOSCH_D_CAN)
1066 priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1067 } else {
1068 /* no change detected ... */
1069 curr = last;
1070 }
1071
1072 /* handle state changes */
1073 if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1074 netdev_dbg(dev, "entered error warning state\n");
1075 work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1076 }
1077
1078 if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1079 netdev_dbg(dev, "entered error passive state\n");
1080 work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1081 }
1082
1083 if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1084 netdev_dbg(dev, "entered bus off state\n");
1085 work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1086 goto end;
1087 }
1088
1089 /* handle bus recovery events */
1090 if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1091 netdev_dbg(dev, "left bus off state\n");
1092 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1093 }
1094 if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1095 netdev_dbg(dev, "left error passive state\n");
1096 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1097 }
1098
1099 /* handle lec errors on the bus */
1100 work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1101
1102 /* Handle Tx/Rx events. We do this unconditionally */
1103 work_done += c_can_do_rx_poll(dev, (quota - work_done));
1104 c_can_do_tx(dev);
1105
1106 end:
1107 if (work_done < quota) {
1108 napi_complete_done(napi, work_done);
1109 /* enable all IRQs if we are not in bus off state */
1110 if (priv->can.state != CAN_STATE_BUS_OFF)
1111 c_can_irq_control(priv, true);
1112 }
1113
1114 return work_done;
1115 }
1116
c_can_isr(int irq,void * dev_id)1117 static irqreturn_t c_can_isr(int irq, void *dev_id)
1118 {
1119 struct net_device *dev = (struct net_device *)dev_id;
1120 struct c_can_priv *priv = netdev_priv(dev);
1121 int reg_int;
1122
1123 reg_int = priv->read_reg(priv, C_CAN_INT_REG);
1124 if (!reg_int)
1125 return IRQ_NONE;
1126
1127 /* save for later use */
1128 if (reg_int & INT_STS_PENDING)
1129 atomic_set(&priv->sie_pending, 1);
1130
1131 /* disable all interrupts and schedule the NAPI */
1132 c_can_irq_control(priv, false);
1133 napi_schedule(&priv->napi);
1134
1135 return IRQ_HANDLED;
1136 }
1137
c_can_open(struct net_device * dev)1138 static int c_can_open(struct net_device *dev)
1139 {
1140 int err;
1141 struct c_can_priv *priv = netdev_priv(dev);
1142
1143 c_can_pm_runtime_get_sync(priv);
1144 c_can_reset_ram(priv, true);
1145
1146 /* open the can device */
1147 err = open_candev(dev);
1148 if (err) {
1149 netdev_err(dev, "failed to open can device\n");
1150 goto exit_open_fail;
1151 }
1152
1153 /* register interrupt handler */
1154 err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1155 dev);
1156 if (err < 0) {
1157 netdev_err(dev, "failed to request interrupt\n");
1158 goto exit_irq_fail;
1159 }
1160
1161 /* start the c_can controller */
1162 err = c_can_start(dev);
1163 if (err)
1164 goto exit_start_fail;
1165
1166 can_led_event(dev, CAN_LED_EVENT_OPEN);
1167
1168 napi_enable(&priv->napi);
1169 /* enable status change, error and module interrupts */
1170 c_can_irq_control(priv, true);
1171 netif_start_queue(dev);
1172
1173 return 0;
1174
1175 exit_start_fail:
1176 free_irq(dev->irq, dev);
1177 exit_irq_fail:
1178 close_candev(dev);
1179 exit_open_fail:
1180 c_can_reset_ram(priv, false);
1181 c_can_pm_runtime_put_sync(priv);
1182 return err;
1183 }
1184
c_can_close(struct net_device * dev)1185 static int c_can_close(struct net_device *dev)
1186 {
1187 struct c_can_priv *priv = netdev_priv(dev);
1188
1189 netif_stop_queue(dev);
1190 napi_disable(&priv->napi);
1191 c_can_stop(dev);
1192 free_irq(dev->irq, dev);
1193 close_candev(dev);
1194
1195 c_can_reset_ram(priv, false);
1196 c_can_pm_runtime_put_sync(priv);
1197
1198 can_led_event(dev, CAN_LED_EVENT_STOP);
1199
1200 return 0;
1201 }
1202
alloc_c_can_dev(void)1203 struct net_device *alloc_c_can_dev(void)
1204 {
1205 struct net_device *dev;
1206 struct c_can_priv *priv;
1207
1208 dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1209 if (!dev)
1210 return NULL;
1211
1212 priv = netdev_priv(dev);
1213 netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1214
1215 priv->dev = dev;
1216 priv->can.bittiming_const = &c_can_bittiming_const;
1217 priv->can.do_set_mode = c_can_set_mode;
1218 priv->can.do_get_berr_counter = c_can_get_berr_counter;
1219 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1220 CAN_CTRLMODE_LISTENONLY |
1221 CAN_CTRLMODE_BERR_REPORTING;
1222
1223 return dev;
1224 }
1225 EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1226
1227 #ifdef CONFIG_PM
c_can_power_down(struct net_device * dev)1228 int c_can_power_down(struct net_device *dev)
1229 {
1230 u32 val;
1231 unsigned long time_out;
1232 struct c_can_priv *priv = netdev_priv(dev);
1233
1234 if (!(dev->flags & IFF_UP))
1235 return 0;
1236
1237 WARN_ON(priv->type != BOSCH_D_CAN);
1238
1239 /* set PDR value so the device goes to power down mode */
1240 val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1241 val |= CONTROL_EX_PDR;
1242 priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1243
1244 /* Wait for the PDA bit to get set */
1245 time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1246 while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1247 time_after(time_out, jiffies))
1248 cpu_relax();
1249
1250 if (time_after(jiffies, time_out))
1251 return -ETIMEDOUT;
1252
1253 c_can_stop(dev);
1254
1255 c_can_reset_ram(priv, false);
1256 c_can_pm_runtime_put_sync(priv);
1257
1258 return 0;
1259 }
1260 EXPORT_SYMBOL_GPL(c_can_power_down);
1261
c_can_power_up(struct net_device * dev)1262 int c_can_power_up(struct net_device *dev)
1263 {
1264 u32 val;
1265 unsigned long time_out;
1266 struct c_can_priv *priv = netdev_priv(dev);
1267 int ret;
1268
1269 if (!(dev->flags & IFF_UP))
1270 return 0;
1271
1272 WARN_ON(priv->type != BOSCH_D_CAN);
1273
1274 c_can_pm_runtime_get_sync(priv);
1275 c_can_reset_ram(priv, true);
1276
1277 /* Clear PDR and INIT bits */
1278 val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1279 val &= ~CONTROL_EX_PDR;
1280 priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1281 val = priv->read_reg(priv, C_CAN_CTRL_REG);
1282 val &= ~CONTROL_INIT;
1283 priv->write_reg(priv, C_CAN_CTRL_REG, val);
1284
1285 /* Wait for the PDA bit to get clear */
1286 time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1287 while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1288 time_after(time_out, jiffies))
1289 cpu_relax();
1290
1291 if (time_after(jiffies, time_out))
1292 return -ETIMEDOUT;
1293
1294 ret = c_can_start(dev);
1295 if (!ret)
1296 c_can_irq_control(priv, true);
1297
1298 return ret;
1299 }
1300 EXPORT_SYMBOL_GPL(c_can_power_up);
1301 #endif
1302
free_c_can_dev(struct net_device * dev)1303 void free_c_can_dev(struct net_device *dev)
1304 {
1305 struct c_can_priv *priv = netdev_priv(dev);
1306
1307 netif_napi_del(&priv->napi);
1308 free_candev(dev);
1309 }
1310 EXPORT_SYMBOL_GPL(free_c_can_dev);
1311
1312 static const struct net_device_ops c_can_netdev_ops = {
1313 .ndo_open = c_can_open,
1314 .ndo_stop = c_can_close,
1315 .ndo_start_xmit = c_can_start_xmit,
1316 .ndo_change_mtu = can_change_mtu,
1317 };
1318
register_c_can_dev(struct net_device * dev)1319 int register_c_can_dev(struct net_device *dev)
1320 {
1321 struct c_can_priv *priv = netdev_priv(dev);
1322 int err;
1323
1324 /* Deactivate pins to prevent DRA7 DCAN IP from being
1325 * stuck in transition when module is disabled.
1326 * Pins are activated in c_can_start() and deactivated
1327 * in c_can_stop()
1328 */
1329 pinctrl_pm_select_sleep_state(dev->dev.parent);
1330
1331 c_can_pm_runtime_enable(priv);
1332
1333 dev->flags |= IFF_ECHO; /* we support local echo */
1334 dev->netdev_ops = &c_can_netdev_ops;
1335
1336 err = register_candev(dev);
1337 if (err)
1338 c_can_pm_runtime_disable(priv);
1339 else
1340 devm_can_led_init(dev);
1341
1342 return err;
1343 }
1344 EXPORT_SYMBOL_GPL(register_c_can_dev);
1345
unregister_c_can_dev(struct net_device * dev)1346 void unregister_c_can_dev(struct net_device *dev)
1347 {
1348 struct c_can_priv *priv = netdev_priv(dev);
1349
1350 unregister_candev(dev);
1351
1352 c_can_pm_runtime_disable(priv);
1353 }
1354 EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1355
1356 MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1357 MODULE_LICENSE("GPL v2");
1358 MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1359