• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * CAN bus driver for Bosch C_CAN controller
3  *
4  * Copyright (C) 2010 ST Microelectronics
5  * Bhupesh Sharma <bhupesh.sharma@st.com>
6  *
7  * Borrowed heavily from the C_CAN driver originally written by:
8  * Copyright (C) 2007
9  * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10  * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11  *
12  * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13  * written by:
14  * Copyright
15  * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16  * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17  *
18  * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19  * Bosch C_CAN user manual can be obtained from:
20  * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21  * users_manual_c_can.pdf
22  *
23  * This file is licensed under the terms of the GNU General Public
24  * License version 2. This program is licensed "as is" without any
25  * warranty of any kind, whether express or implied.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_arp.h>
34 #include <linux/if_ether.h>
35 #include <linux/list.h>
36 #include <linux/io.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/pinctrl/consumer.h>
39 
40 #include <linux/can.h>
41 #include <linux/can/dev.h>
42 #include <linux/can/error.h>
43 #include <linux/can/led.h>
44 
45 #include "c_can.h"
46 
47 /* Number of interface registers */
48 #define IF_ENUM_REG_LEN		11
49 #define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
50 
51 /* control extension register D_CAN specific */
52 #define CONTROL_EX_PDR		BIT(8)
53 
54 /* control register */
55 #define CONTROL_SWR		BIT(15)
56 #define CONTROL_TEST		BIT(7)
57 #define CONTROL_CCE		BIT(6)
58 #define CONTROL_DISABLE_AR	BIT(5)
59 #define CONTROL_ENABLE_AR	(0 << 5)
60 #define CONTROL_EIE		BIT(3)
61 #define CONTROL_SIE		BIT(2)
62 #define CONTROL_IE		BIT(1)
63 #define CONTROL_INIT		BIT(0)
64 
65 #define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
66 
67 /* test register */
68 #define TEST_RX			BIT(7)
69 #define TEST_TX1		BIT(6)
70 #define TEST_TX2		BIT(5)
71 #define TEST_LBACK		BIT(4)
72 #define TEST_SILENT		BIT(3)
73 #define TEST_BASIC		BIT(2)
74 
75 /* status register */
76 #define STATUS_PDA		BIT(10)
77 #define STATUS_BOFF		BIT(7)
78 #define STATUS_EWARN		BIT(6)
79 #define STATUS_EPASS		BIT(5)
80 #define STATUS_RXOK		BIT(4)
81 #define STATUS_TXOK		BIT(3)
82 
83 /* error counter register */
84 #define ERR_CNT_TEC_MASK	0xff
85 #define ERR_CNT_TEC_SHIFT	0
86 #define ERR_CNT_REC_SHIFT	8
87 #define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
88 #define ERR_CNT_RP_SHIFT	15
89 #define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
90 
91 /* bit-timing register */
92 #define BTR_BRP_MASK		0x3f
93 #define BTR_BRP_SHIFT		0
94 #define BTR_SJW_SHIFT		6
95 #define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
96 #define BTR_TSEG1_SHIFT		8
97 #define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
98 #define BTR_TSEG2_SHIFT		12
99 #define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
100 
101 /* interrupt register */
102 #define INT_STS_PENDING		0x8000
103 
104 /* brp extension register */
105 #define BRP_EXT_BRPE_MASK	0x0f
106 #define BRP_EXT_BRPE_SHIFT	0
107 
108 /* IFx command request */
109 #define IF_COMR_BUSY		BIT(15)
110 
111 /* IFx command mask */
112 #define IF_COMM_WR		BIT(7)
113 #define IF_COMM_MASK		BIT(6)
114 #define IF_COMM_ARB		BIT(5)
115 #define IF_COMM_CONTROL		BIT(4)
116 #define IF_COMM_CLR_INT_PND	BIT(3)
117 #define IF_COMM_TXRQST		BIT(2)
118 #define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
119 #define IF_COMM_DATAA		BIT(1)
120 #define IF_COMM_DATAB		BIT(0)
121 
122 /* TX buffer setup */
123 #define IF_COMM_TX		(IF_COMM_ARB | IF_COMM_CONTROL | \
124 				 IF_COMM_TXRQST |		 \
125 				 IF_COMM_DATAA | IF_COMM_DATAB)
126 
127 /* For the low buffers we clear the interrupt bit, but keep newdat */
128 #define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
129 				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
130 				 IF_COMM_DATAA | IF_COMM_DATAB)
131 
132 /* For the high buffers we clear the interrupt bit and newdat */
133 #define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
134 
135 
136 /* Receive setup of message objects */
137 #define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
138 
139 /* Invalidation of message objects */
140 #define IF_COMM_INVAL		(IF_COMM_ARB | IF_COMM_CONTROL)
141 
142 /* IFx arbitration */
143 #define IF_ARB_MSGVAL		BIT(31)
144 #define IF_ARB_MSGXTD		BIT(30)
145 #define IF_ARB_TRANSMIT		BIT(29)
146 
147 /* IFx message control */
148 #define IF_MCONT_NEWDAT		BIT(15)
149 #define IF_MCONT_MSGLST		BIT(14)
150 #define IF_MCONT_INTPND		BIT(13)
151 #define IF_MCONT_UMASK		BIT(12)
152 #define IF_MCONT_TXIE		BIT(11)
153 #define IF_MCONT_RXIE		BIT(10)
154 #define IF_MCONT_RMTEN		BIT(9)
155 #define IF_MCONT_TXRQST		BIT(8)
156 #define IF_MCONT_EOB		BIT(7)
157 #define IF_MCONT_DLC_MASK	0xf
158 
159 #define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
160 #define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)
161 
162 #define IF_MCONT_TX		(IF_MCONT_TXIE | IF_MCONT_EOB)
163 
164 /*
165  * Use IF1 for RX and IF2 for TX
166  */
167 #define IF_RX			0
168 #define IF_TX			1
169 
170 /* minimum timeout for checking BUSY status */
171 #define MIN_TIMEOUT_VALUE	6
172 
173 /* Wait for ~1 sec for INIT bit */
174 #define INIT_WAIT_MS		1000
175 
176 /* napi related */
177 #define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
178 
179 /* c_can lec values */
180 enum c_can_lec_type {
181 	LEC_NO_ERROR = 0,
182 	LEC_STUFF_ERROR,
183 	LEC_FORM_ERROR,
184 	LEC_ACK_ERROR,
185 	LEC_BIT1_ERROR,
186 	LEC_BIT0_ERROR,
187 	LEC_CRC_ERROR,
188 	LEC_UNUSED,
189 	LEC_MASK = LEC_UNUSED,
190 };
191 
192 /*
193  * c_can error types:
194  * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
195  */
196 enum c_can_bus_error_types {
197 	C_CAN_NO_ERROR = 0,
198 	C_CAN_BUS_OFF,
199 	C_CAN_ERROR_WARNING,
200 	C_CAN_ERROR_PASSIVE,
201 };
202 
203 static const struct can_bittiming_const c_can_bittiming_const = {
204 	.name = KBUILD_MODNAME,
205 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
206 	.tseg1_max = 16,
207 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
208 	.tseg2_max = 8,
209 	.sjw_max = 4,
210 	.brp_min = 1,
211 	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
212 	.brp_inc = 1,
213 };
214 
c_can_pm_runtime_enable(const struct c_can_priv * priv)215 static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
216 {
217 	if (priv->device)
218 		pm_runtime_enable(priv->device);
219 }
220 
c_can_pm_runtime_disable(const struct c_can_priv * priv)221 static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
222 {
223 	if (priv->device)
224 		pm_runtime_disable(priv->device);
225 }
226 
c_can_pm_runtime_get_sync(const struct c_can_priv * priv)227 static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
228 {
229 	if (priv->device)
230 		pm_runtime_get_sync(priv->device);
231 }
232 
c_can_pm_runtime_put_sync(const struct c_can_priv * priv)233 static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
234 {
235 	if (priv->device)
236 		pm_runtime_put_sync(priv->device);
237 }
238 
c_can_reset_ram(const struct c_can_priv * priv,bool enable)239 static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
240 {
241 	if (priv->raminit)
242 		priv->raminit(priv, enable);
243 }
244 
c_can_irq_control(struct c_can_priv * priv,bool enable)245 static void c_can_irq_control(struct c_can_priv *priv, bool enable)
246 {
247 	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
248 
249 	if (enable)
250 		ctrl |= CONTROL_IRQMSK;
251 
252 	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
253 }
254 
c_can_obj_update(struct net_device * dev,int iface,u32 cmd,u32 obj)255 static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
256 {
257 	struct c_can_priv *priv = netdev_priv(dev);
258 	int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
259 
260 	priv->write_reg32(priv, reg, (cmd << 16) | obj);
261 
262 	for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
263 		if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
264 			return;
265 		udelay(1);
266 	}
267 	netdev_err(dev, "Updating object timed out\n");
268 
269 }
270 
c_can_object_get(struct net_device * dev,int iface,u32 obj,u32 cmd)271 static inline void c_can_object_get(struct net_device *dev, int iface,
272 				    u32 obj, u32 cmd)
273 {
274 	c_can_obj_update(dev, iface, cmd, obj);
275 }
276 
c_can_object_put(struct net_device * dev,int iface,u32 obj,u32 cmd)277 static inline void c_can_object_put(struct net_device *dev, int iface,
278 				    u32 obj, u32 cmd)
279 {
280 	c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
281 }
282 
283 /*
284  * Note: According to documentation clearing TXIE while MSGVAL is set
285  * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
286  * load significantly.
287  */
c_can_inval_tx_object(struct net_device * dev,int iface,int obj)288 static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
289 {
290 	struct c_can_priv *priv = netdev_priv(dev);
291 
292 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
293 	c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
294 }
295 
c_can_inval_msg_object(struct net_device * dev,int iface,int obj)296 static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
297 {
298 	struct c_can_priv *priv = netdev_priv(dev);
299 
300 	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
301 	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
302 	c_can_inval_tx_object(dev, iface, obj);
303 }
304 
c_can_setup_tx_object(struct net_device * dev,int iface,struct can_frame * frame,int idx)305 static void c_can_setup_tx_object(struct net_device *dev, int iface,
306 				  struct can_frame *frame, int idx)
307 {
308 	struct c_can_priv *priv = netdev_priv(dev);
309 	u16 ctrl = IF_MCONT_TX | frame->can_dlc;
310 	bool rtr = frame->can_id & CAN_RTR_FLAG;
311 	u32 arb = IF_ARB_MSGVAL;
312 	int i;
313 
314 	if (frame->can_id & CAN_EFF_FLAG) {
315 		arb |= frame->can_id & CAN_EFF_MASK;
316 		arb |= IF_ARB_MSGXTD;
317 	} else {
318 		arb |= (frame->can_id & CAN_SFF_MASK) << 18;
319 	}
320 
321 	if (!rtr)
322 		arb |= IF_ARB_TRANSMIT;
323 
324 	/*
325 	 * If we change the DIR bit, we need to invalidate the buffer
326 	 * first, i.e. clear the MSGVAL flag in the arbiter.
327 	 */
328 	if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
329 		u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
330 
331 		c_can_inval_msg_object(dev, iface, obj);
332 		change_bit(idx, &priv->tx_dir);
333 	}
334 
335 	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
336 
337 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
338 
339 	if (priv->type == BOSCH_D_CAN) {
340 		u32 data = 0, dreg = C_CAN_IFACE(DATA1_REG, iface);
341 
342 		for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
343 			data = (u32)frame->data[i];
344 			data |= (u32)frame->data[i + 1] << 8;
345 			data |= (u32)frame->data[i + 2] << 16;
346 			data |= (u32)frame->data[i + 3] << 24;
347 			priv->write_reg32(priv, dreg, data);
348 		}
349 	} else {
350 		for (i = 0; i < frame->can_dlc; i += 2) {
351 			priv->write_reg(priv,
352 					C_CAN_IFACE(DATA1_REG, iface) + i / 2,
353 					frame->data[i] |
354 					(frame->data[i + 1] << 8));
355 		}
356 	}
357 }
358 
c_can_activate_all_lower_rx_msg_obj(struct net_device * dev,int iface)359 static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
360 						       int iface)
361 {
362 	int i;
363 
364 	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++)
365 		c_can_object_get(dev, iface, i, IF_COMM_CLR_NEWDAT);
366 }
367 
c_can_handle_lost_msg_obj(struct net_device * dev,int iface,int objno,u32 ctrl)368 static int c_can_handle_lost_msg_obj(struct net_device *dev,
369 				     int iface, int objno, u32 ctrl)
370 {
371 	struct net_device_stats *stats = &dev->stats;
372 	struct c_can_priv *priv = netdev_priv(dev);
373 	struct can_frame *frame;
374 	struct sk_buff *skb;
375 
376 	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
377 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
378 	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
379 
380 	stats->rx_errors++;
381 	stats->rx_over_errors++;
382 
383 	/* create an error msg */
384 	skb = alloc_can_err_skb(dev, &frame);
385 	if (unlikely(!skb))
386 		return 0;
387 
388 	frame->can_id |= CAN_ERR_CRTL;
389 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
390 
391 	netif_receive_skb(skb);
392 	return 1;
393 }
394 
c_can_read_msg_object(struct net_device * dev,int iface,u32 ctrl)395 static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
396 {
397 	struct net_device_stats *stats = &dev->stats;
398 	struct c_can_priv *priv = netdev_priv(dev);
399 	struct can_frame *frame;
400 	struct sk_buff *skb;
401 	u32 arb, data;
402 
403 	skb = alloc_can_skb(dev, &frame);
404 	if (!skb) {
405 		stats->rx_dropped++;
406 		return -ENOMEM;
407 	}
408 
409 	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
410 
411 	arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
412 
413 	if (arb & IF_ARB_MSGXTD)
414 		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
415 	else
416 		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
417 
418 	if (arb & IF_ARB_TRANSMIT) {
419 		frame->can_id |= CAN_RTR_FLAG;
420 	} else {
421 		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
422 
423 		if (priv->type == BOSCH_D_CAN) {
424 			for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
425 				data = priv->read_reg32(priv, dreg);
426 				frame->data[i] = data;
427 				frame->data[i + 1] = data >> 8;
428 				frame->data[i + 2] = data >> 16;
429 				frame->data[i + 3] = data >> 24;
430 			}
431 		} else {
432 			for (i = 0; i < frame->can_dlc; i += 2, dreg++) {
433 				data = priv->read_reg(priv, dreg);
434 				frame->data[i] = data;
435 				frame->data[i + 1] = data >> 8;
436 			}
437 		}
438 	}
439 
440 	stats->rx_packets++;
441 	stats->rx_bytes += frame->can_dlc;
442 
443 	netif_receive_skb(skb);
444 	return 0;
445 }
446 
c_can_setup_receive_object(struct net_device * dev,int iface,u32 obj,u32 mask,u32 id,u32 mcont)447 static void c_can_setup_receive_object(struct net_device *dev, int iface,
448 				       u32 obj, u32 mask, u32 id, u32 mcont)
449 {
450 	struct c_can_priv *priv = netdev_priv(dev);
451 
452 	mask |= BIT(29);
453 	priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
454 
455 	id |= IF_ARB_MSGVAL;
456 	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
457 
458 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
459 	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
460 }
461 
c_can_start_xmit(struct sk_buff * skb,struct net_device * dev)462 static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
463 				    struct net_device *dev)
464 {
465 	struct can_frame *frame = (struct can_frame *)skb->data;
466 	struct c_can_priv *priv = netdev_priv(dev);
467 	u32 idx, obj;
468 
469 	if (can_dropped_invalid_skb(dev, skb))
470 		return NETDEV_TX_OK;
471 	/*
472 	 * This is not a FIFO. C/D_CAN sends out the buffers
473 	 * prioritized. The lowest buffer number wins.
474 	 */
475 	idx = fls(atomic_read(&priv->tx_active));
476 	obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
477 
478 	/* If this is the last buffer, stop the xmit queue */
479 	if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
480 		netif_stop_queue(dev);
481 	/*
482 	 * Store the message in the interface so we can call
483 	 * can_put_echo_skb(). We must do this before we enable
484 	 * transmit as we might race against do_tx().
485 	 */
486 	c_can_setup_tx_object(dev, IF_TX, frame, idx);
487 	priv->dlc[idx] = frame->can_dlc;
488 	can_put_echo_skb(skb, dev, idx);
489 
490 	/* Update the active bits */
491 	atomic_add((1 << idx), &priv->tx_active);
492 	/* Start transmission */
493 	c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
494 
495 	return NETDEV_TX_OK;
496 }
497 
c_can_wait_for_ctrl_init(struct net_device * dev,struct c_can_priv * priv,u32 init)498 static int c_can_wait_for_ctrl_init(struct net_device *dev,
499 				    struct c_can_priv *priv, u32 init)
500 {
501 	int retry = 0;
502 
503 	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
504 		udelay(10);
505 		if (retry++ > 1000) {
506 			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
507 			return -EIO;
508 		}
509 	}
510 	return 0;
511 }
512 
c_can_set_bittiming(struct net_device * dev)513 static int c_can_set_bittiming(struct net_device *dev)
514 {
515 	unsigned int reg_btr, reg_brpe, ctrl_save;
516 	u8 brp, brpe, sjw, tseg1, tseg2;
517 	u32 ten_bit_brp;
518 	struct c_can_priv *priv = netdev_priv(dev);
519 	const struct can_bittiming *bt = &priv->can.bittiming;
520 	int res;
521 
522 	/* c_can provides a 6-bit brp and 4-bit brpe fields */
523 	ten_bit_brp = bt->brp - 1;
524 	brp = ten_bit_brp & BTR_BRP_MASK;
525 	brpe = ten_bit_brp >> 6;
526 
527 	sjw = bt->sjw - 1;
528 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
529 	tseg2 = bt->phase_seg2 - 1;
530 	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
531 			(tseg2 << BTR_TSEG2_SHIFT);
532 	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
533 
534 	netdev_info(dev,
535 		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
536 
537 	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
538 	ctrl_save &= ~CONTROL_INIT;
539 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
540 	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
541 	if (res)
542 		return res;
543 
544 	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
545 	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
546 	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
547 
548 	return c_can_wait_for_ctrl_init(dev, priv, 0);
549 }
550 
551 /*
552  * Configure C_CAN message objects for Tx and Rx purposes:
553  * C_CAN provides a total of 32 message objects that can be configured
554  * either for Tx or Rx purposes. Here the first 16 message objects are used as
555  * a reception FIFO. The end of reception FIFO is signified by the EoB bit
556  * being SET. The remaining 16 message objects are kept aside for Tx purposes.
557  * See user guide document for further details on configuring message
558  * objects.
559  */
c_can_configure_msg_objects(struct net_device * dev)560 static void c_can_configure_msg_objects(struct net_device *dev)
561 {
562 	int i;
563 
564 	/* first invalidate all message objects */
565 	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
566 		c_can_inval_msg_object(dev, IF_RX, i);
567 
568 	/* setup receive message objects */
569 	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
570 		c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
571 
572 	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
573 				   IF_MCONT_RCV_EOB);
574 }
575 
c_can_software_reset(struct net_device * dev)576 static int c_can_software_reset(struct net_device *dev)
577 {
578 	struct c_can_priv *priv = netdev_priv(dev);
579 	int retry = 0;
580 
581 	if (priv->type != BOSCH_D_CAN)
582 		return 0;
583 
584 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_SWR | CONTROL_INIT);
585 	while (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_SWR) {
586 		msleep(20);
587 		if (retry++ > 100) {
588 			netdev_err(dev, "CCTRL: software reset failed\n");
589 			return -EIO;
590 		}
591 	}
592 
593 	return 0;
594 }
595 
596 /*
597  * Configure C_CAN chip:
598  * - enable/disable auto-retransmission
599  * - set operating mode
600  * - configure message objects
601  */
c_can_chip_config(struct net_device * dev)602 static int c_can_chip_config(struct net_device *dev)
603 {
604 	struct c_can_priv *priv = netdev_priv(dev);
605 	int err;
606 
607 	err = c_can_software_reset(dev);
608 	if (err)
609 		return err;
610 
611 	/* enable automatic retransmission */
612 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
613 
614 	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
615 	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
616 		/* loopback + silent mode : useful for hot self-test */
617 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
618 		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
619 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
620 		/* loopback mode : useful for self-test function */
621 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
622 		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
623 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
624 		/* silent mode : bus-monitoring mode */
625 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
626 		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
627 	}
628 
629 	/* configure message objects */
630 	c_can_configure_msg_objects(dev);
631 
632 	/* set a `lec` value so that we can check for updates later */
633 	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
634 
635 	/* Clear all internal status */
636 	atomic_set(&priv->tx_active, 0);
637 	priv->rxmasked = 0;
638 	priv->tx_dir = 0;
639 
640 	/* set bittiming params */
641 	return c_can_set_bittiming(dev);
642 }
643 
c_can_start(struct net_device * dev)644 static int c_can_start(struct net_device *dev)
645 {
646 	struct c_can_priv *priv = netdev_priv(dev);
647 	int err;
648 	struct pinctrl *p;
649 
650 	/* basic c_can configuration */
651 	err = c_can_chip_config(dev);
652 	if (err)
653 		return err;
654 
655 	/* Setup the command for new messages */
656 	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
657 		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
658 
659 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
660 
661 	/* Attempt to use "active" if available else use "default" */
662 	p = pinctrl_get_select(priv->device, "active");
663 	if (!IS_ERR(p))
664 		pinctrl_put(p);
665 	else
666 		pinctrl_pm_select_default_state(priv->device);
667 
668 	return 0;
669 }
670 
c_can_stop(struct net_device * dev)671 static void c_can_stop(struct net_device *dev)
672 {
673 	struct c_can_priv *priv = netdev_priv(dev);
674 
675 	c_can_irq_control(priv, false);
676 
677 	/* put ctrl to init on stop to end ongoing transmission */
678 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
679 
680 	/* deactivate pins */
681 	pinctrl_pm_select_sleep_state(dev->dev.parent);
682 	priv->can.state = CAN_STATE_STOPPED;
683 }
684 
c_can_set_mode(struct net_device * dev,enum can_mode mode)685 static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
686 {
687 	struct c_can_priv *priv = netdev_priv(dev);
688 	int err;
689 
690 	switch (mode) {
691 	case CAN_MODE_START:
692 		err = c_can_start(dev);
693 		if (err)
694 			return err;
695 		netif_wake_queue(dev);
696 		c_can_irq_control(priv, true);
697 		break;
698 	default:
699 		return -EOPNOTSUPP;
700 	}
701 
702 	return 0;
703 }
704 
__c_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)705 static int __c_can_get_berr_counter(const struct net_device *dev,
706 				    struct can_berr_counter *bec)
707 {
708 	unsigned int reg_err_counter;
709 	struct c_can_priv *priv = netdev_priv(dev);
710 
711 	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
712 	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
713 				ERR_CNT_REC_SHIFT;
714 	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
715 
716 	return 0;
717 }
718 
c_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)719 static int c_can_get_berr_counter(const struct net_device *dev,
720 				  struct can_berr_counter *bec)
721 {
722 	struct c_can_priv *priv = netdev_priv(dev);
723 	int err;
724 
725 	c_can_pm_runtime_get_sync(priv);
726 	err = __c_can_get_berr_counter(dev, bec);
727 	c_can_pm_runtime_put_sync(priv);
728 
729 	return err;
730 }
731 
c_can_do_tx(struct net_device * dev)732 static void c_can_do_tx(struct net_device *dev)
733 {
734 	struct c_can_priv *priv = netdev_priv(dev);
735 	struct net_device_stats *stats = &dev->stats;
736 	u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
737 
738 	clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
739 
740 	while ((idx = ffs(pend))) {
741 		idx--;
742 		pend &= ~(1 << idx);
743 		obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
744 		c_can_inval_tx_object(dev, IF_RX, obj);
745 		can_get_echo_skb(dev, idx);
746 		bytes += priv->dlc[idx];
747 		pkts++;
748 	}
749 
750 	/* Clear the bits in the tx_active mask */
751 	atomic_sub(clr, &priv->tx_active);
752 
753 	if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
754 		netif_wake_queue(dev);
755 
756 	if (pkts) {
757 		stats->tx_bytes += bytes;
758 		stats->tx_packets += pkts;
759 		can_led_event(dev, CAN_LED_EVENT_TX);
760 	}
761 }
762 
763 /*
764  * If we have a gap in the pending bits, that means we either
765  * raced with the hardware or failed to readout all upper
766  * objects in the last run due to quota limit.
767  */
c_can_adjust_pending(u32 pend)768 static u32 c_can_adjust_pending(u32 pend)
769 {
770 	u32 weight, lasts;
771 
772 	if (pend == RECEIVE_OBJECT_BITS)
773 		return pend;
774 
775 	/*
776 	 * If the last set bit is larger than the number of pending
777 	 * bits we have a gap.
778 	 */
779 	weight = hweight32(pend);
780 	lasts = fls(pend);
781 
782 	/* If the bits are linear, nothing to do */
783 	if (lasts == weight)
784 		return pend;
785 
786 	/*
787 	 * Find the first set bit after the gap. We walk backwards
788 	 * from the last set bit.
789 	 */
790 	for (lasts--; pend & (1 << (lasts - 1)); lasts--);
791 
792 	return pend & ~((1 << lasts) - 1);
793 }
794 
c_can_rx_object_get(struct net_device * dev,struct c_can_priv * priv,u32 obj)795 static inline void c_can_rx_object_get(struct net_device *dev,
796 				       struct c_can_priv *priv, u32 obj)
797 {
798 		c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
799 }
800 
c_can_rx_finalize(struct net_device * dev,struct c_can_priv * priv,u32 obj)801 static inline void c_can_rx_finalize(struct net_device *dev,
802 				     struct c_can_priv *priv, u32 obj)
803 {
804 	if (priv->type != BOSCH_D_CAN)
805 		c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
806 }
807 
c_can_read_objects(struct net_device * dev,struct c_can_priv * priv,u32 pend,int quota)808 static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
809 			      u32 pend, int quota)
810 {
811 	u32 pkts = 0, ctrl, obj;
812 
813 	while ((obj = ffs(pend)) && quota > 0) {
814 		pend &= ~BIT(obj - 1);
815 
816 		c_can_rx_object_get(dev, priv, obj);
817 		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
818 
819 		if (ctrl & IF_MCONT_MSGLST) {
820 			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
821 
822 			pkts += n;
823 			quota -= n;
824 			continue;
825 		}
826 
827 		/*
828 		 * This really should not happen, but this covers some
829 		 * odd HW behaviour. Do not remove that unless you
830 		 * want to brick your machine.
831 		 */
832 		if (!(ctrl & IF_MCONT_NEWDAT))
833 			continue;
834 
835 		/* read the data from the message object */
836 		c_can_read_msg_object(dev, IF_RX, ctrl);
837 
838 		c_can_rx_finalize(dev, priv, obj);
839 
840 		pkts++;
841 		quota--;
842 	}
843 
844 	return pkts;
845 }
846 
c_can_get_pending(struct c_can_priv * priv)847 static inline u32 c_can_get_pending(struct c_can_priv *priv)
848 {
849 	u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
850 
851 	return pend;
852 }
853 
854 /*
855  * theory of operation:
856  *
857  * c_can core saves a received CAN message into the first free message
858  * object it finds free (starting with the lowest). Bits NEWDAT and
859  * INTPND are set for this message object indicating that a new message
860  * has arrived. To work-around this issue, we keep two groups of message
861  * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
862  *
863  * We clear the newdat bit right away.
864  *
865  * This can result in packet reordering when the readout is slow.
866  */
c_can_do_rx_poll(struct net_device * dev,int quota)867 static int c_can_do_rx_poll(struct net_device *dev, int quota)
868 {
869 	struct c_can_priv *priv = netdev_priv(dev);
870 	u32 pkts = 0, pend = 0, toread, n;
871 
872 	/*
873 	 * It is faster to read only one 16bit register. This is only possible
874 	 * for a maximum number of 16 objects.
875 	 */
876 	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
877 			"Implementation does not support more message objects than 16");
878 
879 	while (quota > 0) {
880 		if (!pend) {
881 			pend = c_can_get_pending(priv);
882 			if (!pend)
883 				break;
884 			/*
885 			 * If the pending field has a gap, handle the
886 			 * bits above the gap first.
887 			 */
888 			toread = c_can_adjust_pending(pend);
889 		} else {
890 			toread = pend;
891 		}
892 		/* Remove the bits from pend */
893 		pend &= ~toread;
894 		/* Read the objects */
895 		n = c_can_read_objects(dev, priv, toread, quota);
896 		pkts += n;
897 		quota -= n;
898 	}
899 
900 	if (pkts)
901 		can_led_event(dev, CAN_LED_EVENT_RX);
902 
903 	return pkts;
904 }
905 
c_can_handle_state_change(struct net_device * dev,enum c_can_bus_error_types error_type)906 static int c_can_handle_state_change(struct net_device *dev,
907 				enum c_can_bus_error_types error_type)
908 {
909 	unsigned int reg_err_counter;
910 	unsigned int rx_err_passive;
911 	struct c_can_priv *priv = netdev_priv(dev);
912 	struct net_device_stats *stats = &dev->stats;
913 	struct can_frame *cf;
914 	struct sk_buff *skb;
915 	struct can_berr_counter bec;
916 
917 	switch (error_type) {
918 	case C_CAN_ERROR_WARNING:
919 		/* error warning state */
920 		priv->can.can_stats.error_warning++;
921 		priv->can.state = CAN_STATE_ERROR_WARNING;
922 		break;
923 	case C_CAN_ERROR_PASSIVE:
924 		/* error passive state */
925 		priv->can.can_stats.error_passive++;
926 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
927 		break;
928 	case C_CAN_BUS_OFF:
929 		/* bus-off state */
930 		priv->can.state = CAN_STATE_BUS_OFF;
931 		priv->can.can_stats.bus_off++;
932 		break;
933 	default:
934 		break;
935 	}
936 
937 	/* propagate the error condition to the CAN stack */
938 	skb = alloc_can_err_skb(dev, &cf);
939 	if (unlikely(!skb))
940 		return 0;
941 
942 	__c_can_get_berr_counter(dev, &bec);
943 	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
944 	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
945 				ERR_CNT_RP_SHIFT;
946 
947 	switch (error_type) {
948 	case C_CAN_ERROR_WARNING:
949 		/* error warning state */
950 		cf->can_id |= CAN_ERR_CRTL;
951 		cf->data[1] = (bec.txerr > bec.rxerr) ?
952 			CAN_ERR_CRTL_TX_WARNING :
953 			CAN_ERR_CRTL_RX_WARNING;
954 		cf->data[6] = bec.txerr;
955 		cf->data[7] = bec.rxerr;
956 
957 		break;
958 	case C_CAN_ERROR_PASSIVE:
959 		/* error passive state */
960 		cf->can_id |= CAN_ERR_CRTL;
961 		if (rx_err_passive)
962 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
963 		if (bec.txerr > 127)
964 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
965 
966 		cf->data[6] = bec.txerr;
967 		cf->data[7] = bec.rxerr;
968 		break;
969 	case C_CAN_BUS_OFF:
970 		/* bus-off state */
971 		cf->can_id |= CAN_ERR_BUSOFF;
972 		can_bus_off(dev);
973 		break;
974 	default:
975 		break;
976 	}
977 
978 	stats->rx_packets++;
979 	stats->rx_bytes += cf->can_dlc;
980 	netif_receive_skb(skb);
981 
982 	return 1;
983 }
984 
c_can_handle_bus_err(struct net_device * dev,enum c_can_lec_type lec_type)985 static int c_can_handle_bus_err(struct net_device *dev,
986 				enum c_can_lec_type lec_type)
987 {
988 	struct c_can_priv *priv = netdev_priv(dev);
989 	struct net_device_stats *stats = &dev->stats;
990 	struct can_frame *cf;
991 	struct sk_buff *skb;
992 
993 	/*
994 	 * early exit if no lec update or no error.
995 	 * no lec update means that no CAN bus event has been detected
996 	 * since CPU wrote 0x7 value to status reg.
997 	 */
998 	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
999 		return 0;
1000 
1001 	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1002 		return 0;
1003 
1004 	/* common for all type of bus errors */
1005 	priv->can.can_stats.bus_error++;
1006 	stats->rx_errors++;
1007 
1008 	/* propagate the error condition to the CAN stack */
1009 	skb = alloc_can_err_skb(dev, &cf);
1010 	if (unlikely(!skb))
1011 		return 0;
1012 
1013 	/*
1014 	 * check for 'last error code' which tells us the
1015 	 * type of the last error to occur on the CAN bus
1016 	 */
1017 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1018 
1019 	switch (lec_type) {
1020 	case LEC_STUFF_ERROR:
1021 		netdev_dbg(dev, "stuff error\n");
1022 		cf->data[2] |= CAN_ERR_PROT_STUFF;
1023 		break;
1024 	case LEC_FORM_ERROR:
1025 		netdev_dbg(dev, "form error\n");
1026 		cf->data[2] |= CAN_ERR_PROT_FORM;
1027 		break;
1028 	case LEC_ACK_ERROR:
1029 		netdev_dbg(dev, "ack error\n");
1030 		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
1031 		break;
1032 	case LEC_BIT1_ERROR:
1033 		netdev_dbg(dev, "bit1 error\n");
1034 		cf->data[2] |= CAN_ERR_PROT_BIT1;
1035 		break;
1036 	case LEC_BIT0_ERROR:
1037 		netdev_dbg(dev, "bit0 error\n");
1038 		cf->data[2] |= CAN_ERR_PROT_BIT0;
1039 		break;
1040 	case LEC_CRC_ERROR:
1041 		netdev_dbg(dev, "CRC error\n");
1042 		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1043 		break;
1044 	default:
1045 		break;
1046 	}
1047 
1048 	stats->rx_packets++;
1049 	stats->rx_bytes += cf->can_dlc;
1050 	netif_receive_skb(skb);
1051 	return 1;
1052 }
1053 
c_can_poll(struct napi_struct * napi,int quota)1054 static int c_can_poll(struct napi_struct *napi, int quota)
1055 {
1056 	struct net_device *dev = napi->dev;
1057 	struct c_can_priv *priv = netdev_priv(dev);
1058 	u16 curr, last = priv->last_status;
1059 	int work_done = 0;
1060 
1061 	/* Only read the status register if a status interrupt was pending */
1062 	if (atomic_xchg(&priv->sie_pending, 0)) {
1063 		priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
1064 		/* Ack status on C_CAN. D_CAN is self clearing */
1065 		if (priv->type != BOSCH_D_CAN)
1066 			priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1067 	} else {
1068 		/* no change detected ... */
1069 		curr = last;
1070 	}
1071 
1072 	/* handle state changes */
1073 	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1074 		netdev_dbg(dev, "entered error warning state\n");
1075 		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1076 	}
1077 
1078 	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1079 		netdev_dbg(dev, "entered error passive state\n");
1080 		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1081 	}
1082 
1083 	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1084 		netdev_dbg(dev, "entered bus off state\n");
1085 		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1086 		goto end;
1087 	}
1088 
1089 	/* handle bus recovery events */
1090 	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1091 		netdev_dbg(dev, "left bus off state\n");
1092 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1093 	}
1094 	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1095 		netdev_dbg(dev, "left error passive state\n");
1096 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1097 	}
1098 
1099 	/* handle lec errors on the bus */
1100 	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1101 
1102 	/* Handle Tx/Rx events. We do this unconditionally */
1103 	work_done += c_can_do_rx_poll(dev, (quota - work_done));
1104 	c_can_do_tx(dev);
1105 
1106 end:
1107 	if (work_done < quota) {
1108 		napi_complete_done(napi, work_done);
1109 		/* enable all IRQs if we are not in bus off state */
1110 		if (priv->can.state != CAN_STATE_BUS_OFF)
1111 			c_can_irq_control(priv, true);
1112 	}
1113 
1114 	return work_done;
1115 }
1116 
c_can_isr(int irq,void * dev_id)1117 static irqreturn_t c_can_isr(int irq, void *dev_id)
1118 {
1119 	struct net_device *dev = (struct net_device *)dev_id;
1120 	struct c_can_priv *priv = netdev_priv(dev);
1121 	int reg_int;
1122 
1123 	reg_int = priv->read_reg(priv, C_CAN_INT_REG);
1124 	if (!reg_int)
1125 		return IRQ_NONE;
1126 
1127 	/* save for later use */
1128 	if (reg_int & INT_STS_PENDING)
1129 		atomic_set(&priv->sie_pending, 1);
1130 
1131 	/* disable all interrupts and schedule the NAPI */
1132 	c_can_irq_control(priv, false);
1133 	napi_schedule(&priv->napi);
1134 
1135 	return IRQ_HANDLED;
1136 }
1137 
c_can_open(struct net_device * dev)1138 static int c_can_open(struct net_device *dev)
1139 {
1140 	int err;
1141 	struct c_can_priv *priv = netdev_priv(dev);
1142 
1143 	c_can_pm_runtime_get_sync(priv);
1144 	c_can_reset_ram(priv, true);
1145 
1146 	/* open the can device */
1147 	err = open_candev(dev);
1148 	if (err) {
1149 		netdev_err(dev, "failed to open can device\n");
1150 		goto exit_open_fail;
1151 	}
1152 
1153 	/* register interrupt handler */
1154 	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1155 				dev);
1156 	if (err < 0) {
1157 		netdev_err(dev, "failed to request interrupt\n");
1158 		goto exit_irq_fail;
1159 	}
1160 
1161 	/* start the c_can controller */
1162 	err = c_can_start(dev);
1163 	if (err)
1164 		goto exit_start_fail;
1165 
1166 	can_led_event(dev, CAN_LED_EVENT_OPEN);
1167 
1168 	napi_enable(&priv->napi);
1169 	/* enable status change, error and module interrupts */
1170 	c_can_irq_control(priv, true);
1171 	netif_start_queue(dev);
1172 
1173 	return 0;
1174 
1175 exit_start_fail:
1176 	free_irq(dev->irq, dev);
1177 exit_irq_fail:
1178 	close_candev(dev);
1179 exit_open_fail:
1180 	c_can_reset_ram(priv, false);
1181 	c_can_pm_runtime_put_sync(priv);
1182 	return err;
1183 }
1184 
c_can_close(struct net_device * dev)1185 static int c_can_close(struct net_device *dev)
1186 {
1187 	struct c_can_priv *priv = netdev_priv(dev);
1188 
1189 	netif_stop_queue(dev);
1190 	napi_disable(&priv->napi);
1191 	c_can_stop(dev);
1192 	free_irq(dev->irq, dev);
1193 	close_candev(dev);
1194 
1195 	c_can_reset_ram(priv, false);
1196 	c_can_pm_runtime_put_sync(priv);
1197 
1198 	can_led_event(dev, CAN_LED_EVENT_STOP);
1199 
1200 	return 0;
1201 }
1202 
alloc_c_can_dev(void)1203 struct net_device *alloc_c_can_dev(void)
1204 {
1205 	struct net_device *dev;
1206 	struct c_can_priv *priv;
1207 
1208 	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1209 	if (!dev)
1210 		return NULL;
1211 
1212 	priv = netdev_priv(dev);
1213 	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1214 
1215 	priv->dev = dev;
1216 	priv->can.bittiming_const = &c_can_bittiming_const;
1217 	priv->can.do_set_mode = c_can_set_mode;
1218 	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1219 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1220 					CAN_CTRLMODE_LISTENONLY |
1221 					CAN_CTRLMODE_BERR_REPORTING;
1222 
1223 	return dev;
1224 }
1225 EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1226 
1227 #ifdef CONFIG_PM
c_can_power_down(struct net_device * dev)1228 int c_can_power_down(struct net_device *dev)
1229 {
1230 	u32 val;
1231 	unsigned long time_out;
1232 	struct c_can_priv *priv = netdev_priv(dev);
1233 
1234 	if (!(dev->flags & IFF_UP))
1235 		return 0;
1236 
1237 	WARN_ON(priv->type != BOSCH_D_CAN);
1238 
1239 	/* set PDR value so the device goes to power down mode */
1240 	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1241 	val |= CONTROL_EX_PDR;
1242 	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1243 
1244 	/* Wait for the PDA bit to get set */
1245 	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1246 	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1247 				time_after(time_out, jiffies))
1248 		cpu_relax();
1249 
1250 	if (time_after(jiffies, time_out))
1251 		return -ETIMEDOUT;
1252 
1253 	c_can_stop(dev);
1254 
1255 	c_can_reset_ram(priv, false);
1256 	c_can_pm_runtime_put_sync(priv);
1257 
1258 	return 0;
1259 }
1260 EXPORT_SYMBOL_GPL(c_can_power_down);
1261 
c_can_power_up(struct net_device * dev)1262 int c_can_power_up(struct net_device *dev)
1263 {
1264 	u32 val;
1265 	unsigned long time_out;
1266 	struct c_can_priv *priv = netdev_priv(dev);
1267 	int ret;
1268 
1269 	if (!(dev->flags & IFF_UP))
1270 		return 0;
1271 
1272 	WARN_ON(priv->type != BOSCH_D_CAN);
1273 
1274 	c_can_pm_runtime_get_sync(priv);
1275 	c_can_reset_ram(priv, true);
1276 
1277 	/* Clear PDR and INIT bits */
1278 	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1279 	val &= ~CONTROL_EX_PDR;
1280 	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1281 	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1282 	val &= ~CONTROL_INIT;
1283 	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1284 
1285 	/* Wait for the PDA bit to get clear */
1286 	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1287 	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1288 				time_after(time_out, jiffies))
1289 		cpu_relax();
1290 
1291 	if (time_after(jiffies, time_out))
1292 		return -ETIMEDOUT;
1293 
1294 	ret = c_can_start(dev);
1295 	if (!ret)
1296 		c_can_irq_control(priv, true);
1297 
1298 	return ret;
1299 }
1300 EXPORT_SYMBOL_GPL(c_can_power_up);
1301 #endif
1302 
free_c_can_dev(struct net_device * dev)1303 void free_c_can_dev(struct net_device *dev)
1304 {
1305 	struct c_can_priv *priv = netdev_priv(dev);
1306 
1307 	netif_napi_del(&priv->napi);
1308 	free_candev(dev);
1309 }
1310 EXPORT_SYMBOL_GPL(free_c_can_dev);
1311 
1312 static const struct net_device_ops c_can_netdev_ops = {
1313 	.ndo_open = c_can_open,
1314 	.ndo_stop = c_can_close,
1315 	.ndo_start_xmit = c_can_start_xmit,
1316 	.ndo_change_mtu = can_change_mtu,
1317 };
1318 
register_c_can_dev(struct net_device * dev)1319 int register_c_can_dev(struct net_device *dev)
1320 {
1321 	struct c_can_priv *priv = netdev_priv(dev);
1322 	int err;
1323 
1324 	/* Deactivate pins to prevent DRA7 DCAN IP from being
1325 	 * stuck in transition when module is disabled.
1326 	 * Pins are activated in c_can_start() and deactivated
1327 	 * in c_can_stop()
1328 	 */
1329 	pinctrl_pm_select_sleep_state(dev->dev.parent);
1330 
1331 	c_can_pm_runtime_enable(priv);
1332 
1333 	dev->flags |= IFF_ECHO;	/* we support local echo */
1334 	dev->netdev_ops = &c_can_netdev_ops;
1335 
1336 	err = register_candev(dev);
1337 	if (err)
1338 		c_can_pm_runtime_disable(priv);
1339 	else
1340 		devm_can_led_init(dev);
1341 
1342 	return err;
1343 }
1344 EXPORT_SYMBOL_GPL(register_c_can_dev);
1345 
unregister_c_can_dev(struct net_device * dev)1346 void unregister_c_can_dev(struct net_device *dev)
1347 {
1348 	struct c_can_priv *priv = netdev_priv(dev);
1349 
1350 	unregister_candev(dev);
1351 
1352 	c_can_pm_runtime_disable(priv);
1353 }
1354 EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1355 
1356 MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1357 MODULE_LICENSE("GPL v2");
1358 MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1359