1 /* Renesas R-Car CAN FD device driver
2 *
3 * Copyright (C) 2015 Renesas Electronics Corp.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 */
10
11 /* The R-Car CAN FD controller can operate in either one of the below two modes
12 * - CAN FD only mode
13 * - Classical CAN (CAN 2.0) only mode
14 *
15 * This driver puts the controller in CAN FD only mode by default. In this
16 * mode, the controller acts as a CAN FD node that can also interoperate with
17 * CAN 2.0 nodes.
18 *
19 * To switch the controller to Classical CAN (CAN 2.0) only mode, add
20 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
21 * also required to switch modes.
22 *
23 * Note: The h/w manual register naming convention is clumsy and not acceptable
24 * to use as it is in the driver. However, those names are added as comments
25 * wherever it is modified to a readable name.
26 */
27
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/interrupt.h>
33 #include <linux/errno.h>
34 #include <linux/netdevice.h>
35 #include <linux/platform_device.h>
36 #include <linux/can/led.h>
37 #include <linux/can/dev.h>
38 #include <linux/clk.h>
39 #include <linux/of.h>
40 #include <linux/of_device.h>
41 #include <linux/bitmap.h>
42 #include <linux/bitops.h>
43 #include <linux/iopoll.h>
44
45 #define RCANFD_DRV_NAME "rcar_canfd"
46
47 /* Global register bits */
48
49 /* RSCFDnCFDGRMCFG */
50 #define RCANFD_GRMCFG_RCMC BIT(0)
51
52 /* RSCFDnCFDGCFG / RSCFDnGCFG */
53 #define RCANFD_GCFG_EEFE BIT(6)
54 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */
55 #define RCANFD_GCFG_DCS BIT(4)
56 #define RCANFD_GCFG_DCE BIT(1)
57 #define RCANFD_GCFG_TPRI BIT(0)
58
59 /* RSCFDnCFDGCTR / RSCFDnGCTR */
60 #define RCANFD_GCTR_TSRST BIT(16)
61 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */
62 #define RCANFD_GCTR_THLEIE BIT(10)
63 #define RCANFD_GCTR_MEIE BIT(9)
64 #define RCANFD_GCTR_DEIE BIT(8)
65 #define RCANFD_GCTR_GSLPR BIT(2)
66 #define RCANFD_GCTR_GMDC_MASK (0x3)
67 #define RCANFD_GCTR_GMDC_GOPM (0x0)
68 #define RCANFD_GCTR_GMDC_GRESET (0x1)
69 #define RCANFD_GCTR_GMDC_GTEST (0x2)
70
71 /* RSCFDnCFDGSTS / RSCFDnGSTS */
72 #define RCANFD_GSTS_GRAMINIT BIT(3)
73 #define RCANFD_GSTS_GSLPSTS BIT(2)
74 #define RCANFD_GSTS_GHLTSTS BIT(1)
75 #define RCANFD_GSTS_GRSTSTS BIT(0)
76 /* Non-operational status */
77 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3))
78
79 /* RSCFDnCFDGERFL / RSCFDnGERFL */
80 #define RCANFD_GERFL_EEF1 BIT(17)
81 #define RCANFD_GERFL_EEF0 BIT(16)
82 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */
83 #define RCANFD_GERFL_THLES BIT(2)
84 #define RCANFD_GERFL_MES BIT(1)
85 #define RCANFD_GERFL_DEF BIT(0)
86
87 #define RCANFD_GERFL_ERR(gpriv, x) ((x) & (RCANFD_GERFL_EEF1 |\
88 RCANFD_GERFL_EEF0 | RCANFD_GERFL_MES |\
89 (gpriv->fdmode ?\
90 RCANFD_GERFL_CMPOF : 0)))
91
92 /* AFL Rx rules registers */
93
94 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
95 #define RCANFD_GAFLCFG_SETRNC(n, x) (((x) & 0xff) << (24 - n * 8))
96 #define RCANFD_GAFLCFG_GETRNC(n, x) (((x) >> (24 - n * 8)) & 0xff)
97
98 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
99 #define RCANFD_GAFLECTR_AFLDAE BIT(8)
100 #define RCANFD_GAFLECTR_AFLPN(x) ((x) & 0x1f)
101
102 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
103 #define RCANFD_GAFLID_GAFLLB BIT(29)
104
105 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
106 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x))
107
108 /* Channel register bits */
109
110 /* RSCFDnCmCFG - Classical CAN only */
111 #define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24)
112 #define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20)
113 #define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16)
114 #define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0)
115
116 /* RSCFDnCFDCmNCFG - CAN FD only */
117 #define RCANFD_NCFG_NTSEG2(x) (((x) & 0x1f) << 24)
118 #define RCANFD_NCFG_NTSEG1(x) (((x) & 0x7f) << 16)
119 #define RCANFD_NCFG_NSJW(x) (((x) & 0x1f) << 11)
120 #define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0)
121
122 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
123 #define RCANFD_CCTR_CTME BIT(24)
124 #define RCANFD_CCTR_ERRD BIT(23)
125 #define RCANFD_CCTR_BOM_MASK (0x3 << 21)
126 #define RCANFD_CCTR_BOM_ISO (0x0 << 21)
127 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21)
128 #define RCANFD_CCTR_BOM_BEND (0x2 << 21)
129 #define RCANFD_CCTR_TDCVFIE BIT(19)
130 #define RCANFD_CCTR_SOCOIE BIT(18)
131 #define RCANFD_CCTR_EOCOIE BIT(17)
132 #define RCANFD_CCTR_TAIE BIT(16)
133 #define RCANFD_CCTR_ALIE BIT(15)
134 #define RCANFD_CCTR_BLIE BIT(14)
135 #define RCANFD_CCTR_OLIE BIT(13)
136 #define RCANFD_CCTR_BORIE BIT(12)
137 #define RCANFD_CCTR_BOEIE BIT(11)
138 #define RCANFD_CCTR_EPIE BIT(10)
139 #define RCANFD_CCTR_EWIE BIT(9)
140 #define RCANFD_CCTR_BEIE BIT(8)
141 #define RCANFD_CCTR_CSLPR BIT(2)
142 #define RCANFD_CCTR_CHMDC_MASK (0x3)
143 #define RCANFD_CCTR_CHDMC_COPM (0x0)
144 #define RCANFD_CCTR_CHDMC_CRESET (0x1)
145 #define RCANFD_CCTR_CHDMC_CHLT (0x2)
146
147 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
148 #define RCANFD_CSTS_COMSTS BIT(7)
149 #define RCANFD_CSTS_RECSTS BIT(6)
150 #define RCANFD_CSTS_TRMSTS BIT(5)
151 #define RCANFD_CSTS_BOSTS BIT(4)
152 #define RCANFD_CSTS_EPSTS BIT(3)
153 #define RCANFD_CSTS_SLPSTS BIT(2)
154 #define RCANFD_CSTS_HLTSTS BIT(1)
155 #define RCANFD_CSTS_CRSTSTS BIT(0)
156
157 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff)
158 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff)
159
160 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
161 #define RCANFD_CERFL_ADERR BIT(14)
162 #define RCANFD_CERFL_B0ERR BIT(13)
163 #define RCANFD_CERFL_B1ERR BIT(12)
164 #define RCANFD_CERFL_CERR BIT(11)
165 #define RCANFD_CERFL_AERR BIT(10)
166 #define RCANFD_CERFL_FERR BIT(9)
167 #define RCANFD_CERFL_SERR BIT(8)
168 #define RCANFD_CERFL_ALF BIT(7)
169 #define RCANFD_CERFL_BLF BIT(6)
170 #define RCANFD_CERFL_OVLF BIT(5)
171 #define RCANFD_CERFL_BORF BIT(4)
172 #define RCANFD_CERFL_BOEF BIT(3)
173 #define RCANFD_CERFL_EPF BIT(2)
174 #define RCANFD_CERFL_EWF BIT(1)
175 #define RCANFD_CERFL_BEF BIT(0)
176
177 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */
178
179 /* RSCFDnCFDCmDCFG */
180 #define RCANFD_DCFG_DSJW(x) (((x) & 0x7) << 24)
181 #define RCANFD_DCFG_DTSEG2(x) (((x) & 0x7) << 20)
182 #define RCANFD_DCFG_DTSEG1(x) (((x) & 0xf) << 16)
183 #define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0)
184
185 /* RSCFDnCFDCmFDCFG */
186 #define RCANFD_FDCFG_TDCE BIT(9)
187 #define RCANFD_FDCFG_TDCOC BIT(8)
188 #define RCANFD_FDCFG_TDCO(x) (((x) & 0x7f) >> 16)
189
190 /* RSCFDnCFDRFCCx */
191 #define RCANFD_RFCC_RFIM BIT(12)
192 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8)
193 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4)
194 #define RCANFD_RFCC_RFIE BIT(1)
195 #define RCANFD_RFCC_RFE BIT(0)
196
197 /* RSCFDnCFDRFSTSx */
198 #define RCANFD_RFSTS_RFIF BIT(3)
199 #define RCANFD_RFSTS_RFMLT BIT(2)
200 #define RCANFD_RFSTS_RFFLL BIT(1)
201 #define RCANFD_RFSTS_RFEMP BIT(0)
202
203 /* RSCFDnCFDRFIDx */
204 #define RCANFD_RFID_RFIDE BIT(31)
205 #define RCANFD_RFID_RFRTR BIT(30)
206
207 /* RSCFDnCFDRFPTRx */
208 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf)
209 #define RCANFD_RFPTR_RFPTR(x) (((x) >> 16) & 0xfff)
210 #define RCANFD_RFPTR_RFTS(x) (((x) >> 0) & 0xffff)
211
212 /* RSCFDnCFDRFFDSTSx */
213 #define RCANFD_RFFDSTS_RFFDF BIT(2)
214 #define RCANFD_RFFDSTS_RFBRS BIT(1)
215 #define RCANFD_RFFDSTS_RFESI BIT(0)
216
217 /* Common FIFO bits */
218
219 /* RSCFDnCFDCFCCk */
220 #define RCANFD_CFCC_CFTML(x) (((x) & 0xf) << 20)
221 #define RCANFD_CFCC_CFM(x) (((x) & 0x3) << 16)
222 #define RCANFD_CFCC_CFIM BIT(12)
223 #define RCANFD_CFCC_CFDC(x) (((x) & 0x7) << 8)
224 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4)
225 #define RCANFD_CFCC_CFTXIE BIT(2)
226 #define RCANFD_CFCC_CFE BIT(0)
227
228 /* RSCFDnCFDCFSTSk */
229 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff)
230 #define RCANFD_CFSTS_CFTXIF BIT(4)
231 #define RCANFD_CFSTS_CFMLT BIT(2)
232 #define RCANFD_CFSTS_CFFLL BIT(1)
233 #define RCANFD_CFSTS_CFEMP BIT(0)
234
235 /* RSCFDnCFDCFIDk */
236 #define RCANFD_CFID_CFIDE BIT(31)
237 #define RCANFD_CFID_CFRTR BIT(30)
238 #define RCANFD_CFID_CFID_MASK(x) ((x) & 0x1fffffff)
239
240 /* RSCFDnCFDCFPTRk */
241 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28)
242 #define RCANFD_CFPTR_CFPTR(x) (((x) & 0xfff) << 16)
243 #define RCANFD_CFPTR_CFTS(x) (((x) & 0xff) << 0)
244
245 /* RSCFDnCFDCFFDCSTSk */
246 #define RCANFD_CFFDCSTS_CFFDF BIT(2)
247 #define RCANFD_CFFDCSTS_CFBRS BIT(1)
248 #define RCANFD_CFFDCSTS_CFESI BIT(0)
249
250 /* This controller supports either Classical CAN only mode or CAN FD only mode.
251 * These modes are supported in two separate set of register maps & names.
252 * However, some of the register offsets are common for both modes. Those
253 * offsets are listed below as Common registers.
254 *
255 * The CAN FD only mode specific registers & Classical CAN only mode specific
256 * registers are listed separately. Their register names starts with
257 * RCANFD_F_xxx & RCANFD_C_xxx respectively.
258 */
259
260 /* Common registers */
261
262 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
263 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m)))
264 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
265 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m)))
266 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
267 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m)))
268 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
269 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m)))
270
271 /* RSCFDnCFDGCFG / RSCFDnGCFG */
272 #define RCANFD_GCFG (0x0084)
273 /* RSCFDnCFDGCTR / RSCFDnGCTR */
274 #define RCANFD_GCTR (0x0088)
275 /* RSCFDnCFDGCTS / RSCFDnGCTS */
276 #define RCANFD_GSTS (0x008c)
277 /* RSCFDnCFDGERFL / RSCFDnGERFL */
278 #define RCANFD_GERFL (0x0090)
279 /* RSCFDnCFDGTSC / RSCFDnGTSC */
280 #define RCANFD_GTSC (0x0094)
281 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
282 #define RCANFD_GAFLECTR (0x0098)
283 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
284 #define RCANFD_GAFLCFG0 (0x009c)
285 /* RSCFDnCFDGAFLCFG1 / RSCFDnGAFLCFG1 */
286 #define RCANFD_GAFLCFG1 (0x00a0)
287 /* RSCFDnCFDRMNB / RSCFDnRMNB */
288 #define RCANFD_RMNB (0x00a4)
289 /* RSCFDnCFDRMND / RSCFDnRMND */
290 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y)))
291
292 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
293 #define RCANFD_RFCC(x) (0x00b8 + (0x04 * (x)))
294 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
295 #define RCANFD_RFSTS(x) (0x00d8 + (0x04 * (x)))
296 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
297 #define RCANFD_RFPCTR(x) (0x00f8 + (0x04 * (x)))
298
299 /* Common FIFO Control registers */
300
301 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
302 #define RCANFD_CFCC(ch, idx) (0x0118 + (0x0c * (ch)) + \
303 (0x04 * (idx)))
304 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
305 #define RCANFD_CFSTS(ch, idx) (0x0178 + (0x0c * (ch)) + \
306 (0x04 * (idx)))
307 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
308 #define RCANFD_CFPCTR(ch, idx) (0x01d8 + (0x0c * (ch)) + \
309 (0x04 * (idx)))
310
311 /* RSCFDnCFDFESTS / RSCFDnFESTS */
312 #define RCANFD_FESTS (0x0238)
313 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */
314 #define RCANFD_FFSTS (0x023c)
315 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */
316 #define RCANFD_FMSTS (0x0240)
317 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */
318 #define RCANFD_RFISTS (0x0244)
319 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
320 #define RCANFD_CFRISTS (0x0248)
321 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
322 #define RCANFD_CFTISTS (0x024c)
323
324 /* RSCFDnCFDTMCp / RSCFDnTMCp */
325 #define RCANFD_TMC(p) (0x0250 + (0x01 * (p)))
326 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
327 #define RCANFD_TMSTS(p) (0x02d0 + (0x01 * (p)))
328
329 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
330 #define RCANFD_TMTRSTS(y) (0x0350 + (0x04 * (y)))
331 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
332 #define RCANFD_TMTARSTS(y) (0x0360 + (0x04 * (y)))
333 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
334 #define RCANFD_TMTCSTS(y) (0x0370 + (0x04 * (y)))
335 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
336 #define RCANFD_TMTASTS(y) (0x0380 + (0x04 * (y)))
337 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */
338 #define RCANFD_TMIEC(y) (0x0390 + (0x04 * (y)))
339
340 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
341 #define RCANFD_TXQCC(m) (0x03a0 + (0x04 * (m)))
342 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
343 #define RCANFD_TXQSTS(m) (0x03c0 + (0x04 * (m)))
344 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
345 #define RCANFD_TXQPCTR(m) (0x03e0 + (0x04 * (m)))
346
347 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
348 #define RCANFD_THLCC(m) (0x0400 + (0x04 * (m)))
349 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
350 #define RCANFD_THLSTS(m) (0x0420 + (0x04 * (m)))
351 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
352 #define RCANFD_THLPCTR(m) (0x0440 + (0x04 * (m)))
353
354 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
355 #define RCANFD_GTINTSTS0 (0x0460)
356 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
357 #define RCANFD_GTINTSTS1 (0x0464)
358 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
359 #define RCANFD_GTSTCFG (0x0468)
360 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
361 #define RCANFD_GTSTCTR (0x046c)
362 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
363 #define RCANFD_GLOCKK (0x047c)
364 /* RSCFDnCFDGRMCFG */
365 #define RCANFD_GRMCFG (0x04fc)
366
367 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
368 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j)))
369 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
370 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j)))
371 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
372 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j)))
373 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
374 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j)))
375
376 /* Classical CAN only mode register map */
377
378 /* RSCFDnGAFLXXXj offset */
379 #define RCANFD_C_GAFL_OFFSET (0x0500)
380
381 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
382 #define RCANFD_C_RMID(q) (0x0600 + (0x10 * (q)))
383 #define RCANFD_C_RMPTR(q) (0x0604 + (0x10 * (q)))
384 #define RCANFD_C_RMDF0(q) (0x0608 + (0x10 * (q)))
385 #define RCANFD_C_RMDF1(q) (0x060c + (0x10 * (q)))
386
387 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
388 #define RCANFD_C_RFOFFSET (0x0e00)
389 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x)))
390 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + \
391 (0x10 * (x)))
392 #define RCANFD_C_RFDF(x, df) (RCANFD_C_RFOFFSET + 0x08 + \
393 (0x10 * (x)) + (0x04 * (df)))
394
395 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
396 #define RCANFD_C_CFOFFSET (0x0e80)
397 #define RCANFD_C_CFID(ch, idx) (RCANFD_C_CFOFFSET + (0x30 * (ch)) + \
398 (0x10 * (idx)))
399 #define RCANFD_C_CFPTR(ch, idx) (RCANFD_C_CFOFFSET + 0x04 + \
400 (0x30 * (ch)) + (0x10 * (idx)))
401 #define RCANFD_C_CFDF(ch, idx, df) (RCANFD_C_CFOFFSET + 0x08 + \
402 (0x30 * (ch)) + (0x10 * (idx)) + \
403 (0x04 * (df)))
404
405 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
406 #define RCANFD_C_TMID(p) (0x1000 + (0x10 * (p)))
407 #define RCANFD_C_TMPTR(p) (0x1004 + (0x10 * (p)))
408 #define RCANFD_C_TMDF0(p) (0x1008 + (0x10 * (p)))
409 #define RCANFD_C_TMDF1(p) (0x100c + (0x10 * (p)))
410
411 /* RSCFDnTHLACCm */
412 #define RCANFD_C_THLACC(m) (0x1800 + (0x04 * (m)))
413 /* RSCFDnRPGACCr */
414 #define RCANFD_C_RPGACC(r) (0x1900 + (0x04 * (r)))
415
416 /* CAN FD mode specific register map */
417
418 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
419 #define RCANFD_F_DCFG(m) (0x0500 + (0x20 * (m)))
420 #define RCANFD_F_CFDCFG(m) (0x0504 + (0x20 * (m)))
421 #define RCANFD_F_CFDCTR(m) (0x0508 + (0x20 * (m)))
422 #define RCANFD_F_CFDSTS(m) (0x050c + (0x20 * (m)))
423 #define RCANFD_F_CFDCRC(m) (0x0510 + (0x20 * (m)))
424
425 /* RSCFDnCFDGAFLXXXj offset */
426 #define RCANFD_F_GAFL_OFFSET (0x1000)
427
428 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
429 #define RCANFD_F_RMID(q) (0x2000 + (0x20 * (q)))
430 #define RCANFD_F_RMPTR(q) (0x2004 + (0x20 * (q)))
431 #define RCANFD_F_RMFDSTS(q) (0x2008 + (0x20 * (q)))
432 #define RCANFD_F_RMDF(q, b) (0x200c + (0x04 * (b)) + (0x20 * (q)))
433
434 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
435 #define RCANFD_F_RFOFFSET (0x3000)
436 #define RCANFD_F_RFID(x) (RCANFD_F_RFOFFSET + (0x80 * (x)))
437 #define RCANFD_F_RFPTR(x) (RCANFD_F_RFOFFSET + 0x04 + \
438 (0x80 * (x)))
439 #define RCANFD_F_RFFDSTS(x) (RCANFD_F_RFOFFSET + 0x08 + \
440 (0x80 * (x)))
441 #define RCANFD_F_RFDF(x, df) (RCANFD_F_RFOFFSET + 0x0c + \
442 (0x80 * (x)) + (0x04 * (df)))
443
444 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
445 #define RCANFD_F_CFOFFSET (0x3400)
446 #define RCANFD_F_CFID(ch, idx) (RCANFD_F_CFOFFSET + (0x180 * (ch)) + \
447 (0x80 * (idx)))
448 #define RCANFD_F_CFPTR(ch, idx) (RCANFD_F_CFOFFSET + 0x04 + \
449 (0x180 * (ch)) + (0x80 * (idx)))
450 #define RCANFD_F_CFFDCSTS(ch, idx) (RCANFD_F_CFOFFSET + 0x08 + \
451 (0x180 * (ch)) + (0x80 * (idx)))
452 #define RCANFD_F_CFDF(ch, idx, df) (RCANFD_F_CFOFFSET + 0x0c + \
453 (0x180 * (ch)) + (0x80 * (idx)) + \
454 (0x04 * (df)))
455
456 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
457 #define RCANFD_F_TMID(p) (0x4000 + (0x20 * (p)))
458 #define RCANFD_F_TMPTR(p) (0x4004 + (0x20 * (p)))
459 #define RCANFD_F_TMFDCTR(p) (0x4008 + (0x20 * (p)))
460 #define RCANFD_F_TMDF(p, b) (0x400c + (0x20 * (p)) + (0x04 * (b)))
461
462 /* RSCFDnCFDTHLACCm */
463 #define RCANFD_F_THLACC(m) (0x6000 + (0x04 * (m)))
464 /* RSCFDnCFDRPGACCr */
465 #define RCANFD_F_RPGACC(r) (0x6400 + (0x04 * (r)))
466
467 /* Constants */
468 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */
469 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */
470
471 #define RCANFD_NUM_CHANNELS 2 /* Two channels max */
472 #define RCANFD_CHANNELS_MASK BIT((RCANFD_NUM_CHANNELS) - 1)
473
474 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16)
475 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */
476
477 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
478 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
479 * number is added to RFFIFO index.
480 */
481 #define RCANFD_RFFIFO_IDX 0
482
483 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
484 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
485 */
486 #define RCANFD_CFFIFO_IDX 0
487
488 /* fCAN clock select register settings */
489 enum rcar_canfd_fcanclk {
490 RCANFD_CANFDCLK = 0, /* CANFD clock */
491 RCANFD_EXTCLK, /* Externally input clock */
492 };
493
494 struct rcar_canfd_global;
495
496 /* Channel priv data */
497 struct rcar_canfd_channel {
498 struct can_priv can; /* Must be the first member */
499 struct net_device *ndev;
500 struct rcar_canfd_global *gpriv; /* Controller reference */
501 void __iomem *base; /* Register base address */
502 struct napi_struct napi;
503 u8 tx_len[RCANFD_FIFO_DEPTH]; /* For net stats */
504 u32 tx_head; /* Incremented on xmit */
505 u32 tx_tail; /* Incremented on xmit done */
506 u32 channel; /* Channel number */
507 spinlock_t tx_lock; /* To protect tx path */
508 };
509
510 /* Global priv data */
511 struct rcar_canfd_global {
512 struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
513 void __iomem *base; /* Register base address */
514 struct platform_device *pdev; /* Respective platform device */
515 struct clk *clkp; /* Peripheral clock */
516 struct clk *can_clk; /* fCAN clock */
517 enum rcar_canfd_fcanclk fcan; /* CANFD or Ext clock */
518 unsigned long channels_mask; /* Enabled channels mask */
519 bool fdmode; /* CAN FD or Classical CAN only mode */
520 };
521
522 /* CAN FD mode nominal rate constants */
523 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = {
524 .name = RCANFD_DRV_NAME,
525 .tseg1_min = 2,
526 .tseg1_max = 128,
527 .tseg2_min = 2,
528 .tseg2_max = 32,
529 .sjw_max = 32,
530 .brp_min = 1,
531 .brp_max = 1024,
532 .brp_inc = 1,
533 };
534
535 /* CAN FD mode data rate constants */
536 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = {
537 .name = RCANFD_DRV_NAME,
538 .tseg1_min = 2,
539 .tseg1_max = 16,
540 .tseg2_min = 2,
541 .tseg2_max = 8,
542 .sjw_max = 8,
543 .brp_min = 1,
544 .brp_max = 256,
545 .brp_inc = 1,
546 };
547
548 /* Classical CAN mode bitrate constants */
549 static const struct can_bittiming_const rcar_canfd_bittiming_const = {
550 .name = RCANFD_DRV_NAME,
551 .tseg1_min = 4,
552 .tseg1_max = 16,
553 .tseg2_min = 2,
554 .tseg2_max = 8,
555 .sjw_max = 4,
556 .brp_min = 1,
557 .brp_max = 1024,
558 .brp_inc = 1,
559 };
560
561 /* Helper functions */
rcar_canfd_update(u32 mask,u32 val,u32 __iomem * reg)562 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
563 {
564 u32 data = readl(reg);
565
566 data &= ~mask;
567 data |= (val & mask);
568 writel(data, reg);
569 }
570
rcar_canfd_read(void __iomem * base,u32 offset)571 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
572 {
573 return readl(base + (offset));
574 }
575
rcar_canfd_write(void __iomem * base,u32 offset,u32 val)576 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
577 {
578 writel(val, base + (offset));
579 }
580
rcar_canfd_set_bit(void __iomem * base,u32 reg,u32 val)581 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
582 {
583 rcar_canfd_update(val, val, base + (reg));
584 }
585
rcar_canfd_clear_bit(void __iomem * base,u32 reg,u32 val)586 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
587 {
588 rcar_canfd_update(val, 0, base + (reg));
589 }
590
rcar_canfd_update_bit(void __iomem * base,u32 reg,u32 mask,u32 val)591 static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
592 u32 mask, u32 val)
593 {
594 rcar_canfd_update(mask, val, base + (reg));
595 }
596
rcar_canfd_get_data(struct rcar_canfd_channel * priv,struct canfd_frame * cf,u32 off)597 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
598 struct canfd_frame *cf, u32 off)
599 {
600 u32 i, lwords;
601
602 lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
603 for (i = 0; i < lwords; i++)
604 *((u32 *)cf->data + i) =
605 rcar_canfd_read(priv->base, off + (i * sizeof(u32)));
606 }
607
rcar_canfd_put_data(struct rcar_canfd_channel * priv,struct canfd_frame * cf,u32 off)608 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
609 struct canfd_frame *cf, u32 off)
610 {
611 u32 i, lwords;
612
613 lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
614 for (i = 0; i < lwords; i++)
615 rcar_canfd_write(priv->base, off + (i * sizeof(u32)),
616 *((u32 *)cf->data + i));
617 }
618
rcar_canfd_tx_failure_cleanup(struct net_device * ndev)619 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
620 {
621 u32 i;
622
623 for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
624 can_free_echo_skb(ndev, i);
625 }
626
rcar_canfd_reset_controller(struct rcar_canfd_global * gpriv)627 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
628 {
629 u32 sts, ch;
630 int err;
631
632 /* Check RAMINIT flag as CAN RAM initialization takes place
633 * after the MCU reset
634 */
635 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
636 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
637 if (err) {
638 dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
639 return err;
640 }
641
642 /* Transition to Global Reset mode */
643 rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
644 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
645 RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
646
647 /* Ensure Global reset mode */
648 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
649 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
650 if (err) {
651 dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
652 return err;
653 }
654
655 /* Reset Global error flags */
656 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
657
658 /* Set the controller into appropriate mode */
659 if (gpriv->fdmode)
660 rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
661 RCANFD_GRMCFG_RCMC);
662 else
663 rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
664 RCANFD_GRMCFG_RCMC);
665
666 /* Transition all Channels to reset mode */
667 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
668 rcar_canfd_clear_bit(gpriv->base,
669 RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
670
671 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
672 RCANFD_CCTR_CHMDC_MASK,
673 RCANFD_CCTR_CHDMC_CRESET);
674
675 /* Ensure Channel reset mode */
676 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
677 (sts & RCANFD_CSTS_CRSTSTS),
678 2, 500000);
679 if (err) {
680 dev_dbg(&gpriv->pdev->dev,
681 "channel %u reset failed\n", ch);
682 return err;
683 }
684 }
685 return 0;
686 }
687
rcar_canfd_configure_controller(struct rcar_canfd_global * gpriv)688 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
689 {
690 u32 cfg, ch;
691
692 /* Global configuration settings */
693
694 /* ECC Error flag Enable */
695 cfg = RCANFD_GCFG_EEFE;
696
697 if (gpriv->fdmode)
698 /* Truncate payload to configured message size RFPLS */
699 cfg |= RCANFD_GCFG_CMPOC;
700
701 /* Set External Clock if selected */
702 if (gpriv->fcan != RCANFD_CANFDCLK)
703 cfg |= RCANFD_GCFG_DCS;
704
705 rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
706
707 /* Channel configuration settings */
708 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
709 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
710 RCANFD_CCTR_ERRD);
711 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
712 RCANFD_CCTR_BOM_MASK,
713 RCANFD_CCTR_BOM_BENTRY);
714 }
715 }
716
rcar_canfd_configure_afl_rules(struct rcar_canfd_global * gpriv,u32 ch)717 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
718 u32 ch)
719 {
720 u32 cfg;
721 int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES;
722 u32 ridx = ch + RCANFD_RFFIFO_IDX;
723
724 if (ch == 0) {
725 start = 0; /* Channel 0 always starts from 0th rule */
726 } else {
727 /* Get number of Channel 0 rules and adjust */
728 cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG0);
729 start = RCANFD_GAFLCFG_GETRNC(0, cfg);
730 }
731
732 /* Enable write access to entry */
733 page = RCANFD_GAFL_PAGENUM(start);
734 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
735 (RCANFD_GAFLECTR_AFLPN(page) |
736 RCANFD_GAFLECTR_AFLDAE));
737
738 /* Write number of rules for channel */
739 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG0,
740 RCANFD_GAFLCFG_SETRNC(ch, num_rules));
741 if (gpriv->fdmode)
742 offset = RCANFD_F_GAFL_OFFSET;
743 else
744 offset = RCANFD_C_GAFL_OFFSET;
745
746 /* Accept all IDs */
747 rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0);
748 /* IDE or RTR is not considered for matching */
749 rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0);
750 /* Any data length accepted */
751 rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0);
752 /* Place the msg in corresponding Rx FIFO entry */
753 rcar_canfd_write(gpriv->base, RCANFD_GAFLP1(offset, start),
754 RCANFD_GAFLP1_GAFLFDP(ridx));
755
756 /* Disable write access to page */
757 rcar_canfd_clear_bit(gpriv->base,
758 RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
759 }
760
rcar_canfd_configure_rx(struct rcar_canfd_global * gpriv,u32 ch)761 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
762 {
763 /* Rx FIFO is used for reception */
764 u32 cfg;
765 u16 rfdc, rfpls;
766
767 /* Select Rx FIFO based on channel */
768 u32 ridx = ch + RCANFD_RFFIFO_IDX;
769
770 rfdc = 2; /* b010 - 8 messages Rx FIFO depth */
771 if (gpriv->fdmode)
772 rfpls = 7; /* b111 - Max 64 bytes payload */
773 else
774 rfpls = 0; /* b000 - Max 8 bytes payload */
775
776 cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
777 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
778 rcar_canfd_write(gpriv->base, RCANFD_RFCC(ridx), cfg);
779 }
780
rcar_canfd_configure_tx(struct rcar_canfd_global * gpriv,u32 ch)781 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
782 {
783 /* Tx/Rx(Common) FIFO configured in Tx mode is
784 * used for transmission
785 *
786 * Each channel has 3 Common FIFO dedicated to them.
787 * Use the 1st (index 0) out of 3
788 */
789 u32 cfg;
790 u16 cftml, cfm, cfdc, cfpls;
791
792 cftml = 0; /* 0th buffer */
793 cfm = 1; /* b01 - Transmit mode */
794 cfdc = 2; /* b010 - 8 messages Tx FIFO depth */
795 if (gpriv->fdmode)
796 cfpls = 7; /* b111 - Max 64 bytes payload */
797 else
798 cfpls = 0; /* b000 - Max 8 bytes payload */
799
800 cfg = (RCANFD_CFCC_CFTML(cftml) | RCANFD_CFCC_CFM(cfm) |
801 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(cfdc) |
802 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
803 rcar_canfd_write(gpriv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX), cfg);
804
805 if (gpriv->fdmode)
806 /* Clear FD mode specific control/status register */
807 rcar_canfd_write(gpriv->base,
808 RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), 0);
809 }
810
rcar_canfd_enable_global_interrupts(struct rcar_canfd_global * gpriv)811 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
812 {
813 u32 ctr;
814
815 /* Clear any stray error interrupt flags */
816 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
817
818 /* Global interrupts setup */
819 ctr = RCANFD_GCTR_MEIE;
820 if (gpriv->fdmode)
821 ctr |= RCANFD_GCTR_CFMPOFIE;
822
823 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
824 }
825
rcar_canfd_disable_global_interrupts(struct rcar_canfd_global * gpriv)826 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
827 *gpriv)
828 {
829 /* Disable all interrupts */
830 rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
831
832 /* Clear any stray error interrupt flags */
833 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
834 }
835
rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel * priv)836 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
837 *priv)
838 {
839 u32 ctr, ch = priv->channel;
840
841 /* Clear any stray error flags */
842 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
843
844 /* Channel interrupts setup */
845 ctr = (RCANFD_CCTR_TAIE |
846 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
847 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
848 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
849 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
850 rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
851 }
852
rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel * priv)853 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
854 *priv)
855 {
856 u32 ctr, ch = priv->channel;
857
858 ctr = (RCANFD_CCTR_TAIE |
859 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
860 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
861 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
862 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
863 rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
864
865 /* Clear any stray error flags */
866 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
867 }
868
rcar_canfd_global_error(struct net_device * ndev)869 static void rcar_canfd_global_error(struct net_device *ndev)
870 {
871 struct rcar_canfd_channel *priv = netdev_priv(ndev);
872 struct rcar_canfd_global *gpriv = priv->gpriv;
873 struct net_device_stats *stats = &ndev->stats;
874 u32 ch = priv->channel;
875 u32 gerfl, sts;
876 u32 ridx = ch + RCANFD_RFFIFO_IDX;
877
878 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
879 if ((gerfl & RCANFD_GERFL_EEF0) && (ch == 0)) {
880 netdev_dbg(ndev, "Ch0: ECC Error flag\n");
881 stats->tx_dropped++;
882 }
883 if ((gerfl & RCANFD_GERFL_EEF1) && (ch == 1)) {
884 netdev_dbg(ndev, "Ch1: ECC Error flag\n");
885 stats->tx_dropped++;
886 }
887 if (gerfl & RCANFD_GERFL_MES) {
888 sts = rcar_canfd_read(priv->base,
889 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX));
890 if (sts & RCANFD_CFSTS_CFMLT) {
891 netdev_dbg(ndev, "Tx Message Lost flag\n");
892 stats->tx_dropped++;
893 rcar_canfd_write(priv->base,
894 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX),
895 sts & ~RCANFD_CFSTS_CFMLT);
896 }
897
898 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx));
899 if (sts & RCANFD_RFSTS_RFMLT) {
900 netdev_dbg(ndev, "Rx Message Lost flag\n");
901 stats->rx_dropped++;
902 rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx),
903 sts & ~RCANFD_RFSTS_RFMLT);
904 }
905 }
906 if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
907 /* Message Lost flag will be set for respective channel
908 * when this condition happens with counters and flags
909 * already updated.
910 */
911 netdev_dbg(ndev, "global payload overflow interrupt\n");
912 }
913
914 /* Clear all global error interrupts. Only affected channels bits
915 * get cleared
916 */
917 rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
918 }
919
rcar_canfd_error(struct net_device * ndev,u32 cerfl,u16 txerr,u16 rxerr)920 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
921 u16 txerr, u16 rxerr)
922 {
923 struct rcar_canfd_channel *priv = netdev_priv(ndev);
924 struct net_device_stats *stats = &ndev->stats;
925 struct can_frame *cf;
926 struct sk_buff *skb;
927 u32 ch = priv->channel;
928
929 netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
930
931 /* Propagate the error condition to the CAN stack */
932 skb = alloc_can_err_skb(ndev, &cf);
933 if (!skb) {
934 stats->rx_dropped++;
935 return;
936 }
937
938 /* Channel error interrupts */
939 if (cerfl & RCANFD_CERFL_BEF) {
940 netdev_dbg(ndev, "Bus error\n");
941 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
942 cf->data[2] = CAN_ERR_PROT_UNSPEC;
943 priv->can.can_stats.bus_error++;
944 }
945 if (cerfl & RCANFD_CERFL_ADERR) {
946 netdev_dbg(ndev, "ACK Delimiter Error\n");
947 stats->tx_errors++;
948 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
949 }
950 if (cerfl & RCANFD_CERFL_B0ERR) {
951 netdev_dbg(ndev, "Bit Error (dominant)\n");
952 stats->tx_errors++;
953 cf->data[2] |= CAN_ERR_PROT_BIT0;
954 }
955 if (cerfl & RCANFD_CERFL_B1ERR) {
956 netdev_dbg(ndev, "Bit Error (recessive)\n");
957 stats->tx_errors++;
958 cf->data[2] |= CAN_ERR_PROT_BIT1;
959 }
960 if (cerfl & RCANFD_CERFL_CERR) {
961 netdev_dbg(ndev, "CRC Error\n");
962 stats->rx_errors++;
963 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
964 }
965 if (cerfl & RCANFD_CERFL_AERR) {
966 netdev_dbg(ndev, "ACK Error\n");
967 stats->tx_errors++;
968 cf->can_id |= CAN_ERR_ACK;
969 cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
970 }
971 if (cerfl & RCANFD_CERFL_FERR) {
972 netdev_dbg(ndev, "Form Error\n");
973 stats->rx_errors++;
974 cf->data[2] |= CAN_ERR_PROT_FORM;
975 }
976 if (cerfl & RCANFD_CERFL_SERR) {
977 netdev_dbg(ndev, "Stuff Error\n");
978 stats->rx_errors++;
979 cf->data[2] |= CAN_ERR_PROT_STUFF;
980 }
981 if (cerfl & RCANFD_CERFL_ALF) {
982 netdev_dbg(ndev, "Arbitration lost Error\n");
983 priv->can.can_stats.arbitration_lost++;
984 cf->can_id |= CAN_ERR_LOSTARB;
985 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
986 }
987 if (cerfl & RCANFD_CERFL_BLF) {
988 netdev_dbg(ndev, "Bus Lock Error\n");
989 stats->rx_errors++;
990 cf->can_id |= CAN_ERR_BUSERROR;
991 }
992 if (cerfl & RCANFD_CERFL_EWF) {
993 netdev_dbg(ndev, "Error warning interrupt\n");
994 priv->can.state = CAN_STATE_ERROR_WARNING;
995 priv->can.can_stats.error_warning++;
996 cf->can_id |= CAN_ERR_CRTL;
997 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
998 CAN_ERR_CRTL_RX_WARNING;
999 cf->data[6] = txerr;
1000 cf->data[7] = rxerr;
1001 }
1002 if (cerfl & RCANFD_CERFL_EPF) {
1003 netdev_dbg(ndev, "Error passive interrupt\n");
1004 priv->can.state = CAN_STATE_ERROR_PASSIVE;
1005 priv->can.can_stats.error_passive++;
1006 cf->can_id |= CAN_ERR_CRTL;
1007 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1008 CAN_ERR_CRTL_RX_PASSIVE;
1009 cf->data[6] = txerr;
1010 cf->data[7] = rxerr;
1011 }
1012 if (cerfl & RCANFD_CERFL_BOEF) {
1013 netdev_dbg(ndev, "Bus-off entry interrupt\n");
1014 rcar_canfd_tx_failure_cleanup(ndev);
1015 priv->can.state = CAN_STATE_BUS_OFF;
1016 priv->can.can_stats.bus_off++;
1017 can_bus_off(ndev);
1018 cf->can_id |= CAN_ERR_BUSOFF;
1019 }
1020 if (cerfl & RCANFD_CERFL_OVLF) {
1021 netdev_dbg(ndev,
1022 "Overload Frame Transmission error interrupt\n");
1023 stats->tx_errors++;
1024 cf->can_id |= CAN_ERR_PROT;
1025 cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1026 }
1027
1028 /* Clear channel error interrupts that are handled */
1029 rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1030 RCANFD_CERFL_ERR(~cerfl));
1031 stats->rx_packets++;
1032 stats->rx_bytes += cf->can_dlc;
1033 netif_rx(skb);
1034 }
1035
rcar_canfd_tx_done(struct net_device * ndev)1036 static void rcar_canfd_tx_done(struct net_device *ndev)
1037 {
1038 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1039 struct net_device_stats *stats = &ndev->stats;
1040 u32 sts;
1041 unsigned long flags;
1042 u32 ch = priv->channel;
1043
1044 do {
1045 u8 unsent, sent;
1046
1047 sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1048 stats->tx_packets++;
1049 stats->tx_bytes += priv->tx_len[sent];
1050 priv->tx_len[sent] = 0;
1051 can_get_echo_skb(ndev, sent);
1052
1053 spin_lock_irqsave(&priv->tx_lock, flags);
1054 priv->tx_tail++;
1055 sts = rcar_canfd_read(priv->base,
1056 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX));
1057 unsent = RCANFD_CFSTS_CFMC(sts);
1058
1059 /* Wake producer only when there is room */
1060 if (unsent != RCANFD_FIFO_DEPTH)
1061 netif_wake_queue(ndev);
1062
1063 if (priv->tx_head - priv->tx_tail <= unsent) {
1064 spin_unlock_irqrestore(&priv->tx_lock, flags);
1065 break;
1066 }
1067 spin_unlock_irqrestore(&priv->tx_lock, flags);
1068
1069 } while (1);
1070
1071 /* Clear interrupt */
1072 rcar_canfd_write(priv->base, RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX),
1073 sts & ~RCANFD_CFSTS_CFTXIF);
1074 can_led_event(ndev, CAN_LED_EVENT_TX);
1075 }
1076
rcar_canfd_global_interrupt(int irq,void * dev_id)1077 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1078 {
1079 struct rcar_canfd_global *gpriv = dev_id;
1080 struct net_device *ndev;
1081 struct rcar_canfd_channel *priv;
1082 u32 sts, gerfl;
1083 u32 ch, ridx;
1084
1085 /* Global error interrupts still indicate a condition specific
1086 * to a channel. RxFIFO interrupt is a global interrupt.
1087 */
1088 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1089 priv = gpriv->ch[ch];
1090 ndev = priv->ndev;
1091 ridx = ch + RCANFD_RFFIFO_IDX;
1092
1093 /* Global error interrupts */
1094 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1095 if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1096 rcar_canfd_global_error(ndev);
1097
1098 /* Handle Rx interrupts */
1099 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx));
1100 if (likely(sts & RCANFD_RFSTS_RFIF)) {
1101 if (napi_schedule_prep(&priv->napi)) {
1102 /* Disable Rx FIFO interrupts */
1103 rcar_canfd_clear_bit(priv->base,
1104 RCANFD_RFCC(ridx),
1105 RCANFD_RFCC_RFIE);
1106 __napi_schedule(&priv->napi);
1107 }
1108 }
1109 }
1110 return IRQ_HANDLED;
1111 }
1112
rcar_canfd_state_change(struct net_device * ndev,u16 txerr,u16 rxerr)1113 static void rcar_canfd_state_change(struct net_device *ndev,
1114 u16 txerr, u16 rxerr)
1115 {
1116 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1117 struct net_device_stats *stats = &ndev->stats;
1118 enum can_state rx_state, tx_state, state = priv->can.state;
1119 struct can_frame *cf;
1120 struct sk_buff *skb;
1121
1122 /* Handle transition from error to normal states */
1123 if (txerr < 96 && rxerr < 96)
1124 state = CAN_STATE_ERROR_ACTIVE;
1125 else if (txerr < 128 && rxerr < 128)
1126 state = CAN_STATE_ERROR_WARNING;
1127
1128 if (state != priv->can.state) {
1129 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1130 state, priv->can.state, txerr, rxerr);
1131 skb = alloc_can_err_skb(ndev, &cf);
1132 if (!skb) {
1133 stats->rx_dropped++;
1134 return;
1135 }
1136 tx_state = txerr >= rxerr ? state : 0;
1137 rx_state = txerr <= rxerr ? state : 0;
1138
1139 can_change_state(ndev, cf, tx_state, rx_state);
1140 stats->rx_packets++;
1141 stats->rx_bytes += cf->can_dlc;
1142 netif_rx(skb);
1143 }
1144 }
1145
rcar_canfd_channel_interrupt(int irq,void * dev_id)1146 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1147 {
1148 struct rcar_canfd_global *gpriv = dev_id;
1149 struct net_device *ndev;
1150 struct rcar_canfd_channel *priv;
1151 u32 sts, ch, cerfl;
1152 u16 txerr, rxerr;
1153
1154 /* Common FIFO is a per channel resource */
1155 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1156 priv = gpriv->ch[ch];
1157 ndev = priv->ndev;
1158
1159 /* Channel error interrupts */
1160 cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1161 sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1162 txerr = RCANFD_CSTS_TECCNT(sts);
1163 rxerr = RCANFD_CSTS_RECCNT(sts);
1164 if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1165 rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1166
1167 /* Handle state change to lower states */
1168 if (unlikely((priv->can.state != CAN_STATE_ERROR_ACTIVE) &&
1169 (priv->can.state != CAN_STATE_BUS_OFF)))
1170 rcar_canfd_state_change(ndev, txerr, rxerr);
1171
1172 /* Handle Tx interrupts */
1173 sts = rcar_canfd_read(priv->base,
1174 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX));
1175 if (likely(sts & RCANFD_CFSTS_CFTXIF))
1176 rcar_canfd_tx_done(ndev);
1177 }
1178 return IRQ_HANDLED;
1179 }
1180
rcar_canfd_set_bittiming(struct net_device * dev)1181 static void rcar_canfd_set_bittiming(struct net_device *dev)
1182 {
1183 struct rcar_canfd_channel *priv = netdev_priv(dev);
1184 const struct can_bittiming *bt = &priv->can.bittiming;
1185 const struct can_bittiming *dbt = &priv->can.data_bittiming;
1186 u16 brp, sjw, tseg1, tseg2;
1187 u32 cfg;
1188 u32 ch = priv->channel;
1189
1190 /* Nominal bit timing settings */
1191 brp = bt->brp - 1;
1192 sjw = bt->sjw - 1;
1193 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1194 tseg2 = bt->phase_seg2 - 1;
1195
1196 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1197 /* CAN FD only mode */
1198 cfg = (RCANFD_NCFG_NTSEG1(tseg1) | RCANFD_NCFG_NBRP(brp) |
1199 RCANFD_NCFG_NSJW(sjw) | RCANFD_NCFG_NTSEG2(tseg2));
1200
1201 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1202 netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1203 brp, sjw, tseg1, tseg2);
1204
1205 /* Data bit timing settings */
1206 brp = dbt->brp - 1;
1207 sjw = dbt->sjw - 1;
1208 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1209 tseg2 = dbt->phase_seg2 - 1;
1210
1211 cfg = (RCANFD_DCFG_DTSEG1(tseg1) | RCANFD_DCFG_DBRP(brp) |
1212 RCANFD_DCFG_DSJW(sjw) | RCANFD_DCFG_DTSEG2(tseg2));
1213
1214 rcar_canfd_write(priv->base, RCANFD_F_DCFG(ch), cfg);
1215 netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1216 brp, sjw, tseg1, tseg2);
1217 } else {
1218 /* Classical CAN only mode */
1219 cfg = (RCANFD_CFG_TSEG1(tseg1) | RCANFD_CFG_BRP(brp) |
1220 RCANFD_CFG_SJW(sjw) | RCANFD_CFG_TSEG2(tseg2));
1221
1222 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1223 netdev_dbg(priv->ndev,
1224 "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1225 brp, sjw, tseg1, tseg2);
1226 }
1227 }
1228
rcar_canfd_start(struct net_device * ndev)1229 static int rcar_canfd_start(struct net_device *ndev)
1230 {
1231 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1232 int err = -EOPNOTSUPP;
1233 u32 sts, ch = priv->channel;
1234 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1235
1236 rcar_canfd_set_bittiming(ndev);
1237
1238 rcar_canfd_enable_channel_interrupts(priv);
1239
1240 /* Set channel to Operational mode */
1241 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1242 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1243
1244 /* Verify channel mode change */
1245 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1246 (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1247 if (err) {
1248 netdev_err(ndev, "channel %u communication state failed\n", ch);
1249 goto fail_mode_change;
1250 }
1251
1252 /* Enable Common & Rx FIFO */
1253 rcar_canfd_set_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX),
1254 RCANFD_CFCC_CFE);
1255 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE);
1256
1257 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1258 return 0;
1259
1260 fail_mode_change:
1261 rcar_canfd_disable_channel_interrupts(priv);
1262 return err;
1263 }
1264
rcar_canfd_open(struct net_device * ndev)1265 static int rcar_canfd_open(struct net_device *ndev)
1266 {
1267 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1268 struct rcar_canfd_global *gpriv = priv->gpriv;
1269 int err;
1270
1271 /* Peripheral clock is already enabled in probe */
1272 err = clk_prepare_enable(gpriv->can_clk);
1273 if (err) {
1274 netdev_err(ndev, "failed to enable CAN clock, error %d\n", err);
1275 goto out_clock;
1276 }
1277
1278 err = open_candev(ndev);
1279 if (err) {
1280 netdev_err(ndev, "open_candev() failed, error %d\n", err);
1281 goto out_can_clock;
1282 }
1283
1284 napi_enable(&priv->napi);
1285 err = rcar_canfd_start(ndev);
1286 if (err)
1287 goto out_close;
1288 netif_start_queue(ndev);
1289 can_led_event(ndev, CAN_LED_EVENT_OPEN);
1290 return 0;
1291 out_close:
1292 napi_disable(&priv->napi);
1293 close_candev(ndev);
1294 out_can_clock:
1295 clk_disable_unprepare(gpriv->can_clk);
1296 out_clock:
1297 return err;
1298 }
1299
rcar_canfd_stop(struct net_device * ndev)1300 static void rcar_canfd_stop(struct net_device *ndev)
1301 {
1302 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1303 int err;
1304 u32 sts, ch = priv->channel;
1305 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1306
1307 /* Transition to channel reset mode */
1308 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1309 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1310
1311 /* Check Channel reset mode */
1312 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1313 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1314 if (err)
1315 netdev_err(ndev, "channel %u reset failed\n", ch);
1316
1317 rcar_canfd_disable_channel_interrupts(priv);
1318
1319 /* Disable Common & Rx FIFO */
1320 rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX),
1321 RCANFD_CFCC_CFE);
1322 rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE);
1323
1324 /* Set the state as STOPPED */
1325 priv->can.state = CAN_STATE_STOPPED;
1326 }
1327
rcar_canfd_close(struct net_device * ndev)1328 static int rcar_canfd_close(struct net_device *ndev)
1329 {
1330 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1331 struct rcar_canfd_global *gpriv = priv->gpriv;
1332
1333 netif_stop_queue(ndev);
1334 rcar_canfd_stop(ndev);
1335 napi_disable(&priv->napi);
1336 clk_disable_unprepare(gpriv->can_clk);
1337 close_candev(ndev);
1338 can_led_event(ndev, CAN_LED_EVENT_STOP);
1339 return 0;
1340 }
1341
rcar_canfd_start_xmit(struct sk_buff * skb,struct net_device * ndev)1342 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1343 struct net_device *ndev)
1344 {
1345 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1346 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1347 u32 sts = 0, id, dlc;
1348 unsigned long flags;
1349 u32 ch = priv->channel;
1350
1351 if (can_dropped_invalid_skb(ndev, skb))
1352 return NETDEV_TX_OK;
1353
1354 if (cf->can_id & CAN_EFF_FLAG) {
1355 id = cf->can_id & CAN_EFF_MASK;
1356 id |= RCANFD_CFID_CFIDE;
1357 } else {
1358 id = cf->can_id & CAN_SFF_MASK;
1359 }
1360
1361 if (cf->can_id & CAN_RTR_FLAG)
1362 id |= RCANFD_CFID_CFRTR;
1363
1364 dlc = RCANFD_CFPTR_CFDLC(can_len2dlc(cf->len));
1365
1366 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1367 rcar_canfd_write(priv->base,
1368 RCANFD_F_CFID(ch, RCANFD_CFFIFO_IDX), id);
1369 rcar_canfd_write(priv->base,
1370 RCANFD_F_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1371
1372 if (can_is_canfd_skb(skb)) {
1373 /* CAN FD frame format */
1374 sts |= RCANFD_CFFDCSTS_CFFDF;
1375 if (cf->flags & CANFD_BRS)
1376 sts |= RCANFD_CFFDCSTS_CFBRS;
1377
1378 if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1379 sts |= RCANFD_CFFDCSTS_CFESI;
1380 }
1381
1382 rcar_canfd_write(priv->base,
1383 RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), sts);
1384
1385 rcar_canfd_put_data(priv, cf,
1386 RCANFD_F_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1387 } else {
1388 rcar_canfd_write(priv->base,
1389 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1390 rcar_canfd_write(priv->base,
1391 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1392 rcar_canfd_put_data(priv, cf,
1393 RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1394 }
1395
1396 priv->tx_len[priv->tx_head % RCANFD_FIFO_DEPTH] = cf->len;
1397 can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH);
1398
1399 spin_lock_irqsave(&priv->tx_lock, flags);
1400 priv->tx_head++;
1401
1402 /* Stop the queue if we've filled all FIFO entries */
1403 if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1404 netif_stop_queue(ndev);
1405
1406 /* Start Tx: Write 0xff to CFPC to increment the CPU-side
1407 * pointer for the Common FIFO
1408 */
1409 rcar_canfd_write(priv->base,
1410 RCANFD_CFPCTR(ch, RCANFD_CFFIFO_IDX), 0xff);
1411
1412 spin_unlock_irqrestore(&priv->tx_lock, flags);
1413 return NETDEV_TX_OK;
1414 }
1415
rcar_canfd_rx_pkt(struct rcar_canfd_channel * priv)1416 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1417 {
1418 struct net_device_stats *stats = &priv->ndev->stats;
1419 struct canfd_frame *cf;
1420 struct sk_buff *skb;
1421 u32 sts = 0, id, dlc;
1422 u32 ch = priv->channel;
1423 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1424
1425 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1426 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(ridx));
1427 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(ridx));
1428
1429 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(ridx));
1430 if (sts & RCANFD_RFFDSTS_RFFDF)
1431 skb = alloc_canfd_skb(priv->ndev, &cf);
1432 else
1433 skb = alloc_can_skb(priv->ndev,
1434 (struct can_frame **)&cf);
1435 } else {
1436 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1437 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1438 skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
1439 }
1440
1441 if (!skb) {
1442 stats->rx_dropped++;
1443 return;
1444 }
1445
1446 if (id & RCANFD_RFID_RFIDE)
1447 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1448 else
1449 cf->can_id = id & CAN_SFF_MASK;
1450
1451 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1452 if (sts & RCANFD_RFFDSTS_RFFDF)
1453 cf->len = can_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1454 else
1455 cf->len = get_can_dlc(RCANFD_RFPTR_RFDLC(dlc));
1456
1457 if (sts & RCANFD_RFFDSTS_RFESI) {
1458 cf->flags |= CANFD_ESI;
1459 netdev_dbg(priv->ndev, "ESI Error\n");
1460 }
1461
1462 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1463 cf->can_id |= CAN_RTR_FLAG;
1464 } else {
1465 if (sts & RCANFD_RFFDSTS_RFBRS)
1466 cf->flags |= CANFD_BRS;
1467
1468 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(ridx, 0));
1469 }
1470 } else {
1471 cf->len = get_can_dlc(RCANFD_RFPTR_RFDLC(dlc));
1472 if (id & RCANFD_RFID_RFRTR)
1473 cf->can_id |= CAN_RTR_FLAG;
1474 else
1475 rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1476 }
1477
1478 /* Write 0xff to RFPC to increment the CPU-side
1479 * pointer of the Rx FIFO
1480 */
1481 rcar_canfd_write(priv->base, RCANFD_RFPCTR(ridx), 0xff);
1482
1483 can_led_event(priv->ndev, CAN_LED_EVENT_RX);
1484
1485 stats->rx_bytes += cf->len;
1486 stats->rx_packets++;
1487 netif_receive_skb(skb);
1488 }
1489
rcar_canfd_rx_poll(struct napi_struct * napi,int quota)1490 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1491 {
1492 struct rcar_canfd_channel *priv =
1493 container_of(napi, struct rcar_canfd_channel, napi);
1494 int num_pkts;
1495 u32 sts;
1496 u32 ch = priv->channel;
1497 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1498
1499 for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1500 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx));
1501 /* Check FIFO empty condition */
1502 if (sts & RCANFD_RFSTS_RFEMP)
1503 break;
1504
1505 rcar_canfd_rx_pkt(priv);
1506
1507 /* Clear interrupt bit */
1508 if (sts & RCANFD_RFSTS_RFIF)
1509 rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx),
1510 sts & ~RCANFD_RFSTS_RFIF);
1511 }
1512
1513 /* All packets processed */
1514 if (num_pkts < quota) {
1515 if (napi_complete_done(napi, num_pkts)) {
1516 /* Enable Rx FIFO interrupts */
1517 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx),
1518 RCANFD_RFCC_RFIE);
1519 }
1520 }
1521 return num_pkts;
1522 }
1523
rcar_canfd_do_set_mode(struct net_device * ndev,enum can_mode mode)1524 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1525 {
1526 int err;
1527
1528 switch (mode) {
1529 case CAN_MODE_START:
1530 err = rcar_canfd_start(ndev);
1531 if (err)
1532 return err;
1533 netif_wake_queue(ndev);
1534 return 0;
1535 default:
1536 return -EOPNOTSUPP;
1537 }
1538 }
1539
rcar_canfd_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)1540 static int rcar_canfd_get_berr_counter(const struct net_device *dev,
1541 struct can_berr_counter *bec)
1542 {
1543 struct rcar_canfd_channel *priv = netdev_priv(dev);
1544 u32 val, ch = priv->channel;
1545
1546 /* Peripheral clock is already enabled in probe */
1547 val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1548 bec->txerr = RCANFD_CSTS_TECCNT(val);
1549 bec->rxerr = RCANFD_CSTS_RECCNT(val);
1550 return 0;
1551 }
1552
1553 static const struct net_device_ops rcar_canfd_netdev_ops = {
1554 .ndo_open = rcar_canfd_open,
1555 .ndo_stop = rcar_canfd_close,
1556 .ndo_start_xmit = rcar_canfd_start_xmit,
1557 .ndo_change_mtu = can_change_mtu,
1558 };
1559
rcar_canfd_channel_probe(struct rcar_canfd_global * gpriv,u32 ch,u32 fcan_freq)1560 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1561 u32 fcan_freq)
1562 {
1563 struct platform_device *pdev = gpriv->pdev;
1564 struct rcar_canfd_channel *priv;
1565 struct net_device *ndev;
1566 int err = -ENODEV;
1567
1568 ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1569 if (!ndev) {
1570 dev_err(&pdev->dev, "alloc_candev() failed\n");
1571 err = -ENOMEM;
1572 goto fail;
1573 }
1574 priv = netdev_priv(ndev);
1575
1576 ndev->netdev_ops = &rcar_canfd_netdev_ops;
1577 ndev->flags |= IFF_ECHO;
1578 priv->ndev = ndev;
1579 priv->base = gpriv->base;
1580 priv->channel = ch;
1581 priv->can.clock.freq = fcan_freq;
1582 dev_info(&pdev->dev, "can_clk rate is %u\n", priv->can.clock.freq);
1583
1584 if (gpriv->fdmode) {
1585 priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const;
1586 priv->can.data_bittiming_const =
1587 &rcar_canfd_data_bittiming_const;
1588
1589 /* Controller starts in CAN FD only mode */
1590 can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1591 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1592 } else {
1593 /* Controller starts in Classical CAN only mode */
1594 priv->can.bittiming_const = &rcar_canfd_bittiming_const;
1595 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1596 }
1597
1598 priv->can.do_set_mode = rcar_canfd_do_set_mode;
1599 priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
1600 priv->gpriv = gpriv;
1601 SET_NETDEV_DEV(ndev, &pdev->dev);
1602
1603 netif_napi_add(ndev, &priv->napi, rcar_canfd_rx_poll,
1604 RCANFD_NAPI_WEIGHT);
1605 err = register_candev(ndev);
1606 if (err) {
1607 dev_err(&pdev->dev,
1608 "register_candev() failed, error %d\n", err);
1609 goto fail_candev;
1610 }
1611 spin_lock_init(&priv->tx_lock);
1612 devm_can_led_init(ndev);
1613 gpriv->ch[priv->channel] = priv;
1614 dev_info(&pdev->dev, "device registered (channel %u)\n", priv->channel);
1615 return 0;
1616
1617 fail_candev:
1618 netif_napi_del(&priv->napi);
1619 free_candev(ndev);
1620 fail:
1621 return err;
1622 }
1623
rcar_canfd_channel_remove(struct rcar_canfd_global * gpriv,u32 ch)1624 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
1625 {
1626 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1627
1628 if (priv) {
1629 unregister_candev(priv->ndev);
1630 netif_napi_del(&priv->napi);
1631 free_candev(priv->ndev);
1632 }
1633 }
1634
rcar_canfd_probe(struct platform_device * pdev)1635 static int rcar_canfd_probe(struct platform_device *pdev)
1636 {
1637 struct resource *mem;
1638 void __iomem *addr;
1639 u32 sts, ch, fcan_freq;
1640 struct rcar_canfd_global *gpriv;
1641 struct device_node *of_child;
1642 unsigned long channels_mask = 0;
1643 int err, ch_irq, g_irq;
1644 bool fdmode = true; /* CAN FD only mode - default */
1645
1646 if (of_property_read_bool(pdev->dev.of_node, "renesas,no-can-fd"))
1647 fdmode = false; /* Classical CAN only mode */
1648
1649 of_child = of_get_child_by_name(pdev->dev.of_node, "channel0");
1650 if (of_child && of_device_is_available(of_child))
1651 channels_mask |= BIT(0); /* Channel 0 */
1652
1653 of_child = of_get_child_by_name(pdev->dev.of_node, "channel1");
1654 if (of_child && of_device_is_available(of_child))
1655 channels_mask |= BIT(1); /* Channel 1 */
1656
1657 ch_irq = platform_get_irq(pdev, 0);
1658 if (ch_irq < 0) {
1659 dev_err(&pdev->dev, "no Channel IRQ resource\n");
1660 err = ch_irq;
1661 goto fail_dev;
1662 }
1663
1664 g_irq = platform_get_irq(pdev, 1);
1665 if (g_irq < 0) {
1666 dev_err(&pdev->dev, "no Global IRQ resource\n");
1667 err = g_irq;
1668 goto fail_dev;
1669 }
1670
1671 /* Global controller context */
1672 gpriv = devm_kzalloc(&pdev->dev, sizeof(*gpriv), GFP_KERNEL);
1673 if (!gpriv) {
1674 err = -ENOMEM;
1675 goto fail_dev;
1676 }
1677 gpriv->pdev = pdev;
1678 gpriv->channels_mask = channels_mask;
1679 gpriv->fdmode = fdmode;
1680
1681 /* Peripheral clock */
1682 gpriv->clkp = devm_clk_get(&pdev->dev, "fck");
1683 if (IS_ERR(gpriv->clkp)) {
1684 err = PTR_ERR(gpriv->clkp);
1685 dev_err(&pdev->dev, "cannot get peripheral clock, error %d\n",
1686 err);
1687 goto fail_dev;
1688 }
1689
1690 /* fCAN clock: Pick External clock. If not available fallback to
1691 * CANFD clock
1692 */
1693 gpriv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1694 if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
1695 gpriv->can_clk = devm_clk_get(&pdev->dev, "canfd");
1696 if (IS_ERR(gpriv->can_clk)) {
1697 err = PTR_ERR(gpriv->can_clk);
1698 dev_err(&pdev->dev,
1699 "cannot get canfd clock, error %d\n", err);
1700 goto fail_dev;
1701 }
1702 gpriv->fcan = RCANFD_CANFDCLK;
1703
1704 } else {
1705 gpriv->fcan = RCANFD_EXTCLK;
1706 }
1707 fcan_freq = clk_get_rate(gpriv->can_clk);
1708
1709 if (gpriv->fcan == RCANFD_CANFDCLK)
1710 /* CANFD clock is further divided by (1/2) within the IP */
1711 fcan_freq /= 2;
1712
1713 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1714 addr = devm_ioremap_resource(&pdev->dev, mem);
1715 if (IS_ERR(addr)) {
1716 err = PTR_ERR(addr);
1717 goto fail_dev;
1718 }
1719 gpriv->base = addr;
1720
1721 /* Request IRQ that's common for both channels */
1722 err = devm_request_irq(&pdev->dev, ch_irq,
1723 rcar_canfd_channel_interrupt, 0,
1724 "canfd.chn", gpriv);
1725 if (err) {
1726 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1727 ch_irq, err);
1728 goto fail_dev;
1729 }
1730 err = devm_request_irq(&pdev->dev, g_irq,
1731 rcar_canfd_global_interrupt, 0,
1732 "canfd.gbl", gpriv);
1733 if (err) {
1734 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1735 g_irq, err);
1736 goto fail_dev;
1737 }
1738
1739 /* Enable peripheral clock for register access */
1740 err = clk_prepare_enable(gpriv->clkp);
1741 if (err) {
1742 dev_err(&pdev->dev,
1743 "failed to enable peripheral clock, error %d\n", err);
1744 goto fail_dev;
1745 }
1746
1747 err = rcar_canfd_reset_controller(gpriv);
1748 if (err) {
1749 dev_err(&pdev->dev, "reset controller failed\n");
1750 goto fail_clk;
1751 }
1752
1753 /* Controller in Global reset & Channel reset mode */
1754 rcar_canfd_configure_controller(gpriv);
1755
1756 /* Configure per channel attributes */
1757 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1758 /* Configure Channel's Rx fifo */
1759 rcar_canfd_configure_rx(gpriv, ch);
1760
1761 /* Configure Channel's Tx (Common) fifo */
1762 rcar_canfd_configure_tx(gpriv, ch);
1763
1764 /* Configure receive rules */
1765 rcar_canfd_configure_afl_rules(gpriv, ch);
1766 }
1767
1768 /* Configure common interrupts */
1769 rcar_canfd_enable_global_interrupts(gpriv);
1770
1771 /* Start Global operation mode */
1772 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
1773 RCANFD_GCTR_GMDC_GOPM);
1774
1775 /* Verify mode change */
1776 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
1777 !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
1778 if (err) {
1779 dev_err(&pdev->dev, "global operational mode failed\n");
1780 goto fail_mode;
1781 }
1782
1783 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1784 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq);
1785 if (err)
1786 goto fail_channel;
1787 }
1788
1789 platform_set_drvdata(pdev, gpriv);
1790 dev_info(&pdev->dev, "global operational state (clk %d, fdmode %d)\n",
1791 gpriv->fcan, gpriv->fdmode);
1792 return 0;
1793
1794 fail_channel:
1795 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS)
1796 rcar_canfd_channel_remove(gpriv, ch);
1797 fail_mode:
1798 rcar_canfd_disable_global_interrupts(gpriv);
1799 fail_clk:
1800 clk_disable_unprepare(gpriv->clkp);
1801 fail_dev:
1802 return err;
1803 }
1804
rcar_canfd_remove(struct platform_device * pdev)1805 static int rcar_canfd_remove(struct platform_device *pdev)
1806 {
1807 struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
1808 u32 ch;
1809
1810 rcar_canfd_reset_controller(gpriv);
1811 rcar_canfd_disable_global_interrupts(gpriv);
1812
1813 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1814 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
1815 rcar_canfd_channel_remove(gpriv, ch);
1816 }
1817
1818 /* Enter global sleep mode */
1819 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
1820 clk_disable_unprepare(gpriv->clkp);
1821 return 0;
1822 }
1823
rcar_canfd_suspend(struct device * dev)1824 static int __maybe_unused rcar_canfd_suspend(struct device *dev)
1825 {
1826 return 0;
1827 }
1828
rcar_canfd_resume(struct device * dev)1829 static int __maybe_unused rcar_canfd_resume(struct device *dev)
1830 {
1831 return 0;
1832 }
1833
1834 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
1835 rcar_canfd_resume);
1836
1837 static const struct of_device_id rcar_canfd_of_table[] = {
1838 { .compatible = "renesas,rcar-gen3-canfd" },
1839 { }
1840 };
1841
1842 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
1843
1844 static struct platform_driver rcar_canfd_driver = {
1845 .driver = {
1846 .name = RCANFD_DRV_NAME,
1847 .of_match_table = of_match_ptr(rcar_canfd_of_table),
1848 .pm = &rcar_canfd_pm_ops,
1849 },
1850 .probe = rcar_canfd_probe,
1851 .remove = rcar_canfd_remove,
1852 };
1853
1854 module_platform_driver(rcar_canfd_driver);
1855
1856 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
1857 MODULE_LICENSE("GPL");
1858 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
1859 MODULE_ALIAS("platform:" RCANFD_DRV_NAME);
1860