1 /* Xilinx CAN device driver
2 *
3 * Copyright (C) 2012 - 2014 Xilinx, Inc.
4 * Copyright (C) 2009 PetaLogix. All rights reserved.
5 * Copyright (C) 2017 Sandvik Mining and Construction Oy
6 *
7 * Description:
8 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/clk.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/io.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/netdevice.h>
28 #include <linux/of.h>
29 #include <linux/of_device.h>
30 #include <linux/platform_device.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/string.h>
34 #include <linux/types.h>
35 #include <linux/can/dev.h>
36 #include <linux/can/error.h>
37 #include <linux/can/led.h>
38 #include <linux/pm_runtime.h>
39
40 #define DRIVER_NAME "xilinx_can"
41
42 /* CAN registers set */
43 enum xcan_reg {
44 XCAN_SRR_OFFSET = 0x00, /* Software reset */
45 XCAN_MSR_OFFSET = 0x04, /* Mode select */
46 XCAN_BRPR_OFFSET = 0x08, /* Baud rate prescaler */
47 XCAN_BTR_OFFSET = 0x0C, /* Bit timing */
48 XCAN_ECR_OFFSET = 0x10, /* Error counter */
49 XCAN_ESR_OFFSET = 0x14, /* Error status */
50 XCAN_SR_OFFSET = 0x18, /* Status */
51 XCAN_ISR_OFFSET = 0x1C, /* Interrupt status */
52 XCAN_IER_OFFSET = 0x20, /* Interrupt enable */
53 XCAN_ICR_OFFSET = 0x24, /* Interrupt clear */
54 XCAN_TXFIFO_ID_OFFSET = 0x30,/* TX FIFO ID */
55 XCAN_TXFIFO_DLC_OFFSET = 0x34, /* TX FIFO DLC */
56 XCAN_TXFIFO_DW1_OFFSET = 0x38, /* TX FIFO Data Word 1 */
57 XCAN_TXFIFO_DW2_OFFSET = 0x3C, /* TX FIFO Data Word 2 */
58 XCAN_RXFIFO_ID_OFFSET = 0x50, /* RX FIFO ID */
59 XCAN_RXFIFO_DLC_OFFSET = 0x54, /* RX FIFO DLC */
60 XCAN_RXFIFO_DW1_OFFSET = 0x58, /* RX FIFO Data Word 1 */
61 XCAN_RXFIFO_DW2_OFFSET = 0x5C, /* RX FIFO Data Word 2 */
62 };
63
64 /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
65 #define XCAN_SRR_CEN_MASK 0x00000002 /* CAN enable */
66 #define XCAN_SRR_RESET_MASK 0x00000001 /* Soft Reset the CAN core */
67 #define XCAN_MSR_LBACK_MASK 0x00000002 /* Loop back mode select */
68 #define XCAN_MSR_SLEEP_MASK 0x00000001 /* Sleep mode select */
69 #define XCAN_BRPR_BRP_MASK 0x000000FF /* Baud rate prescaler */
70 #define XCAN_BTR_SJW_MASK 0x00000180 /* Synchronous jump width */
71 #define XCAN_BTR_TS2_MASK 0x00000070 /* Time segment 2 */
72 #define XCAN_BTR_TS1_MASK 0x0000000F /* Time segment 1 */
73 #define XCAN_ECR_REC_MASK 0x0000FF00 /* Receive error counter */
74 #define XCAN_ECR_TEC_MASK 0x000000FF /* Transmit error counter */
75 #define XCAN_ESR_ACKER_MASK 0x00000010 /* ACK error */
76 #define XCAN_ESR_BERR_MASK 0x00000008 /* Bit error */
77 #define XCAN_ESR_STER_MASK 0x00000004 /* Stuff error */
78 #define XCAN_ESR_FMER_MASK 0x00000002 /* Form error */
79 #define XCAN_ESR_CRCER_MASK 0x00000001 /* CRC error */
80 #define XCAN_SR_TXFLL_MASK 0x00000400 /* TX FIFO is full */
81 #define XCAN_SR_ESTAT_MASK 0x00000180 /* Error status */
82 #define XCAN_SR_ERRWRN_MASK 0x00000040 /* Error warning */
83 #define XCAN_SR_NORMAL_MASK 0x00000008 /* Normal mode */
84 #define XCAN_SR_LBACK_MASK 0x00000002 /* Loop back mode */
85 #define XCAN_SR_CONFIG_MASK 0x00000001 /* Configuration mode */
86 #define XCAN_IXR_TXFEMP_MASK 0x00004000 /* TX FIFO Empty */
87 #define XCAN_IXR_WKUP_MASK 0x00000800 /* Wake up interrupt */
88 #define XCAN_IXR_SLP_MASK 0x00000400 /* Sleep interrupt */
89 #define XCAN_IXR_BSOFF_MASK 0x00000200 /* Bus off interrupt */
90 #define XCAN_IXR_ERROR_MASK 0x00000100 /* Error interrupt */
91 #define XCAN_IXR_RXNEMP_MASK 0x00000080 /* RX FIFO NotEmpty intr */
92 #define XCAN_IXR_RXOFLW_MASK 0x00000040 /* RX FIFO Overflow intr */
93 #define XCAN_IXR_RXOK_MASK 0x00000010 /* Message received intr */
94 #define XCAN_IXR_TXFLL_MASK 0x00000004 /* Tx FIFO Full intr */
95 #define XCAN_IXR_TXOK_MASK 0x00000002 /* TX successful intr */
96 #define XCAN_IXR_ARBLST_MASK 0x00000001 /* Arbitration lost intr */
97 #define XCAN_IDR_ID1_MASK 0xFFE00000 /* Standard msg identifier */
98 #define XCAN_IDR_SRR_MASK 0x00100000 /* Substitute remote TXreq */
99 #define XCAN_IDR_IDE_MASK 0x00080000 /* Identifier extension */
100 #define XCAN_IDR_ID2_MASK 0x0007FFFE /* Extended message ident */
101 #define XCAN_IDR_RTR_MASK 0x00000001 /* Remote TX request */
102 #define XCAN_DLCR_DLC_MASK 0xF0000000 /* Data length code */
103
104 #define XCAN_INTR_ALL (XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |\
105 XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK | \
106 XCAN_IXR_RXNEMP_MASK | XCAN_IXR_ERROR_MASK | \
107 XCAN_IXR_RXOFLW_MASK | XCAN_IXR_ARBLST_MASK)
108
109 /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
110 #define XCAN_BTR_SJW_SHIFT 7 /* Synchronous jump width */
111 #define XCAN_BTR_TS2_SHIFT 4 /* Time segment 2 */
112 #define XCAN_IDR_ID1_SHIFT 21 /* Standard Messg Identifier */
113 #define XCAN_IDR_ID2_SHIFT 1 /* Extended Message Identifier */
114 #define XCAN_DLCR_DLC_SHIFT 28 /* Data length code */
115 #define XCAN_ESR_REC_SHIFT 8 /* Rx Error Count */
116
117 /* CAN frame length constants */
118 #define XCAN_FRAME_MAX_DATA_LEN 8
119 #define XCAN_TIMEOUT (1 * HZ)
120
121 /**
122 * struct xcan_priv - This definition define CAN driver instance
123 * @can: CAN private data structure.
124 * @tx_lock: Lock for synchronizing TX interrupt handling
125 * @tx_head: Tx CAN packets ready to send on the queue
126 * @tx_tail: Tx CAN packets successfully sended on the queue
127 * @tx_max: Maximum number packets the driver can send
128 * @napi: NAPI structure
129 * @read_reg: For reading data from CAN registers
130 * @write_reg: For writing data to CAN registers
131 * @dev: Network device data structure
132 * @reg_base: Ioremapped address to registers
133 * @irq_flags: For request_irq()
134 * @bus_clk: Pointer to struct clk
135 * @can_clk: Pointer to struct clk
136 */
137 struct xcan_priv {
138 struct can_priv can;
139 spinlock_t tx_lock;
140 unsigned int tx_head;
141 unsigned int tx_tail;
142 unsigned int tx_max;
143 struct napi_struct napi;
144 u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
145 void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
146 u32 val);
147 struct device *dev;
148 void __iomem *reg_base;
149 unsigned long irq_flags;
150 struct clk *bus_clk;
151 struct clk *can_clk;
152 };
153
154 /* CAN Bittiming constants as per Xilinx CAN specs */
155 static const struct can_bittiming_const xcan_bittiming_const = {
156 .name = DRIVER_NAME,
157 .tseg1_min = 1,
158 .tseg1_max = 16,
159 .tseg2_min = 1,
160 .tseg2_max = 8,
161 .sjw_max = 4,
162 .brp_min = 1,
163 .brp_max = 256,
164 .brp_inc = 1,
165 };
166
167 #define XCAN_CAP_WATERMARK 0x0001
168 struct xcan_devtype_data {
169 unsigned int caps;
170 };
171
172 /**
173 * xcan_write_reg_le - Write a value to the device register little endian
174 * @priv: Driver private data structure
175 * @reg: Register offset
176 * @val: Value to write at the Register offset
177 *
178 * Write data to the paricular CAN register
179 */
xcan_write_reg_le(const struct xcan_priv * priv,enum xcan_reg reg,u32 val)180 static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
181 u32 val)
182 {
183 iowrite32(val, priv->reg_base + reg);
184 }
185
186 /**
187 * xcan_read_reg_le - Read a value from the device register little endian
188 * @priv: Driver private data structure
189 * @reg: Register offset
190 *
191 * Read data from the particular CAN register
192 * Return: value read from the CAN register
193 */
xcan_read_reg_le(const struct xcan_priv * priv,enum xcan_reg reg)194 static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
195 {
196 return ioread32(priv->reg_base + reg);
197 }
198
199 /**
200 * xcan_write_reg_be - Write a value to the device register big endian
201 * @priv: Driver private data structure
202 * @reg: Register offset
203 * @val: Value to write at the Register offset
204 *
205 * Write data to the paricular CAN register
206 */
xcan_write_reg_be(const struct xcan_priv * priv,enum xcan_reg reg,u32 val)207 static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
208 u32 val)
209 {
210 iowrite32be(val, priv->reg_base + reg);
211 }
212
213 /**
214 * xcan_read_reg_be - Read a value from the device register big endian
215 * @priv: Driver private data structure
216 * @reg: Register offset
217 *
218 * Read data from the particular CAN register
219 * Return: value read from the CAN register
220 */
xcan_read_reg_be(const struct xcan_priv * priv,enum xcan_reg reg)221 static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
222 {
223 return ioread32be(priv->reg_base + reg);
224 }
225
226 /**
227 * set_reset_mode - Resets the CAN device mode
228 * @ndev: Pointer to net_device structure
229 *
230 * This is the driver reset mode routine.The driver
231 * enters into configuration mode.
232 *
233 * Return: 0 on success and failure value on error
234 */
set_reset_mode(struct net_device * ndev)235 static int set_reset_mode(struct net_device *ndev)
236 {
237 struct xcan_priv *priv = netdev_priv(ndev);
238 unsigned long timeout;
239
240 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
241
242 timeout = jiffies + XCAN_TIMEOUT;
243 while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
244 if (time_after(jiffies, timeout)) {
245 netdev_warn(ndev, "timed out for config mode\n");
246 return -ETIMEDOUT;
247 }
248 usleep_range(500, 10000);
249 }
250
251 /* reset clears FIFOs */
252 priv->tx_head = 0;
253 priv->tx_tail = 0;
254
255 return 0;
256 }
257
258 /**
259 * xcan_set_bittiming - CAN set bit timing routine
260 * @ndev: Pointer to net_device structure
261 *
262 * This is the driver set bittiming routine.
263 * Return: 0 on success and failure value on error
264 */
xcan_set_bittiming(struct net_device * ndev)265 static int xcan_set_bittiming(struct net_device *ndev)
266 {
267 struct xcan_priv *priv = netdev_priv(ndev);
268 struct can_bittiming *bt = &priv->can.bittiming;
269 u32 btr0, btr1;
270 u32 is_config_mode;
271
272 /* Check whether Xilinx CAN is in configuration mode.
273 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
274 */
275 is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
276 XCAN_SR_CONFIG_MASK;
277 if (!is_config_mode) {
278 netdev_alert(ndev,
279 "BUG! Cannot set bittiming - CAN is not in config mode\n");
280 return -EPERM;
281 }
282
283 /* Setting Baud Rate prescalar value in BRPR Register */
284 btr0 = (bt->brp - 1);
285
286 /* Setting Time Segment 1 in BTR Register */
287 btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
288
289 /* Setting Time Segment 2 in BTR Register */
290 btr1 |= (bt->phase_seg2 - 1) << XCAN_BTR_TS2_SHIFT;
291
292 /* Setting Synchronous jump width in BTR Register */
293 btr1 |= (bt->sjw - 1) << XCAN_BTR_SJW_SHIFT;
294
295 priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
296 priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
297
298 netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
299 priv->read_reg(priv, XCAN_BRPR_OFFSET),
300 priv->read_reg(priv, XCAN_BTR_OFFSET));
301
302 return 0;
303 }
304
305 /**
306 * xcan_chip_start - This the drivers start routine
307 * @ndev: Pointer to net_device structure
308 *
309 * This is the drivers start routine.
310 * Based on the State of the CAN device it puts
311 * the CAN device into a proper mode.
312 *
313 * Return: 0 on success and failure value on error
314 */
xcan_chip_start(struct net_device * ndev)315 static int xcan_chip_start(struct net_device *ndev)
316 {
317 struct xcan_priv *priv = netdev_priv(ndev);
318 u32 reg_msr, reg_sr_mask;
319 int err;
320 unsigned long timeout;
321
322 /* Check if it is in reset mode */
323 err = set_reset_mode(ndev);
324 if (err < 0)
325 return err;
326
327 err = xcan_set_bittiming(ndev);
328 if (err < 0)
329 return err;
330
331 /* Enable interrupts */
332 priv->write_reg(priv, XCAN_IER_OFFSET, XCAN_INTR_ALL);
333
334 /* Check whether it is loopback mode or normal mode */
335 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
336 reg_msr = XCAN_MSR_LBACK_MASK;
337 reg_sr_mask = XCAN_SR_LBACK_MASK;
338 } else {
339 reg_msr = 0x0;
340 reg_sr_mask = XCAN_SR_NORMAL_MASK;
341 }
342
343 priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
344 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
345
346 timeout = jiffies + XCAN_TIMEOUT;
347 while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & reg_sr_mask)) {
348 if (time_after(jiffies, timeout)) {
349 netdev_warn(ndev,
350 "timed out for correct mode\n");
351 return -ETIMEDOUT;
352 }
353 }
354 netdev_dbg(ndev, "status:#x%08x\n",
355 priv->read_reg(priv, XCAN_SR_OFFSET));
356
357 priv->can.state = CAN_STATE_ERROR_ACTIVE;
358 return 0;
359 }
360
361 /**
362 * xcan_do_set_mode - This sets the mode of the driver
363 * @ndev: Pointer to net_device structure
364 * @mode: Tells the mode of the driver
365 *
366 * This check the drivers state and calls the
367 * the corresponding modes to set.
368 *
369 * Return: 0 on success and failure value on error
370 */
xcan_do_set_mode(struct net_device * ndev,enum can_mode mode)371 static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
372 {
373 int ret;
374
375 switch (mode) {
376 case CAN_MODE_START:
377 ret = xcan_chip_start(ndev);
378 if (ret < 0) {
379 netdev_err(ndev, "xcan_chip_start failed!\n");
380 return ret;
381 }
382 netif_wake_queue(ndev);
383 break;
384 default:
385 ret = -EOPNOTSUPP;
386 break;
387 }
388
389 return ret;
390 }
391
392 /**
393 * xcan_start_xmit - Starts the transmission
394 * @skb: sk_buff pointer that contains data to be Txed
395 * @ndev: Pointer to net_device structure
396 *
397 * This function is invoked from upper layers to initiate transmission. This
398 * function uses the next available free txbuff and populates their fields to
399 * start the transmission.
400 *
401 * Return: 0 on success and failure value on error
402 */
xcan_start_xmit(struct sk_buff * skb,struct net_device * ndev)403 static int xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
404 {
405 struct xcan_priv *priv = netdev_priv(ndev);
406 struct net_device_stats *stats = &ndev->stats;
407 struct can_frame *cf = (struct can_frame *)skb->data;
408 u32 id, dlc, data[2] = {0, 0};
409 unsigned long flags;
410
411 if (can_dropped_invalid_skb(ndev, skb))
412 return NETDEV_TX_OK;
413
414 /* Check if the TX buffer is full */
415 if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
416 XCAN_SR_TXFLL_MASK)) {
417 netif_stop_queue(ndev);
418 netdev_err(ndev, "BUG!, TX FIFO full when queue awake!\n");
419 return NETDEV_TX_BUSY;
420 }
421
422 /* Watch carefully on the bit sequence */
423 if (cf->can_id & CAN_EFF_FLAG) {
424 /* Extended CAN ID format */
425 id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
426 XCAN_IDR_ID2_MASK;
427 id |= (((cf->can_id & CAN_EFF_MASK) >>
428 (CAN_EFF_ID_BITS-CAN_SFF_ID_BITS)) <<
429 XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
430
431 /* The substibute remote TX request bit should be "1"
432 * for extended frames as in the Xilinx CAN datasheet
433 */
434 id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
435
436 if (cf->can_id & CAN_RTR_FLAG)
437 /* Extended frames remote TX request */
438 id |= XCAN_IDR_RTR_MASK;
439 } else {
440 /* Standard CAN ID format */
441 id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
442 XCAN_IDR_ID1_MASK;
443
444 if (cf->can_id & CAN_RTR_FLAG)
445 /* Standard frames remote TX request */
446 id |= XCAN_IDR_SRR_MASK;
447 }
448
449 dlc = cf->can_dlc << XCAN_DLCR_DLC_SHIFT;
450
451 if (cf->can_dlc > 0)
452 data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
453 if (cf->can_dlc > 4)
454 data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
455
456 can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max);
457
458 spin_lock_irqsave(&priv->tx_lock, flags);
459
460 priv->tx_head++;
461
462 /* Write the Frame to Xilinx CAN TX FIFO */
463 priv->write_reg(priv, XCAN_TXFIFO_ID_OFFSET, id);
464 /* If the CAN frame is RTR frame this write triggers tranmission */
465 priv->write_reg(priv, XCAN_TXFIFO_DLC_OFFSET, dlc);
466 if (!(cf->can_id & CAN_RTR_FLAG)) {
467 priv->write_reg(priv, XCAN_TXFIFO_DW1_OFFSET, data[0]);
468 /* If the CAN frame is Standard/Extended frame this
469 * write triggers tranmission
470 */
471 priv->write_reg(priv, XCAN_TXFIFO_DW2_OFFSET, data[1]);
472 stats->tx_bytes += cf->can_dlc;
473 }
474
475 /* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
476 if (priv->tx_max > 1)
477 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
478
479 /* Check if the TX buffer is full */
480 if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
481 netif_stop_queue(ndev);
482
483 spin_unlock_irqrestore(&priv->tx_lock, flags);
484
485 return NETDEV_TX_OK;
486 }
487
488 /**
489 * xcan_rx - Is called from CAN isr to complete the received
490 * frame processing
491 * @ndev: Pointer to net_device structure
492 *
493 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
494 * does minimal processing and invokes "netif_receive_skb" to complete further
495 * processing.
496 * Return: 1 on success and 0 on failure.
497 */
xcan_rx(struct net_device * ndev)498 static int xcan_rx(struct net_device *ndev)
499 {
500 struct xcan_priv *priv = netdev_priv(ndev);
501 struct net_device_stats *stats = &ndev->stats;
502 struct can_frame *cf;
503 struct sk_buff *skb;
504 u32 id_xcan, dlc, data[2] = {0, 0};
505
506 skb = alloc_can_skb(ndev, &cf);
507 if (unlikely(!skb)) {
508 stats->rx_dropped++;
509 return 0;
510 }
511
512 /* Read a frame from Xilinx zynq CANPS */
513 id_xcan = priv->read_reg(priv, XCAN_RXFIFO_ID_OFFSET);
514 dlc = priv->read_reg(priv, XCAN_RXFIFO_DLC_OFFSET) >>
515 XCAN_DLCR_DLC_SHIFT;
516
517 /* Change Xilinx CAN data length format to socketCAN data format */
518 cf->can_dlc = get_can_dlc(dlc);
519
520 /* Change Xilinx CAN ID format to socketCAN ID format */
521 if (id_xcan & XCAN_IDR_IDE_MASK) {
522 /* The received frame is an Extended format frame */
523 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
524 cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
525 XCAN_IDR_ID2_SHIFT;
526 cf->can_id |= CAN_EFF_FLAG;
527 if (id_xcan & XCAN_IDR_RTR_MASK)
528 cf->can_id |= CAN_RTR_FLAG;
529 } else {
530 /* The received frame is a standard format frame */
531 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
532 XCAN_IDR_ID1_SHIFT;
533 if (id_xcan & XCAN_IDR_SRR_MASK)
534 cf->can_id |= CAN_RTR_FLAG;
535 }
536
537 /* DW1/DW2 must always be read to remove message from RXFIFO */
538 data[0] = priv->read_reg(priv, XCAN_RXFIFO_DW1_OFFSET);
539 data[1] = priv->read_reg(priv, XCAN_RXFIFO_DW2_OFFSET);
540
541 if (!(cf->can_id & CAN_RTR_FLAG)) {
542 /* Change Xilinx CAN data format to socketCAN data format */
543 if (cf->can_dlc > 0)
544 *(__be32 *)(cf->data) = cpu_to_be32(data[0]);
545 if (cf->can_dlc > 4)
546 *(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
547 }
548
549 stats->rx_bytes += cf->can_dlc;
550 stats->rx_packets++;
551 netif_receive_skb(skb);
552
553 return 1;
554 }
555
556 /**
557 * xcan_current_error_state - Get current error state from HW
558 * @ndev: Pointer to net_device structure
559 *
560 * Checks the current CAN error state from the HW. Note that this
561 * only checks for ERROR_PASSIVE and ERROR_WARNING.
562 *
563 * Return:
564 * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
565 * otherwise.
566 */
xcan_current_error_state(struct net_device * ndev)567 static enum can_state xcan_current_error_state(struct net_device *ndev)
568 {
569 struct xcan_priv *priv = netdev_priv(ndev);
570 u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
571
572 if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
573 return CAN_STATE_ERROR_PASSIVE;
574 else if (status & XCAN_SR_ERRWRN_MASK)
575 return CAN_STATE_ERROR_WARNING;
576 else
577 return CAN_STATE_ERROR_ACTIVE;
578 }
579
580 /**
581 * xcan_set_error_state - Set new CAN error state
582 * @ndev: Pointer to net_device structure
583 * @new_state: The new CAN state to be set
584 * @cf: Error frame to be populated or NULL
585 *
586 * Set new CAN error state for the device, updating statistics and
587 * populating the error frame if given.
588 */
xcan_set_error_state(struct net_device * ndev,enum can_state new_state,struct can_frame * cf)589 static void xcan_set_error_state(struct net_device *ndev,
590 enum can_state new_state,
591 struct can_frame *cf)
592 {
593 struct xcan_priv *priv = netdev_priv(ndev);
594 u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
595 u32 txerr = ecr & XCAN_ECR_TEC_MASK;
596 u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
597
598 priv->can.state = new_state;
599
600 if (cf) {
601 cf->can_id |= CAN_ERR_CRTL;
602 cf->data[6] = txerr;
603 cf->data[7] = rxerr;
604 }
605
606 switch (new_state) {
607 case CAN_STATE_ERROR_PASSIVE:
608 priv->can.can_stats.error_passive++;
609 if (cf)
610 cf->data[1] = (rxerr > 127) ?
611 CAN_ERR_CRTL_RX_PASSIVE :
612 CAN_ERR_CRTL_TX_PASSIVE;
613 break;
614 case CAN_STATE_ERROR_WARNING:
615 priv->can.can_stats.error_warning++;
616 if (cf)
617 cf->data[1] |= (txerr > rxerr) ?
618 CAN_ERR_CRTL_TX_WARNING :
619 CAN_ERR_CRTL_RX_WARNING;
620 break;
621 case CAN_STATE_ERROR_ACTIVE:
622 if (cf)
623 cf->data[1] |= CAN_ERR_CRTL_ACTIVE;
624 break;
625 default:
626 /* non-ERROR states are handled elsewhere */
627 WARN_ON(1);
628 break;
629 }
630 }
631
632 /**
633 * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
634 * @ndev: Pointer to net_device structure
635 *
636 * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
637 * the performed RX/TX has caused it to drop to a lesser state and set
638 * the interface state accordingly.
639 */
xcan_update_error_state_after_rxtx(struct net_device * ndev)640 static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
641 {
642 struct xcan_priv *priv = netdev_priv(ndev);
643 enum can_state old_state = priv->can.state;
644 enum can_state new_state;
645
646 /* changing error state due to successful frame RX/TX can only
647 * occur from these states
648 */
649 if (old_state != CAN_STATE_ERROR_WARNING &&
650 old_state != CAN_STATE_ERROR_PASSIVE)
651 return;
652
653 new_state = xcan_current_error_state(ndev);
654
655 if (new_state != old_state) {
656 struct sk_buff *skb;
657 struct can_frame *cf;
658
659 skb = alloc_can_err_skb(ndev, &cf);
660
661 xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
662
663 if (skb) {
664 struct net_device_stats *stats = &ndev->stats;
665
666 stats->rx_packets++;
667 stats->rx_bytes += cf->can_dlc;
668 netif_rx(skb);
669 }
670 }
671 }
672
673 /**
674 * xcan_err_interrupt - error frame Isr
675 * @ndev: net_device pointer
676 * @isr: interrupt status register value
677 *
678 * This is the CAN error interrupt and it will
679 * check the the type of error and forward the error
680 * frame to upper layers.
681 */
xcan_err_interrupt(struct net_device * ndev,u32 isr)682 static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
683 {
684 struct xcan_priv *priv = netdev_priv(ndev);
685 struct net_device_stats *stats = &ndev->stats;
686 struct can_frame *cf;
687 struct sk_buff *skb;
688 u32 err_status;
689
690 skb = alloc_can_err_skb(ndev, &cf);
691
692 err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
693 priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
694
695 if (isr & XCAN_IXR_BSOFF_MASK) {
696 priv->can.state = CAN_STATE_BUS_OFF;
697 priv->can.can_stats.bus_off++;
698 /* Leave device in Config Mode in bus-off state */
699 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
700 can_bus_off(ndev);
701 if (skb)
702 cf->can_id |= CAN_ERR_BUSOFF;
703 } else {
704 enum can_state new_state = xcan_current_error_state(ndev);
705
706 xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
707 }
708
709 /* Check for Arbitration lost interrupt */
710 if (isr & XCAN_IXR_ARBLST_MASK) {
711 priv->can.can_stats.arbitration_lost++;
712 if (skb) {
713 cf->can_id |= CAN_ERR_LOSTARB;
714 cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
715 }
716 }
717
718 /* Check for RX FIFO Overflow interrupt */
719 if (isr & XCAN_IXR_RXOFLW_MASK) {
720 stats->rx_over_errors++;
721 stats->rx_errors++;
722 if (skb) {
723 cf->can_id |= CAN_ERR_CRTL;
724 cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
725 }
726 }
727
728 /* Check for error interrupt */
729 if (isr & XCAN_IXR_ERROR_MASK) {
730 if (skb)
731 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
732
733 /* Check for Ack error interrupt */
734 if (err_status & XCAN_ESR_ACKER_MASK) {
735 stats->tx_errors++;
736 if (skb) {
737 cf->can_id |= CAN_ERR_ACK;
738 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
739 }
740 }
741
742 /* Check for Bit error interrupt */
743 if (err_status & XCAN_ESR_BERR_MASK) {
744 stats->tx_errors++;
745 if (skb) {
746 cf->can_id |= CAN_ERR_PROT;
747 cf->data[2] = CAN_ERR_PROT_BIT;
748 }
749 }
750
751 /* Check for Stuff error interrupt */
752 if (err_status & XCAN_ESR_STER_MASK) {
753 stats->rx_errors++;
754 if (skb) {
755 cf->can_id |= CAN_ERR_PROT;
756 cf->data[2] = CAN_ERR_PROT_STUFF;
757 }
758 }
759
760 /* Check for Form error interrupt */
761 if (err_status & XCAN_ESR_FMER_MASK) {
762 stats->rx_errors++;
763 if (skb) {
764 cf->can_id |= CAN_ERR_PROT;
765 cf->data[2] = CAN_ERR_PROT_FORM;
766 }
767 }
768
769 /* Check for CRC error interrupt */
770 if (err_status & XCAN_ESR_CRCER_MASK) {
771 stats->rx_errors++;
772 if (skb) {
773 cf->can_id |= CAN_ERR_PROT;
774 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
775 }
776 }
777 priv->can.can_stats.bus_error++;
778 }
779
780 if (skb) {
781 stats->rx_packets++;
782 stats->rx_bytes += cf->can_dlc;
783 netif_rx(skb);
784 }
785
786 netdev_dbg(ndev, "%s: error status register:0x%x\n",
787 __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
788 }
789
790 /**
791 * xcan_state_interrupt - It will check the state of the CAN device
792 * @ndev: net_device pointer
793 * @isr: interrupt status register value
794 *
795 * This will checks the state of the CAN device
796 * and puts the device into appropriate state.
797 */
xcan_state_interrupt(struct net_device * ndev,u32 isr)798 static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
799 {
800 struct xcan_priv *priv = netdev_priv(ndev);
801
802 /* Check for Sleep interrupt if set put CAN device in sleep state */
803 if (isr & XCAN_IXR_SLP_MASK)
804 priv->can.state = CAN_STATE_SLEEPING;
805
806 /* Check for Wake up interrupt if set put CAN device in Active state */
807 if (isr & XCAN_IXR_WKUP_MASK)
808 priv->can.state = CAN_STATE_ERROR_ACTIVE;
809 }
810
811 /**
812 * xcan_rx_poll - Poll routine for rx packets (NAPI)
813 * @napi: napi structure pointer
814 * @quota: Max number of rx packets to be processed.
815 *
816 * This is the poll routine for rx part.
817 * It will process the packets maximux quota value.
818 *
819 * Return: number of packets received
820 */
xcan_rx_poll(struct napi_struct * napi,int quota)821 static int xcan_rx_poll(struct napi_struct *napi, int quota)
822 {
823 struct net_device *ndev = napi->dev;
824 struct xcan_priv *priv = netdev_priv(ndev);
825 u32 isr, ier;
826 int work_done = 0;
827
828 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
829 while ((isr & XCAN_IXR_RXNEMP_MASK) && (work_done < quota)) {
830 work_done += xcan_rx(ndev);
831 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXNEMP_MASK);
832 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
833 }
834
835 if (work_done) {
836 can_led_event(ndev, CAN_LED_EVENT_RX);
837 xcan_update_error_state_after_rxtx(ndev);
838 }
839
840 if (work_done < quota) {
841 napi_complete_done(napi, work_done);
842 ier = priv->read_reg(priv, XCAN_IER_OFFSET);
843 ier |= XCAN_IXR_RXNEMP_MASK;
844 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
845 }
846 return work_done;
847 }
848
849 /**
850 * xcan_tx_interrupt - Tx Done Isr
851 * @ndev: net_device pointer
852 * @isr: Interrupt status register value
853 */
xcan_tx_interrupt(struct net_device * ndev,u32 isr)854 static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
855 {
856 struct xcan_priv *priv = netdev_priv(ndev);
857 struct net_device_stats *stats = &ndev->stats;
858 unsigned int frames_in_fifo;
859 int frames_sent = 1; /* TXOK => at least 1 frame was sent */
860 unsigned long flags;
861 int retries = 0;
862
863 /* Synchronize with xmit as we need to know the exact number
864 * of frames in the FIFO to stay in sync due to the TXFEMP
865 * handling.
866 * This also prevents a race between netif_wake_queue() and
867 * netif_stop_queue().
868 */
869 spin_lock_irqsave(&priv->tx_lock, flags);
870
871 frames_in_fifo = priv->tx_head - priv->tx_tail;
872
873 if (WARN_ON_ONCE(frames_in_fifo == 0)) {
874 /* clear TXOK anyway to avoid getting back here */
875 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
876 spin_unlock_irqrestore(&priv->tx_lock, flags);
877 return;
878 }
879
880 /* Check if 2 frames were sent (TXOK only means that at least 1
881 * frame was sent).
882 */
883 if (frames_in_fifo > 1) {
884 WARN_ON(frames_in_fifo > priv->tx_max);
885
886 /* Synchronize TXOK and isr so that after the loop:
887 * (1) isr variable is up-to-date at least up to TXOK clear
888 * time. This avoids us clearing a TXOK of a second frame
889 * but not noticing that the FIFO is now empty and thus
890 * marking only a single frame as sent.
891 * (2) No TXOK is left. Having one could mean leaving a
892 * stray TXOK as we might process the associated frame
893 * via TXFEMP handling as we read TXFEMP *after* TXOK
894 * clear to satisfy (1).
895 */
896 while ((isr & XCAN_IXR_TXOK_MASK) && !WARN_ON(++retries == 100)) {
897 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
898 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
899 }
900
901 if (isr & XCAN_IXR_TXFEMP_MASK) {
902 /* nothing in FIFO anymore */
903 frames_sent = frames_in_fifo;
904 }
905 } else {
906 /* single frame in fifo, just clear TXOK */
907 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
908 }
909
910 while (frames_sent--) {
911 can_get_echo_skb(ndev, priv->tx_tail %
912 priv->tx_max);
913 priv->tx_tail++;
914 stats->tx_packets++;
915 }
916
917 netif_wake_queue(ndev);
918
919 spin_unlock_irqrestore(&priv->tx_lock, flags);
920
921 can_led_event(ndev, CAN_LED_EVENT_TX);
922 xcan_update_error_state_after_rxtx(ndev);
923 }
924
925 /**
926 * xcan_interrupt - CAN Isr
927 * @irq: irq number
928 * @dev_id: device id poniter
929 *
930 * This is the xilinx CAN Isr. It checks for the type of interrupt
931 * and invokes the corresponding ISR.
932 *
933 * Return:
934 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
935 */
xcan_interrupt(int irq,void * dev_id)936 static irqreturn_t xcan_interrupt(int irq, void *dev_id)
937 {
938 struct net_device *ndev = (struct net_device *)dev_id;
939 struct xcan_priv *priv = netdev_priv(ndev);
940 u32 isr, ier;
941 u32 isr_errors;
942
943 /* Get the interrupt status from Xilinx CAN */
944 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
945 if (!isr)
946 return IRQ_NONE;
947
948 /* Check for the type of interrupt and Processing it */
949 if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
950 priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
951 XCAN_IXR_WKUP_MASK));
952 xcan_state_interrupt(ndev, isr);
953 }
954
955 /* Check for Tx interrupt and Processing it */
956 if (isr & XCAN_IXR_TXOK_MASK)
957 xcan_tx_interrupt(ndev, isr);
958
959 /* Check for the type of error interrupt and Processing it */
960 isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
961 XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK);
962 if (isr_errors) {
963 priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
964 xcan_err_interrupt(ndev, isr);
965 }
966
967 /* Check for the type of receive interrupt and Processing it */
968 if (isr & XCAN_IXR_RXNEMP_MASK) {
969 ier = priv->read_reg(priv, XCAN_IER_OFFSET);
970 ier &= ~XCAN_IXR_RXNEMP_MASK;
971 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
972 napi_schedule(&priv->napi);
973 }
974 return IRQ_HANDLED;
975 }
976
977 /**
978 * xcan_chip_stop - Driver stop routine
979 * @ndev: Pointer to net_device structure
980 *
981 * This is the drivers stop routine. It will disable the
982 * interrupts and put the device into configuration mode.
983 */
xcan_chip_stop(struct net_device * ndev)984 static void xcan_chip_stop(struct net_device *ndev)
985 {
986 struct xcan_priv *priv = netdev_priv(ndev);
987
988 /* Disable interrupts and leave the can in configuration mode */
989 set_reset_mode(ndev);
990 priv->can.state = CAN_STATE_STOPPED;
991 }
992
993 /**
994 * xcan_open - Driver open routine
995 * @ndev: Pointer to net_device structure
996 *
997 * This is the driver open routine.
998 * Return: 0 on success and failure value on error
999 */
xcan_open(struct net_device * ndev)1000 static int xcan_open(struct net_device *ndev)
1001 {
1002 struct xcan_priv *priv = netdev_priv(ndev);
1003 int ret;
1004
1005 ret = pm_runtime_get_sync(priv->dev);
1006 if (ret < 0) {
1007 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1008 __func__, ret);
1009 return ret;
1010 }
1011
1012 ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1013 ndev->name, ndev);
1014 if (ret < 0) {
1015 netdev_err(ndev, "irq allocation for CAN failed\n");
1016 goto err;
1017 }
1018
1019 /* Set chip into reset mode */
1020 ret = set_reset_mode(ndev);
1021 if (ret < 0) {
1022 netdev_err(ndev, "mode resetting failed!\n");
1023 goto err_irq;
1024 }
1025
1026 /* Common open */
1027 ret = open_candev(ndev);
1028 if (ret)
1029 goto err_irq;
1030
1031 ret = xcan_chip_start(ndev);
1032 if (ret < 0) {
1033 netdev_err(ndev, "xcan_chip_start failed!\n");
1034 goto err_candev;
1035 }
1036
1037 can_led_event(ndev, CAN_LED_EVENT_OPEN);
1038 napi_enable(&priv->napi);
1039 netif_start_queue(ndev);
1040
1041 return 0;
1042
1043 err_candev:
1044 close_candev(ndev);
1045 err_irq:
1046 free_irq(ndev->irq, ndev);
1047 err:
1048 pm_runtime_put(priv->dev);
1049
1050 return ret;
1051 }
1052
1053 /**
1054 * xcan_close - Driver close routine
1055 * @ndev: Pointer to net_device structure
1056 *
1057 * Return: 0 always
1058 */
xcan_close(struct net_device * ndev)1059 static int xcan_close(struct net_device *ndev)
1060 {
1061 struct xcan_priv *priv = netdev_priv(ndev);
1062
1063 netif_stop_queue(ndev);
1064 napi_disable(&priv->napi);
1065 xcan_chip_stop(ndev);
1066 free_irq(ndev->irq, ndev);
1067 close_candev(ndev);
1068
1069 can_led_event(ndev, CAN_LED_EVENT_STOP);
1070 pm_runtime_put(priv->dev);
1071
1072 return 0;
1073 }
1074
1075 /**
1076 * xcan_get_berr_counter - error counter routine
1077 * @ndev: Pointer to net_device structure
1078 * @bec: Pointer to can_berr_counter structure
1079 *
1080 * This is the driver error counter routine.
1081 * Return: 0 on success and failure value on error
1082 */
xcan_get_berr_counter(const struct net_device * ndev,struct can_berr_counter * bec)1083 static int xcan_get_berr_counter(const struct net_device *ndev,
1084 struct can_berr_counter *bec)
1085 {
1086 struct xcan_priv *priv = netdev_priv(ndev);
1087 int ret;
1088
1089 ret = pm_runtime_get_sync(priv->dev);
1090 if (ret < 0) {
1091 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1092 __func__, ret);
1093 return ret;
1094 }
1095
1096 bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1097 bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1098 XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1099
1100 pm_runtime_put(priv->dev);
1101
1102 return 0;
1103 }
1104
1105
1106 static const struct net_device_ops xcan_netdev_ops = {
1107 .ndo_open = xcan_open,
1108 .ndo_stop = xcan_close,
1109 .ndo_start_xmit = xcan_start_xmit,
1110 .ndo_change_mtu = can_change_mtu,
1111 };
1112
1113 /**
1114 * xcan_suspend - Suspend method for the driver
1115 * @dev: Address of the device structure
1116 *
1117 * Put the driver into low power mode.
1118 * Return: 0 on success and failure value on error
1119 */
xcan_suspend(struct device * dev)1120 static int __maybe_unused xcan_suspend(struct device *dev)
1121 {
1122 struct net_device *ndev = dev_get_drvdata(dev);
1123
1124 if (netif_running(ndev)) {
1125 netif_stop_queue(ndev);
1126 netif_device_detach(ndev);
1127 xcan_chip_stop(ndev);
1128 }
1129
1130 return pm_runtime_force_suspend(dev);
1131 }
1132
1133 /**
1134 * xcan_resume - Resume from suspend
1135 * @dev: Address of the device structure
1136 *
1137 * Resume operation after suspend.
1138 * Return: 0 on success and failure value on error
1139 */
xcan_resume(struct device * dev)1140 static int __maybe_unused xcan_resume(struct device *dev)
1141 {
1142 struct net_device *ndev = dev_get_drvdata(dev);
1143 int ret;
1144
1145 ret = pm_runtime_force_resume(dev);
1146 if (ret) {
1147 dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1148 return ret;
1149 }
1150
1151 if (netif_running(ndev)) {
1152 ret = xcan_chip_start(ndev);
1153 if (ret) {
1154 dev_err(dev, "xcan_chip_start failed on resume\n");
1155 return ret;
1156 }
1157
1158 netif_device_attach(ndev);
1159 netif_start_queue(ndev);
1160 }
1161
1162 return 0;
1163 }
1164
1165 /**
1166 * xcan_runtime_suspend - Runtime suspend method for the driver
1167 * @dev: Address of the device structure
1168 *
1169 * Put the driver into low power mode.
1170 * Return: 0 always
1171 */
xcan_runtime_suspend(struct device * dev)1172 static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1173 {
1174 struct net_device *ndev = dev_get_drvdata(dev);
1175 struct xcan_priv *priv = netdev_priv(ndev);
1176
1177 clk_disable_unprepare(priv->bus_clk);
1178 clk_disable_unprepare(priv->can_clk);
1179
1180 return 0;
1181 }
1182
1183 /**
1184 * xcan_runtime_resume - Runtime resume from suspend
1185 * @dev: Address of the device structure
1186 *
1187 * Resume operation after suspend.
1188 * Return: 0 on success and failure value on error
1189 */
xcan_runtime_resume(struct device * dev)1190 static int __maybe_unused xcan_runtime_resume(struct device *dev)
1191 {
1192 struct net_device *ndev = dev_get_drvdata(dev);
1193 struct xcan_priv *priv = netdev_priv(ndev);
1194 int ret;
1195
1196 ret = clk_prepare_enable(priv->bus_clk);
1197 if (ret) {
1198 dev_err(dev, "Cannot enable clock.\n");
1199 return ret;
1200 }
1201 ret = clk_prepare_enable(priv->can_clk);
1202 if (ret) {
1203 dev_err(dev, "Cannot enable clock.\n");
1204 clk_disable_unprepare(priv->bus_clk);
1205 return ret;
1206 }
1207
1208 return 0;
1209 }
1210
1211 static const struct dev_pm_ops xcan_dev_pm_ops = {
1212 SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1213 SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1214 };
1215
1216 static const struct xcan_devtype_data xcan_zynq_data = {
1217 .caps = XCAN_CAP_WATERMARK,
1218 };
1219
1220 /* Match table for OF platform binding */
1221 static const struct of_device_id xcan_of_match[] = {
1222 { .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1223 { .compatible = "xlnx,axi-can-1.00.a", },
1224 { /* end of list */ },
1225 };
1226 MODULE_DEVICE_TABLE(of, xcan_of_match);
1227
1228 /**
1229 * xcan_probe - Platform registration call
1230 * @pdev: Handle to the platform device structure
1231 *
1232 * This function does all the memory allocation and registration for the CAN
1233 * device.
1234 *
1235 * Return: 0 on success and failure value on error
1236 */
xcan_probe(struct platform_device * pdev)1237 static int xcan_probe(struct platform_device *pdev)
1238 {
1239 struct resource *res; /* IO mem resources */
1240 struct net_device *ndev;
1241 struct xcan_priv *priv;
1242 const struct of_device_id *of_id;
1243 int caps = 0;
1244 void __iomem *addr;
1245 int ret, rx_max, tx_max, tx_fifo_depth;
1246
1247 /* Get the virtual base address for the device */
1248 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1249 addr = devm_ioremap_resource(&pdev->dev, res);
1250 if (IS_ERR(addr)) {
1251 ret = PTR_ERR(addr);
1252 goto err;
1253 }
1254
1255 ret = of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth",
1256 &tx_fifo_depth);
1257 if (ret < 0)
1258 goto err;
1259
1260 ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth", &rx_max);
1261 if (ret < 0)
1262 goto err;
1263
1264 of_id = of_match_device(xcan_of_match, &pdev->dev);
1265 if (of_id) {
1266 const struct xcan_devtype_data *devtype_data = of_id->data;
1267
1268 if (devtype_data)
1269 caps = devtype_data->caps;
1270 }
1271
1272 /* There is no way to directly figure out how many frames have been
1273 * sent when the TXOK interrupt is processed. If watermark programming
1274 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1275 * to determine if 1 or 2 frames have been sent.
1276 * Theoretically we should be able to use TXFWMEMP to determine up
1277 * to 3 frames, but it seems that after putting a second frame in the
1278 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1279 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1280 * sent), which is not a sensible state - possibly TXFWMEMP is not
1281 * completely synchronized with the rest of the bits?
1282 */
1283 if (caps & XCAN_CAP_WATERMARK)
1284 tx_max = min(tx_fifo_depth, 2);
1285 else
1286 tx_max = 1;
1287
1288 /* Create a CAN device instance */
1289 ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1290 if (!ndev)
1291 return -ENOMEM;
1292
1293 priv = netdev_priv(ndev);
1294 priv->dev = &pdev->dev;
1295 priv->can.bittiming_const = &xcan_bittiming_const;
1296 priv->can.do_set_mode = xcan_do_set_mode;
1297 priv->can.do_get_berr_counter = xcan_get_berr_counter;
1298 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1299 CAN_CTRLMODE_BERR_REPORTING;
1300 priv->reg_base = addr;
1301 priv->tx_max = tx_max;
1302 spin_lock_init(&priv->tx_lock);
1303
1304 /* Get IRQ for the device */
1305 ndev->irq = platform_get_irq(pdev, 0);
1306 ndev->flags |= IFF_ECHO; /* We support local echo */
1307
1308 platform_set_drvdata(pdev, ndev);
1309 SET_NETDEV_DEV(ndev, &pdev->dev);
1310 ndev->netdev_ops = &xcan_netdev_ops;
1311
1312 /* Getting the CAN can_clk info */
1313 priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1314 if (IS_ERR(priv->can_clk)) {
1315 dev_err(&pdev->dev, "Device clock not found.\n");
1316 ret = PTR_ERR(priv->can_clk);
1317 goto err_free;
1318 }
1319 /* Check for type of CAN device */
1320 if (of_device_is_compatible(pdev->dev.of_node,
1321 "xlnx,zynq-can-1.0")) {
1322 priv->bus_clk = devm_clk_get(&pdev->dev, "pclk");
1323 if (IS_ERR(priv->bus_clk)) {
1324 dev_err(&pdev->dev, "bus clock not found\n");
1325 ret = PTR_ERR(priv->bus_clk);
1326 goto err_free;
1327 }
1328 } else {
1329 priv->bus_clk = devm_clk_get(&pdev->dev, "s_axi_aclk");
1330 if (IS_ERR(priv->bus_clk)) {
1331 dev_err(&pdev->dev, "bus clock not found\n");
1332 ret = PTR_ERR(priv->bus_clk);
1333 goto err_free;
1334 }
1335 }
1336
1337 priv->write_reg = xcan_write_reg_le;
1338 priv->read_reg = xcan_read_reg_le;
1339
1340 pm_runtime_enable(&pdev->dev);
1341 ret = pm_runtime_get_sync(&pdev->dev);
1342 if (ret < 0) {
1343 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1344 __func__, ret);
1345 goto err_pmdisable;
1346 }
1347
1348 if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1349 priv->write_reg = xcan_write_reg_be;
1350 priv->read_reg = xcan_read_reg_be;
1351 }
1352
1353 priv->can.clock.freq = clk_get_rate(priv->can_clk);
1354
1355 netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1356
1357 ret = register_candev(ndev);
1358 if (ret) {
1359 dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1360 goto err_disableclks;
1361 }
1362
1363 devm_can_led_init(ndev);
1364
1365 pm_runtime_put(&pdev->dev);
1366
1367 netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx fifo depth: actual %d, using %d\n",
1368 priv->reg_base, ndev->irq, priv->can.clock.freq,
1369 tx_fifo_depth, priv->tx_max);
1370
1371 return 0;
1372
1373 err_disableclks:
1374 pm_runtime_put(priv->dev);
1375 err_pmdisable:
1376 pm_runtime_disable(&pdev->dev);
1377 err_free:
1378 free_candev(ndev);
1379 err:
1380 return ret;
1381 }
1382
1383 /**
1384 * xcan_remove - Unregister the device after releasing the resources
1385 * @pdev: Handle to the platform device structure
1386 *
1387 * This function frees all the resources allocated to the device.
1388 * Return: 0 always
1389 */
xcan_remove(struct platform_device * pdev)1390 static int xcan_remove(struct platform_device *pdev)
1391 {
1392 struct net_device *ndev = platform_get_drvdata(pdev);
1393 struct xcan_priv *priv = netdev_priv(ndev);
1394
1395 unregister_candev(ndev);
1396 pm_runtime_disable(&pdev->dev);
1397 netif_napi_del(&priv->napi);
1398 free_candev(ndev);
1399
1400 return 0;
1401 }
1402
1403 static struct platform_driver xcan_driver = {
1404 .probe = xcan_probe,
1405 .remove = xcan_remove,
1406 .driver = {
1407 .name = DRIVER_NAME,
1408 .pm = &xcan_dev_pm_ops,
1409 .of_match_table = xcan_of_match,
1410 },
1411 };
1412
1413 module_platform_driver(xcan_driver);
1414
1415 MODULE_LICENSE("GPL");
1416 MODULE_AUTHOR("Xilinx Inc");
1417 MODULE_DESCRIPTION("Xilinx CAN interface");
1418