1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <linux/uaccess.h>
67 #include <linux/crash_dump.h>
68
69 #include "cxgb4.h"
70 #include "cxgb4_filter.h"
71 #include "t4_regs.h"
72 #include "t4_values.h"
73 #include "t4_msg.h"
74 #include "t4fw_api.h"
75 #include "t4fw_version.h"
76 #include "cxgb4_dcb.h"
77 #include "cxgb4_debugfs.h"
78 #include "clip_tbl.h"
79 #include "l2t.h"
80 #include "sched.h"
81 #include "cxgb4_tc_u32.h"
82 #include "cxgb4_ptp.h"
83
84 char cxgb4_driver_name[] = KBUILD_MODNAME;
85
86 #ifdef DRV_VERSION
87 #undef DRV_VERSION
88 #endif
89 #define DRV_VERSION "2.0.0-ko"
90 const char cxgb4_driver_version[] = DRV_VERSION;
91 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
92
93 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
94 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
95 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
96
97 /* Macros needed to support the PCI Device ID Table ...
98 */
99 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
100 static const struct pci_device_id cxgb4_pci_tbl[] = {
101 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
102
103 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
104 * called for both.
105 */
106 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
107
108 #define CH_PCI_ID_TABLE_ENTRY(devid) \
109 {PCI_VDEVICE(CHELSIO, (devid)), 4}
110
111 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
112 { 0, } \
113 }
114
115 #include "t4_pci_id_tbl.h"
116
117 #define FW4_FNAME "cxgb4/t4fw.bin"
118 #define FW5_FNAME "cxgb4/t5fw.bin"
119 #define FW6_FNAME "cxgb4/t6fw.bin"
120 #define FW4_CFNAME "cxgb4/t4-config.txt"
121 #define FW5_CFNAME "cxgb4/t5-config.txt"
122 #define FW6_CFNAME "cxgb4/t6-config.txt"
123 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
124 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
125 #define PHY_AQ1202_DEVICEID 0x4409
126 #define PHY_BCM84834_DEVICEID 0x4486
127
128 MODULE_DESCRIPTION(DRV_DESC);
129 MODULE_AUTHOR("Chelsio Communications");
130 MODULE_LICENSE("Dual BSD/GPL");
131 MODULE_VERSION(DRV_VERSION);
132 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
133 MODULE_FIRMWARE(FW4_FNAME);
134 MODULE_FIRMWARE(FW5_FNAME);
135 MODULE_FIRMWARE(FW6_FNAME);
136
137 /*
138 * The driver uses the best interrupt scheme available on a platform in the
139 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
140 * of these schemes the driver may consider as follows:
141 *
142 * msi = 2: choose from among all three options
143 * msi = 1: only consider MSI and INTx interrupts
144 * msi = 0: force INTx interrupts
145 */
146 static int msi = 2;
147
148 module_param(msi, int, 0644);
149 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
150
151 /*
152 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
153 * offset by 2 bytes in order to have the IP headers line up on 4-byte
154 * boundaries. This is a requirement for many architectures which will throw
155 * a machine check fault if an attempt is made to access one of the 4-byte IP
156 * header fields on a non-4-byte boundary. And it's a major performance issue
157 * even on some architectures which allow it like some implementations of the
158 * x86 ISA. However, some architectures don't mind this and for some very
159 * edge-case performance sensitive applications (like forwarding large volumes
160 * of small packets), setting this DMA offset to 0 will decrease the number of
161 * PCI-E Bus transfers enough to measurably affect performance.
162 */
163 static int rx_dma_offset = 2;
164
165 /* TX Queue select used to determine what algorithm to use for selecting TX
166 * queue. Select between the kernel provided function (select_queue=0) or user
167 * cxgb_select_queue function (select_queue=1)
168 *
169 * Default: select_queue=0
170 */
171 static int select_queue;
172 module_param(select_queue, int, 0644);
173 MODULE_PARM_DESC(select_queue,
174 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
175
176 static struct dentry *cxgb4_debugfs_root;
177
178 LIST_HEAD(adapter_list);
179 DEFINE_MUTEX(uld_mutex);
180
link_report(struct net_device * dev)181 static void link_report(struct net_device *dev)
182 {
183 if (!netif_carrier_ok(dev))
184 netdev_info(dev, "link down\n");
185 else {
186 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
187
188 const char *s;
189 const struct port_info *p = netdev_priv(dev);
190
191 switch (p->link_cfg.speed) {
192 case 100:
193 s = "100Mbps";
194 break;
195 case 1000:
196 s = "1Gbps";
197 break;
198 case 10000:
199 s = "10Gbps";
200 break;
201 case 25000:
202 s = "25Gbps";
203 break;
204 case 40000:
205 s = "40Gbps";
206 break;
207 case 100000:
208 s = "100Gbps";
209 break;
210 default:
211 pr_info("%s: unsupported speed: %d\n",
212 dev->name, p->link_cfg.speed);
213 return;
214 }
215
216 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
217 fc[p->link_cfg.fc]);
218 }
219 }
220
221 #ifdef CONFIG_CHELSIO_T4_DCB
222 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
dcb_tx_queue_prio_enable(struct net_device * dev,int enable)223 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
224 {
225 struct port_info *pi = netdev_priv(dev);
226 struct adapter *adap = pi->adapter;
227 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
228 int i;
229
230 /* We use a simple mapping of Port TX Queue Index to DCB
231 * Priority when we're enabling DCB.
232 */
233 for (i = 0; i < pi->nqsets; i++, txq++) {
234 u32 name, value;
235 int err;
236
237 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
238 FW_PARAMS_PARAM_X_V(
239 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
240 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
241 value = enable ? i : 0xffffffff;
242
243 /* Since we can be called while atomic (from "interrupt
244 * level") we need to issue the Set Parameters Commannd
245 * without sleeping (timeout < 0).
246 */
247 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
248 &name, &value,
249 -FW_CMD_MAX_TIMEOUT);
250
251 if (err)
252 dev_err(adap->pdev_dev,
253 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
254 enable ? "set" : "unset", pi->port_id, i, -err);
255 else
256 txq->dcb_prio = enable ? value : 0;
257 }
258 }
259
cxgb4_dcb_enabled(const struct net_device * dev)260 static int cxgb4_dcb_enabled(const struct net_device *dev)
261 {
262 struct port_info *pi = netdev_priv(dev);
263
264 if (!pi->dcb.enabled)
265 return 0;
266
267 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
268 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
269 }
270 #endif /* CONFIG_CHELSIO_T4_DCB */
271
t4_os_link_changed(struct adapter * adapter,int port_id,int link_stat)272 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
273 {
274 struct net_device *dev = adapter->port[port_id];
275
276 /* Skip changes from disabled ports. */
277 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
278 if (link_stat)
279 netif_carrier_on(dev);
280 else {
281 #ifdef CONFIG_CHELSIO_T4_DCB
282 if (cxgb4_dcb_enabled(dev)) {
283 cxgb4_dcb_state_init(dev);
284 dcb_tx_queue_prio_enable(dev, false);
285 }
286 #endif /* CONFIG_CHELSIO_T4_DCB */
287 netif_carrier_off(dev);
288 }
289
290 link_report(dev);
291 }
292 }
293
t4_os_portmod_changed(const struct adapter * adap,int port_id)294 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
295 {
296 static const char *mod_str[] = {
297 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
298 };
299
300 const struct net_device *dev = adap->port[port_id];
301 const struct port_info *pi = netdev_priv(dev);
302
303 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
304 netdev_info(dev, "port module unplugged\n");
305 else if (pi->mod_type < ARRAY_SIZE(mod_str))
306 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
307 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
308 netdev_info(dev, "%s: unsupported port module inserted\n",
309 dev->name);
310 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
311 netdev_info(dev, "%s: unknown port module inserted\n",
312 dev->name);
313 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
314 netdev_info(dev, "%s: transceiver module error\n", dev->name);
315 else
316 netdev_info(dev, "%s: unknown module type %d inserted\n",
317 dev->name, pi->mod_type);
318 }
319
320 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
321 module_param(dbfifo_int_thresh, int, 0644);
322 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
323
324 /*
325 * usecs to sleep while draining the dbfifo
326 */
327 static int dbfifo_drain_delay = 1000;
328 module_param(dbfifo_drain_delay, int, 0644);
329 MODULE_PARM_DESC(dbfifo_drain_delay,
330 "usecs to sleep while draining the dbfifo");
331
cxgb4_set_addr_hash(struct port_info * pi)332 static inline int cxgb4_set_addr_hash(struct port_info *pi)
333 {
334 struct adapter *adap = pi->adapter;
335 u64 vec = 0;
336 bool ucast = false;
337 struct hash_mac_addr *entry;
338
339 /* Calculate the hash vector for the updated list and program it */
340 list_for_each_entry(entry, &adap->mac_hlist, list) {
341 ucast |= is_unicast_ether_addr(entry->addr);
342 vec |= (1ULL << hash_mac_addr(entry->addr));
343 }
344 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
345 vec, false);
346 }
347
cxgb4_mac_sync(struct net_device * netdev,const u8 * mac_addr)348 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
349 {
350 struct port_info *pi = netdev_priv(netdev);
351 struct adapter *adap = pi->adapter;
352 int ret;
353 u64 mhash = 0;
354 u64 uhash = 0;
355 bool free = false;
356 bool ucast = is_unicast_ether_addr(mac_addr);
357 const u8 *maclist[1] = {mac_addr};
358 struct hash_mac_addr *new_entry;
359
360 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
361 NULL, ucast ? &uhash : &mhash, false);
362 if (ret < 0)
363 goto out;
364 /* if hash != 0, then add the addr to hash addr list
365 * so on the end we will calculate the hash for the
366 * list and program it
367 */
368 if (uhash || mhash) {
369 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
370 if (!new_entry)
371 return -ENOMEM;
372 ether_addr_copy(new_entry->addr, mac_addr);
373 list_add_tail(&new_entry->list, &adap->mac_hlist);
374 ret = cxgb4_set_addr_hash(pi);
375 }
376 out:
377 return ret < 0 ? ret : 0;
378 }
379
cxgb4_mac_unsync(struct net_device * netdev,const u8 * mac_addr)380 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
381 {
382 struct port_info *pi = netdev_priv(netdev);
383 struct adapter *adap = pi->adapter;
384 int ret;
385 const u8 *maclist[1] = {mac_addr};
386 struct hash_mac_addr *entry, *tmp;
387
388 /* If the MAC address to be removed is in the hash addr
389 * list, delete it from the list and update hash vector
390 */
391 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
392 if (ether_addr_equal(entry->addr, mac_addr)) {
393 list_del(&entry->list);
394 kfree(entry);
395 return cxgb4_set_addr_hash(pi);
396 }
397 }
398
399 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
400 return ret < 0 ? -EINVAL : 0;
401 }
402
403 /*
404 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
405 * If @mtu is -1 it is left unchanged.
406 */
set_rxmode(struct net_device * dev,int mtu,bool sleep_ok)407 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
408 {
409 struct port_info *pi = netdev_priv(dev);
410 struct adapter *adapter = pi->adapter;
411
412 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
413 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
414
415 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
416 (dev->flags & IFF_PROMISC) ? 1 : 0,
417 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
418 sleep_ok);
419 }
420
421 /**
422 * link_start - enable a port
423 * @dev: the port to enable
424 *
425 * Performs the MAC and PHY actions needed to enable a port.
426 */
link_start(struct net_device * dev)427 static int link_start(struct net_device *dev)
428 {
429 int ret;
430 struct port_info *pi = netdev_priv(dev);
431 unsigned int mb = pi->adapter->pf;
432
433 /*
434 * We do not set address filters and promiscuity here, the stack does
435 * that step explicitly.
436 */
437 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
438 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
439 if (ret == 0) {
440 ret = t4_change_mac(pi->adapter, mb, pi->viid,
441 pi->xact_addr_filt, dev->dev_addr, true,
442 true);
443 if (ret >= 0) {
444 pi->xact_addr_filt = ret;
445 ret = 0;
446 }
447 }
448 if (ret == 0)
449 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
450 &pi->link_cfg);
451 if (ret == 0) {
452 local_bh_disable();
453 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
454 true, CXGB4_DCB_ENABLED);
455 local_bh_enable();
456 }
457
458 return ret;
459 }
460
461 #ifdef CONFIG_CHELSIO_T4_DCB
462 /* Handle a Data Center Bridging update message from the firmware. */
dcb_rpl(struct adapter * adap,const struct fw_port_cmd * pcmd)463 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
464 {
465 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
466 struct net_device *dev = adap->port[adap->chan_map[port]];
467 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
468 int new_dcb_enabled;
469
470 cxgb4_dcb_handle_fw_update(adap, pcmd);
471 new_dcb_enabled = cxgb4_dcb_enabled(dev);
472
473 /* If the DCB has become enabled or disabled on the port then we're
474 * going to need to set up/tear down DCB Priority parameters for the
475 * TX Queues associated with the port.
476 */
477 if (new_dcb_enabled != old_dcb_enabled)
478 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
479 }
480 #endif /* CONFIG_CHELSIO_T4_DCB */
481
482 /* Response queue handler for the FW event queue.
483 */
fwevtq_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * gl)484 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
485 const struct pkt_gl *gl)
486 {
487 u8 opcode = ((const struct rss_header *)rsp)->opcode;
488
489 rsp++; /* skip RSS header */
490
491 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
492 */
493 if (unlikely(opcode == CPL_FW4_MSG &&
494 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
495 rsp++;
496 opcode = ((const struct rss_header *)rsp)->opcode;
497 rsp++;
498 if (opcode != CPL_SGE_EGR_UPDATE) {
499 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
500 , opcode);
501 goto out;
502 }
503 }
504
505 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
506 const struct cpl_sge_egr_update *p = (void *)rsp;
507 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
508 struct sge_txq *txq;
509
510 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
511 txq->restarts++;
512 if (txq->q_type == CXGB4_TXQ_ETH) {
513 struct sge_eth_txq *eq;
514
515 eq = container_of(txq, struct sge_eth_txq, q);
516 netif_tx_wake_queue(eq->txq);
517 } else {
518 struct sge_uld_txq *oq;
519
520 oq = container_of(txq, struct sge_uld_txq, q);
521 tasklet_schedule(&oq->qresume_tsk);
522 }
523 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
524 const struct cpl_fw6_msg *p = (void *)rsp;
525
526 #ifdef CONFIG_CHELSIO_T4_DCB
527 const struct fw_port_cmd *pcmd = (const void *)p->data;
528 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
529 unsigned int action =
530 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
531
532 if (cmd == FW_PORT_CMD &&
533 (action == FW_PORT_ACTION_GET_PORT_INFO ||
534 action == FW_PORT_ACTION_GET_PORT_INFO32)) {
535 int port = FW_PORT_CMD_PORTID_G(
536 be32_to_cpu(pcmd->op_to_portid));
537 struct net_device *dev;
538 int dcbxdis, state_input;
539
540 dev = q->adap->port[q->adap->chan_map[port]];
541 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
542 ? !!(pcmd->u.info.dcbxdis_pkd &
543 FW_PORT_CMD_DCBXDIS_F)
544 : !!(pcmd->u.info32.lstatus32_to_cbllen32 &
545 FW_PORT_CMD_DCBXDIS32_F));
546 state_input = (dcbxdis
547 ? CXGB4_DCB_INPUT_FW_DISABLED
548 : CXGB4_DCB_INPUT_FW_ENABLED);
549
550 cxgb4_dcb_state_fsm(dev, state_input);
551 }
552
553 if (cmd == FW_PORT_CMD &&
554 action == FW_PORT_ACTION_L2_DCB_CFG)
555 dcb_rpl(q->adap, pcmd);
556 else
557 #endif
558 if (p->type == 0)
559 t4_handle_fw_rpl(q->adap, p->data);
560 } else if (opcode == CPL_L2T_WRITE_RPL) {
561 const struct cpl_l2t_write_rpl *p = (void *)rsp;
562
563 do_l2t_write_rpl(q->adap, p);
564 } else if (opcode == CPL_SET_TCB_RPL) {
565 const struct cpl_set_tcb_rpl *p = (void *)rsp;
566
567 filter_rpl(q->adap, p);
568 } else
569 dev_err(q->adap->pdev_dev,
570 "unexpected CPL %#x on FW event queue\n", opcode);
571 out:
572 return 0;
573 }
574
disable_msi(struct adapter * adapter)575 static void disable_msi(struct adapter *adapter)
576 {
577 if (adapter->flags & USING_MSIX) {
578 pci_disable_msix(adapter->pdev);
579 adapter->flags &= ~USING_MSIX;
580 } else if (adapter->flags & USING_MSI) {
581 pci_disable_msi(adapter->pdev);
582 adapter->flags &= ~USING_MSI;
583 }
584 }
585
586 /*
587 * Interrupt handler for non-data events used with MSI-X.
588 */
t4_nondata_intr(int irq,void * cookie)589 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
590 {
591 struct adapter *adap = cookie;
592 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
593
594 if (v & PFSW_F) {
595 adap->swintr = 1;
596 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
597 }
598 if (adap->flags & MASTER_PF)
599 t4_slow_intr_handler(adap);
600 return IRQ_HANDLED;
601 }
602
603 /*
604 * Name the MSI-X interrupts.
605 */
name_msix_vecs(struct adapter * adap)606 static void name_msix_vecs(struct adapter *adap)
607 {
608 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
609
610 /* non-data interrupts */
611 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
612
613 /* FW events */
614 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
615 adap->port[0]->name);
616
617 /* Ethernet queues */
618 for_each_port(adap, j) {
619 struct net_device *d = adap->port[j];
620 const struct port_info *pi = netdev_priv(d);
621
622 for (i = 0; i < pi->nqsets; i++, msi_idx++)
623 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
624 d->name, i);
625 }
626 }
627
request_msix_queue_irqs(struct adapter * adap)628 static int request_msix_queue_irqs(struct adapter *adap)
629 {
630 struct sge *s = &adap->sge;
631 int err, ethqidx;
632 int msi_index = 2;
633
634 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
635 adap->msix_info[1].desc, &s->fw_evtq);
636 if (err)
637 return err;
638
639 for_each_ethrxq(s, ethqidx) {
640 err = request_irq(adap->msix_info[msi_index].vec,
641 t4_sge_intr_msix, 0,
642 adap->msix_info[msi_index].desc,
643 &s->ethrxq[ethqidx].rspq);
644 if (err)
645 goto unwind;
646 msi_index++;
647 }
648 return 0;
649
650 unwind:
651 while (--ethqidx >= 0)
652 free_irq(adap->msix_info[--msi_index].vec,
653 &s->ethrxq[ethqidx].rspq);
654 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
655 return err;
656 }
657
free_msix_queue_irqs(struct adapter * adap)658 static void free_msix_queue_irqs(struct adapter *adap)
659 {
660 int i, msi_index = 2;
661 struct sge *s = &adap->sge;
662
663 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
664 for_each_ethrxq(s, i)
665 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
666 }
667
668 /**
669 * cxgb4_write_rss - write the RSS table for a given port
670 * @pi: the port
671 * @queues: array of queue indices for RSS
672 *
673 * Sets up the portion of the HW RSS table for the port's VI to distribute
674 * packets to the Rx queues in @queues.
675 * Should never be called before setting up sge eth rx queues
676 */
cxgb4_write_rss(const struct port_info * pi,const u16 * queues)677 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
678 {
679 u16 *rss;
680 int i, err;
681 struct adapter *adapter = pi->adapter;
682 const struct sge_eth_rxq *rxq;
683
684 rxq = &adapter->sge.ethrxq[pi->first_qset];
685 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
686 if (!rss)
687 return -ENOMEM;
688
689 /* map the queue indices to queue ids */
690 for (i = 0; i < pi->rss_size; i++, queues++)
691 rss[i] = rxq[*queues].rspq.abs_id;
692
693 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
694 pi->rss_size, rss, pi->rss_size);
695 /* If Tunnel All Lookup isn't specified in the global RSS
696 * Configuration, then we need to specify a default Ingress
697 * Queue for any ingress packets which aren't hashed. We'll
698 * use our first ingress queue ...
699 */
700 if (!err)
701 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
702 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
703 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
704 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
705 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
706 FW_RSS_VI_CONFIG_CMD_UDPEN_F,
707 rss[0]);
708 kfree(rss);
709 return err;
710 }
711
712 /**
713 * setup_rss - configure RSS
714 * @adap: the adapter
715 *
716 * Sets up RSS for each port.
717 */
setup_rss(struct adapter * adap)718 static int setup_rss(struct adapter *adap)
719 {
720 int i, j, err;
721
722 for_each_port(adap, i) {
723 const struct port_info *pi = adap2pinfo(adap, i);
724
725 /* Fill default values with equal distribution */
726 for (j = 0; j < pi->rss_size; j++)
727 pi->rss[j] = j % pi->nqsets;
728
729 err = cxgb4_write_rss(pi, pi->rss);
730 if (err)
731 return err;
732 }
733 return 0;
734 }
735
736 /*
737 * Return the channel of the ingress queue with the given qid.
738 */
rxq_to_chan(const struct sge * p,unsigned int qid)739 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
740 {
741 qid -= p->ingr_start;
742 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
743 }
744
745 /*
746 * Wait until all NAPI handlers are descheduled.
747 */
quiesce_rx(struct adapter * adap)748 static void quiesce_rx(struct adapter *adap)
749 {
750 int i;
751
752 for (i = 0; i < adap->sge.ingr_sz; i++) {
753 struct sge_rspq *q = adap->sge.ingr_map[i];
754
755 if (q && q->handler)
756 napi_disable(&q->napi);
757 }
758 }
759
760 /* Disable interrupt and napi handler */
disable_interrupts(struct adapter * adap)761 static void disable_interrupts(struct adapter *adap)
762 {
763 if (adap->flags & FULL_INIT_DONE) {
764 t4_intr_disable(adap);
765 if (adap->flags & USING_MSIX) {
766 free_msix_queue_irqs(adap);
767 free_irq(adap->msix_info[0].vec, adap);
768 } else {
769 free_irq(adap->pdev->irq, adap);
770 }
771 quiesce_rx(adap);
772 }
773 }
774
775 /*
776 * Enable NAPI scheduling and interrupt generation for all Rx queues.
777 */
enable_rx(struct adapter * adap)778 static void enable_rx(struct adapter *adap)
779 {
780 int i;
781
782 for (i = 0; i < adap->sge.ingr_sz; i++) {
783 struct sge_rspq *q = adap->sge.ingr_map[i];
784
785 if (!q)
786 continue;
787 if (q->handler)
788 napi_enable(&q->napi);
789
790 /* 0-increment GTS to start the timer and enable interrupts */
791 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
792 SEINTARM_V(q->intr_params) |
793 INGRESSQID_V(q->cntxt_id));
794 }
795 }
796
797
setup_fw_sge_queues(struct adapter * adap)798 static int setup_fw_sge_queues(struct adapter *adap)
799 {
800 struct sge *s = &adap->sge;
801 int err = 0;
802
803 bitmap_zero(s->starving_fl, s->egr_sz);
804 bitmap_zero(s->txq_maperr, s->egr_sz);
805
806 if (adap->flags & USING_MSIX)
807 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */
808 else {
809 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
810 NULL, NULL, NULL, -1);
811 if (err)
812 return err;
813 adap->msi_idx = -((int)s->intrq.abs_id + 1);
814 }
815
816 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
817 adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
818 return err;
819 }
820
821 /**
822 * setup_sge_queues - configure SGE Tx/Rx/response queues
823 * @adap: the adapter
824 *
825 * Determines how many sets of SGE queues to use and initializes them.
826 * We support multiple queue sets per port if we have MSI-X, otherwise
827 * just one queue set per port.
828 */
setup_sge_queues(struct adapter * adap)829 static int setup_sge_queues(struct adapter *adap)
830 {
831 int err, i, j;
832 struct sge *s = &adap->sge;
833 struct sge_uld_rxq_info *rxq_info = NULL;
834 unsigned int cmplqid = 0;
835
836 if (is_uld(adap))
837 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
838
839 for_each_port(adap, i) {
840 struct net_device *dev = adap->port[i];
841 struct port_info *pi = netdev_priv(dev);
842 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
843 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
844
845 for (j = 0; j < pi->nqsets; j++, q++) {
846 if (adap->msi_idx > 0)
847 adap->msi_idx++;
848 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
849 adap->msi_idx, &q->fl,
850 t4_ethrx_handler,
851 NULL,
852 t4_get_tp_ch_map(adap,
853 pi->tx_chan));
854 if (err)
855 goto freeout;
856 q->rspq.idx = j;
857 memset(&q->stats, 0, sizeof(q->stats));
858 }
859 for (j = 0; j < pi->nqsets; j++, t++) {
860 err = t4_sge_alloc_eth_txq(adap, t, dev,
861 netdev_get_tx_queue(dev, j),
862 s->fw_evtq.cntxt_id);
863 if (err)
864 goto freeout;
865 }
866 }
867
868 for_each_port(adap, i) {
869 /* Note that cmplqid below is 0 if we don't
870 * have RDMA queues, and that's the right value.
871 */
872 if (rxq_info)
873 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
874
875 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
876 s->fw_evtq.cntxt_id, cmplqid);
877 if (err)
878 goto freeout;
879 }
880
881 if (!is_t4(adap->params.chip)) {
882 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
883 netdev_get_tx_queue(adap->port[0], 0)
884 , s->fw_evtq.cntxt_id);
885 if (err)
886 goto freeout;
887 }
888
889 t4_write_reg(adap, is_t4(adap->params.chip) ?
890 MPS_TRC_RSS_CONTROL_A :
891 MPS_T5_TRC_RSS_CONTROL_A,
892 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
893 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
894 return 0;
895 freeout:
896 t4_free_sge_resources(adap);
897 return err;
898 }
899
cxgb_select_queue(struct net_device * dev,struct sk_buff * skb,void * accel_priv,select_queue_fallback_t fallback)900 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
901 void *accel_priv, select_queue_fallback_t fallback)
902 {
903 int txq;
904
905 #ifdef CONFIG_CHELSIO_T4_DCB
906 /* If a Data Center Bridging has been successfully negotiated on this
907 * link then we'll use the skb's priority to map it to a TX Queue.
908 * The skb's priority is determined via the VLAN Tag Priority Code
909 * Point field.
910 */
911 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
912 u16 vlan_tci;
913 int err;
914
915 err = vlan_get_tag(skb, &vlan_tci);
916 if (unlikely(err)) {
917 if (net_ratelimit())
918 netdev_warn(dev,
919 "TX Packet without VLAN Tag on DCB Link\n");
920 txq = 0;
921 } else {
922 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
923 #ifdef CONFIG_CHELSIO_T4_FCOE
924 if (skb->protocol == htons(ETH_P_FCOE))
925 txq = skb->priority & 0x7;
926 #endif /* CONFIG_CHELSIO_T4_FCOE */
927 }
928 return txq;
929 }
930 #endif /* CONFIG_CHELSIO_T4_DCB */
931
932 if (select_queue) {
933 txq = (skb_rx_queue_recorded(skb)
934 ? skb_get_rx_queue(skb)
935 : smp_processor_id());
936
937 while (unlikely(txq >= dev->real_num_tx_queues))
938 txq -= dev->real_num_tx_queues;
939
940 return txq;
941 }
942
943 return fallback(dev, skb) % dev->real_num_tx_queues;
944 }
945
closest_timer(const struct sge * s,int time)946 static int closest_timer(const struct sge *s, int time)
947 {
948 int i, delta, match = 0, min_delta = INT_MAX;
949
950 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
951 delta = time - s->timer_val[i];
952 if (delta < 0)
953 delta = -delta;
954 if (delta < min_delta) {
955 min_delta = delta;
956 match = i;
957 }
958 }
959 return match;
960 }
961
closest_thres(const struct sge * s,int thres)962 static int closest_thres(const struct sge *s, int thres)
963 {
964 int i, delta, match = 0, min_delta = INT_MAX;
965
966 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
967 delta = thres - s->counter_val[i];
968 if (delta < 0)
969 delta = -delta;
970 if (delta < min_delta) {
971 min_delta = delta;
972 match = i;
973 }
974 }
975 return match;
976 }
977
978 /**
979 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
980 * @q: the Rx queue
981 * @us: the hold-off time in us, or 0 to disable timer
982 * @cnt: the hold-off packet count, or 0 to disable counter
983 *
984 * Sets an Rx queue's interrupt hold-off time and packet count. At least
985 * one of the two needs to be enabled for the queue to generate interrupts.
986 */
cxgb4_set_rspq_intr_params(struct sge_rspq * q,unsigned int us,unsigned int cnt)987 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
988 unsigned int us, unsigned int cnt)
989 {
990 struct adapter *adap = q->adap;
991
992 if ((us | cnt) == 0)
993 cnt = 1;
994
995 if (cnt) {
996 int err;
997 u32 v, new_idx;
998
999 new_idx = closest_thres(&adap->sge, cnt);
1000 if (q->desc && q->pktcnt_idx != new_idx) {
1001 /* the queue has already been created, update it */
1002 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1003 FW_PARAMS_PARAM_X_V(
1004 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1005 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1006 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1007 &v, &new_idx);
1008 if (err)
1009 return err;
1010 }
1011 q->pktcnt_idx = new_idx;
1012 }
1013
1014 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1015 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1016 return 0;
1017 }
1018
cxgb_set_features(struct net_device * dev,netdev_features_t features)1019 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1020 {
1021 const struct port_info *pi = netdev_priv(dev);
1022 netdev_features_t changed = dev->features ^ features;
1023 int err;
1024
1025 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1026 return 0;
1027
1028 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1029 -1, -1, -1,
1030 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1031 if (unlikely(err))
1032 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1033 return err;
1034 }
1035
setup_debugfs(struct adapter * adap)1036 static int setup_debugfs(struct adapter *adap)
1037 {
1038 if (IS_ERR_OR_NULL(adap->debugfs_root))
1039 return -1;
1040
1041 #ifdef CONFIG_DEBUG_FS
1042 t4_setup_debugfs(adap);
1043 #endif
1044 return 0;
1045 }
1046
1047 /*
1048 * upper-layer driver support
1049 */
1050
1051 /*
1052 * Allocate an active-open TID and set it to the supplied value.
1053 */
cxgb4_alloc_atid(struct tid_info * t,void * data)1054 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1055 {
1056 int atid = -1;
1057
1058 spin_lock_bh(&t->atid_lock);
1059 if (t->afree) {
1060 union aopen_entry *p = t->afree;
1061
1062 atid = (p - t->atid_tab) + t->atid_base;
1063 t->afree = p->next;
1064 p->data = data;
1065 t->atids_in_use++;
1066 }
1067 spin_unlock_bh(&t->atid_lock);
1068 return atid;
1069 }
1070 EXPORT_SYMBOL(cxgb4_alloc_atid);
1071
1072 /*
1073 * Release an active-open TID.
1074 */
cxgb4_free_atid(struct tid_info * t,unsigned int atid)1075 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1076 {
1077 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1078
1079 spin_lock_bh(&t->atid_lock);
1080 p->next = t->afree;
1081 t->afree = p;
1082 t->atids_in_use--;
1083 spin_unlock_bh(&t->atid_lock);
1084 }
1085 EXPORT_SYMBOL(cxgb4_free_atid);
1086
1087 /*
1088 * Allocate a server TID and set it to the supplied value.
1089 */
cxgb4_alloc_stid(struct tid_info * t,int family,void * data)1090 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1091 {
1092 int stid;
1093
1094 spin_lock_bh(&t->stid_lock);
1095 if (family == PF_INET) {
1096 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1097 if (stid < t->nstids)
1098 __set_bit(stid, t->stid_bmap);
1099 else
1100 stid = -1;
1101 } else {
1102 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1103 if (stid < 0)
1104 stid = -1;
1105 }
1106 if (stid >= 0) {
1107 t->stid_tab[stid].data = data;
1108 stid += t->stid_base;
1109 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1110 * This is equivalent to 4 TIDs. With CLIP enabled it
1111 * needs 2 TIDs.
1112 */
1113 if (family == PF_INET6) {
1114 t->stids_in_use += 2;
1115 t->v6_stids_in_use += 2;
1116 } else {
1117 t->stids_in_use++;
1118 }
1119 }
1120 spin_unlock_bh(&t->stid_lock);
1121 return stid;
1122 }
1123 EXPORT_SYMBOL(cxgb4_alloc_stid);
1124
1125 /* Allocate a server filter TID and set it to the supplied value.
1126 */
cxgb4_alloc_sftid(struct tid_info * t,int family,void * data)1127 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1128 {
1129 int stid;
1130
1131 spin_lock_bh(&t->stid_lock);
1132 if (family == PF_INET) {
1133 stid = find_next_zero_bit(t->stid_bmap,
1134 t->nstids + t->nsftids, t->nstids);
1135 if (stid < (t->nstids + t->nsftids))
1136 __set_bit(stid, t->stid_bmap);
1137 else
1138 stid = -1;
1139 } else {
1140 stid = -1;
1141 }
1142 if (stid >= 0) {
1143 t->stid_tab[stid].data = data;
1144 stid -= t->nstids;
1145 stid += t->sftid_base;
1146 t->sftids_in_use++;
1147 }
1148 spin_unlock_bh(&t->stid_lock);
1149 return stid;
1150 }
1151 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1152
1153 /* Release a server TID.
1154 */
cxgb4_free_stid(struct tid_info * t,unsigned int stid,int family)1155 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1156 {
1157 /* Is it a server filter TID? */
1158 if (t->nsftids && (stid >= t->sftid_base)) {
1159 stid -= t->sftid_base;
1160 stid += t->nstids;
1161 } else {
1162 stid -= t->stid_base;
1163 }
1164
1165 spin_lock_bh(&t->stid_lock);
1166 if (family == PF_INET)
1167 __clear_bit(stid, t->stid_bmap);
1168 else
1169 bitmap_release_region(t->stid_bmap, stid, 1);
1170 t->stid_tab[stid].data = NULL;
1171 if (stid < t->nstids) {
1172 if (family == PF_INET6) {
1173 t->stids_in_use -= 2;
1174 t->v6_stids_in_use -= 2;
1175 } else {
1176 t->stids_in_use--;
1177 }
1178 } else {
1179 t->sftids_in_use--;
1180 }
1181
1182 spin_unlock_bh(&t->stid_lock);
1183 }
1184 EXPORT_SYMBOL(cxgb4_free_stid);
1185
1186 /*
1187 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1188 */
mk_tid_release(struct sk_buff * skb,unsigned int chan,unsigned int tid)1189 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1190 unsigned int tid)
1191 {
1192 struct cpl_tid_release *req;
1193
1194 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1195 req = __skb_put(skb, sizeof(*req));
1196 INIT_TP_WR(req, tid);
1197 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1198 }
1199
1200 /*
1201 * Queue a TID release request and if necessary schedule a work queue to
1202 * process it.
1203 */
cxgb4_queue_tid_release(struct tid_info * t,unsigned int chan,unsigned int tid)1204 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1205 unsigned int tid)
1206 {
1207 void **p = &t->tid_tab[tid];
1208 struct adapter *adap = container_of(t, struct adapter, tids);
1209
1210 spin_lock_bh(&adap->tid_release_lock);
1211 *p = adap->tid_release_head;
1212 /* Low 2 bits encode the Tx channel number */
1213 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1214 if (!adap->tid_release_task_busy) {
1215 adap->tid_release_task_busy = true;
1216 queue_work(adap->workq, &adap->tid_release_task);
1217 }
1218 spin_unlock_bh(&adap->tid_release_lock);
1219 }
1220
1221 /*
1222 * Process the list of pending TID release requests.
1223 */
process_tid_release_list(struct work_struct * work)1224 static void process_tid_release_list(struct work_struct *work)
1225 {
1226 struct sk_buff *skb;
1227 struct adapter *adap;
1228
1229 adap = container_of(work, struct adapter, tid_release_task);
1230
1231 spin_lock_bh(&adap->tid_release_lock);
1232 while (adap->tid_release_head) {
1233 void **p = adap->tid_release_head;
1234 unsigned int chan = (uintptr_t)p & 3;
1235 p = (void *)p - chan;
1236
1237 adap->tid_release_head = *p;
1238 *p = NULL;
1239 spin_unlock_bh(&adap->tid_release_lock);
1240
1241 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1242 GFP_KERNEL)))
1243 schedule_timeout_uninterruptible(1);
1244
1245 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1246 t4_ofld_send(adap, skb);
1247 spin_lock_bh(&adap->tid_release_lock);
1248 }
1249 adap->tid_release_task_busy = false;
1250 spin_unlock_bh(&adap->tid_release_lock);
1251 }
1252
1253 /*
1254 * Release a TID and inform HW. If we are unable to allocate the release
1255 * message we defer to a work queue.
1256 */
cxgb4_remove_tid(struct tid_info * t,unsigned int chan,unsigned int tid,unsigned short family)1257 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1258 unsigned short family)
1259 {
1260 struct sk_buff *skb;
1261 struct adapter *adap = container_of(t, struct adapter, tids);
1262
1263 WARN_ON(tid >= t->ntids);
1264
1265 if (t->tid_tab[tid]) {
1266 t->tid_tab[tid] = NULL;
1267 atomic_dec(&t->conns_in_use);
1268 if (t->hash_base && (tid >= t->hash_base)) {
1269 if (family == AF_INET6)
1270 atomic_sub(2, &t->hash_tids_in_use);
1271 else
1272 atomic_dec(&t->hash_tids_in_use);
1273 } else {
1274 if (family == AF_INET6)
1275 atomic_sub(2, &t->tids_in_use);
1276 else
1277 atomic_dec(&t->tids_in_use);
1278 }
1279 }
1280
1281 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1282 if (likely(skb)) {
1283 mk_tid_release(skb, chan, tid);
1284 t4_ofld_send(adap, skb);
1285 } else
1286 cxgb4_queue_tid_release(t, chan, tid);
1287 }
1288 EXPORT_SYMBOL(cxgb4_remove_tid);
1289
1290 /*
1291 * Allocate and initialize the TID tables. Returns 0 on success.
1292 */
tid_init(struct tid_info * t)1293 static int tid_init(struct tid_info *t)
1294 {
1295 struct adapter *adap = container_of(t, struct adapter, tids);
1296 unsigned int max_ftids = t->nftids + t->nsftids;
1297 unsigned int natids = t->natids;
1298 unsigned int stid_bmap_size;
1299 unsigned int ftid_bmap_size;
1300 size_t size;
1301
1302 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1303 ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1304 size = t->ntids * sizeof(*t->tid_tab) +
1305 natids * sizeof(*t->atid_tab) +
1306 t->nstids * sizeof(*t->stid_tab) +
1307 t->nsftids * sizeof(*t->stid_tab) +
1308 stid_bmap_size * sizeof(long) +
1309 max_ftids * sizeof(*t->ftid_tab) +
1310 ftid_bmap_size * sizeof(long);
1311
1312 t->tid_tab = kvzalloc(size, GFP_KERNEL);
1313 if (!t->tid_tab)
1314 return -ENOMEM;
1315
1316 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1317 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1318 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1319 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1320 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1321 spin_lock_init(&t->stid_lock);
1322 spin_lock_init(&t->atid_lock);
1323 spin_lock_init(&t->ftid_lock);
1324
1325 t->stids_in_use = 0;
1326 t->v6_stids_in_use = 0;
1327 t->sftids_in_use = 0;
1328 t->afree = NULL;
1329 t->atids_in_use = 0;
1330 atomic_set(&t->tids_in_use, 0);
1331 atomic_set(&t->conns_in_use, 0);
1332 atomic_set(&t->hash_tids_in_use, 0);
1333
1334 /* Setup the free list for atid_tab and clear the stid bitmap. */
1335 if (natids) {
1336 while (--natids)
1337 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1338 t->afree = t->atid_tab;
1339 }
1340
1341 if (is_offload(adap)) {
1342 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1343 /* Reserve stid 0 for T4/T5 adapters */
1344 if (!t->stid_base &&
1345 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1346 __set_bit(0, t->stid_bmap);
1347 }
1348
1349 bitmap_zero(t->ftid_bmap, t->nftids);
1350 return 0;
1351 }
1352
1353 /**
1354 * cxgb4_create_server - create an IP server
1355 * @dev: the device
1356 * @stid: the server TID
1357 * @sip: local IP address to bind server to
1358 * @sport: the server's TCP port
1359 * @queue: queue to direct messages from this server to
1360 *
1361 * Create an IP server for the given port and address.
1362 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1363 */
cxgb4_create_server(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue)1364 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1365 __be32 sip, __be16 sport, __be16 vlan,
1366 unsigned int queue)
1367 {
1368 unsigned int chan;
1369 struct sk_buff *skb;
1370 struct adapter *adap;
1371 struct cpl_pass_open_req *req;
1372 int ret;
1373
1374 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1375 if (!skb)
1376 return -ENOMEM;
1377
1378 adap = netdev2adap(dev);
1379 req = __skb_put(skb, sizeof(*req));
1380 INIT_TP_WR(req, 0);
1381 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1382 req->local_port = sport;
1383 req->peer_port = htons(0);
1384 req->local_ip = sip;
1385 req->peer_ip = htonl(0);
1386 chan = rxq_to_chan(&adap->sge, queue);
1387 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1388 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1389 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1390 ret = t4_mgmt_tx(adap, skb);
1391 return net_xmit_eval(ret);
1392 }
1393 EXPORT_SYMBOL(cxgb4_create_server);
1394
1395 /* cxgb4_create_server6 - create an IPv6 server
1396 * @dev: the device
1397 * @stid: the server TID
1398 * @sip: local IPv6 address to bind server to
1399 * @sport: the server's TCP port
1400 * @queue: queue to direct messages from this server to
1401 *
1402 * Create an IPv6 server for the given port and address.
1403 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1404 */
cxgb4_create_server6(const struct net_device * dev,unsigned int stid,const struct in6_addr * sip,__be16 sport,unsigned int queue)1405 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1406 const struct in6_addr *sip, __be16 sport,
1407 unsigned int queue)
1408 {
1409 unsigned int chan;
1410 struct sk_buff *skb;
1411 struct adapter *adap;
1412 struct cpl_pass_open_req6 *req;
1413 int ret;
1414
1415 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1416 if (!skb)
1417 return -ENOMEM;
1418
1419 adap = netdev2adap(dev);
1420 req = __skb_put(skb, sizeof(*req));
1421 INIT_TP_WR(req, 0);
1422 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1423 req->local_port = sport;
1424 req->peer_port = htons(0);
1425 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1426 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1427 req->peer_ip_hi = cpu_to_be64(0);
1428 req->peer_ip_lo = cpu_to_be64(0);
1429 chan = rxq_to_chan(&adap->sge, queue);
1430 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1431 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1432 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1433 ret = t4_mgmt_tx(adap, skb);
1434 return net_xmit_eval(ret);
1435 }
1436 EXPORT_SYMBOL(cxgb4_create_server6);
1437
cxgb4_remove_server(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)1438 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1439 unsigned int queue, bool ipv6)
1440 {
1441 struct sk_buff *skb;
1442 struct adapter *adap;
1443 struct cpl_close_listsvr_req *req;
1444 int ret;
1445
1446 adap = netdev2adap(dev);
1447
1448 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1449 if (!skb)
1450 return -ENOMEM;
1451
1452 req = __skb_put(skb, sizeof(*req));
1453 INIT_TP_WR(req, 0);
1454 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1455 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1456 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1457 ret = t4_mgmt_tx(adap, skb);
1458 return net_xmit_eval(ret);
1459 }
1460 EXPORT_SYMBOL(cxgb4_remove_server);
1461
1462 /**
1463 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1464 * @mtus: the HW MTU table
1465 * @mtu: the target MTU
1466 * @idx: index of selected entry in the MTU table
1467 *
1468 * Returns the index and the value in the HW MTU table that is closest to
1469 * but does not exceed @mtu, unless @mtu is smaller than any value in the
1470 * table, in which case that smallest available value is selected.
1471 */
cxgb4_best_mtu(const unsigned short * mtus,unsigned short mtu,unsigned int * idx)1472 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1473 unsigned int *idx)
1474 {
1475 unsigned int i = 0;
1476
1477 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1478 ++i;
1479 if (idx)
1480 *idx = i;
1481 return mtus[i];
1482 }
1483 EXPORT_SYMBOL(cxgb4_best_mtu);
1484
1485 /**
1486 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1487 * @mtus: the HW MTU table
1488 * @header_size: Header Size
1489 * @data_size_max: maximum Data Segment Size
1490 * @data_size_align: desired Data Segment Size Alignment (2^N)
1491 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1492 *
1493 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
1494 * MTU Table based solely on a Maximum MTU parameter, we break that
1495 * parameter up into a Header Size and Maximum Data Segment Size, and
1496 * provide a desired Data Segment Size Alignment. If we find an MTU in
1497 * the Hardware MTU Table which will result in a Data Segment Size with
1498 * the requested alignment _and_ that MTU isn't "too far" from the
1499 * closest MTU, then we'll return that rather than the closest MTU.
1500 */
cxgb4_best_aligned_mtu(const unsigned short * mtus,unsigned short header_size,unsigned short data_size_max,unsigned short data_size_align,unsigned int * mtu_idxp)1501 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1502 unsigned short header_size,
1503 unsigned short data_size_max,
1504 unsigned short data_size_align,
1505 unsigned int *mtu_idxp)
1506 {
1507 unsigned short max_mtu = header_size + data_size_max;
1508 unsigned short data_size_align_mask = data_size_align - 1;
1509 int mtu_idx, aligned_mtu_idx;
1510
1511 /* Scan the MTU Table till we find an MTU which is larger than our
1512 * Maximum MTU or we reach the end of the table. Along the way,
1513 * record the last MTU found, if any, which will result in a Data
1514 * Segment Length matching the requested alignment.
1515 */
1516 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1517 unsigned short data_size = mtus[mtu_idx] - header_size;
1518
1519 /* If this MTU minus the Header Size would result in a
1520 * Data Segment Size of the desired alignment, remember it.
1521 */
1522 if ((data_size & data_size_align_mask) == 0)
1523 aligned_mtu_idx = mtu_idx;
1524
1525 /* If we're not at the end of the Hardware MTU Table and the
1526 * next element is larger than our Maximum MTU, drop out of
1527 * the loop.
1528 */
1529 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1530 break;
1531 }
1532
1533 /* If we fell out of the loop because we ran to the end of the table,
1534 * then we just have to use the last [largest] entry.
1535 */
1536 if (mtu_idx == NMTUS)
1537 mtu_idx--;
1538
1539 /* If we found an MTU which resulted in the requested Data Segment
1540 * Length alignment and that's "not far" from the largest MTU which is
1541 * less than or equal to the maximum MTU, then use that.
1542 */
1543 if (aligned_mtu_idx >= 0 &&
1544 mtu_idx - aligned_mtu_idx <= 1)
1545 mtu_idx = aligned_mtu_idx;
1546
1547 /* If the caller has passed in an MTU Index pointer, pass the
1548 * MTU Index back. Return the MTU value.
1549 */
1550 if (mtu_idxp)
1551 *mtu_idxp = mtu_idx;
1552 return mtus[mtu_idx];
1553 }
1554 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1555
1556 /**
1557 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1558 * @chip: chip type
1559 * @viid: VI id of the given port
1560 *
1561 * Return the SMT index for this VI.
1562 */
cxgb4_tp_smt_idx(enum chip_type chip,unsigned int viid)1563 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1564 {
1565 /* In T4/T5, SMT contains 256 SMAC entries organized in
1566 * 128 rows of 2 entries each.
1567 * In T6, SMT contains 256 SMAC entries in 256 rows.
1568 * TODO: The below code needs to be updated when we add support
1569 * for 256 VFs.
1570 */
1571 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1572 return ((viid & 0x7f) << 1);
1573 else
1574 return (viid & 0x7f);
1575 }
1576 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1577
1578 /**
1579 * cxgb4_port_chan - get the HW channel of a port
1580 * @dev: the net device for the port
1581 *
1582 * Return the HW Tx channel of the given port.
1583 */
cxgb4_port_chan(const struct net_device * dev)1584 unsigned int cxgb4_port_chan(const struct net_device *dev)
1585 {
1586 return netdev2pinfo(dev)->tx_chan;
1587 }
1588 EXPORT_SYMBOL(cxgb4_port_chan);
1589
cxgb4_dbfifo_count(const struct net_device * dev,int lpfifo)1590 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1591 {
1592 struct adapter *adap = netdev2adap(dev);
1593 u32 v1, v2, lp_count, hp_count;
1594
1595 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1596 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1597 if (is_t4(adap->params.chip)) {
1598 lp_count = LP_COUNT_G(v1);
1599 hp_count = HP_COUNT_G(v1);
1600 } else {
1601 lp_count = LP_COUNT_T5_G(v1);
1602 hp_count = HP_COUNT_T5_G(v2);
1603 }
1604 return lpfifo ? lp_count : hp_count;
1605 }
1606 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1607
1608 /**
1609 * cxgb4_port_viid - get the VI id of a port
1610 * @dev: the net device for the port
1611 *
1612 * Return the VI id of the given port.
1613 */
cxgb4_port_viid(const struct net_device * dev)1614 unsigned int cxgb4_port_viid(const struct net_device *dev)
1615 {
1616 return netdev2pinfo(dev)->viid;
1617 }
1618 EXPORT_SYMBOL(cxgb4_port_viid);
1619
1620 /**
1621 * cxgb4_port_idx - get the index of a port
1622 * @dev: the net device for the port
1623 *
1624 * Return the index of the given port.
1625 */
cxgb4_port_idx(const struct net_device * dev)1626 unsigned int cxgb4_port_idx(const struct net_device *dev)
1627 {
1628 return netdev2pinfo(dev)->port_id;
1629 }
1630 EXPORT_SYMBOL(cxgb4_port_idx);
1631
cxgb4_get_tcp_stats(struct pci_dev * pdev,struct tp_tcp_stats * v4,struct tp_tcp_stats * v6)1632 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1633 struct tp_tcp_stats *v6)
1634 {
1635 struct adapter *adap = pci_get_drvdata(pdev);
1636
1637 spin_lock(&adap->stats_lock);
1638 t4_tp_get_tcp_stats(adap, v4, v6);
1639 spin_unlock(&adap->stats_lock);
1640 }
1641 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1642
cxgb4_iscsi_init(struct net_device * dev,unsigned int tag_mask,const unsigned int * pgsz_order)1643 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1644 const unsigned int *pgsz_order)
1645 {
1646 struct adapter *adap = netdev2adap(dev);
1647
1648 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1649 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1650 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1651 HPZ3_V(pgsz_order[3]));
1652 }
1653 EXPORT_SYMBOL(cxgb4_iscsi_init);
1654
cxgb4_flush_eq_cache(struct net_device * dev)1655 int cxgb4_flush_eq_cache(struct net_device *dev)
1656 {
1657 struct adapter *adap = netdev2adap(dev);
1658
1659 return t4_sge_ctxt_flush(adap, adap->mbox);
1660 }
1661 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1662
read_eq_indices(struct adapter * adap,u16 qid,u16 * pidx,u16 * cidx)1663 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1664 {
1665 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1666 __be64 indices;
1667 int ret;
1668
1669 spin_lock(&adap->win0_lock);
1670 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1671 sizeof(indices), (__be32 *)&indices,
1672 T4_MEMORY_READ);
1673 spin_unlock(&adap->win0_lock);
1674 if (!ret) {
1675 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1676 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1677 }
1678 return ret;
1679 }
1680
cxgb4_sync_txq_pidx(struct net_device * dev,u16 qid,u16 pidx,u16 size)1681 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1682 u16 size)
1683 {
1684 struct adapter *adap = netdev2adap(dev);
1685 u16 hw_pidx, hw_cidx;
1686 int ret;
1687
1688 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1689 if (ret)
1690 goto out;
1691
1692 if (pidx != hw_pidx) {
1693 u16 delta;
1694 u32 val;
1695
1696 if (pidx >= hw_pidx)
1697 delta = pidx - hw_pidx;
1698 else
1699 delta = size - hw_pidx + pidx;
1700
1701 if (is_t4(adap->params.chip))
1702 val = PIDX_V(delta);
1703 else
1704 val = PIDX_T5_V(delta);
1705 wmb();
1706 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1707 QID_V(qid) | val);
1708 }
1709 out:
1710 return ret;
1711 }
1712 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1713
cxgb4_read_tpte(struct net_device * dev,u32 stag,__be32 * tpte)1714 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1715 {
1716 struct adapter *adap;
1717 u32 offset, memtype, memaddr;
1718 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1719 u32 edc0_end, edc1_end, mc0_end, mc1_end;
1720 int ret;
1721
1722 adap = netdev2adap(dev);
1723
1724 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1725
1726 /* Figure out where the offset lands in the Memory Type/Address scheme.
1727 * This code assumes that the memory is laid out starting at offset 0
1728 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1729 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
1730 * MC0, and some have both MC0 and MC1.
1731 */
1732 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1733 edc0_size = EDRAM0_SIZE_G(size) << 20;
1734 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1735 edc1_size = EDRAM1_SIZE_G(size) << 20;
1736 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1737 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1738
1739 edc0_end = edc0_size;
1740 edc1_end = edc0_end + edc1_size;
1741 mc0_end = edc1_end + mc0_size;
1742
1743 if (offset < edc0_end) {
1744 memtype = MEM_EDC0;
1745 memaddr = offset;
1746 } else if (offset < edc1_end) {
1747 memtype = MEM_EDC1;
1748 memaddr = offset - edc0_end;
1749 } else {
1750 if (offset < mc0_end) {
1751 memtype = MEM_MC0;
1752 memaddr = offset - edc1_end;
1753 } else if (is_t5(adap->params.chip)) {
1754 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1755 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1756 mc1_end = mc0_end + mc1_size;
1757 if (offset < mc1_end) {
1758 memtype = MEM_MC1;
1759 memaddr = offset - mc0_end;
1760 } else {
1761 /* offset beyond the end of any memory */
1762 goto err;
1763 }
1764 } else {
1765 /* T4/T6 only has a single memory channel */
1766 goto err;
1767 }
1768 }
1769
1770 spin_lock(&adap->win0_lock);
1771 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1772 spin_unlock(&adap->win0_lock);
1773 return ret;
1774
1775 err:
1776 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1777 stag, offset);
1778 return -EINVAL;
1779 }
1780 EXPORT_SYMBOL(cxgb4_read_tpte);
1781
cxgb4_read_sge_timestamp(struct net_device * dev)1782 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1783 {
1784 u32 hi, lo;
1785 struct adapter *adap;
1786
1787 adap = netdev2adap(dev);
1788 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1789 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1790
1791 return ((u64)hi << 32) | (u64)lo;
1792 }
1793 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1794
cxgb4_bar2_sge_qregs(struct net_device * dev,unsigned int qid,enum cxgb4_bar2_qtype qtype,int user,u64 * pbar2_qoffset,unsigned int * pbar2_qid)1795 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1796 unsigned int qid,
1797 enum cxgb4_bar2_qtype qtype,
1798 int user,
1799 u64 *pbar2_qoffset,
1800 unsigned int *pbar2_qid)
1801 {
1802 return t4_bar2_sge_qregs(netdev2adap(dev),
1803 qid,
1804 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1805 ? T4_BAR2_QTYPE_EGRESS
1806 : T4_BAR2_QTYPE_INGRESS),
1807 user,
1808 pbar2_qoffset,
1809 pbar2_qid);
1810 }
1811 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1812
1813 static struct pci_driver cxgb4_driver;
1814
check_neigh_update(struct neighbour * neigh)1815 static void check_neigh_update(struct neighbour *neigh)
1816 {
1817 const struct device *parent;
1818 const struct net_device *netdev = neigh->dev;
1819
1820 if (is_vlan_dev(netdev))
1821 netdev = vlan_dev_real_dev(netdev);
1822 parent = netdev->dev.parent;
1823 if (parent && parent->driver == &cxgb4_driver.driver)
1824 t4_l2t_update(dev_get_drvdata(parent), neigh);
1825 }
1826
netevent_cb(struct notifier_block * nb,unsigned long event,void * data)1827 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1828 void *data)
1829 {
1830 switch (event) {
1831 case NETEVENT_NEIGH_UPDATE:
1832 check_neigh_update(data);
1833 break;
1834 case NETEVENT_REDIRECT:
1835 default:
1836 break;
1837 }
1838 return 0;
1839 }
1840
1841 static bool netevent_registered;
1842 static struct notifier_block cxgb4_netevent_nb = {
1843 .notifier_call = netevent_cb
1844 };
1845
drain_db_fifo(struct adapter * adap,int usecs)1846 static void drain_db_fifo(struct adapter *adap, int usecs)
1847 {
1848 u32 v1, v2, lp_count, hp_count;
1849
1850 do {
1851 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1852 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1853 if (is_t4(adap->params.chip)) {
1854 lp_count = LP_COUNT_G(v1);
1855 hp_count = HP_COUNT_G(v1);
1856 } else {
1857 lp_count = LP_COUNT_T5_G(v1);
1858 hp_count = HP_COUNT_T5_G(v2);
1859 }
1860
1861 if (lp_count == 0 && hp_count == 0)
1862 break;
1863 set_current_state(TASK_UNINTERRUPTIBLE);
1864 schedule_timeout(usecs_to_jiffies(usecs));
1865 } while (1);
1866 }
1867
disable_txq_db(struct sge_txq * q)1868 static void disable_txq_db(struct sge_txq *q)
1869 {
1870 unsigned long flags;
1871
1872 spin_lock_irqsave(&q->db_lock, flags);
1873 q->db_disabled = 1;
1874 spin_unlock_irqrestore(&q->db_lock, flags);
1875 }
1876
enable_txq_db(struct adapter * adap,struct sge_txq * q)1877 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1878 {
1879 spin_lock_irq(&q->db_lock);
1880 if (q->db_pidx_inc) {
1881 /* Make sure that all writes to the TX descriptors
1882 * are committed before we tell HW about them.
1883 */
1884 wmb();
1885 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1886 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1887 q->db_pidx_inc = 0;
1888 }
1889 q->db_disabled = 0;
1890 spin_unlock_irq(&q->db_lock);
1891 }
1892
disable_dbs(struct adapter * adap)1893 static void disable_dbs(struct adapter *adap)
1894 {
1895 int i;
1896
1897 for_each_ethrxq(&adap->sge, i)
1898 disable_txq_db(&adap->sge.ethtxq[i].q);
1899 if (is_offload(adap)) {
1900 struct sge_uld_txq_info *txq_info =
1901 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1902
1903 if (txq_info) {
1904 for_each_ofldtxq(&adap->sge, i) {
1905 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1906
1907 disable_txq_db(&txq->q);
1908 }
1909 }
1910 }
1911 for_each_port(adap, i)
1912 disable_txq_db(&adap->sge.ctrlq[i].q);
1913 }
1914
enable_dbs(struct adapter * adap)1915 static void enable_dbs(struct adapter *adap)
1916 {
1917 int i;
1918
1919 for_each_ethrxq(&adap->sge, i)
1920 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1921 if (is_offload(adap)) {
1922 struct sge_uld_txq_info *txq_info =
1923 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1924
1925 if (txq_info) {
1926 for_each_ofldtxq(&adap->sge, i) {
1927 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1928
1929 enable_txq_db(adap, &txq->q);
1930 }
1931 }
1932 }
1933 for_each_port(adap, i)
1934 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1935 }
1936
notify_rdma_uld(struct adapter * adap,enum cxgb4_control cmd)1937 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1938 {
1939 enum cxgb4_uld type = CXGB4_ULD_RDMA;
1940
1941 if (adap->uld && adap->uld[type].handle)
1942 adap->uld[type].control(adap->uld[type].handle, cmd);
1943 }
1944
process_db_full(struct work_struct * work)1945 static void process_db_full(struct work_struct *work)
1946 {
1947 struct adapter *adap;
1948
1949 adap = container_of(work, struct adapter, db_full_task);
1950
1951 drain_db_fifo(adap, dbfifo_drain_delay);
1952 enable_dbs(adap);
1953 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1954 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1955 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1956 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1957 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1958 else
1959 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1960 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1961 }
1962
sync_txq_pidx(struct adapter * adap,struct sge_txq * q)1963 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
1964 {
1965 u16 hw_pidx, hw_cidx;
1966 int ret;
1967
1968 spin_lock_irq(&q->db_lock);
1969 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
1970 if (ret)
1971 goto out;
1972 if (q->db_pidx != hw_pidx) {
1973 u16 delta;
1974 u32 val;
1975
1976 if (q->db_pidx >= hw_pidx)
1977 delta = q->db_pidx - hw_pidx;
1978 else
1979 delta = q->size - hw_pidx + q->db_pidx;
1980
1981 if (is_t4(adap->params.chip))
1982 val = PIDX_V(delta);
1983 else
1984 val = PIDX_T5_V(delta);
1985 wmb();
1986 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1987 QID_V(q->cntxt_id) | val);
1988 }
1989 out:
1990 q->db_disabled = 0;
1991 q->db_pidx_inc = 0;
1992 spin_unlock_irq(&q->db_lock);
1993 if (ret)
1994 CH_WARN(adap, "DB drop recovery failed.\n");
1995 }
1996
recover_all_queues(struct adapter * adap)1997 static void recover_all_queues(struct adapter *adap)
1998 {
1999 int i;
2000
2001 for_each_ethrxq(&adap->sge, i)
2002 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2003 if (is_offload(adap)) {
2004 struct sge_uld_txq_info *txq_info =
2005 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2006 if (txq_info) {
2007 for_each_ofldtxq(&adap->sge, i) {
2008 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2009
2010 sync_txq_pidx(adap, &txq->q);
2011 }
2012 }
2013 }
2014 for_each_port(adap, i)
2015 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2016 }
2017
process_db_drop(struct work_struct * work)2018 static void process_db_drop(struct work_struct *work)
2019 {
2020 struct adapter *adap;
2021
2022 adap = container_of(work, struct adapter, db_drop_task);
2023
2024 if (is_t4(adap->params.chip)) {
2025 drain_db_fifo(adap, dbfifo_drain_delay);
2026 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2027 drain_db_fifo(adap, dbfifo_drain_delay);
2028 recover_all_queues(adap);
2029 drain_db_fifo(adap, dbfifo_drain_delay);
2030 enable_dbs(adap);
2031 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2032 } else if (is_t5(adap->params.chip)) {
2033 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2034 u16 qid = (dropped_db >> 15) & 0x1ffff;
2035 u16 pidx_inc = dropped_db & 0x1fff;
2036 u64 bar2_qoffset;
2037 unsigned int bar2_qid;
2038 int ret;
2039
2040 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2041 0, &bar2_qoffset, &bar2_qid);
2042 if (ret)
2043 dev_err(adap->pdev_dev, "doorbell drop recovery: "
2044 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2045 else
2046 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2047 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2048
2049 /* Re-enable BAR2 WC */
2050 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2051 }
2052
2053 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2054 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2055 }
2056
t4_db_full(struct adapter * adap)2057 void t4_db_full(struct adapter *adap)
2058 {
2059 if (is_t4(adap->params.chip)) {
2060 disable_dbs(adap);
2061 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2062 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2063 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2064 queue_work(adap->workq, &adap->db_full_task);
2065 }
2066 }
2067
t4_db_dropped(struct adapter * adap)2068 void t4_db_dropped(struct adapter *adap)
2069 {
2070 if (is_t4(adap->params.chip)) {
2071 disable_dbs(adap);
2072 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2073 }
2074 queue_work(adap->workq, &adap->db_drop_task);
2075 }
2076
t4_register_netevent_notifier(void)2077 void t4_register_netevent_notifier(void)
2078 {
2079 if (!netevent_registered) {
2080 register_netevent_notifier(&cxgb4_netevent_nb);
2081 netevent_registered = true;
2082 }
2083 }
2084
detach_ulds(struct adapter * adap)2085 static void detach_ulds(struct adapter *adap)
2086 {
2087 unsigned int i;
2088
2089 mutex_lock(&uld_mutex);
2090 list_del(&adap->list_node);
2091
2092 for (i = 0; i < CXGB4_ULD_MAX; i++)
2093 if (adap->uld && adap->uld[i].handle)
2094 adap->uld[i].state_change(adap->uld[i].handle,
2095 CXGB4_STATE_DETACH);
2096
2097 if (netevent_registered && list_empty(&adapter_list)) {
2098 unregister_netevent_notifier(&cxgb4_netevent_nb);
2099 netevent_registered = false;
2100 }
2101 mutex_unlock(&uld_mutex);
2102 }
2103
notify_ulds(struct adapter * adap,enum cxgb4_state new_state)2104 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2105 {
2106 unsigned int i;
2107
2108 mutex_lock(&uld_mutex);
2109 for (i = 0; i < CXGB4_ULD_MAX; i++)
2110 if (adap->uld && adap->uld[i].handle)
2111 adap->uld[i].state_change(adap->uld[i].handle,
2112 new_state);
2113 mutex_unlock(&uld_mutex);
2114 }
2115
2116 #if IS_ENABLED(CONFIG_IPV6)
cxgb4_inet6addr_handler(struct notifier_block * this,unsigned long event,void * data)2117 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2118 unsigned long event, void *data)
2119 {
2120 struct inet6_ifaddr *ifa = data;
2121 struct net_device *event_dev = ifa->idev->dev;
2122 const struct device *parent = NULL;
2123 #if IS_ENABLED(CONFIG_BONDING)
2124 struct adapter *adap;
2125 #endif
2126 if (is_vlan_dev(event_dev))
2127 event_dev = vlan_dev_real_dev(event_dev);
2128 #if IS_ENABLED(CONFIG_BONDING)
2129 if (event_dev->flags & IFF_MASTER) {
2130 list_for_each_entry(adap, &adapter_list, list_node) {
2131 switch (event) {
2132 case NETDEV_UP:
2133 cxgb4_clip_get(adap->port[0],
2134 (const u32 *)ifa, 1);
2135 break;
2136 case NETDEV_DOWN:
2137 cxgb4_clip_release(adap->port[0],
2138 (const u32 *)ifa, 1);
2139 break;
2140 default:
2141 break;
2142 }
2143 }
2144 return NOTIFY_OK;
2145 }
2146 #endif
2147
2148 if (event_dev)
2149 parent = event_dev->dev.parent;
2150
2151 if (parent && parent->driver == &cxgb4_driver.driver) {
2152 switch (event) {
2153 case NETDEV_UP:
2154 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2155 break;
2156 case NETDEV_DOWN:
2157 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2158 break;
2159 default:
2160 break;
2161 }
2162 }
2163 return NOTIFY_OK;
2164 }
2165
2166 static bool inet6addr_registered;
2167 static struct notifier_block cxgb4_inet6addr_notifier = {
2168 .notifier_call = cxgb4_inet6addr_handler
2169 };
2170
update_clip(const struct adapter * adap)2171 static void update_clip(const struct adapter *adap)
2172 {
2173 int i;
2174 struct net_device *dev;
2175 int ret;
2176
2177 rcu_read_lock();
2178
2179 for (i = 0; i < MAX_NPORTS; i++) {
2180 dev = adap->port[i];
2181 ret = 0;
2182
2183 if (dev)
2184 ret = cxgb4_update_root_dev_clip(dev);
2185
2186 if (ret < 0)
2187 break;
2188 }
2189 rcu_read_unlock();
2190 }
2191 #endif /* IS_ENABLED(CONFIG_IPV6) */
2192
2193 /**
2194 * cxgb_up - enable the adapter
2195 * @adap: adapter being enabled
2196 *
2197 * Called when the first port is enabled, this function performs the
2198 * actions necessary to make an adapter operational, such as completing
2199 * the initialization of HW modules, and enabling interrupts.
2200 *
2201 * Must be called with the rtnl lock held.
2202 */
cxgb_up(struct adapter * adap)2203 static int cxgb_up(struct adapter *adap)
2204 {
2205 int err;
2206
2207 mutex_lock(&uld_mutex);
2208 err = setup_sge_queues(adap);
2209 if (err)
2210 goto rel_lock;
2211 err = setup_rss(adap);
2212 if (err)
2213 goto freeq;
2214
2215 if (adap->flags & USING_MSIX) {
2216 name_msix_vecs(adap);
2217 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2218 adap->msix_info[0].desc, adap);
2219 if (err)
2220 goto irq_err;
2221 err = request_msix_queue_irqs(adap);
2222 if (err) {
2223 free_irq(adap->msix_info[0].vec, adap);
2224 goto irq_err;
2225 }
2226 } else {
2227 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2228 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2229 adap->port[0]->name, adap);
2230 if (err)
2231 goto irq_err;
2232 }
2233
2234 enable_rx(adap);
2235 t4_sge_start(adap);
2236 t4_intr_enable(adap);
2237 adap->flags |= FULL_INIT_DONE;
2238 mutex_unlock(&uld_mutex);
2239
2240 notify_ulds(adap, CXGB4_STATE_UP);
2241 #if IS_ENABLED(CONFIG_IPV6)
2242 update_clip(adap);
2243 #endif
2244 /* Initialize hash mac addr list*/
2245 INIT_LIST_HEAD(&adap->mac_hlist);
2246 return err;
2247
2248 irq_err:
2249 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2250 freeq:
2251 t4_free_sge_resources(adap);
2252 rel_lock:
2253 mutex_unlock(&uld_mutex);
2254 return err;
2255 }
2256
cxgb_down(struct adapter * adapter)2257 static void cxgb_down(struct adapter *adapter)
2258 {
2259 cancel_work_sync(&adapter->tid_release_task);
2260 cancel_work_sync(&adapter->db_full_task);
2261 cancel_work_sync(&adapter->db_drop_task);
2262 adapter->tid_release_task_busy = false;
2263 adapter->tid_release_head = NULL;
2264
2265 t4_sge_stop(adapter);
2266 t4_free_sge_resources(adapter);
2267 adapter->flags &= ~FULL_INIT_DONE;
2268 }
2269
2270 /*
2271 * net_device operations
2272 */
cxgb_open(struct net_device * dev)2273 static int cxgb_open(struct net_device *dev)
2274 {
2275 int err;
2276 struct port_info *pi = netdev_priv(dev);
2277 struct adapter *adapter = pi->adapter;
2278
2279 netif_carrier_off(dev);
2280
2281 if (!(adapter->flags & FULL_INIT_DONE)) {
2282 err = cxgb_up(adapter);
2283 if (err < 0)
2284 return err;
2285 }
2286
2287 /* It's possible that the basic port information could have
2288 * changed since we first read it.
2289 */
2290 err = t4_update_port_info(pi);
2291 if (err < 0)
2292 return err;
2293
2294 err = link_start(dev);
2295 if (!err)
2296 netif_tx_start_all_queues(dev);
2297 return err;
2298 }
2299
cxgb_close(struct net_device * dev)2300 static int cxgb_close(struct net_device *dev)
2301 {
2302 struct port_info *pi = netdev_priv(dev);
2303 struct adapter *adapter = pi->adapter;
2304
2305 netif_tx_stop_all_queues(dev);
2306 netif_carrier_off(dev);
2307 return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2308 }
2309
cxgb4_create_server_filter(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue,unsigned char port,unsigned char mask)2310 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2311 __be32 sip, __be16 sport, __be16 vlan,
2312 unsigned int queue, unsigned char port, unsigned char mask)
2313 {
2314 int ret;
2315 struct filter_entry *f;
2316 struct adapter *adap;
2317 int i;
2318 u8 *val;
2319
2320 adap = netdev2adap(dev);
2321
2322 /* Adjust stid to correct filter index */
2323 stid -= adap->tids.sftid_base;
2324 stid += adap->tids.nftids;
2325
2326 /* Check to make sure the filter requested is writable ...
2327 */
2328 f = &adap->tids.ftid_tab[stid];
2329 ret = writable_filter(f);
2330 if (ret)
2331 return ret;
2332
2333 /* Clear out any old resources being used by the filter before
2334 * we start constructing the new filter.
2335 */
2336 if (f->valid)
2337 clear_filter(adap, f);
2338
2339 /* Clear out filter specifications */
2340 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2341 f->fs.val.lport = cpu_to_be16(sport);
2342 f->fs.mask.lport = ~0;
2343 val = (u8 *)&sip;
2344 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2345 for (i = 0; i < 4; i++) {
2346 f->fs.val.lip[i] = val[i];
2347 f->fs.mask.lip[i] = ~0;
2348 }
2349 if (adap->params.tp.vlan_pri_map & PORT_F) {
2350 f->fs.val.iport = port;
2351 f->fs.mask.iport = mask;
2352 }
2353 }
2354
2355 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2356 f->fs.val.proto = IPPROTO_TCP;
2357 f->fs.mask.proto = ~0;
2358 }
2359
2360 f->fs.dirsteer = 1;
2361 f->fs.iq = queue;
2362 /* Mark filter as locked */
2363 f->locked = 1;
2364 f->fs.rpttid = 1;
2365
2366 /* Save the actual tid. We need this to get the corresponding
2367 * filter entry structure in filter_rpl.
2368 */
2369 f->tid = stid + adap->tids.ftid_base;
2370 ret = set_filter_wr(adap, stid);
2371 if (ret) {
2372 clear_filter(adap, f);
2373 return ret;
2374 }
2375
2376 return 0;
2377 }
2378 EXPORT_SYMBOL(cxgb4_create_server_filter);
2379
cxgb4_remove_server_filter(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)2380 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2381 unsigned int queue, bool ipv6)
2382 {
2383 struct filter_entry *f;
2384 struct adapter *adap;
2385
2386 adap = netdev2adap(dev);
2387
2388 /* Adjust stid to correct filter index */
2389 stid -= adap->tids.sftid_base;
2390 stid += adap->tids.nftids;
2391
2392 f = &adap->tids.ftid_tab[stid];
2393 /* Unlock the filter */
2394 f->locked = 0;
2395
2396 return delete_filter(adap, stid);
2397 }
2398 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2399
cxgb_get_stats(struct net_device * dev,struct rtnl_link_stats64 * ns)2400 static void cxgb_get_stats(struct net_device *dev,
2401 struct rtnl_link_stats64 *ns)
2402 {
2403 struct port_stats stats;
2404 struct port_info *p = netdev_priv(dev);
2405 struct adapter *adapter = p->adapter;
2406
2407 /* Block retrieving statistics during EEH error
2408 * recovery. Otherwise, the recovery might fail
2409 * and the PCI device will be removed permanently
2410 */
2411 spin_lock(&adapter->stats_lock);
2412 if (!netif_device_present(dev)) {
2413 spin_unlock(&adapter->stats_lock);
2414 return;
2415 }
2416 t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2417 &p->stats_base);
2418 spin_unlock(&adapter->stats_lock);
2419
2420 ns->tx_bytes = stats.tx_octets;
2421 ns->tx_packets = stats.tx_frames;
2422 ns->rx_bytes = stats.rx_octets;
2423 ns->rx_packets = stats.rx_frames;
2424 ns->multicast = stats.rx_mcast_frames;
2425
2426 /* detailed rx_errors */
2427 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2428 stats.rx_runt;
2429 ns->rx_over_errors = 0;
2430 ns->rx_crc_errors = stats.rx_fcs_err;
2431 ns->rx_frame_errors = stats.rx_symbol_err;
2432 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 +
2433 stats.rx_ovflow2 + stats.rx_ovflow3 +
2434 stats.rx_trunc0 + stats.rx_trunc1 +
2435 stats.rx_trunc2 + stats.rx_trunc3;
2436 ns->rx_missed_errors = 0;
2437
2438 /* detailed tx_errors */
2439 ns->tx_aborted_errors = 0;
2440 ns->tx_carrier_errors = 0;
2441 ns->tx_fifo_errors = 0;
2442 ns->tx_heartbeat_errors = 0;
2443 ns->tx_window_errors = 0;
2444
2445 ns->tx_errors = stats.tx_error_frames;
2446 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2447 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2448 }
2449
cxgb_ioctl(struct net_device * dev,struct ifreq * req,int cmd)2450 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2451 {
2452 unsigned int mbox;
2453 int ret = 0, prtad, devad;
2454 struct port_info *pi = netdev_priv(dev);
2455 struct adapter *adapter = pi->adapter;
2456 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2457
2458 switch (cmd) {
2459 case SIOCGMIIPHY:
2460 if (pi->mdio_addr < 0)
2461 return -EOPNOTSUPP;
2462 data->phy_id = pi->mdio_addr;
2463 break;
2464 case SIOCGMIIREG:
2465 case SIOCSMIIREG:
2466 if (mdio_phy_id_is_c45(data->phy_id)) {
2467 prtad = mdio_phy_id_prtad(data->phy_id);
2468 devad = mdio_phy_id_devad(data->phy_id);
2469 } else if (data->phy_id < 32) {
2470 prtad = data->phy_id;
2471 devad = 0;
2472 data->reg_num &= 0x1f;
2473 } else
2474 return -EINVAL;
2475
2476 mbox = pi->adapter->pf;
2477 if (cmd == SIOCGMIIREG)
2478 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2479 data->reg_num, &data->val_out);
2480 else
2481 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2482 data->reg_num, data->val_in);
2483 break;
2484 case SIOCGHWTSTAMP:
2485 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2486 sizeof(pi->tstamp_config)) ?
2487 -EFAULT : 0;
2488 case SIOCSHWTSTAMP:
2489 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2490 sizeof(pi->tstamp_config)))
2491 return -EFAULT;
2492
2493 if (!is_t4(adapter->params.chip)) {
2494 switch (pi->tstamp_config.tx_type) {
2495 case HWTSTAMP_TX_OFF:
2496 case HWTSTAMP_TX_ON:
2497 break;
2498 default:
2499 return -ERANGE;
2500 }
2501
2502 switch (pi->tstamp_config.rx_filter) {
2503 case HWTSTAMP_FILTER_NONE:
2504 pi->rxtstamp = false;
2505 break;
2506 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2507 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2508 cxgb4_ptprx_timestamping(pi, pi->port_id,
2509 PTP_TS_L4);
2510 break;
2511 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2512 cxgb4_ptprx_timestamping(pi, pi->port_id,
2513 PTP_TS_L2_L4);
2514 break;
2515 case HWTSTAMP_FILTER_ALL:
2516 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2517 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2518 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2519 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2520 pi->rxtstamp = true;
2521 break;
2522 default:
2523 pi->tstamp_config.rx_filter =
2524 HWTSTAMP_FILTER_NONE;
2525 return -ERANGE;
2526 }
2527
2528 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2529 (pi->tstamp_config.rx_filter ==
2530 HWTSTAMP_FILTER_NONE)) {
2531 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2532 pi->ptp_enable = false;
2533 }
2534
2535 if (pi->tstamp_config.rx_filter !=
2536 HWTSTAMP_FILTER_NONE) {
2537 if (cxgb4_ptp_redirect_rx_packet(adapter,
2538 pi) >= 0)
2539 pi->ptp_enable = true;
2540 }
2541 } else {
2542 /* For T4 Adapters */
2543 switch (pi->tstamp_config.rx_filter) {
2544 case HWTSTAMP_FILTER_NONE:
2545 pi->rxtstamp = false;
2546 break;
2547 case HWTSTAMP_FILTER_ALL:
2548 pi->rxtstamp = true;
2549 break;
2550 default:
2551 pi->tstamp_config.rx_filter =
2552 HWTSTAMP_FILTER_NONE;
2553 return -ERANGE;
2554 }
2555 }
2556 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2557 sizeof(pi->tstamp_config)) ?
2558 -EFAULT : 0;
2559 default:
2560 return -EOPNOTSUPP;
2561 }
2562 return ret;
2563 }
2564
cxgb_set_rxmode(struct net_device * dev)2565 static void cxgb_set_rxmode(struct net_device *dev)
2566 {
2567 /* unfortunately we can't return errors to the stack */
2568 set_rxmode(dev, -1, false);
2569 }
2570
cxgb_change_mtu(struct net_device * dev,int new_mtu)2571 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2572 {
2573 int ret;
2574 struct port_info *pi = netdev_priv(dev);
2575
2576 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2577 -1, -1, -1, true);
2578 if (!ret)
2579 dev->mtu = new_mtu;
2580 return ret;
2581 }
2582
2583 #ifdef CONFIG_PCI_IOV
dummy_open(struct net_device * dev)2584 static int dummy_open(struct net_device *dev)
2585 {
2586 /* Turn carrier off since we don't have to transmit anything on this
2587 * interface.
2588 */
2589 netif_carrier_off(dev);
2590 return 0;
2591 }
2592
2593 /* Fill MAC address that will be assigned by the FW */
fill_vf_station_mac_addr(struct adapter * adap)2594 static void fill_vf_station_mac_addr(struct adapter *adap)
2595 {
2596 unsigned int i;
2597 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2598 int err;
2599 u8 *na;
2600 u16 a, b;
2601
2602 err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2603 if (!err) {
2604 na = adap->params.vpd.na;
2605 for (i = 0; i < ETH_ALEN; i++)
2606 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2607 hex2val(na[2 * i + 1]));
2608 a = (hw_addr[0] << 8) | hw_addr[1];
2609 b = (hw_addr[1] << 8) | hw_addr[2];
2610 a ^= b;
2611 a |= 0x0200; /* locally assigned Ethernet MAC address */
2612 a &= ~0x0100; /* not a multicast Ethernet MAC address */
2613 macaddr[0] = a >> 8;
2614 macaddr[1] = a & 0xff;
2615
2616 for (i = 2; i < 5; i++)
2617 macaddr[i] = hw_addr[i + 1];
2618
2619 for (i = 0; i < adap->num_vfs; i++) {
2620 macaddr[5] = adap->pf * 16 + i;
2621 ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr);
2622 }
2623 }
2624 }
2625
cxgb_set_vf_mac(struct net_device * dev,int vf,u8 * mac)2626 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2627 {
2628 struct port_info *pi = netdev_priv(dev);
2629 struct adapter *adap = pi->adapter;
2630 int ret;
2631
2632 /* verify MAC addr is valid */
2633 if (!is_valid_ether_addr(mac)) {
2634 dev_err(pi->adapter->pdev_dev,
2635 "Invalid Ethernet address %pM for VF %d\n",
2636 mac, vf);
2637 return -EINVAL;
2638 }
2639
2640 dev_info(pi->adapter->pdev_dev,
2641 "Setting MAC %pM on VF %d\n", mac, vf);
2642 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2643 if (!ret)
2644 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2645 return ret;
2646 }
2647
cxgb_get_vf_config(struct net_device * dev,int vf,struct ifla_vf_info * ivi)2648 static int cxgb_get_vf_config(struct net_device *dev,
2649 int vf, struct ifla_vf_info *ivi)
2650 {
2651 struct port_info *pi = netdev_priv(dev);
2652 struct adapter *adap = pi->adapter;
2653
2654 if (vf >= adap->num_vfs)
2655 return -EINVAL;
2656 ivi->vf = vf;
2657 ivi->max_tx_rate = adap->vfinfo[vf].tx_rate;
2658 ivi->min_tx_rate = 0;
2659 ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
2660 return 0;
2661 }
2662
cxgb_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)2663 static int cxgb_get_phys_port_id(struct net_device *dev,
2664 struct netdev_phys_item_id *ppid)
2665 {
2666 struct port_info *pi = netdev_priv(dev);
2667 unsigned int phy_port_id;
2668
2669 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2670 ppid->id_len = sizeof(phy_port_id);
2671 memcpy(ppid->id, &phy_port_id, ppid->id_len);
2672 return 0;
2673 }
2674
cxgb_set_vf_rate(struct net_device * dev,int vf,int min_tx_rate,int max_tx_rate)2675 static int cxgb_set_vf_rate(struct net_device *dev, int vf, int min_tx_rate,
2676 int max_tx_rate)
2677 {
2678 struct port_info *pi = netdev_priv(dev);
2679 struct adapter *adap = pi->adapter;
2680 unsigned int link_ok, speed, mtu;
2681 u32 fw_pfvf, fw_class;
2682 int class_id = vf;
2683 int ret;
2684 u16 pktsize;
2685
2686 if (vf >= adap->num_vfs)
2687 return -EINVAL;
2688
2689 if (min_tx_rate) {
2690 dev_err(adap->pdev_dev,
2691 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2692 min_tx_rate, vf);
2693 return -EINVAL;
2694 }
2695
2696 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
2697 if (ret != FW_SUCCESS) {
2698 dev_err(adap->pdev_dev,
2699 "Failed to get link information for VF %d\n", vf);
2700 return -EINVAL;
2701 }
2702
2703 if (!link_ok) {
2704 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
2705 return -EINVAL;
2706 }
2707
2708 if (max_tx_rate > speed) {
2709 dev_err(adap->pdev_dev,
2710 "Max tx rate %d for VF %d can't be > link-speed %u",
2711 max_tx_rate, vf, speed);
2712 return -EINVAL;
2713 }
2714
2715 pktsize = mtu;
2716 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
2717 pktsize = pktsize - sizeof(struct ethhdr) - 4;
2718 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
2719 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
2720 /* configure Traffic Class for rate-limiting */
2721 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
2722 SCHED_CLASS_LEVEL_CL_RL,
2723 SCHED_CLASS_MODE_CLASS,
2724 SCHED_CLASS_RATEUNIT_BITS,
2725 SCHED_CLASS_RATEMODE_ABS,
2726 pi->tx_chan, class_id, 0,
2727 max_tx_rate * 1000, 0, pktsize);
2728 if (ret) {
2729 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
2730 ret);
2731 return -EINVAL;
2732 }
2733 dev_info(adap->pdev_dev,
2734 "Class %d with MSS %u configured with rate %u\n",
2735 class_id, pktsize, max_tx_rate);
2736
2737 /* bind VF to configured Traffic Class */
2738 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2739 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2740 fw_class = class_id;
2741 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
2742 &fw_class);
2743 if (ret) {
2744 dev_err(adap->pdev_dev,
2745 "Err %d in binding VF %d to Traffic Class %d\n",
2746 ret, vf, class_id);
2747 return -EINVAL;
2748 }
2749 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
2750 adap->pf, vf, class_id);
2751 adap->vfinfo[vf].tx_rate = max_tx_rate;
2752 return 0;
2753 }
2754
2755 #endif
2756
cxgb_set_mac_addr(struct net_device * dev,void * p)2757 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2758 {
2759 int ret;
2760 struct sockaddr *addr = p;
2761 struct port_info *pi = netdev_priv(dev);
2762
2763 if (!is_valid_ether_addr(addr->sa_data))
2764 return -EADDRNOTAVAIL;
2765
2766 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2767 pi->xact_addr_filt, addr->sa_data, true, true);
2768 if (ret < 0)
2769 return ret;
2770
2771 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2772 pi->xact_addr_filt = ret;
2773 return 0;
2774 }
2775
2776 #ifdef CONFIG_NET_POLL_CONTROLLER
cxgb_netpoll(struct net_device * dev)2777 static void cxgb_netpoll(struct net_device *dev)
2778 {
2779 struct port_info *pi = netdev_priv(dev);
2780 struct adapter *adap = pi->adapter;
2781
2782 if (adap->flags & USING_MSIX) {
2783 int i;
2784 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2785
2786 for (i = pi->nqsets; i; i--, rx++)
2787 t4_sge_intr_msix(0, &rx->rspq);
2788 } else
2789 t4_intr_handler(adap)(0, adap);
2790 }
2791 #endif
2792
cxgb_set_tx_maxrate(struct net_device * dev,int index,u32 rate)2793 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2794 {
2795 struct port_info *pi = netdev_priv(dev);
2796 struct adapter *adap = pi->adapter;
2797 struct sched_class *e;
2798 struct ch_sched_params p;
2799 struct ch_sched_queue qe;
2800 u32 req_rate;
2801 int err = 0;
2802
2803 if (!can_sched(dev))
2804 return -ENOTSUPP;
2805
2806 if (index < 0 || index > pi->nqsets - 1)
2807 return -EINVAL;
2808
2809 if (!(adap->flags & FULL_INIT_DONE)) {
2810 dev_err(adap->pdev_dev,
2811 "Failed to rate limit on queue %d. Link Down?\n",
2812 index);
2813 return -EINVAL;
2814 }
2815
2816 /* Convert from Mbps to Kbps */
2817 req_rate = rate << 10;
2818
2819 /* Max rate is 10 Gbps */
2820 if (req_rate >= SCHED_MAX_RATE_KBPS) {
2821 dev_err(adap->pdev_dev,
2822 "Invalid rate %u Mbps, Max rate is %u Gbps\n",
2823 rate, SCHED_MAX_RATE_KBPS);
2824 return -ERANGE;
2825 }
2826
2827 /* First unbind the queue from any existing class */
2828 memset(&qe, 0, sizeof(qe));
2829 qe.queue = index;
2830 qe.class = SCHED_CLS_NONE;
2831
2832 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2833 if (err) {
2834 dev_err(adap->pdev_dev,
2835 "Unbinding Queue %d on port %d fail. Err: %d\n",
2836 index, pi->port_id, err);
2837 return err;
2838 }
2839
2840 /* Queue already unbound */
2841 if (!req_rate)
2842 return 0;
2843
2844 /* Fetch any available unused or matching scheduling class */
2845 memset(&p, 0, sizeof(p));
2846 p.type = SCHED_CLASS_TYPE_PACKET;
2847 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL;
2848 p.u.params.mode = SCHED_CLASS_MODE_CLASS;
2849 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2850 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2851 p.u.params.channel = pi->tx_chan;
2852 p.u.params.class = SCHED_CLS_NONE;
2853 p.u.params.minrate = 0;
2854 p.u.params.maxrate = req_rate;
2855 p.u.params.weight = 0;
2856 p.u.params.pktsize = dev->mtu;
2857
2858 e = cxgb4_sched_class_alloc(dev, &p);
2859 if (!e)
2860 return -ENOMEM;
2861
2862 /* Bind the queue to a scheduling class */
2863 memset(&qe, 0, sizeof(qe));
2864 qe.queue = index;
2865 qe.class = e->idx;
2866
2867 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2868 if (err)
2869 dev_err(adap->pdev_dev,
2870 "Queue rate limiting failed. Err: %d\n", err);
2871 return err;
2872 }
2873
cxgb_setup_tc_cls_u32(struct net_device * dev,struct tc_cls_u32_offload * cls_u32)2874 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
2875 struct tc_cls_u32_offload *cls_u32)
2876 {
2877 if (!is_classid_clsact_ingress(cls_u32->common.classid) ||
2878 cls_u32->common.chain_index)
2879 return -EOPNOTSUPP;
2880
2881 switch (cls_u32->command) {
2882 case TC_CLSU32_NEW_KNODE:
2883 case TC_CLSU32_REPLACE_KNODE:
2884 return cxgb4_config_knode(dev, cls_u32);
2885 case TC_CLSU32_DELETE_KNODE:
2886 return cxgb4_delete_knode(dev, cls_u32);
2887 default:
2888 return -EOPNOTSUPP;
2889 }
2890 }
2891
cxgb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)2892 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2893 void *type_data)
2894 {
2895 struct port_info *pi = netdev2pinfo(dev);
2896 struct adapter *adap = netdev2adap(dev);
2897
2898 if (!(adap->flags & FULL_INIT_DONE)) {
2899 dev_err(adap->pdev_dev,
2900 "Failed to setup tc on port %d. Link Down?\n",
2901 pi->port_id);
2902 return -EINVAL;
2903 }
2904
2905 switch (type) {
2906 case TC_SETUP_CLSU32:
2907 return cxgb_setup_tc_cls_u32(dev, type_data);
2908 default:
2909 return -EOPNOTSUPP;
2910 }
2911 }
2912
cxgb_fix_features(struct net_device * dev,netdev_features_t features)2913 static netdev_features_t cxgb_fix_features(struct net_device *dev,
2914 netdev_features_t features)
2915 {
2916 /* Disable GRO, if RX_CSUM is disabled */
2917 if (!(features & NETIF_F_RXCSUM))
2918 features &= ~NETIF_F_GRO;
2919
2920 return features;
2921 }
2922
2923 static const struct net_device_ops cxgb4_netdev_ops = {
2924 .ndo_open = cxgb_open,
2925 .ndo_stop = cxgb_close,
2926 .ndo_start_xmit = t4_eth_xmit,
2927 .ndo_select_queue = cxgb_select_queue,
2928 .ndo_get_stats64 = cxgb_get_stats,
2929 .ndo_set_rx_mode = cxgb_set_rxmode,
2930 .ndo_set_mac_address = cxgb_set_mac_addr,
2931 .ndo_set_features = cxgb_set_features,
2932 .ndo_validate_addr = eth_validate_addr,
2933 .ndo_do_ioctl = cxgb_ioctl,
2934 .ndo_change_mtu = cxgb_change_mtu,
2935 #ifdef CONFIG_NET_POLL_CONTROLLER
2936 .ndo_poll_controller = cxgb_netpoll,
2937 #endif
2938 #ifdef CONFIG_CHELSIO_T4_FCOE
2939 .ndo_fcoe_enable = cxgb_fcoe_enable,
2940 .ndo_fcoe_disable = cxgb_fcoe_disable,
2941 #endif /* CONFIG_CHELSIO_T4_FCOE */
2942 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate,
2943 .ndo_setup_tc = cxgb_setup_tc,
2944 .ndo_fix_features = cxgb_fix_features,
2945 };
2946
2947 #ifdef CONFIG_PCI_IOV
2948 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
2949 .ndo_open = dummy_open,
2950 .ndo_set_vf_mac = cxgb_set_vf_mac,
2951 .ndo_get_vf_config = cxgb_get_vf_config,
2952 .ndo_set_vf_rate = cxgb_set_vf_rate,
2953 .ndo_get_phys_port_id = cxgb_get_phys_port_id,
2954 };
2955 #endif
2956
get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)2957 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2958 {
2959 struct adapter *adapter = netdev2adap(dev);
2960
2961 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
2962 strlcpy(info->version, cxgb4_driver_version,
2963 sizeof(info->version));
2964 strlcpy(info->bus_info, pci_name(adapter->pdev),
2965 sizeof(info->bus_info));
2966 }
2967
2968 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
2969 .get_drvinfo = get_drvinfo,
2970 };
2971
t4_fatal_err(struct adapter * adap)2972 void t4_fatal_err(struct adapter *adap)
2973 {
2974 int port;
2975
2976 if (pci_channel_offline(adap->pdev))
2977 return;
2978
2979 /* Disable the SGE since ULDs are going to free resources that
2980 * could be exposed to the adapter. RDMA MWs for example...
2981 */
2982 t4_shutdown_adapter(adap);
2983 for_each_port(adap, port) {
2984 struct net_device *dev = adap->port[port];
2985
2986 /* If we get here in very early initialization the network
2987 * devices may not have been set up yet.
2988 */
2989 if (!dev)
2990 continue;
2991
2992 netif_tx_stop_all_queues(dev);
2993 netif_carrier_off(dev);
2994 }
2995 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
2996 }
2997
setup_memwin(struct adapter * adap)2998 static void setup_memwin(struct adapter *adap)
2999 {
3000 u32 nic_win_base = t4_get_util_window(adap);
3001
3002 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3003 }
3004
setup_memwin_rdma(struct adapter * adap)3005 static void setup_memwin_rdma(struct adapter *adap)
3006 {
3007 if (adap->vres.ocq.size) {
3008 u32 start;
3009 unsigned int sz_kb;
3010
3011 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3012 start &= PCI_BASE_ADDRESS_MEM_MASK;
3013 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3014 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3015 t4_write_reg(adap,
3016 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3017 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3018 t4_write_reg(adap,
3019 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3020 adap->vres.ocq.start);
3021 t4_read_reg(adap,
3022 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3023 }
3024 }
3025
adap_init1(struct adapter * adap,struct fw_caps_config_cmd * c)3026 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3027 {
3028 u32 v;
3029 int ret;
3030
3031 /* get device capabilities */
3032 memset(c, 0, sizeof(*c));
3033 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3034 FW_CMD_REQUEST_F | FW_CMD_READ_F);
3035 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3036 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3037 if (ret < 0)
3038 return ret;
3039
3040 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3041 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3042 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3043 if (ret < 0)
3044 return ret;
3045
3046 ret = t4_config_glbl_rss(adap, adap->pf,
3047 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3048 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3049 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3050 if (ret < 0)
3051 return ret;
3052
3053 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3054 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3055 FW_CMD_CAP_PF);
3056 if (ret < 0)
3057 return ret;
3058
3059 t4_sge_init(adap);
3060
3061 /* tweak some settings */
3062 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3063 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3064 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3065 v = t4_read_reg(adap, TP_PIO_DATA_A);
3066 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3067
3068 /* first 4 Tx modulation queues point to consecutive Tx channels */
3069 adap->params.tp.tx_modq_map = 0xE4;
3070 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3071 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3072
3073 /* associate each Tx modulation queue with consecutive Tx channels */
3074 v = 0x84218421;
3075 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3076 &v, 1, TP_TX_SCHED_HDR_A);
3077 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3078 &v, 1, TP_TX_SCHED_FIFO_A);
3079 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3080 &v, 1, TP_TX_SCHED_PCMD_A);
3081
3082 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3083 if (is_offload(adap)) {
3084 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3085 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3086 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3087 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3088 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3089 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3090 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3091 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3092 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3093 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3094 }
3095
3096 /* get basic stuff going */
3097 return t4_early_init(adap, adap->pf);
3098 }
3099
3100 /*
3101 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
3102 */
3103 #define MAX_ATIDS 8192U
3104
3105 /*
3106 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3107 *
3108 * If the firmware we're dealing with has Configuration File support, then
3109 * we use that to perform all configuration
3110 */
3111
3112 /*
3113 * Tweak configuration based on module parameters, etc. Most of these have
3114 * defaults assigned to them by Firmware Configuration Files (if we're using
3115 * them) but need to be explicitly set if we're using hard-coded
3116 * initialization. But even in the case of using Firmware Configuration
3117 * Files, we'd like to expose the ability to change these via module
3118 * parameters so these are essentially common tweaks/settings for
3119 * Configuration Files and hard-coded initialization ...
3120 */
adap_init0_tweaks(struct adapter * adapter)3121 static int adap_init0_tweaks(struct adapter *adapter)
3122 {
3123 /*
3124 * Fix up various Host-Dependent Parameters like Page Size, Cache
3125 * Line Size, etc. The firmware default is for a 4KB Page Size and
3126 * 64B Cache Line Size ...
3127 */
3128 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3129
3130 /*
3131 * Process module parameters which affect early initialization.
3132 */
3133 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3134 dev_err(&adapter->pdev->dev,
3135 "Ignoring illegal rx_dma_offset=%d, using 2\n",
3136 rx_dma_offset);
3137 rx_dma_offset = 2;
3138 }
3139 t4_set_reg_field(adapter, SGE_CONTROL_A,
3140 PKTSHIFT_V(PKTSHIFT_M),
3141 PKTSHIFT_V(rx_dma_offset));
3142
3143 /*
3144 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3145 * adds the pseudo header itself.
3146 */
3147 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3148 CSUM_HAS_PSEUDO_HDR_F, 0);
3149
3150 return 0;
3151 }
3152
3153 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3154 * unto themselves and they contain their own firmware to perform their
3155 * tasks ...
3156 */
phy_aq1202_version(const u8 * phy_fw_data,size_t phy_fw_size)3157 static int phy_aq1202_version(const u8 *phy_fw_data,
3158 size_t phy_fw_size)
3159 {
3160 int offset;
3161
3162 /* At offset 0x8 you're looking for the primary image's
3163 * starting offset which is 3 Bytes wide
3164 *
3165 * At offset 0xa of the primary image, you look for the offset
3166 * of the DRAM segment which is 3 Bytes wide.
3167 *
3168 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3169 * wide
3170 */
3171 #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3172 #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3173 #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3174
3175 offset = le24(phy_fw_data + 0x8) << 12;
3176 offset = le24(phy_fw_data + offset + 0xa);
3177 return be16(phy_fw_data + offset + 0x27e);
3178
3179 #undef be16
3180 #undef le16
3181 #undef le24
3182 }
3183
3184 static struct info_10gbt_phy_fw {
3185 unsigned int phy_fw_id; /* PCI Device ID */
3186 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
3187 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3188 int phy_flash; /* Has FLASH for PHY Firmware */
3189 } phy_info_array[] = {
3190 {
3191 PHY_AQ1202_DEVICEID,
3192 PHY_AQ1202_FIRMWARE,
3193 phy_aq1202_version,
3194 1,
3195 },
3196 {
3197 PHY_BCM84834_DEVICEID,
3198 PHY_BCM84834_FIRMWARE,
3199 NULL,
3200 0,
3201 },
3202 { 0, NULL, NULL },
3203 };
3204
find_phy_info(int devid)3205 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3206 {
3207 int i;
3208
3209 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3210 if (phy_info_array[i].phy_fw_id == devid)
3211 return &phy_info_array[i];
3212 }
3213 return NULL;
3214 }
3215
3216 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
3217 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
3218 * we return a negative error number. If we transfer new firmware we return 1
3219 * (from t4_load_phy_fw()). If we don't do anything we return 0.
3220 */
adap_init0_phy(struct adapter * adap)3221 static int adap_init0_phy(struct adapter *adap)
3222 {
3223 const struct firmware *phyf;
3224 int ret;
3225 struct info_10gbt_phy_fw *phy_info;
3226
3227 /* Use the device ID to determine which PHY file to flash.
3228 */
3229 phy_info = find_phy_info(adap->pdev->device);
3230 if (!phy_info) {
3231 dev_warn(adap->pdev_dev,
3232 "No PHY Firmware file found for this PHY\n");
3233 return -EOPNOTSUPP;
3234 }
3235
3236 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3237 * use that. The adapter firmware provides us with a memory buffer
3238 * where we can load a PHY firmware file from the host if we want to
3239 * override the PHY firmware File in flash.
3240 */
3241 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3242 adap->pdev_dev);
3243 if (ret < 0) {
3244 /* For adapters without FLASH attached to PHY for their
3245 * firmware, it's obviously a fatal error if we can't get the
3246 * firmware to the adapter. For adapters with PHY firmware
3247 * FLASH storage, it's worth a warning if we can't find the
3248 * PHY Firmware but we'll neuter the error ...
3249 */
3250 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3251 "/lib/firmware/%s, error %d\n",
3252 phy_info->phy_fw_file, -ret);
3253 if (phy_info->phy_flash) {
3254 int cur_phy_fw_ver = 0;
3255
3256 t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3257 dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3258 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3259 ret = 0;
3260 }
3261
3262 return ret;
3263 }
3264
3265 /* Load PHY Firmware onto adapter.
3266 */
3267 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3268 phy_info->phy_fw_version,
3269 (u8 *)phyf->data, phyf->size);
3270 if (ret < 0)
3271 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3272 -ret);
3273 else if (ret > 0) {
3274 int new_phy_fw_ver = 0;
3275
3276 if (phy_info->phy_fw_version)
3277 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3278 phyf->size);
3279 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3280 "Firmware /lib/firmware/%s, version %#x\n",
3281 phy_info->phy_fw_file, new_phy_fw_ver);
3282 }
3283
3284 release_firmware(phyf);
3285
3286 return ret;
3287 }
3288
3289 /*
3290 * Attempt to initialize the adapter via a Firmware Configuration File.
3291 */
adap_init0_config(struct adapter * adapter,int reset)3292 static int adap_init0_config(struct adapter *adapter, int reset)
3293 {
3294 struct fw_caps_config_cmd caps_cmd;
3295 const struct firmware *cf;
3296 unsigned long mtype = 0, maddr = 0;
3297 u32 finiver, finicsum, cfcsum;
3298 int ret;
3299 int config_issued = 0;
3300 char *fw_config_file, fw_config_file_path[256];
3301 char *config_name = NULL;
3302
3303 /*
3304 * Reset device if necessary.
3305 */
3306 if (reset) {
3307 ret = t4_fw_reset(adapter, adapter->mbox,
3308 PIORSTMODE_F | PIORST_F);
3309 if (ret < 0)
3310 goto bye;
3311 }
3312
3313 /* If this is a 10Gb/s-BT adapter make sure the chip-external
3314 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
3315 * to be performed after any global adapter RESET above since some
3316 * PHYs only have local RAM copies of the PHY firmware.
3317 */
3318 if (is_10gbt_device(adapter->pdev->device)) {
3319 ret = adap_init0_phy(adapter);
3320 if (ret < 0)
3321 goto bye;
3322 }
3323 /*
3324 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3325 * then use that. Otherwise, use the configuration file stored
3326 * in the adapter flash ...
3327 */
3328 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3329 case CHELSIO_T4:
3330 fw_config_file = FW4_CFNAME;
3331 break;
3332 case CHELSIO_T5:
3333 fw_config_file = FW5_CFNAME;
3334 break;
3335 case CHELSIO_T6:
3336 fw_config_file = FW6_CFNAME;
3337 break;
3338 default:
3339 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3340 adapter->pdev->device);
3341 ret = -EINVAL;
3342 goto bye;
3343 }
3344
3345 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3346 if (ret < 0) {
3347 config_name = "On FLASH";
3348 mtype = FW_MEMTYPE_CF_FLASH;
3349 maddr = t4_flash_cfg_addr(adapter);
3350 } else {
3351 u32 params[7], val[7];
3352
3353 sprintf(fw_config_file_path,
3354 "/lib/firmware/%s", fw_config_file);
3355 config_name = fw_config_file_path;
3356
3357 if (cf->size >= FLASH_CFG_MAX_SIZE)
3358 ret = -ENOMEM;
3359 else {
3360 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3361 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3362 ret = t4_query_params(adapter, adapter->mbox,
3363 adapter->pf, 0, 1, params, val);
3364 if (ret == 0) {
3365 /*
3366 * For t4_memory_rw() below addresses and
3367 * sizes have to be in terms of multiples of 4
3368 * bytes. So, if the Configuration File isn't
3369 * a multiple of 4 bytes in length we'll have
3370 * to write that out separately since we can't
3371 * guarantee that the bytes following the
3372 * residual byte in the buffer returned by
3373 * request_firmware() are zeroed out ...
3374 */
3375 size_t resid = cf->size & 0x3;
3376 size_t size = cf->size & ~0x3;
3377 __be32 *data = (__be32 *)cf->data;
3378
3379 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3380 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3381
3382 spin_lock(&adapter->win0_lock);
3383 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3384 size, data, T4_MEMORY_WRITE);
3385 if (ret == 0 && resid != 0) {
3386 union {
3387 __be32 word;
3388 char buf[4];
3389 } last;
3390 int i;
3391
3392 last.word = data[size >> 2];
3393 for (i = resid; i < 4; i++)
3394 last.buf[i] = 0;
3395 ret = t4_memory_rw(adapter, 0, mtype,
3396 maddr + size,
3397 4, &last.word,
3398 T4_MEMORY_WRITE);
3399 }
3400 spin_unlock(&adapter->win0_lock);
3401 }
3402 }
3403
3404 release_firmware(cf);
3405 if (ret)
3406 goto bye;
3407 }
3408
3409 /*
3410 * Issue a Capability Configuration command to the firmware to get it
3411 * to parse the Configuration File. We don't use t4_fw_config_file()
3412 * because we want the ability to modify various features after we've
3413 * processed the configuration file ...
3414 */
3415 memset(&caps_cmd, 0, sizeof(caps_cmd));
3416 caps_cmd.op_to_write =
3417 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3418 FW_CMD_REQUEST_F |
3419 FW_CMD_READ_F);
3420 caps_cmd.cfvalid_to_len16 =
3421 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3422 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3423 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3424 FW_LEN16(caps_cmd));
3425 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3426 &caps_cmd);
3427
3428 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3429 * Configuration File in FLASH), our last gasp effort is to use the
3430 * Firmware Configuration File which is embedded in the firmware. A
3431 * very few early versions of the firmware didn't have one embedded
3432 * but we can ignore those.
3433 */
3434 if (ret == -ENOENT) {
3435 memset(&caps_cmd, 0, sizeof(caps_cmd));
3436 caps_cmd.op_to_write =
3437 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3438 FW_CMD_REQUEST_F |
3439 FW_CMD_READ_F);
3440 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3441 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3442 sizeof(caps_cmd), &caps_cmd);
3443 config_name = "Firmware Default";
3444 }
3445
3446 config_issued = 1;
3447 if (ret < 0)
3448 goto bye;
3449
3450 finiver = ntohl(caps_cmd.finiver);
3451 finicsum = ntohl(caps_cmd.finicsum);
3452 cfcsum = ntohl(caps_cmd.cfcsum);
3453 if (finicsum != cfcsum)
3454 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3455 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3456 finicsum, cfcsum);
3457
3458 /*
3459 * And now tell the firmware to use the configuration we just loaded.
3460 */
3461 caps_cmd.op_to_write =
3462 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3463 FW_CMD_REQUEST_F |
3464 FW_CMD_WRITE_F);
3465 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3466 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3467 NULL);
3468 if (ret < 0)
3469 goto bye;
3470
3471 /*
3472 * Tweak configuration based on system architecture, module
3473 * parameters, etc.
3474 */
3475 ret = adap_init0_tweaks(adapter);
3476 if (ret < 0)
3477 goto bye;
3478
3479 /*
3480 * And finally tell the firmware to initialize itself using the
3481 * parameters from the Configuration File.
3482 */
3483 ret = t4_fw_initialize(adapter, adapter->mbox);
3484 if (ret < 0)
3485 goto bye;
3486
3487 /* Emit Firmware Configuration File information and return
3488 * successfully.
3489 */
3490 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3491 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3492 config_name, finiver, cfcsum);
3493 return 0;
3494
3495 /*
3496 * Something bad happened. Return the error ... (If the "error"
3497 * is that there's no Configuration File on the adapter we don't
3498 * want to issue a warning since this is fairly common.)
3499 */
3500 bye:
3501 if (config_issued && ret != -ENOENT)
3502 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3503 config_name, -ret);
3504 return ret;
3505 }
3506
3507 static struct fw_info fw_info_array[] = {
3508 {
3509 .chip = CHELSIO_T4,
3510 .fs_name = FW4_CFNAME,
3511 .fw_mod_name = FW4_FNAME,
3512 .fw_hdr = {
3513 .chip = FW_HDR_CHIP_T4,
3514 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3515 .intfver_nic = FW_INTFVER(T4, NIC),
3516 .intfver_vnic = FW_INTFVER(T4, VNIC),
3517 .intfver_ri = FW_INTFVER(T4, RI),
3518 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3519 .intfver_fcoe = FW_INTFVER(T4, FCOE),
3520 },
3521 }, {
3522 .chip = CHELSIO_T5,
3523 .fs_name = FW5_CFNAME,
3524 .fw_mod_name = FW5_FNAME,
3525 .fw_hdr = {
3526 .chip = FW_HDR_CHIP_T5,
3527 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3528 .intfver_nic = FW_INTFVER(T5, NIC),
3529 .intfver_vnic = FW_INTFVER(T5, VNIC),
3530 .intfver_ri = FW_INTFVER(T5, RI),
3531 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3532 .intfver_fcoe = FW_INTFVER(T5, FCOE),
3533 },
3534 }, {
3535 .chip = CHELSIO_T6,
3536 .fs_name = FW6_CFNAME,
3537 .fw_mod_name = FW6_FNAME,
3538 .fw_hdr = {
3539 .chip = FW_HDR_CHIP_T6,
3540 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3541 .intfver_nic = FW_INTFVER(T6, NIC),
3542 .intfver_vnic = FW_INTFVER(T6, VNIC),
3543 .intfver_ofld = FW_INTFVER(T6, OFLD),
3544 .intfver_ri = FW_INTFVER(T6, RI),
3545 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3546 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3547 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3548 .intfver_fcoe = FW_INTFVER(T6, FCOE),
3549 },
3550 }
3551
3552 };
3553
find_fw_info(int chip)3554 static struct fw_info *find_fw_info(int chip)
3555 {
3556 int i;
3557
3558 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3559 if (fw_info_array[i].chip == chip)
3560 return &fw_info_array[i];
3561 }
3562 return NULL;
3563 }
3564
3565 /*
3566 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3567 */
adap_init0(struct adapter * adap)3568 static int adap_init0(struct adapter *adap)
3569 {
3570 int ret;
3571 u32 v, port_vec;
3572 enum dev_state state;
3573 u32 params[7], val[7];
3574 struct fw_caps_config_cmd caps_cmd;
3575 int reset = 1;
3576
3577 /* Grab Firmware Device Log parameters as early as possible so we have
3578 * access to it for debugging, etc.
3579 */
3580 ret = t4_init_devlog_params(adap);
3581 if (ret < 0)
3582 return ret;
3583
3584 /* Contact FW, advertising Master capability */
3585 ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3586 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3587 if (ret < 0) {
3588 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3589 ret);
3590 return ret;
3591 }
3592 if (ret == adap->mbox)
3593 adap->flags |= MASTER_PF;
3594
3595 /*
3596 * If we're the Master PF Driver and the device is uninitialized,
3597 * then let's consider upgrading the firmware ... (We always want
3598 * to check the firmware version number in order to A. get it for
3599 * later reporting and B. to warn if the currently loaded firmware
3600 * is excessively mismatched relative to the driver.)
3601 */
3602
3603 t4_get_version_info(adap);
3604 ret = t4_check_fw_version(adap);
3605 /* If firmware is too old (not supported by driver) force an update. */
3606 if (ret)
3607 state = DEV_STATE_UNINIT;
3608 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3609 struct fw_info *fw_info;
3610 struct fw_hdr *card_fw;
3611 const struct firmware *fw;
3612 const u8 *fw_data = NULL;
3613 unsigned int fw_size = 0;
3614
3615 /* This is the firmware whose headers the driver was compiled
3616 * against
3617 */
3618 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3619 if (fw_info == NULL) {
3620 dev_err(adap->pdev_dev,
3621 "unable to get firmware info for chip %d.\n",
3622 CHELSIO_CHIP_VERSION(adap->params.chip));
3623 return -EINVAL;
3624 }
3625
3626 /* allocate memory to read the header of the firmware on the
3627 * card
3628 */
3629 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
3630
3631 /* Get FW from from /lib/firmware/ */
3632 ret = request_firmware(&fw, fw_info->fw_mod_name,
3633 adap->pdev_dev);
3634 if (ret < 0) {
3635 dev_err(adap->pdev_dev,
3636 "unable to load firmware image %s, error %d\n",
3637 fw_info->fw_mod_name, ret);
3638 } else {
3639 fw_data = fw->data;
3640 fw_size = fw->size;
3641 }
3642
3643 /* upgrade FW logic */
3644 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3645 state, &reset);
3646
3647 /* Cleaning up */
3648 release_firmware(fw);
3649 kvfree(card_fw);
3650
3651 if (ret < 0)
3652 goto bye;
3653 }
3654
3655 /*
3656 * Grab VPD parameters. This should be done after we establish a
3657 * connection to the firmware since some of the VPD parameters
3658 * (notably the Core Clock frequency) are retrieved via requests to
3659 * the firmware. On the other hand, we need these fairly early on
3660 * so we do this right after getting ahold of the firmware.
3661 */
3662 ret = t4_get_vpd_params(adap, &adap->params.vpd);
3663 if (ret < 0)
3664 goto bye;
3665
3666 /*
3667 * Find out what ports are available to us. Note that we need to do
3668 * this before calling adap_init0_no_config() since it needs nports
3669 * and portvec ...
3670 */
3671 v =
3672 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3673 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3674 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3675 if (ret < 0)
3676 goto bye;
3677
3678 adap->params.nports = hweight32(port_vec);
3679 adap->params.portvec = port_vec;
3680
3681 /* If the firmware is initialized already, emit a simply note to that
3682 * effect. Otherwise, it's time to try initializing the adapter.
3683 */
3684 if (state == DEV_STATE_INIT) {
3685 dev_info(adap->pdev_dev, "Coming up as %s: "\
3686 "Adapter already initialized\n",
3687 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3688 } else {
3689 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3690 "Initializing adapter\n");
3691
3692 /* Find out whether we're dealing with a version of the
3693 * firmware which has configuration file support.
3694 */
3695 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3696 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3697 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3698 params, val);
3699
3700 /* If the firmware doesn't support Configuration Files,
3701 * return an error.
3702 */
3703 if (ret < 0) {
3704 dev_err(adap->pdev_dev, "firmware doesn't support "
3705 "Firmware Configuration Files\n");
3706 goto bye;
3707 }
3708
3709 /* The firmware provides us with a memory buffer where we can
3710 * load a Configuration File from the host if we want to
3711 * override the Configuration File in flash.
3712 */
3713 ret = adap_init0_config(adap, reset);
3714 if (ret == -ENOENT) {
3715 dev_err(adap->pdev_dev, "no Configuration File "
3716 "present on adapter.\n");
3717 goto bye;
3718 }
3719 if (ret < 0) {
3720 dev_err(adap->pdev_dev, "could not initialize "
3721 "adapter, error %d\n", -ret);
3722 goto bye;
3723 }
3724 }
3725
3726 /* Give the SGE code a chance to pull in anything that it needs ...
3727 * Note that this must be called after we retrieve our VPD parameters
3728 * in order to know how to convert core ticks to seconds, etc.
3729 */
3730 ret = t4_sge_init(adap);
3731 if (ret < 0)
3732 goto bye;
3733
3734 if (is_bypass_device(adap->pdev->device))
3735 adap->params.bypass = 1;
3736
3737 /*
3738 * Grab some of our basic fundamental operating parameters.
3739 */
3740 #define FW_PARAM_DEV(param) \
3741 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3742 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3743
3744 #define FW_PARAM_PFVF(param) \
3745 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3746 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \
3747 FW_PARAMS_PARAM_Y_V(0) | \
3748 FW_PARAMS_PARAM_Z_V(0)
3749
3750 params[0] = FW_PARAM_PFVF(EQ_START);
3751 params[1] = FW_PARAM_PFVF(L2T_START);
3752 params[2] = FW_PARAM_PFVF(L2T_END);
3753 params[3] = FW_PARAM_PFVF(FILTER_START);
3754 params[4] = FW_PARAM_PFVF(FILTER_END);
3755 params[5] = FW_PARAM_PFVF(IQFLINT_START);
3756 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3757 if (ret < 0)
3758 goto bye;
3759 adap->sge.egr_start = val[0];
3760 adap->l2t_start = val[1];
3761 adap->l2t_end = val[2];
3762 adap->tids.ftid_base = val[3];
3763 adap->tids.nftids = val[4] - val[3] + 1;
3764 adap->sge.ingr_start = val[5];
3765
3766 /* qids (ingress/egress) returned from firmware can be anywhere
3767 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3768 * Hence driver needs to allocate memory for this range to
3769 * store the queue info. Get the highest IQFLINT/EQ index returned
3770 * in FW_EQ_*_CMD.alloc command.
3771 */
3772 params[0] = FW_PARAM_PFVF(EQ_END);
3773 params[1] = FW_PARAM_PFVF(IQFLINT_END);
3774 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3775 if (ret < 0)
3776 goto bye;
3777 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3778 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3779
3780 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3781 sizeof(*adap->sge.egr_map), GFP_KERNEL);
3782 if (!adap->sge.egr_map) {
3783 ret = -ENOMEM;
3784 goto bye;
3785 }
3786
3787 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3788 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3789 if (!adap->sge.ingr_map) {
3790 ret = -ENOMEM;
3791 goto bye;
3792 }
3793
3794 /* Allocate the memory for the vaious egress queue bitmaps
3795 * ie starving_fl, txq_maperr and blocked_fl.
3796 */
3797 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3798 sizeof(long), GFP_KERNEL);
3799 if (!adap->sge.starving_fl) {
3800 ret = -ENOMEM;
3801 goto bye;
3802 }
3803
3804 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3805 sizeof(long), GFP_KERNEL);
3806 if (!adap->sge.txq_maperr) {
3807 ret = -ENOMEM;
3808 goto bye;
3809 }
3810
3811 #ifdef CONFIG_DEBUG_FS
3812 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3813 sizeof(long), GFP_KERNEL);
3814 if (!adap->sge.blocked_fl) {
3815 ret = -ENOMEM;
3816 goto bye;
3817 }
3818 #endif
3819
3820 params[0] = FW_PARAM_PFVF(CLIP_START);
3821 params[1] = FW_PARAM_PFVF(CLIP_END);
3822 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3823 if (ret < 0)
3824 goto bye;
3825 adap->clipt_start = val[0];
3826 adap->clipt_end = val[1];
3827
3828 /* We don't yet have a PARAMs calls to retrieve the number of Traffic
3829 * Classes supported by the hardware/firmware so we hard code it here
3830 * for now.
3831 */
3832 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
3833
3834 /* query params related to active filter region */
3835 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3836 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3837 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3838 /* If Active filter size is set we enable establishing
3839 * offload connection through firmware work request
3840 */
3841 if ((val[0] != val[1]) && (ret >= 0)) {
3842 adap->flags |= FW_OFLD_CONN;
3843 adap->tids.aftid_base = val[0];
3844 adap->tids.aftid_end = val[1];
3845 }
3846
3847 /* If we're running on newer firmware, let it know that we're
3848 * prepared to deal with encapsulated CPL messages. Older
3849 * firmware won't understand this and we'll just get
3850 * unencapsulated messages ...
3851 */
3852 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3853 val[0] = 1;
3854 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3855
3856 /*
3857 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3858 * capability. Earlier versions of the firmware didn't have the
3859 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3860 * permission to use ULPTX MEMWRITE DSGL.
3861 */
3862 if (is_t4(adap->params.chip)) {
3863 adap->params.ulptx_memwrite_dsgl = false;
3864 } else {
3865 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3866 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3867 1, params, val);
3868 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3869 }
3870
3871 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
3872 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
3873 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3874 1, params, val);
3875 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
3876
3877 /*
3878 * Get device capabilities so we can determine what resources we need
3879 * to manage.
3880 */
3881 memset(&caps_cmd, 0, sizeof(caps_cmd));
3882 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3883 FW_CMD_REQUEST_F | FW_CMD_READ_F);
3884 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3885 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3886 &caps_cmd);
3887 if (ret < 0)
3888 goto bye;
3889
3890 if (caps_cmd.ofldcaps) {
3891 /* query offload-related parameters */
3892 params[0] = FW_PARAM_DEV(NTID);
3893 params[1] = FW_PARAM_PFVF(SERVER_START);
3894 params[2] = FW_PARAM_PFVF(SERVER_END);
3895 params[3] = FW_PARAM_PFVF(TDDP_START);
3896 params[4] = FW_PARAM_PFVF(TDDP_END);
3897 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3898 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3899 params, val);
3900 if (ret < 0)
3901 goto bye;
3902 adap->tids.ntids = val[0];
3903 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3904 adap->tids.stid_base = val[1];
3905 adap->tids.nstids = val[2] - val[1] + 1;
3906 /*
3907 * Setup server filter region. Divide the available filter
3908 * region into two parts. Regular filters get 1/3rd and server
3909 * filters get 2/3rd part. This is only enabled if workarond
3910 * path is enabled.
3911 * 1. For regular filters.
3912 * 2. Server filter: This are special filters which are used
3913 * to redirect SYN packets to offload queue.
3914 */
3915 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3916 adap->tids.sftid_base = adap->tids.ftid_base +
3917 DIV_ROUND_UP(adap->tids.nftids, 3);
3918 adap->tids.nsftids = adap->tids.nftids -
3919 DIV_ROUND_UP(adap->tids.nftids, 3);
3920 adap->tids.nftids = adap->tids.sftid_base -
3921 adap->tids.ftid_base;
3922 }
3923 adap->vres.ddp.start = val[3];
3924 adap->vres.ddp.size = val[4] - val[3] + 1;
3925 adap->params.ofldq_wr_cred = val[5];
3926
3927 adap->params.offload = 1;
3928 adap->num_ofld_uld += 1;
3929 }
3930 if (caps_cmd.rdmacaps) {
3931 params[0] = FW_PARAM_PFVF(STAG_START);
3932 params[1] = FW_PARAM_PFVF(STAG_END);
3933 params[2] = FW_PARAM_PFVF(RQ_START);
3934 params[3] = FW_PARAM_PFVF(RQ_END);
3935 params[4] = FW_PARAM_PFVF(PBL_START);
3936 params[5] = FW_PARAM_PFVF(PBL_END);
3937 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3938 params, val);
3939 if (ret < 0)
3940 goto bye;
3941 adap->vres.stag.start = val[0];
3942 adap->vres.stag.size = val[1] - val[0] + 1;
3943 adap->vres.rq.start = val[2];
3944 adap->vres.rq.size = val[3] - val[2] + 1;
3945 adap->vres.pbl.start = val[4];
3946 adap->vres.pbl.size = val[5] - val[4] + 1;
3947
3948 params[0] = FW_PARAM_PFVF(SQRQ_START);
3949 params[1] = FW_PARAM_PFVF(SQRQ_END);
3950 params[2] = FW_PARAM_PFVF(CQ_START);
3951 params[3] = FW_PARAM_PFVF(CQ_END);
3952 params[4] = FW_PARAM_PFVF(OCQ_START);
3953 params[5] = FW_PARAM_PFVF(OCQ_END);
3954 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
3955 val);
3956 if (ret < 0)
3957 goto bye;
3958 adap->vres.qp.start = val[0];
3959 adap->vres.qp.size = val[1] - val[0] + 1;
3960 adap->vres.cq.start = val[2];
3961 adap->vres.cq.size = val[3] - val[2] + 1;
3962 adap->vres.ocq.start = val[4];
3963 adap->vres.ocq.size = val[5] - val[4] + 1;
3964
3965 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3966 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3967 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
3968 val);
3969 if (ret < 0) {
3970 adap->params.max_ordird_qp = 8;
3971 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3972 ret = 0;
3973 } else {
3974 adap->params.max_ordird_qp = val[0];
3975 adap->params.max_ird_adapter = val[1];
3976 }
3977 dev_info(adap->pdev_dev,
3978 "max_ordird_qp %d max_ird_adapter %d\n",
3979 adap->params.max_ordird_qp,
3980 adap->params.max_ird_adapter);
3981 adap->num_ofld_uld += 2;
3982 }
3983 if (caps_cmd.iscsicaps) {
3984 params[0] = FW_PARAM_PFVF(ISCSI_START);
3985 params[1] = FW_PARAM_PFVF(ISCSI_END);
3986 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
3987 params, val);
3988 if (ret < 0)
3989 goto bye;
3990 adap->vres.iscsi.start = val[0];
3991 adap->vres.iscsi.size = val[1] - val[0] + 1;
3992 /* LIO target and cxgb4i initiaitor */
3993 adap->num_ofld_uld += 2;
3994 }
3995 if (caps_cmd.cryptocaps) {
3996 /* Should query params here...TODO */
3997 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
3998 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
3999 params, val);
4000 if (ret < 0) {
4001 if (ret != -EINVAL)
4002 goto bye;
4003 } else {
4004 adap->vres.ncrypto_fc = val[0];
4005 }
4006 adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
4007 adap->num_uld += 1;
4008 }
4009 #undef FW_PARAM_PFVF
4010 #undef FW_PARAM_DEV
4011
4012 /* The MTU/MSS Table is initialized by now, so load their values. If
4013 * we're initializing the adapter, then we'll make any modifications
4014 * we want to the MTU/MSS Table and also initialize the congestion
4015 * parameters.
4016 */
4017 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4018 if (state != DEV_STATE_INIT) {
4019 int i;
4020
4021 /* The default MTU Table contains values 1492 and 1500.
4022 * However, for TCP, it's better to have two values which are
4023 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4024 * This allows us to have a TCP Data Payload which is a
4025 * multiple of 8 regardless of what combination of TCP Options
4026 * are in use (always a multiple of 4 bytes) which is
4027 * important for performance reasons. For instance, if no
4028 * options are in use, then we have a 20-byte IP header and a
4029 * 20-byte TCP header. In this case, a 1500-byte MSS would
4030 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4031 * which is not a multiple of 8. So using an MSS of 1488 in
4032 * this case results in a TCP Data Payload of 1448 bytes which
4033 * is a multiple of 8. On the other hand, if 12-byte TCP Time
4034 * Stamps have been negotiated, then an MTU of 1500 bytes
4035 * results in a TCP Data Payload of 1448 bytes which, as
4036 * above, is a multiple of 8 bytes ...
4037 */
4038 for (i = 0; i < NMTUS; i++)
4039 if (adap->params.mtus[i] == 1492) {
4040 adap->params.mtus[i] = 1488;
4041 break;
4042 }
4043
4044 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4045 adap->params.b_wnd);
4046 }
4047 t4_init_sge_params(adap);
4048 adap->flags |= FW_OK;
4049 t4_init_tp_params(adap);
4050 return 0;
4051
4052 /*
4053 * Something bad happened. If a command timed out or failed with EIO
4054 * FW does not operate within its spec or something catastrophic
4055 * happened to HW/FW, stop issuing commands.
4056 */
4057 bye:
4058 kfree(adap->sge.egr_map);
4059 kfree(adap->sge.ingr_map);
4060 kfree(adap->sge.starving_fl);
4061 kfree(adap->sge.txq_maperr);
4062 #ifdef CONFIG_DEBUG_FS
4063 kfree(adap->sge.blocked_fl);
4064 #endif
4065 if (ret != -ETIMEDOUT && ret != -EIO)
4066 t4_fw_bye(adap, adap->mbox);
4067 return ret;
4068 }
4069
4070 /* EEH callbacks */
4071
eeh_err_detected(struct pci_dev * pdev,pci_channel_state_t state)4072 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4073 pci_channel_state_t state)
4074 {
4075 int i;
4076 struct adapter *adap = pci_get_drvdata(pdev);
4077
4078 if (!adap)
4079 goto out;
4080
4081 rtnl_lock();
4082 adap->flags &= ~FW_OK;
4083 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4084 spin_lock(&adap->stats_lock);
4085 for_each_port(adap, i) {
4086 struct net_device *dev = adap->port[i];
4087 if (dev) {
4088 netif_device_detach(dev);
4089 netif_carrier_off(dev);
4090 }
4091 }
4092 spin_unlock(&adap->stats_lock);
4093 disable_interrupts(adap);
4094 if (adap->flags & FULL_INIT_DONE)
4095 cxgb_down(adap);
4096 rtnl_unlock();
4097 if ((adap->flags & DEV_ENABLED)) {
4098 pci_disable_device(pdev);
4099 adap->flags &= ~DEV_ENABLED;
4100 }
4101 out: return state == pci_channel_io_perm_failure ?
4102 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4103 }
4104
eeh_slot_reset(struct pci_dev * pdev)4105 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4106 {
4107 int i, ret;
4108 struct fw_caps_config_cmd c;
4109 struct adapter *adap = pci_get_drvdata(pdev);
4110
4111 if (!adap) {
4112 pci_restore_state(pdev);
4113 pci_save_state(pdev);
4114 return PCI_ERS_RESULT_RECOVERED;
4115 }
4116
4117 if (!(adap->flags & DEV_ENABLED)) {
4118 if (pci_enable_device(pdev)) {
4119 dev_err(&pdev->dev, "Cannot reenable PCI "
4120 "device after reset\n");
4121 return PCI_ERS_RESULT_DISCONNECT;
4122 }
4123 adap->flags |= DEV_ENABLED;
4124 }
4125
4126 pci_set_master(pdev);
4127 pci_restore_state(pdev);
4128 pci_save_state(pdev);
4129 pci_cleanup_aer_uncorrect_error_status(pdev);
4130
4131 if (t4_wait_dev_ready(adap->regs) < 0)
4132 return PCI_ERS_RESULT_DISCONNECT;
4133 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4134 return PCI_ERS_RESULT_DISCONNECT;
4135 adap->flags |= FW_OK;
4136 if (adap_init1(adap, &c))
4137 return PCI_ERS_RESULT_DISCONNECT;
4138
4139 for_each_port(adap, i) {
4140 struct port_info *p = adap2pinfo(adap, i);
4141
4142 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4143 NULL, NULL);
4144 if (ret < 0)
4145 return PCI_ERS_RESULT_DISCONNECT;
4146 p->viid = ret;
4147 p->xact_addr_filt = -1;
4148 }
4149
4150 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4151 adap->params.b_wnd);
4152 setup_memwin(adap);
4153 if (cxgb_up(adap))
4154 return PCI_ERS_RESULT_DISCONNECT;
4155 return PCI_ERS_RESULT_RECOVERED;
4156 }
4157
eeh_resume(struct pci_dev * pdev)4158 static void eeh_resume(struct pci_dev *pdev)
4159 {
4160 int i;
4161 struct adapter *adap = pci_get_drvdata(pdev);
4162
4163 if (!adap)
4164 return;
4165
4166 rtnl_lock();
4167 for_each_port(adap, i) {
4168 struct net_device *dev = adap->port[i];
4169 if (dev) {
4170 if (netif_running(dev)) {
4171 link_start(dev);
4172 cxgb_set_rxmode(dev);
4173 }
4174 netif_device_attach(dev);
4175 }
4176 }
4177 rtnl_unlock();
4178 }
4179
4180 static const struct pci_error_handlers cxgb4_eeh = {
4181 .error_detected = eeh_err_detected,
4182 .slot_reset = eeh_slot_reset,
4183 .resume = eeh_resume,
4184 };
4185
4186 /* Return true if the Link Configuration supports "High Speeds" (those greater
4187 * than 1Gb/s).
4188 */
is_x_10g_port(const struct link_config * lc)4189 static inline bool is_x_10g_port(const struct link_config *lc)
4190 {
4191 unsigned int speeds, high_speeds;
4192
4193 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
4194 high_speeds = speeds &
4195 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
4196
4197 return high_speeds != 0;
4198 }
4199
4200 /*
4201 * Perform default configuration of DMA queues depending on the number and type
4202 * of ports we found and the number of available CPUs. Most settings can be
4203 * modified by the admin prior to actual use.
4204 */
cfg_queues(struct adapter * adap)4205 static void cfg_queues(struct adapter *adap)
4206 {
4207 struct sge *s = &adap->sge;
4208 int i = 0, n10g = 0, qidx = 0;
4209 #ifndef CONFIG_CHELSIO_T4_DCB
4210 int q10g = 0;
4211 #endif
4212
4213 /* Reduce memory usage in kdump environment, disable all offload.
4214 */
4215 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
4216 adap->params.offload = 0;
4217 adap->params.crypto = 0;
4218 }
4219
4220 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4221 #ifdef CONFIG_CHELSIO_T4_DCB
4222 /* For Data Center Bridging support we need to be able to support up
4223 * to 8 Traffic Priorities; each of which will be assigned to its
4224 * own TX Queue in order to prevent Head-Of-Line Blocking.
4225 */
4226 if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4227 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4228 MAX_ETH_QSETS, adap->params.nports * 8);
4229 BUG_ON(1);
4230 }
4231
4232 for_each_port(adap, i) {
4233 struct port_info *pi = adap2pinfo(adap, i);
4234
4235 pi->first_qset = qidx;
4236 pi->nqsets = is_kdump_kernel() ? 1 : 8;
4237 qidx += pi->nqsets;
4238 }
4239 #else /* !CONFIG_CHELSIO_T4_DCB */
4240 /*
4241 * We default to 1 queue per non-10G port and up to # of cores queues
4242 * per 10G port.
4243 */
4244 if (n10g)
4245 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4246 if (q10g > netif_get_num_default_rss_queues())
4247 q10g = netif_get_num_default_rss_queues();
4248
4249 if (is_kdump_kernel())
4250 q10g = 1;
4251
4252 for_each_port(adap, i) {
4253 struct port_info *pi = adap2pinfo(adap, i);
4254
4255 pi->first_qset = qidx;
4256 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4257 qidx += pi->nqsets;
4258 }
4259 #endif /* !CONFIG_CHELSIO_T4_DCB */
4260
4261 s->ethqsets = qidx;
4262 s->max_ethqsets = qidx; /* MSI-X may lower it later */
4263
4264 if (is_uld(adap)) {
4265 /*
4266 * For offload we use 1 queue/channel if all ports are up to 1G,
4267 * otherwise we divide all available queues amongst the channels
4268 * capped by the number of available cores.
4269 */
4270 if (n10g) {
4271 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4272 s->ofldqsets = roundup(i, adap->params.nports);
4273 } else {
4274 s->ofldqsets = adap->params.nports;
4275 }
4276 }
4277
4278 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4279 struct sge_eth_rxq *r = &s->ethrxq[i];
4280
4281 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4282 r->fl.size = 72;
4283 }
4284
4285 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4286 s->ethtxq[i].q.size = 1024;
4287
4288 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4289 s->ctrlq[i].q.size = 512;
4290
4291 if (!is_t4(adap->params.chip))
4292 s->ptptxq.q.size = 8;
4293
4294 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4295 init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4296 }
4297
4298 /*
4299 * Reduce the number of Ethernet queues across all ports to at most n.
4300 * n provides at least one queue per port.
4301 */
reduce_ethqs(struct adapter * adap,int n)4302 static void reduce_ethqs(struct adapter *adap, int n)
4303 {
4304 int i;
4305 struct port_info *pi;
4306
4307 while (n < adap->sge.ethqsets)
4308 for_each_port(adap, i) {
4309 pi = adap2pinfo(adap, i);
4310 if (pi->nqsets > 1) {
4311 pi->nqsets--;
4312 adap->sge.ethqsets--;
4313 if (adap->sge.ethqsets <= n)
4314 break;
4315 }
4316 }
4317
4318 n = 0;
4319 for_each_port(adap, i) {
4320 pi = adap2pinfo(adap, i);
4321 pi->first_qset = n;
4322 n += pi->nqsets;
4323 }
4324 }
4325
get_msix_info(struct adapter * adap)4326 static int get_msix_info(struct adapter *adap)
4327 {
4328 struct uld_msix_info *msix_info;
4329 unsigned int max_ingq = 0;
4330
4331 if (is_offload(adap))
4332 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4333 if (is_pci_uld(adap))
4334 max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4335
4336 if (!max_ingq)
4337 goto out;
4338
4339 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4340 if (!msix_info)
4341 return -ENOMEM;
4342
4343 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4344 sizeof(long), GFP_KERNEL);
4345 if (!adap->msix_bmap_ulds.msix_bmap) {
4346 kfree(msix_info);
4347 return -ENOMEM;
4348 }
4349 spin_lock_init(&adap->msix_bmap_ulds.lock);
4350 adap->msix_info_ulds = msix_info;
4351 out:
4352 return 0;
4353 }
4354
free_msix_info(struct adapter * adap)4355 static void free_msix_info(struct adapter *adap)
4356 {
4357 if (!(adap->num_uld && adap->num_ofld_uld))
4358 return;
4359
4360 kfree(adap->msix_info_ulds);
4361 kfree(adap->msix_bmap_ulds.msix_bmap);
4362 }
4363
4364 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4365 #define EXTRA_VECS 2
4366
enable_msix(struct adapter * adap)4367 static int enable_msix(struct adapter *adap)
4368 {
4369 int ofld_need = 0, uld_need = 0;
4370 int i, j, want, need, allocated;
4371 struct sge *s = &adap->sge;
4372 unsigned int nchan = adap->params.nports;
4373 struct msix_entry *entries;
4374 int max_ingq = MAX_INGQ;
4375
4376 if (is_pci_uld(adap))
4377 max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4378 if (is_offload(adap))
4379 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4380 entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4381 GFP_KERNEL);
4382 if (!entries)
4383 return -ENOMEM;
4384
4385 /* map for msix */
4386 if (get_msix_info(adap)) {
4387 adap->params.offload = 0;
4388 adap->params.crypto = 0;
4389 }
4390
4391 for (i = 0; i < max_ingq + 1; ++i)
4392 entries[i].entry = i;
4393
4394 want = s->max_ethqsets + EXTRA_VECS;
4395 if (is_offload(adap)) {
4396 want += adap->num_ofld_uld * s->ofldqsets;
4397 ofld_need = adap->num_ofld_uld * nchan;
4398 }
4399 if (is_pci_uld(adap)) {
4400 want += adap->num_uld * s->ofldqsets;
4401 uld_need = adap->num_uld * nchan;
4402 }
4403 #ifdef CONFIG_CHELSIO_T4_DCB
4404 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4405 * each port.
4406 */
4407 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4408 #else
4409 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4410 #endif
4411 allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4412 if (allocated < 0) {
4413 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4414 " not using MSI-X\n");
4415 kfree(entries);
4416 return allocated;
4417 }
4418
4419 /* Distribute available vectors to the various queue groups.
4420 * Every group gets its minimum requirement and NIC gets top
4421 * priority for leftovers.
4422 */
4423 i = allocated - EXTRA_VECS - ofld_need - uld_need;
4424 if (i < s->max_ethqsets) {
4425 s->max_ethqsets = i;
4426 if (i < s->ethqsets)
4427 reduce_ethqs(adap, i);
4428 }
4429 if (is_uld(adap)) {
4430 if (allocated < want)
4431 s->nqs_per_uld = nchan;
4432 else
4433 s->nqs_per_uld = s->ofldqsets;
4434 }
4435
4436 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
4437 adap->msix_info[i].vec = entries[i].vector;
4438 if (is_uld(adap)) {
4439 for (j = 0 ; i < allocated; ++i, j++) {
4440 adap->msix_info_ulds[j].vec = entries[i].vector;
4441 adap->msix_info_ulds[j].idx = i;
4442 }
4443 adap->msix_bmap_ulds.mapsize = j;
4444 }
4445 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4446 "nic %d per uld %d\n",
4447 allocated, s->max_ethqsets, s->nqs_per_uld);
4448
4449 kfree(entries);
4450 return 0;
4451 }
4452
4453 #undef EXTRA_VECS
4454
init_rss(struct adapter * adap)4455 static int init_rss(struct adapter *adap)
4456 {
4457 unsigned int i;
4458 int err;
4459
4460 err = t4_init_rss_mode(adap, adap->mbox);
4461 if (err)
4462 return err;
4463
4464 for_each_port(adap, i) {
4465 struct port_info *pi = adap2pinfo(adap, i);
4466
4467 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4468 if (!pi->rss)
4469 return -ENOMEM;
4470 }
4471 return 0;
4472 }
4473
cxgb4_get_pcie_dev_link_caps(struct adapter * adap,enum pci_bus_speed * speed,enum pcie_link_width * width)4474 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4475 enum pci_bus_speed *speed,
4476 enum pcie_link_width *width)
4477 {
4478 u32 lnkcap1, lnkcap2;
4479 int err1, err2;
4480
4481 #define PCIE_MLW_CAP_SHIFT 4 /* start of MLW mask in link capabilities */
4482
4483 *speed = PCI_SPEED_UNKNOWN;
4484 *width = PCIE_LNK_WIDTH_UNKNOWN;
4485
4486 err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4487 &lnkcap1);
4488 err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4489 &lnkcap2);
4490 if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4491 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4492 *speed = PCIE_SPEED_8_0GT;
4493 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4494 *speed = PCIE_SPEED_5_0GT;
4495 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4496 *speed = PCIE_SPEED_2_5GT;
4497 }
4498 if (!err1) {
4499 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4500 if (!lnkcap2) { /* pre-r3.0 */
4501 if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4502 *speed = PCIE_SPEED_5_0GT;
4503 else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4504 *speed = PCIE_SPEED_2_5GT;
4505 }
4506 }
4507
4508 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4509 return err1 ? err1 : err2 ? err2 : -EINVAL;
4510 return 0;
4511 }
4512
cxgb4_check_pcie_caps(struct adapter * adap)4513 static void cxgb4_check_pcie_caps(struct adapter *adap)
4514 {
4515 enum pcie_link_width width, width_cap;
4516 enum pci_bus_speed speed, speed_cap;
4517
4518 #define PCIE_SPEED_STR(speed) \
4519 (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4520 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4521 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4522 "Unknown")
4523
4524 if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4525 dev_warn(adap->pdev_dev,
4526 "Unable to determine PCIe device BW capabilities\n");
4527 return;
4528 }
4529
4530 if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4531 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4532 dev_warn(adap->pdev_dev,
4533 "Unable to determine PCI Express bandwidth.\n");
4534 return;
4535 }
4536
4537 dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4538 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4539 dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4540 width, width_cap);
4541 if (speed < speed_cap || width < width_cap)
4542 dev_info(adap->pdev_dev,
4543 "A slot with more lanes and/or higher speed is "
4544 "suggested for optimal performance.\n");
4545 }
4546
4547 /* Dump basic information about the adapter */
print_adapter_info(struct adapter * adapter)4548 static void print_adapter_info(struct adapter *adapter)
4549 {
4550 /* Hardware/Firmware/etc. Version/Revision IDs */
4551 t4_dump_version_info(adapter);
4552
4553 /* Software/Hardware configuration */
4554 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4555 is_offload(adapter) ? "R" : "",
4556 ((adapter->flags & USING_MSIX) ? "MSI-X" :
4557 (adapter->flags & USING_MSI) ? "MSI" : ""),
4558 is_offload(adapter) ? "Offload" : "non-Offload");
4559 }
4560
print_port_info(const struct net_device * dev)4561 static void print_port_info(const struct net_device *dev)
4562 {
4563 char buf[80];
4564 char *bufp = buf;
4565 const char *spd = "";
4566 const struct port_info *pi = netdev_priv(dev);
4567 const struct adapter *adap = pi->adapter;
4568
4569 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4570 spd = " 2.5 GT/s";
4571 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4572 spd = " 5 GT/s";
4573 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4574 spd = " 8 GT/s";
4575
4576 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
4577 bufp += sprintf(bufp, "100M/");
4578 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
4579 bufp += sprintf(bufp, "1G/");
4580 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
4581 bufp += sprintf(bufp, "10G/");
4582 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
4583 bufp += sprintf(bufp, "25G/");
4584 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
4585 bufp += sprintf(bufp, "40G/");
4586 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
4587 bufp += sprintf(bufp, "50G/");
4588 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
4589 bufp += sprintf(bufp, "100G/");
4590 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
4591 bufp += sprintf(bufp, "200G/");
4592 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
4593 bufp += sprintf(bufp, "400G/");
4594 if (bufp != buf)
4595 --bufp;
4596 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4597
4598 netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4599 dev->name, adap->params.vpd.id, adap->name, buf);
4600 }
4601
4602 /*
4603 * Free the following resources:
4604 * - memory used for tables
4605 * - MSI/MSI-X
4606 * - net devices
4607 * - resources FW is holding for us
4608 */
free_some_resources(struct adapter * adapter)4609 static void free_some_resources(struct adapter *adapter)
4610 {
4611 unsigned int i;
4612
4613 kvfree(adapter->l2t);
4614 t4_cleanup_sched(adapter);
4615 kvfree(adapter->tids.tid_tab);
4616 cxgb4_cleanup_tc_u32(adapter);
4617 kfree(adapter->sge.egr_map);
4618 kfree(adapter->sge.ingr_map);
4619 kfree(adapter->sge.starving_fl);
4620 kfree(adapter->sge.txq_maperr);
4621 #ifdef CONFIG_DEBUG_FS
4622 kfree(adapter->sge.blocked_fl);
4623 #endif
4624 disable_msi(adapter);
4625
4626 for_each_port(adapter, i)
4627 if (adapter->port[i]) {
4628 struct port_info *pi = adap2pinfo(adapter, i);
4629
4630 if (pi->viid != 0)
4631 t4_free_vi(adapter, adapter->mbox, adapter->pf,
4632 0, pi->viid);
4633 kfree(adap2pinfo(adapter, i)->rss);
4634 free_netdev(adapter->port[i]);
4635 }
4636 if (adapter->flags & FW_OK)
4637 t4_fw_bye(adapter, adapter->pf);
4638 }
4639
4640 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4641 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4642 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4643 #define SEGMENT_SIZE 128
4644
get_chip_type(struct pci_dev * pdev,u32 pl_rev)4645 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4646 {
4647 u16 device_id;
4648
4649 /* Retrieve adapter's device ID */
4650 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4651
4652 switch (device_id >> 12) {
4653 case CHELSIO_T4:
4654 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4655 case CHELSIO_T5:
4656 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4657 case CHELSIO_T6:
4658 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4659 default:
4660 dev_err(&pdev->dev, "Device %d is not supported\n",
4661 device_id);
4662 }
4663 return -EINVAL;
4664 }
4665
4666 #ifdef CONFIG_PCI_IOV
dummy_setup(struct net_device * dev)4667 static void dummy_setup(struct net_device *dev)
4668 {
4669 dev->type = ARPHRD_NONE;
4670 dev->mtu = 0;
4671 dev->hard_header_len = 0;
4672 dev->addr_len = 0;
4673 dev->tx_queue_len = 0;
4674 dev->flags |= IFF_NOARP;
4675 dev->priv_flags |= IFF_NO_QUEUE;
4676
4677 /* Initialize the device structure. */
4678 dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
4679 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
4680 }
4681
config_mgmt_dev(struct pci_dev * pdev)4682 static int config_mgmt_dev(struct pci_dev *pdev)
4683 {
4684 struct adapter *adap = pci_get_drvdata(pdev);
4685 struct net_device *netdev;
4686 struct port_info *pi;
4687 char name[IFNAMSIZ];
4688 int err;
4689
4690 snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
4691 netdev = alloc_netdev(sizeof(struct port_info), name, NET_NAME_UNKNOWN,
4692 dummy_setup);
4693 if (!netdev)
4694 return -ENOMEM;
4695
4696 pi = netdev_priv(netdev);
4697 pi->adapter = adap;
4698 pi->tx_chan = adap->pf % adap->params.nports;
4699 SET_NETDEV_DEV(netdev, &pdev->dev);
4700
4701 adap->port[0] = netdev;
4702 pi->port_id = 0;
4703
4704 err = register_netdev(adap->port[0]);
4705 if (err) {
4706 pr_info("Unable to register VF mgmt netdev %s\n", name);
4707 free_netdev(adap->port[0]);
4708 adap->port[0] = NULL;
4709 return err;
4710 }
4711 return 0;
4712 }
4713
cxgb4_iov_configure(struct pci_dev * pdev,int num_vfs)4714 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
4715 {
4716 struct adapter *adap = pci_get_drvdata(pdev);
4717 int err = 0;
4718 int current_vfs = pci_num_vf(pdev);
4719 u32 pcie_fw;
4720
4721 pcie_fw = readl(adap->regs + PCIE_FW_A);
4722 /* Check if cxgb4 is the MASTER and fw is initialized */
4723 if (!(pcie_fw & PCIE_FW_INIT_F) ||
4724 !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
4725 PCIE_FW_MASTER_G(pcie_fw) != 4) {
4726 dev_warn(&pdev->dev,
4727 "cxgb4 driver needs to be MASTER to support SRIOV\n");
4728 return -EOPNOTSUPP;
4729 }
4730
4731 /* If any of the VF's is already assigned to Guest OS, then
4732 * SRIOV for the same cannot be modified
4733 */
4734 if (current_vfs && pci_vfs_assigned(pdev)) {
4735 dev_err(&pdev->dev,
4736 "Cannot modify SR-IOV while VFs are assigned\n");
4737 num_vfs = current_vfs;
4738 return num_vfs;
4739 }
4740
4741 /* Disable SRIOV when zero is passed.
4742 * One needs to disable SRIOV before modifying it, else
4743 * stack throws the below warning:
4744 * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
4745 */
4746 if (!num_vfs) {
4747 pci_disable_sriov(pdev);
4748 if (adap->port[0]) {
4749 unregister_netdev(adap->port[0]);
4750 adap->port[0] = NULL;
4751 }
4752 /* free VF resources */
4753 kfree(adap->vfinfo);
4754 adap->vfinfo = NULL;
4755 adap->num_vfs = 0;
4756 return num_vfs;
4757 }
4758
4759 if (num_vfs != current_vfs) {
4760 err = pci_enable_sriov(pdev, num_vfs);
4761 if (err)
4762 return err;
4763
4764 adap->num_vfs = num_vfs;
4765 err = config_mgmt_dev(pdev);
4766 if (err)
4767 return err;
4768 }
4769
4770 adap->vfinfo = kcalloc(adap->num_vfs,
4771 sizeof(struct vf_info), GFP_KERNEL);
4772 if (adap->vfinfo)
4773 fill_vf_station_mac_addr(adap);
4774 return num_vfs;
4775 }
4776 #endif
4777
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)4778 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4779 {
4780 int func, i, err, s_qpp, qpp, num_seg;
4781 struct port_info *pi;
4782 bool highdma = false;
4783 struct adapter *adapter = NULL;
4784 struct net_device *netdev;
4785 void __iomem *regs;
4786 u32 whoami, pl_rev;
4787 enum chip_type chip;
4788 static int adap_idx = 1;
4789 #ifdef CONFIG_PCI_IOV
4790 u32 v, port_vec;
4791 #endif
4792
4793 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4794
4795 err = pci_request_regions(pdev, KBUILD_MODNAME);
4796 if (err) {
4797 /* Just info, some other driver may have claimed the device. */
4798 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4799 return err;
4800 }
4801
4802 err = pci_enable_device(pdev);
4803 if (err) {
4804 dev_err(&pdev->dev, "cannot enable PCI device\n");
4805 goto out_release_regions;
4806 }
4807
4808 regs = pci_ioremap_bar(pdev, 0);
4809 if (!regs) {
4810 dev_err(&pdev->dev, "cannot map device registers\n");
4811 err = -ENOMEM;
4812 goto out_disable_device;
4813 }
4814
4815 err = t4_wait_dev_ready(regs);
4816 if (err < 0)
4817 goto out_unmap_bar0;
4818
4819 /* We control everything through one PF */
4820 whoami = readl(regs + PL_WHOAMI_A);
4821 pl_rev = REV_G(readl(regs + PL_REV_A));
4822 chip = get_chip_type(pdev, pl_rev);
4823 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4824 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4825 if (func != ent->driver_data) {
4826 #ifndef CONFIG_PCI_IOV
4827 iounmap(regs);
4828 #endif
4829 pci_disable_device(pdev);
4830 pci_save_state(pdev); /* to restore SR-IOV later */
4831 goto sriov;
4832 }
4833
4834 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4835 highdma = true;
4836 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4837 if (err) {
4838 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4839 "coherent allocations\n");
4840 goto out_unmap_bar0;
4841 }
4842 } else {
4843 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4844 if (err) {
4845 dev_err(&pdev->dev, "no usable DMA configuration\n");
4846 goto out_unmap_bar0;
4847 }
4848 }
4849
4850 pci_enable_pcie_error_reporting(pdev);
4851 pci_set_master(pdev);
4852 pci_save_state(pdev);
4853
4854 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4855 if (!adapter) {
4856 err = -ENOMEM;
4857 goto out_unmap_bar0;
4858 }
4859 adap_idx++;
4860
4861 adapter->workq = create_singlethread_workqueue("cxgb4");
4862 if (!adapter->workq) {
4863 err = -ENOMEM;
4864 goto out_free_adapter;
4865 }
4866
4867 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4868 (sizeof(struct mbox_cmd) *
4869 T4_OS_LOG_MBOX_CMDS),
4870 GFP_KERNEL);
4871 if (!adapter->mbox_log) {
4872 err = -ENOMEM;
4873 goto out_free_adapter;
4874 }
4875 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
4876
4877 /* PCI device has been enabled */
4878 adapter->flags |= DEV_ENABLED;
4879
4880 adapter->regs = regs;
4881 adapter->pdev = pdev;
4882 adapter->pdev_dev = &pdev->dev;
4883 adapter->name = pci_name(pdev);
4884 adapter->mbox = func;
4885 adapter->pf = func;
4886 adapter->msg_enable = DFLT_MSG_ENABLE;
4887 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4888
4889 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
4890 * Ingress Packet Data to Free List Buffers in order to allow for
4891 * chipset performance optimizations between the Root Complex and
4892 * Memory Controllers. (Messages to the associated Ingress Queue
4893 * notifying new Packet Placement in the Free Lists Buffers will be
4894 * send without the Relaxed Ordering Attribute thus guaranteeing that
4895 * all preceding PCIe Transaction Layer Packets will be processed
4896 * first.) But some Root Complexes have various issues with Upstream
4897 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
4898 * The PCIe devices which under the Root Complexes will be cleared the
4899 * Relaxed Ordering bit in the configuration space, So we check our
4900 * PCIe configuration space to see if it's flagged with advice against
4901 * using Relaxed Ordering.
4902 */
4903 if (!pcie_relaxed_ordering_enabled(pdev))
4904 adapter->flags |= ROOT_NO_RELAXED_ORDERING;
4905
4906 spin_lock_init(&adapter->stats_lock);
4907 spin_lock_init(&adapter->tid_release_lock);
4908 spin_lock_init(&adapter->win0_lock);
4909 spin_lock_init(&adapter->mbox_lock);
4910
4911 INIT_LIST_HEAD(&adapter->mlist.list);
4912
4913 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4914 INIT_WORK(&adapter->db_full_task, process_db_full);
4915 INIT_WORK(&adapter->db_drop_task, process_db_drop);
4916
4917 err = t4_prep_adapter(adapter);
4918 if (err)
4919 goto out_free_adapter;
4920
4921
4922 if (!is_t4(adapter->params.chip)) {
4923 s_qpp = (QUEUESPERPAGEPF0_S +
4924 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4925 adapter->pf);
4926 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4927 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4928 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4929
4930 /* Each segment size is 128B. Write coalescing is enabled only
4931 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4932 * queue is less no of segments that can be accommodated in
4933 * a page size.
4934 */
4935 if (qpp > num_seg) {
4936 dev_err(&pdev->dev,
4937 "Incorrect number of egress queues per page\n");
4938 err = -EINVAL;
4939 goto out_free_adapter;
4940 }
4941 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4942 pci_resource_len(pdev, 2));
4943 if (!adapter->bar2) {
4944 dev_err(&pdev->dev, "cannot map device bar2 region\n");
4945 err = -ENOMEM;
4946 goto out_free_adapter;
4947 }
4948 }
4949
4950 setup_memwin(adapter);
4951 err = adap_init0(adapter);
4952 #ifdef CONFIG_DEBUG_FS
4953 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4954 #endif
4955 setup_memwin_rdma(adapter);
4956 if (err)
4957 goto out_unmap_bar;
4958
4959 /* configure SGE_STAT_CFG_A to read WC stats */
4960 if (!is_t4(adapter->params.chip))
4961 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
4962 (is_t5(adapter->params.chip) ? STATMODE_V(0) :
4963 T6_STATMODE_V(0)));
4964
4965 for_each_port(adapter, i) {
4966 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4967 MAX_ETH_QSETS);
4968 if (!netdev) {
4969 err = -ENOMEM;
4970 goto out_free_dev;
4971 }
4972
4973 SET_NETDEV_DEV(netdev, &pdev->dev);
4974
4975 adapter->port[i] = netdev;
4976 pi = netdev_priv(netdev);
4977 pi->adapter = adapter;
4978 pi->xact_addr_filt = -1;
4979 pi->port_id = i;
4980 netdev->irq = pdev->irq;
4981
4982 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4983 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4984 NETIF_F_RXCSUM | NETIF_F_RXHASH |
4985 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
4986 NETIF_F_HW_TC;
4987 if (highdma)
4988 netdev->hw_features |= NETIF_F_HIGHDMA;
4989 netdev->features |= netdev->hw_features;
4990 netdev->vlan_features = netdev->features & VLAN_FEAT;
4991
4992 netdev->priv_flags |= IFF_UNICAST_FLT;
4993
4994 /* MTU range: 81 - 9600 */
4995 netdev->min_mtu = 81;
4996 netdev->max_mtu = MAX_MTU;
4997
4998 netdev->netdev_ops = &cxgb4_netdev_ops;
4999 #ifdef CONFIG_CHELSIO_T4_DCB
5000 netdev->dcbnl_ops = &cxgb4_dcb_ops;
5001 cxgb4_dcb_state_init(netdev);
5002 #endif
5003 cxgb4_set_ethtool_ops(netdev);
5004 }
5005
5006 pci_set_drvdata(pdev, adapter);
5007
5008 if (adapter->flags & FW_OK) {
5009 err = t4_port_init(adapter, func, func, 0);
5010 if (err)
5011 goto out_free_dev;
5012 } else if (adapter->params.nports == 1) {
5013 /* If we don't have a connection to the firmware -- possibly
5014 * because of an error -- grab the raw VPD parameters so we
5015 * can set the proper MAC Address on the debug network
5016 * interface that we've created.
5017 */
5018 u8 hw_addr[ETH_ALEN];
5019 u8 *na = adapter->params.vpd.na;
5020
5021 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5022 if (!err) {
5023 for (i = 0; i < ETH_ALEN; i++)
5024 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5025 hex2val(na[2 * i + 1]));
5026 t4_set_hw_addr(adapter, 0, hw_addr);
5027 }
5028 }
5029
5030 /* Configure queues and allocate tables now, they can be needed as
5031 * soon as the first register_netdev completes.
5032 */
5033 cfg_queues(adapter);
5034
5035 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5036 if (!adapter->l2t) {
5037 /* We tolerate a lack of L2T, giving up some functionality */
5038 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5039 adapter->params.offload = 0;
5040 }
5041
5042 #if IS_ENABLED(CONFIG_IPV6)
5043 if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
5044 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5045 /* CLIP functionality is not present in hardware,
5046 * hence disable all offload features
5047 */
5048 dev_warn(&pdev->dev,
5049 "CLIP not enabled in hardware, continuing\n");
5050 adapter->params.offload = 0;
5051 } else {
5052 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5053 adapter->clipt_end);
5054 if (!adapter->clipt) {
5055 /* We tolerate a lack of clip_table, giving up
5056 * some functionality
5057 */
5058 dev_warn(&pdev->dev,
5059 "could not allocate Clip table, continuing\n");
5060 adapter->params.offload = 0;
5061 }
5062 }
5063 #endif
5064
5065 for_each_port(adapter, i) {
5066 pi = adap2pinfo(adapter, i);
5067 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5068 if (!pi->sched_tbl)
5069 dev_warn(&pdev->dev,
5070 "could not activate scheduling on port %d\n",
5071 i);
5072 }
5073
5074 if (tid_init(&adapter->tids) < 0) {
5075 dev_warn(&pdev->dev, "could not allocate TID table, "
5076 "continuing\n");
5077 adapter->params.offload = 0;
5078 } else {
5079 adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
5080 if (!adapter->tc_u32)
5081 dev_warn(&pdev->dev,
5082 "could not offload tc u32, continuing\n");
5083 }
5084
5085 if (is_offload(adapter)) {
5086 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5087 u32 hash_base, hash_reg;
5088
5089 if (chip <= CHELSIO_T5) {
5090 hash_reg = LE_DB_TID_HASHBASE_A;
5091 hash_base = t4_read_reg(adapter, hash_reg);
5092 adapter->tids.hash_base = hash_base / 4;
5093 } else {
5094 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5095 hash_base = t4_read_reg(adapter, hash_reg);
5096 adapter->tids.hash_base = hash_base;
5097 }
5098 }
5099 }
5100
5101 /* See what interrupts we'll be using */
5102 if (msi > 1 && enable_msix(adapter) == 0)
5103 adapter->flags |= USING_MSIX;
5104 else if (msi > 0 && pci_enable_msi(pdev) == 0) {
5105 adapter->flags |= USING_MSI;
5106 if (msi > 1)
5107 free_msix_info(adapter);
5108 }
5109
5110 /* check for PCI Express bandwidth capabiltites */
5111 cxgb4_check_pcie_caps(adapter);
5112
5113 err = init_rss(adapter);
5114 if (err)
5115 goto out_free_dev;
5116
5117 err = setup_fw_sge_queues(adapter);
5118 if (err) {
5119 dev_err(adapter->pdev_dev,
5120 "FW sge queue allocation failed, err %d", err);
5121 goto out_free_dev;
5122 }
5123
5124 /*
5125 * The card is now ready to go. If any errors occur during device
5126 * registration we do not fail the whole card but rather proceed only
5127 * with the ports we manage to register successfully. However we must
5128 * register at least one net device.
5129 */
5130 for_each_port(adapter, i) {
5131 pi = adap2pinfo(adapter, i);
5132 adapter->port[i]->dev_port = pi->lport;
5133 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5134 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5135
5136 netif_carrier_off(adapter->port[i]);
5137
5138 err = register_netdev(adapter->port[i]);
5139 if (err)
5140 break;
5141 adapter->chan_map[pi->tx_chan] = i;
5142 print_port_info(adapter->port[i]);
5143 }
5144 if (i == 0) {
5145 dev_err(&pdev->dev, "could not register any net devices\n");
5146 goto out_free_dev;
5147 }
5148 if (err) {
5149 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5150 err = 0;
5151 }
5152
5153 if (cxgb4_debugfs_root) {
5154 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5155 cxgb4_debugfs_root);
5156 setup_debugfs(adapter);
5157 }
5158
5159 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5160 pdev->needs_freset = 1;
5161
5162 if (is_uld(adapter)) {
5163 mutex_lock(&uld_mutex);
5164 list_add_tail(&adapter->list_node, &adapter_list);
5165 mutex_unlock(&uld_mutex);
5166 }
5167
5168 if (!is_t4(adapter->params.chip))
5169 cxgb4_ptp_init(adapter);
5170
5171 print_adapter_info(adapter);
5172 return 0;
5173
5174 sriov:
5175 #ifdef CONFIG_PCI_IOV
5176 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5177 if (!adapter) {
5178 err = -ENOMEM;
5179 goto free_pci_region;
5180 }
5181
5182 adapter->pdev = pdev;
5183 adapter->pdev_dev = &pdev->dev;
5184 adapter->name = pci_name(pdev);
5185 adapter->mbox = func;
5186 adapter->pf = func;
5187 adapter->regs = regs;
5188 adapter->adap_idx = adap_idx;
5189 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5190 (sizeof(struct mbox_cmd) *
5191 T4_OS_LOG_MBOX_CMDS),
5192 GFP_KERNEL);
5193 if (!adapter->mbox_log) {
5194 err = -ENOMEM;
5195 goto free_adapter;
5196 }
5197 spin_lock_init(&adapter->mbox_lock);
5198 INIT_LIST_HEAD(&adapter->mlist.list);
5199
5200 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5201 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
5202 err = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1,
5203 &v, &port_vec);
5204 if (err < 0) {
5205 dev_err(adapter->pdev_dev, "Could not fetch port params\n");
5206 goto free_mbox_log;
5207 }
5208
5209 adapter->params.nports = hweight32(port_vec);
5210 pci_set_drvdata(pdev, adapter);
5211 return 0;
5212
5213 free_mbox_log:
5214 kfree(adapter->mbox_log);
5215 free_adapter:
5216 kfree(adapter);
5217 free_pci_region:
5218 iounmap(regs);
5219 pci_disable_sriov(pdev);
5220 pci_release_regions(pdev);
5221 return err;
5222 #else
5223 return 0;
5224 #endif
5225
5226 out_free_dev:
5227 t4_free_sge_resources(adapter);
5228 free_some_resources(adapter);
5229 if (adapter->flags & USING_MSIX)
5230 free_msix_info(adapter);
5231 if (adapter->num_uld || adapter->num_ofld_uld)
5232 t4_uld_mem_free(adapter);
5233 out_unmap_bar:
5234 if (!is_t4(adapter->params.chip))
5235 iounmap(adapter->bar2);
5236 out_free_adapter:
5237 if (adapter->workq)
5238 destroy_workqueue(adapter->workq);
5239
5240 kfree(adapter->mbox_log);
5241 kfree(adapter);
5242 out_unmap_bar0:
5243 iounmap(regs);
5244 out_disable_device:
5245 pci_disable_pcie_error_reporting(pdev);
5246 pci_disable_device(pdev);
5247 out_release_regions:
5248 pci_release_regions(pdev);
5249 return err;
5250 }
5251
remove_one(struct pci_dev * pdev)5252 static void remove_one(struct pci_dev *pdev)
5253 {
5254 struct adapter *adapter = pci_get_drvdata(pdev);
5255
5256 if (!adapter) {
5257 pci_release_regions(pdev);
5258 return;
5259 }
5260
5261 if (adapter->pf == 4) {
5262 int i;
5263
5264 /* Tear down per-adapter Work Queue first since it can contain
5265 * references to our adapter data structure.
5266 */
5267 destroy_workqueue(adapter->workq);
5268
5269 if (is_uld(adapter)) {
5270 detach_ulds(adapter);
5271 t4_uld_clean_up(adapter);
5272 }
5273
5274 disable_interrupts(adapter);
5275
5276 for_each_port(adapter, i)
5277 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5278 unregister_netdev(adapter->port[i]);
5279
5280 debugfs_remove_recursive(adapter->debugfs_root);
5281
5282 if (!is_t4(adapter->params.chip))
5283 cxgb4_ptp_stop(adapter);
5284
5285 /* If we allocated filters, free up state associated with any
5286 * valid filters ...
5287 */
5288 clear_all_filters(adapter);
5289
5290 if (adapter->flags & FULL_INIT_DONE)
5291 cxgb_down(adapter);
5292
5293 if (adapter->flags & USING_MSIX)
5294 free_msix_info(adapter);
5295 if (adapter->num_uld || adapter->num_ofld_uld)
5296 t4_uld_mem_free(adapter);
5297 free_some_resources(adapter);
5298 #if IS_ENABLED(CONFIG_IPV6)
5299 t4_cleanup_clip_tbl(adapter);
5300 #endif
5301 iounmap(adapter->regs);
5302 if (!is_t4(adapter->params.chip))
5303 iounmap(adapter->bar2);
5304 pci_disable_pcie_error_reporting(pdev);
5305 if ((adapter->flags & DEV_ENABLED)) {
5306 pci_disable_device(pdev);
5307 adapter->flags &= ~DEV_ENABLED;
5308 }
5309 pci_release_regions(pdev);
5310 kfree(adapter->mbox_log);
5311 synchronize_rcu();
5312 kfree(adapter);
5313 }
5314 #ifdef CONFIG_PCI_IOV
5315 else {
5316 if (adapter->port[0])
5317 unregister_netdev(adapter->port[0]);
5318 iounmap(adapter->regs);
5319 kfree(adapter->vfinfo);
5320 kfree(adapter->mbox_log);
5321 kfree(adapter);
5322 pci_disable_sriov(pdev);
5323 pci_release_regions(pdev);
5324 }
5325 #endif
5326 }
5327
5328 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5329 * delivery. This is essentially a stripped down version of the PCI remove()
5330 * function where we do the minimal amount of work necessary to shutdown any
5331 * further activity.
5332 */
shutdown_one(struct pci_dev * pdev)5333 static void shutdown_one(struct pci_dev *pdev)
5334 {
5335 struct adapter *adapter = pci_get_drvdata(pdev);
5336
5337 /* As with remove_one() above (see extended comment), we only want do
5338 * do cleanup on PCI Devices which went all the way through init_one()
5339 * ...
5340 */
5341 if (!adapter) {
5342 pci_release_regions(pdev);
5343 return;
5344 }
5345
5346 if (adapter->pf == 4) {
5347 int i;
5348
5349 for_each_port(adapter, i)
5350 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5351 cxgb_close(adapter->port[i]);
5352
5353 if (is_uld(adapter)) {
5354 detach_ulds(adapter);
5355 t4_uld_clean_up(adapter);
5356 }
5357
5358 disable_interrupts(adapter);
5359 disable_msi(adapter);
5360
5361 t4_sge_stop(adapter);
5362 if (adapter->flags & FW_OK)
5363 t4_fw_bye(adapter, adapter->mbox);
5364 }
5365 #ifdef CONFIG_PCI_IOV
5366 else {
5367 if (adapter->port[0])
5368 unregister_netdev(adapter->port[0]);
5369 iounmap(adapter->regs);
5370 kfree(adapter->vfinfo);
5371 kfree(adapter->mbox_log);
5372 kfree(adapter);
5373 pci_disable_sriov(pdev);
5374 pci_release_regions(pdev);
5375 }
5376 #endif
5377 }
5378
5379 static struct pci_driver cxgb4_driver = {
5380 .name = KBUILD_MODNAME,
5381 .id_table = cxgb4_pci_tbl,
5382 .probe = init_one,
5383 .remove = remove_one,
5384 .shutdown = shutdown_one,
5385 #ifdef CONFIG_PCI_IOV
5386 .sriov_configure = cxgb4_iov_configure,
5387 #endif
5388 .err_handler = &cxgb4_eeh,
5389 };
5390
cxgb4_init_module(void)5391 static int __init cxgb4_init_module(void)
5392 {
5393 int ret;
5394
5395 /* Debugfs support is optional, just warn if this fails */
5396 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5397 if (!cxgb4_debugfs_root)
5398 pr_warn("could not create debugfs entry, continuing\n");
5399
5400 ret = pci_register_driver(&cxgb4_driver);
5401 if (ret < 0)
5402 goto err_pci;
5403
5404 #if IS_ENABLED(CONFIG_IPV6)
5405 if (!inet6addr_registered) {
5406 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5407 if (ret)
5408 pci_unregister_driver(&cxgb4_driver);
5409 else
5410 inet6addr_registered = true;
5411 }
5412 #endif
5413
5414 if (ret == 0)
5415 return ret;
5416
5417 err_pci:
5418 debugfs_remove(cxgb4_debugfs_root);
5419
5420 return ret;
5421 }
5422
cxgb4_cleanup_module(void)5423 static void __exit cxgb4_cleanup_module(void)
5424 {
5425 #if IS_ENABLED(CONFIG_IPV6)
5426 if (inet6addr_registered) {
5427 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5428 inet6addr_registered = false;
5429 }
5430 #endif
5431 pci_unregister_driver(&cxgb4_driver);
5432 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
5433 }
5434
5435 module_init(cxgb4_init_module);
5436 module_exit(cxgb4_cleanup_module);
5437