• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* winbond-840.c: A Linux PCI network adapter device driver. */
2 /*
3 	Written 1998-2001 by Donald Becker.
4 
5 	This software may be used and distributed according to the terms of
6 	the GNU General Public License (GPL), incorporated herein by reference.
7 	Drivers based on or derived from this code fall under the GPL and must
8 	retain the authorship, copyright and license notice.  This file is not
9 	a complete program and may only be used when the entire operating
10 	system is licensed under the GPL.
11 
12 	The author may be reached as becker@scyld.com, or C/O
13 	Scyld Computing Corporation
14 	410 Severn Ave., Suite 210
15 	Annapolis MD 21403
16 
17 	Support and updates available at
18 	http://www.scyld.com/network/drivers.html
19 
20 	Do not remove the copyright information.
21 	Do not change the version information unless an improvement has been made.
22 	Merely removing my name, as Compex has done in the past, does not count
23 	as an improvement.
24 
25 	Changelog:
26 	* ported to 2.4
27 		???
28 	* spin lock update, memory barriers, new style dma mappings
29 		limit each tx buffer to < 1024 bytes
30 		remove DescIntr from Rx descriptors (that's an Tx flag)
31 		remove next pointer from Tx descriptors
32 		synchronize tx_q_bytes
33 		software reset in tx_timeout
34 			Copyright (C) 2000 Manfred Spraul
35 	* further cleanups
36 		power management.
37 		support for big endian descriptors
38 			Copyright (C) 2001 Manfred Spraul
39   	* ethtool support (jgarzik)
40 	* Replace some MII-related magic numbers with constants (jgarzik)
41 
42 	TODO:
43 	* enable pci_power_off
44 	* Wake-On-LAN
45 */
46 
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 
49 #define DRV_NAME	"winbond-840"
50 #define DRV_VERSION	"1.01-e"
51 #define DRV_RELDATE	"Sep-11-2006"
52 
53 
54 /* Automatically extracted configuration info:
55 probe-func: winbond840_probe
56 config-in: tristate 'Winbond W89c840 Ethernet support' CONFIG_WINBOND_840
57 
58 c-help-name: Winbond W89c840 PCI Ethernet support
59 c-help-symbol: CONFIG_WINBOND_840
60 c-help: This driver is for the Winbond W89c840 chip.  It also works with
61 c-help: the TX9882 chip on the Compex RL100-ATX board.
62 c-help: More specific information and updates are available from
63 c-help: http://www.scyld.com/network/drivers.html
64 */
65 
66 /* The user-configurable values.
67    These may be modified when a driver module is loaded.*/
68 
69 static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
70 static int max_interrupt_work = 20;
71 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
72    The '840 uses a 64 element hash table based on the Ethernet CRC.  */
73 static int multicast_filter_limit = 32;
74 
75 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
76    Setting to > 1518 effectively disables this feature. */
77 static int rx_copybreak;
78 
79 /* Used to pass the media type, etc.
80    Both 'options[]' and 'full_duplex[]' should exist for driver
81    interoperability.
82    The media type is usually passed in 'options[]'.
83 */
84 #define MAX_UNITS 8		/* More are supported, limit only on options */
85 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
86 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
87 
88 /* Operational parameters that are set at compile time. */
89 
90 /* Keep the ring sizes a power of two for compile efficiency.
91    The compiler will convert <unsigned>'%'<2^N> into a bit mask.
92    Making the Tx ring too large decreases the effectiveness of channel
93    bonding and packet priority.
94    There are no ill effects from too-large receive rings. */
95 #define TX_QUEUE_LEN	10		/* Limit ring entries actually used.  */
96 #define TX_QUEUE_LEN_RESTART	5
97 
98 #define TX_BUFLIMIT	(1024-128)
99 
100 /* The presumed FIFO size for working around the Tx-FIFO-overflow bug.
101    To avoid overflowing we don't queue again until we have room for a
102    full-size packet.
103  */
104 #define TX_FIFO_SIZE (2048)
105 #define TX_BUG_FIFO_LIMIT (TX_FIFO_SIZE-1514-16)
106 
107 
108 /* Operational parameters that usually are not changed. */
109 /* Time in jiffies before concluding the transmitter is hung. */
110 #define TX_TIMEOUT  (2*HZ)
111 
112 /* Include files, designed to support most kernel versions 2.0.0 and later. */
113 #include <linux/module.h>
114 #include <linux/kernel.h>
115 #include <linux/string.h>
116 #include <linux/timer.h>
117 #include <linux/errno.h>
118 #include <linux/ioport.h>
119 #include <linux/interrupt.h>
120 #include <linux/pci.h>
121 #include <linux/dma-mapping.h>
122 #include <linux/netdevice.h>
123 #include <linux/etherdevice.h>
124 #include <linux/skbuff.h>
125 #include <linux/init.h>
126 #include <linux/delay.h>
127 #include <linux/ethtool.h>
128 #include <linux/mii.h>
129 #include <linux/rtnetlink.h>
130 #include <linux/crc32.h>
131 #include <linux/bitops.h>
132 #include <linux/uaccess.h>
133 #include <asm/processor.h>		/* Processor type for cache alignment. */
134 #include <asm/io.h>
135 #include <asm/irq.h>
136 
137 #include "tulip.h"
138 
139 #undef PKT_BUF_SZ			/* tulip.h also defines this */
140 #define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer.*/
141 
142 /* These identify the driver base version and may not be removed. */
143 static const char version[] __initconst =
144 	"v" DRV_VERSION " (2.4 port) "
145 	DRV_RELDATE "  Donald Becker <becker@scyld.com>\n"
146 	"  http://www.scyld.com/network/drivers.html\n";
147 
148 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
149 MODULE_DESCRIPTION("Winbond W89c840 Ethernet driver");
150 MODULE_LICENSE("GPL");
151 MODULE_VERSION(DRV_VERSION);
152 
153 module_param(max_interrupt_work, int, 0);
154 module_param(debug, int, 0);
155 module_param(rx_copybreak, int, 0);
156 module_param(multicast_filter_limit, int, 0);
157 module_param_array(options, int, NULL, 0);
158 module_param_array(full_duplex, int, NULL, 0);
159 MODULE_PARM_DESC(max_interrupt_work, "winbond-840 maximum events handled per interrupt");
160 MODULE_PARM_DESC(debug, "winbond-840 debug level (0-6)");
161 MODULE_PARM_DESC(rx_copybreak, "winbond-840 copy breakpoint for copy-only-tiny-frames");
162 MODULE_PARM_DESC(multicast_filter_limit, "winbond-840 maximum number of filtered multicast addresses");
163 MODULE_PARM_DESC(options, "winbond-840: Bits 0-3: media type, bit 17: full duplex");
164 MODULE_PARM_DESC(full_duplex, "winbond-840 full duplex setting(s) (1)");
165 
166 /*
167 				Theory of Operation
168 
169 I. Board Compatibility
170 
171 This driver is for the Winbond w89c840 chip.
172 
173 II. Board-specific settings
174 
175 None.
176 
177 III. Driver operation
178 
179 This chip is very similar to the Digital 21*4* "Tulip" family.  The first
180 twelve registers and the descriptor format are nearly identical.  Read a
181 Tulip manual for operational details.
182 
183 A significant difference is that the multicast filter and station address are
184 stored in registers rather than loaded through a pseudo-transmit packet.
185 
186 Unlike the Tulip, transmit buffers are limited to 1KB.  To transmit a
187 full-sized packet we must use both data buffers in a descriptor.  Thus the
188 driver uses ring mode where descriptors are implicitly sequential in memory,
189 rather than using the second descriptor address as a chain pointer to
190 subsequent descriptors.
191 
192 IV. Notes
193 
194 If you are going to almost clone a Tulip, why not go all the way and avoid
195 the need for a new driver?
196 
197 IVb. References
198 
199 http://www.scyld.com/expert/100mbps.html
200 http://www.scyld.com/expert/NWay.html
201 http://www.winbond.com.tw/
202 
203 IVc. Errata
204 
205 A horrible bug exists in the transmit FIFO.  Apparently the chip doesn't
206 correctly detect a full FIFO, and queuing more than 2048 bytes may result in
207 silent data corruption.
208 
209 Test with 'ping -s 10000' on a fast computer.
210 
211 */
212 
213 
214 
215 /*
216   PCI probe table.
217 */
218 enum chip_capability_flags {
219 	CanHaveMII=1, HasBrokenTx=2, AlwaysFDX=4, FDXOnNoMII=8,
220 };
221 
222 static const struct pci_device_id w840_pci_tbl[] = {
223 	{ 0x1050, 0x0840, PCI_ANY_ID, 0x8153,     0, 0, 0 },
224 	{ 0x1050, 0x0840, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
225 	{ 0x11f6, 0x2011, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
226 	{ }
227 };
228 MODULE_DEVICE_TABLE(pci, w840_pci_tbl);
229 
230 enum {
231 	netdev_res_size		= 128,	/* size of PCI BAR resource */
232 };
233 
234 struct pci_id_info {
235         const char *name;
236         int drv_flags;		/* Driver use, intended as capability flags. */
237 };
238 
239 static const struct pci_id_info pci_id_tbl[] = {
240 	{ 				/* Sometime a Level-One switch card. */
241 	  "Winbond W89c840",	CanHaveMII | HasBrokenTx | FDXOnNoMII},
242 	{ "Winbond W89c840",	CanHaveMII | HasBrokenTx},
243 	{ "Compex RL100-ATX",	CanHaveMII | HasBrokenTx},
244 	{ }	/* terminate list. */
245 };
246 
247 /* This driver was written to use PCI memory space, however some x86 systems
248    work only with I/O space accesses. See CONFIG_TULIP_MMIO in .config
249 */
250 
251 /* Offsets to the Command and Status Registers, "CSRs".
252    While similar to the Tulip, these registers are longword aligned.
253    Note: It's not useful to define symbolic names for every register bit in
254    the device.  The name can only partially document the semantics and make
255    the driver longer and more difficult to read.
256 */
257 enum w840_offsets {
258 	PCIBusCfg=0x00, TxStartDemand=0x04, RxStartDemand=0x08,
259 	RxRingPtr=0x0C, TxRingPtr=0x10,
260 	IntrStatus=0x14, NetworkConfig=0x18, IntrEnable=0x1C,
261 	RxMissed=0x20, EECtrl=0x24, MIICtrl=0x24, BootRom=0x28, GPTimer=0x2C,
262 	CurRxDescAddr=0x30, CurRxBufAddr=0x34,			/* Debug use */
263 	MulticastFilter0=0x38, MulticastFilter1=0x3C, StationAddr=0x40,
264 	CurTxDescAddr=0x4C, CurTxBufAddr=0x50,
265 };
266 
267 /* Bits in the NetworkConfig register. */
268 enum rx_mode_bits {
269 	AcceptErr=0x80,
270 	RxAcceptBroadcast=0x20, AcceptMulticast=0x10,
271 	RxAcceptAllPhys=0x08, AcceptMyPhys=0x02,
272 };
273 
274 enum mii_reg_bits {
275 	MDIO_ShiftClk=0x10000, MDIO_DataIn=0x80000, MDIO_DataOut=0x20000,
276 	MDIO_EnbOutput=0x40000, MDIO_EnbIn = 0x00000,
277 };
278 
279 /* The Tulip Rx and Tx buffer descriptors. */
280 struct w840_rx_desc {
281 	s32 status;
282 	s32 length;
283 	u32 buffer1;
284 	u32 buffer2;
285 };
286 
287 struct w840_tx_desc {
288 	s32 status;
289 	s32 length;
290 	u32 buffer1, buffer2;
291 };
292 
293 #define MII_CNT		1 /* winbond only supports one MII */
294 struct netdev_private {
295 	struct w840_rx_desc *rx_ring;
296 	dma_addr_t	rx_addr[RX_RING_SIZE];
297 	struct w840_tx_desc *tx_ring;
298 	dma_addr_t	tx_addr[TX_RING_SIZE];
299 	dma_addr_t ring_dma_addr;
300 	/* The addresses of receive-in-place skbuffs. */
301 	struct sk_buff* rx_skbuff[RX_RING_SIZE];
302 	/* The saved address of a sent-in-place packet/buffer, for later free(). */
303 	struct sk_buff* tx_skbuff[TX_RING_SIZE];
304 	struct net_device_stats stats;
305 	struct timer_list timer;	/* Media monitoring timer. */
306 	/* Frequently used values: keep some adjacent for cache effect. */
307 	spinlock_t lock;
308 	int chip_id, drv_flags;
309 	struct pci_dev *pci_dev;
310 	int csr6;
311 	struct w840_rx_desc *rx_head_desc;
312 	unsigned int cur_rx, dirty_rx;		/* Producer/consumer ring indices */
313 	unsigned int rx_buf_sz;				/* Based on MTU+slack. */
314 	unsigned int cur_tx, dirty_tx;
315 	unsigned int tx_q_bytes;
316 	unsigned int tx_full;				/* The Tx queue is full. */
317 	/* MII transceiver section. */
318 	int mii_cnt;						/* MII device addresses. */
319 	unsigned char phys[MII_CNT];		/* MII device addresses, but only the first is used */
320 	u32 mii;
321 	struct mii_if_info mii_if;
322 	void __iomem *base_addr;
323 };
324 
325 static int  eeprom_read(void __iomem *ioaddr, int location);
326 static int  mdio_read(struct net_device *dev, int phy_id, int location);
327 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
328 static int  netdev_open(struct net_device *dev);
329 static int  update_link(struct net_device *dev);
330 static void netdev_timer(unsigned long data);
331 static void init_rxtx_rings(struct net_device *dev);
332 static void free_rxtx_rings(struct netdev_private *np);
333 static void init_registers(struct net_device *dev);
334 static void tx_timeout(struct net_device *dev);
335 static int alloc_ringdesc(struct net_device *dev);
336 static void free_ringdesc(struct netdev_private *np);
337 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
338 static irqreturn_t intr_handler(int irq, void *dev_instance);
339 static void netdev_error(struct net_device *dev, int intr_status);
340 static int  netdev_rx(struct net_device *dev);
341 static u32 __set_rx_mode(struct net_device *dev);
342 static void set_rx_mode(struct net_device *dev);
343 static struct net_device_stats *get_stats(struct net_device *dev);
344 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
345 static const struct ethtool_ops netdev_ethtool_ops;
346 static int  netdev_close(struct net_device *dev);
347 
348 static const struct net_device_ops netdev_ops = {
349 	.ndo_open		= netdev_open,
350 	.ndo_stop		= netdev_close,
351 	.ndo_start_xmit		= start_tx,
352 	.ndo_get_stats		= get_stats,
353 	.ndo_set_rx_mode	= set_rx_mode,
354 	.ndo_do_ioctl		= netdev_ioctl,
355 	.ndo_tx_timeout		= tx_timeout,
356 	.ndo_set_mac_address	= eth_mac_addr,
357 	.ndo_validate_addr	= eth_validate_addr,
358 };
359 
w840_probe1(struct pci_dev * pdev,const struct pci_device_id * ent)360 static int w840_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
361 {
362 	struct net_device *dev;
363 	struct netdev_private *np;
364 	static int find_cnt;
365 	int chip_idx = ent->driver_data;
366 	int irq;
367 	int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
368 	void __iomem *ioaddr;
369 
370 	i = pci_enable_device(pdev);
371 	if (i) return i;
372 
373 	pci_set_master(pdev);
374 
375 	irq = pdev->irq;
376 
377 	if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
378 		pr_warn("Device %s disabled due to DMA limitations\n",
379 			pci_name(pdev));
380 		return -EIO;
381 	}
382 	dev = alloc_etherdev(sizeof(*np));
383 	if (!dev)
384 		return -ENOMEM;
385 	SET_NETDEV_DEV(dev, &pdev->dev);
386 
387 	if (pci_request_regions(pdev, DRV_NAME))
388 		goto err_out_netdev;
389 
390 	ioaddr = pci_iomap(pdev, TULIP_BAR, netdev_res_size);
391 	if (!ioaddr)
392 		goto err_out_free_res;
393 
394 	for (i = 0; i < 3; i++)
395 		((__le16 *)dev->dev_addr)[i] = cpu_to_le16(eeprom_read(ioaddr, i));
396 
397 	/* Reset the chip to erase previous misconfiguration.
398 	   No hold time required! */
399 	iowrite32(0x00000001, ioaddr + PCIBusCfg);
400 
401 	np = netdev_priv(dev);
402 	np->pci_dev = pdev;
403 	np->chip_id = chip_idx;
404 	np->drv_flags = pci_id_tbl[chip_idx].drv_flags;
405 	spin_lock_init(&np->lock);
406 	np->mii_if.dev = dev;
407 	np->mii_if.mdio_read = mdio_read;
408 	np->mii_if.mdio_write = mdio_write;
409 	np->base_addr = ioaddr;
410 
411 	pci_set_drvdata(pdev, dev);
412 
413 	if (dev->mem_start)
414 		option = dev->mem_start;
415 
416 	/* The lower four bits are the media type. */
417 	if (option > 0) {
418 		if (option & 0x200)
419 			np->mii_if.full_duplex = 1;
420 		if (option & 15)
421 			dev_info(&dev->dev,
422 				 "ignoring user supplied media type %d",
423 				 option & 15);
424 	}
425 	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt] > 0)
426 		np->mii_if.full_duplex = 1;
427 
428 	if (np->mii_if.full_duplex)
429 		np->mii_if.force_media = 1;
430 
431 	/* The chip-specific entries in the device structure. */
432 	dev->netdev_ops = &netdev_ops;
433 	dev->ethtool_ops = &netdev_ethtool_ops;
434 	dev->watchdog_timeo = TX_TIMEOUT;
435 
436 	i = register_netdev(dev);
437 	if (i)
438 		goto err_out_cleardev;
439 
440 	dev_info(&dev->dev, "%s at %p, %pM, IRQ %d\n",
441 		 pci_id_tbl[chip_idx].name, ioaddr, dev->dev_addr, irq);
442 
443 	if (np->drv_flags & CanHaveMII) {
444 		int phy, phy_idx = 0;
445 		for (phy = 1; phy < 32 && phy_idx < MII_CNT; phy++) {
446 			int mii_status = mdio_read(dev, phy, MII_BMSR);
447 			if (mii_status != 0xffff  &&  mii_status != 0x0000) {
448 				np->phys[phy_idx++] = phy;
449 				np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
450 				np->mii = (mdio_read(dev, phy, MII_PHYSID1) << 16)+
451 						mdio_read(dev, phy, MII_PHYSID2);
452 				dev_info(&dev->dev,
453 					 "MII PHY %08xh found at address %d, status 0x%04x advertising %04x\n",
454 					 np->mii, phy, mii_status,
455 					 np->mii_if.advertising);
456 			}
457 		}
458 		np->mii_cnt = phy_idx;
459 		np->mii_if.phy_id = np->phys[0];
460 		if (phy_idx == 0) {
461 			dev_warn(&dev->dev,
462 				 "MII PHY not found -- this device may not operate correctly\n");
463 		}
464 	}
465 
466 	find_cnt++;
467 	return 0;
468 
469 err_out_cleardev:
470 	pci_iounmap(pdev, ioaddr);
471 err_out_free_res:
472 	pci_release_regions(pdev);
473 err_out_netdev:
474 	free_netdev (dev);
475 	return -ENODEV;
476 }
477 
478 
479 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.  These are
480    often serial bit streams generated by the host processor.
481    The example below is for the common 93c46 EEPROM, 64 16 bit words. */
482 
483 /* Delay between EEPROM clock transitions.
484    No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
485    a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
486    made udelay() unreliable.
487    The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
488    deprecated.
489 */
490 #define eeprom_delay(ee_addr)	ioread32(ee_addr)
491 
492 enum EEPROM_Ctrl_Bits {
493 	EE_ShiftClk=0x02, EE_Write0=0x801, EE_Write1=0x805,
494 	EE_ChipSelect=0x801, EE_DataIn=0x08,
495 };
496 
497 /* The EEPROM commands include the alway-set leading bit. */
498 enum EEPROM_Cmds {
499 	EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
500 };
501 
eeprom_read(void __iomem * addr,int location)502 static int eeprom_read(void __iomem *addr, int location)
503 {
504 	int i;
505 	int retval = 0;
506 	void __iomem *ee_addr = addr + EECtrl;
507 	int read_cmd = location | EE_ReadCmd;
508 	iowrite32(EE_ChipSelect, ee_addr);
509 
510 	/* Shift the read command bits out. */
511 	for (i = 10; i >= 0; i--) {
512 		short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
513 		iowrite32(dataval, ee_addr);
514 		eeprom_delay(ee_addr);
515 		iowrite32(dataval | EE_ShiftClk, ee_addr);
516 		eeprom_delay(ee_addr);
517 	}
518 	iowrite32(EE_ChipSelect, ee_addr);
519 	eeprom_delay(ee_addr);
520 
521 	for (i = 16; i > 0; i--) {
522 		iowrite32(EE_ChipSelect | EE_ShiftClk, ee_addr);
523 		eeprom_delay(ee_addr);
524 		retval = (retval << 1) | ((ioread32(ee_addr) & EE_DataIn) ? 1 : 0);
525 		iowrite32(EE_ChipSelect, ee_addr);
526 		eeprom_delay(ee_addr);
527 	}
528 
529 	/* Terminate the EEPROM access. */
530 	iowrite32(0, ee_addr);
531 	return retval;
532 }
533 
534 /*  MII transceiver control section.
535 	Read and write the MII registers using software-generated serial
536 	MDIO protocol.  See the MII specifications or DP83840A data sheet
537 	for details.
538 
539 	The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
540 	met by back-to-back 33Mhz PCI cycles. */
541 #define mdio_delay(mdio_addr) ioread32(mdio_addr)
542 
543 /* Set iff a MII transceiver on any interface requires mdio preamble.
544    This only set with older transceivers, so the extra
545    code size of a per-interface flag is not worthwhile. */
546 static char mii_preamble_required = 1;
547 
548 #define MDIO_WRITE0 (MDIO_EnbOutput)
549 #define MDIO_WRITE1 (MDIO_DataOut | MDIO_EnbOutput)
550 
551 /* Generate the preamble required for initial synchronization and
552    a few older transceivers. */
mdio_sync(void __iomem * mdio_addr)553 static void mdio_sync(void __iomem *mdio_addr)
554 {
555 	int bits = 32;
556 
557 	/* Establish sync by sending at least 32 logic ones. */
558 	while (--bits >= 0) {
559 		iowrite32(MDIO_WRITE1, mdio_addr);
560 		mdio_delay(mdio_addr);
561 		iowrite32(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
562 		mdio_delay(mdio_addr);
563 	}
564 }
565 
mdio_read(struct net_device * dev,int phy_id,int location)566 static int mdio_read(struct net_device *dev, int phy_id, int location)
567 {
568 	struct netdev_private *np = netdev_priv(dev);
569 	void __iomem *mdio_addr = np->base_addr + MIICtrl;
570 	int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
571 	int i, retval = 0;
572 
573 	if (mii_preamble_required)
574 		mdio_sync(mdio_addr);
575 
576 	/* Shift the read command bits out. */
577 	for (i = 15; i >= 0; i--) {
578 		int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
579 
580 		iowrite32(dataval, mdio_addr);
581 		mdio_delay(mdio_addr);
582 		iowrite32(dataval | MDIO_ShiftClk, mdio_addr);
583 		mdio_delay(mdio_addr);
584 	}
585 	/* Read the two transition, 16 data, and wire-idle bits. */
586 	for (i = 20; i > 0; i--) {
587 		iowrite32(MDIO_EnbIn, mdio_addr);
588 		mdio_delay(mdio_addr);
589 		retval = (retval << 1) | ((ioread32(mdio_addr) & MDIO_DataIn) ? 1 : 0);
590 		iowrite32(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
591 		mdio_delay(mdio_addr);
592 	}
593 	return (retval>>1) & 0xffff;
594 }
595 
mdio_write(struct net_device * dev,int phy_id,int location,int value)596 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
597 {
598 	struct netdev_private *np = netdev_priv(dev);
599 	void __iomem *mdio_addr = np->base_addr + MIICtrl;
600 	int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
601 	int i;
602 
603 	if (location == 4  &&  phy_id == np->phys[0])
604 		np->mii_if.advertising = value;
605 
606 	if (mii_preamble_required)
607 		mdio_sync(mdio_addr);
608 
609 	/* Shift the command bits out. */
610 	for (i = 31; i >= 0; i--) {
611 		int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
612 
613 		iowrite32(dataval, mdio_addr);
614 		mdio_delay(mdio_addr);
615 		iowrite32(dataval | MDIO_ShiftClk, mdio_addr);
616 		mdio_delay(mdio_addr);
617 	}
618 	/* Clear out extra bits. */
619 	for (i = 2; i > 0; i--) {
620 		iowrite32(MDIO_EnbIn, mdio_addr);
621 		mdio_delay(mdio_addr);
622 		iowrite32(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
623 		mdio_delay(mdio_addr);
624 	}
625 }
626 
627 
netdev_open(struct net_device * dev)628 static int netdev_open(struct net_device *dev)
629 {
630 	struct netdev_private *np = netdev_priv(dev);
631 	void __iomem *ioaddr = np->base_addr;
632 	const int irq = np->pci_dev->irq;
633 	int i;
634 
635 	iowrite32(0x00000001, ioaddr + PCIBusCfg);		/* Reset */
636 
637 	netif_device_detach(dev);
638 	i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
639 	if (i)
640 		goto out_err;
641 
642 	if (debug > 1)
643 		netdev_dbg(dev, "w89c840_open() irq %d\n", irq);
644 
645 	if((i=alloc_ringdesc(dev)))
646 		goto out_err;
647 
648 	spin_lock_irq(&np->lock);
649 	netif_device_attach(dev);
650 	init_registers(dev);
651 	spin_unlock_irq(&np->lock);
652 
653 	netif_start_queue(dev);
654 	if (debug > 2)
655 		netdev_dbg(dev, "Done netdev_open()\n");
656 
657 	/* Set the timer to check for link beat. */
658 	init_timer(&np->timer);
659 	np->timer.expires = jiffies + 1*HZ;
660 	np->timer.data = (unsigned long)dev;
661 	np->timer.function = netdev_timer;				/* timer handler */
662 	add_timer(&np->timer);
663 	return 0;
664 out_err:
665 	netif_device_attach(dev);
666 	return i;
667 }
668 
669 #define MII_DAVICOM_DM9101	0x0181b800
670 
update_link(struct net_device * dev)671 static int update_link(struct net_device *dev)
672 {
673 	struct netdev_private *np = netdev_priv(dev);
674 	int duplex, fasteth, result, mii_reg;
675 
676 	/* BSMR */
677 	mii_reg = mdio_read(dev, np->phys[0], MII_BMSR);
678 
679 	if (mii_reg == 0xffff)
680 		return np->csr6;
681 	/* reread: the link status bit is sticky */
682 	mii_reg = mdio_read(dev, np->phys[0], MII_BMSR);
683 	if (!(mii_reg & 0x4)) {
684 		if (netif_carrier_ok(dev)) {
685 			if (debug)
686 				dev_info(&dev->dev,
687 					 "MII #%d reports no link. Disabling watchdog\n",
688 					 np->phys[0]);
689 			netif_carrier_off(dev);
690 		}
691 		return np->csr6;
692 	}
693 	if (!netif_carrier_ok(dev)) {
694 		if (debug)
695 			dev_info(&dev->dev,
696 				 "MII #%d link is back. Enabling watchdog\n",
697 				 np->phys[0]);
698 		netif_carrier_on(dev);
699 	}
700 
701 	if ((np->mii & ~0xf) == MII_DAVICOM_DM9101) {
702 		/* If the link partner doesn't support autonegotiation
703 		 * the MII detects it's abilities with the "parallel detection".
704 		 * Some MIIs update the LPA register to the result of the parallel
705 		 * detection, some don't.
706 		 * The Davicom PHY [at least 0181b800] doesn't.
707 		 * Instead bit 9 and 13 of the BMCR are updated to the result
708 		 * of the negotiation..
709 		 */
710 		mii_reg = mdio_read(dev, np->phys[0], MII_BMCR);
711 		duplex = mii_reg & BMCR_FULLDPLX;
712 		fasteth = mii_reg & BMCR_SPEED100;
713 	} else {
714 		int negotiated;
715 		mii_reg	= mdio_read(dev, np->phys[0], MII_LPA);
716 		negotiated = mii_reg & np->mii_if.advertising;
717 
718 		duplex = (negotiated & LPA_100FULL) || ((negotiated & 0x02C0) == LPA_10FULL);
719 		fasteth = negotiated & 0x380;
720 	}
721 	duplex |= np->mii_if.force_media;
722 	/* remove fastether and fullduplex */
723 	result = np->csr6 & ~0x20000200;
724 	if (duplex)
725 		result |= 0x200;
726 	if (fasteth)
727 		result |= 0x20000000;
728 	if (result != np->csr6 && debug)
729 		dev_info(&dev->dev,
730 			 "Setting %dMBit-%s-duplex based on MII#%d\n",
731 			 fasteth ? 100 : 10, duplex ? "full" : "half",
732 			 np->phys[0]);
733 	return result;
734 }
735 
736 #define RXTX_TIMEOUT	2000
update_csr6(struct net_device * dev,int new)737 static inline void update_csr6(struct net_device *dev, int new)
738 {
739 	struct netdev_private *np = netdev_priv(dev);
740 	void __iomem *ioaddr = np->base_addr;
741 	int limit = RXTX_TIMEOUT;
742 
743 	if (!netif_device_present(dev))
744 		new = 0;
745 	if (new==np->csr6)
746 		return;
747 	/* stop both Tx and Rx processes */
748 	iowrite32(np->csr6 & ~0x2002, ioaddr + NetworkConfig);
749 	/* wait until they have really stopped */
750 	for (;;) {
751 		int csr5 = ioread32(ioaddr + IntrStatus);
752 		int t;
753 
754 		t = (csr5 >> 17) & 0x07;
755 		if (t==0||t==1) {
756 			/* rx stopped */
757 			t = (csr5 >> 20) & 0x07;
758 			if (t==0||t==1)
759 				break;
760 		}
761 
762 		limit--;
763 		if(!limit) {
764 			dev_info(&dev->dev,
765 				 "couldn't stop rxtx, IntrStatus %xh\n", csr5);
766 			break;
767 		}
768 		udelay(1);
769 	}
770 	np->csr6 = new;
771 	/* and restart them with the new configuration */
772 	iowrite32(np->csr6, ioaddr + NetworkConfig);
773 	if (new & 0x200)
774 		np->mii_if.full_duplex = 1;
775 }
776 
netdev_timer(unsigned long data)777 static void netdev_timer(unsigned long data)
778 {
779 	struct net_device *dev = (struct net_device *)data;
780 	struct netdev_private *np = netdev_priv(dev);
781 	void __iomem *ioaddr = np->base_addr;
782 
783 	if (debug > 2)
784 		netdev_dbg(dev, "Media selection timer tick, status %08x config %08x\n",
785 			   ioread32(ioaddr + IntrStatus),
786 			   ioread32(ioaddr + NetworkConfig));
787 	spin_lock_irq(&np->lock);
788 	update_csr6(dev, update_link(dev));
789 	spin_unlock_irq(&np->lock);
790 	np->timer.expires = jiffies + 10*HZ;
791 	add_timer(&np->timer);
792 }
793 
init_rxtx_rings(struct net_device * dev)794 static void init_rxtx_rings(struct net_device *dev)
795 {
796 	struct netdev_private *np = netdev_priv(dev);
797 	int i;
798 
799 	np->rx_head_desc = &np->rx_ring[0];
800 	np->tx_ring = (struct w840_tx_desc*)&np->rx_ring[RX_RING_SIZE];
801 
802 	/* Initial all Rx descriptors. */
803 	for (i = 0; i < RX_RING_SIZE; i++) {
804 		np->rx_ring[i].length = np->rx_buf_sz;
805 		np->rx_ring[i].status = 0;
806 		np->rx_skbuff[i] = NULL;
807 	}
808 	/* Mark the last entry as wrapping the ring. */
809 	np->rx_ring[i-1].length |= DescEndRing;
810 
811 	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
812 	for (i = 0; i < RX_RING_SIZE; i++) {
813 		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
814 		np->rx_skbuff[i] = skb;
815 		if (skb == NULL)
816 			break;
817 		np->rx_addr[i] = pci_map_single(np->pci_dev,skb->data,
818 					np->rx_buf_sz,PCI_DMA_FROMDEVICE);
819 
820 		np->rx_ring[i].buffer1 = np->rx_addr[i];
821 		np->rx_ring[i].status = DescOwned;
822 	}
823 
824 	np->cur_rx = 0;
825 	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
826 
827 	/* Initialize the Tx descriptors */
828 	for (i = 0; i < TX_RING_SIZE; i++) {
829 		np->tx_skbuff[i] = NULL;
830 		np->tx_ring[i].status = 0;
831 	}
832 	np->tx_full = 0;
833 	np->tx_q_bytes = np->dirty_tx = np->cur_tx = 0;
834 
835 	iowrite32(np->ring_dma_addr, np->base_addr + RxRingPtr);
836 	iowrite32(np->ring_dma_addr+sizeof(struct w840_rx_desc)*RX_RING_SIZE,
837 		np->base_addr + TxRingPtr);
838 
839 }
840 
free_rxtx_rings(struct netdev_private * np)841 static void free_rxtx_rings(struct netdev_private* np)
842 {
843 	int i;
844 	/* Free all the skbuffs in the Rx queue. */
845 	for (i = 0; i < RX_RING_SIZE; i++) {
846 		np->rx_ring[i].status = 0;
847 		if (np->rx_skbuff[i]) {
848 			pci_unmap_single(np->pci_dev,
849 						np->rx_addr[i],
850 						np->rx_skbuff[i]->len,
851 						PCI_DMA_FROMDEVICE);
852 			dev_kfree_skb(np->rx_skbuff[i]);
853 		}
854 		np->rx_skbuff[i] = NULL;
855 	}
856 	for (i = 0; i < TX_RING_SIZE; i++) {
857 		if (np->tx_skbuff[i]) {
858 			pci_unmap_single(np->pci_dev,
859 						np->tx_addr[i],
860 						np->tx_skbuff[i]->len,
861 						PCI_DMA_TODEVICE);
862 			dev_kfree_skb(np->tx_skbuff[i]);
863 		}
864 		np->tx_skbuff[i] = NULL;
865 	}
866 }
867 
init_registers(struct net_device * dev)868 static void init_registers(struct net_device *dev)
869 {
870 	struct netdev_private *np = netdev_priv(dev);
871 	void __iomem *ioaddr = np->base_addr;
872 	int i;
873 
874 	for (i = 0; i < 6; i++)
875 		iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
876 
877 	/* Initialize other registers. */
878 #ifdef __BIG_ENDIAN
879 	i = (1<<20);	/* Big-endian descriptors */
880 #else
881 	i = 0;
882 #endif
883 	i |= (0x04<<2);		/* skip length 4 u32 */
884 	i |= 0x02;		/* give Rx priority */
885 
886 	/* Configure the PCI bus bursts and FIFO thresholds.
887 	   486: Set 8 longword cache alignment, 8 longword burst.
888 	   586: Set 16 longword cache alignment, no burst limit.
889 	   Cache alignment bits 15:14	     Burst length 13:8
890 		0000	<not allowed> 		0000 align to cache	0800 8 longwords
891 		4000	8  longwords		0100 1 longword		1000 16 longwords
892 		8000	16 longwords		0200 2 longwords	2000 32 longwords
893 		C000	32  longwords		0400 4 longwords */
894 
895 #if defined (__i386__) && !defined(MODULE)
896 	/* When not a module we can work around broken '486 PCI boards. */
897 	if (boot_cpu_data.x86 <= 4) {
898 		i |= 0x4800;
899 		dev_info(&dev->dev,
900 			 "This is a 386/486 PCI system, setting cache alignment to 8 longwords\n");
901 	} else {
902 		i |= 0xE000;
903 	}
904 #elif defined(__powerpc__) || defined(__i386__) || defined(__alpha__) || defined(__ia64__) || defined(__x86_64__)
905 	i |= 0xE000;
906 #elif defined(CONFIG_SPARC) || defined (CONFIG_PARISC) || defined(CONFIG_ARM)
907 	i |= 0x4800;
908 #else
909 	dev_warn(&dev->dev, "unknown CPU architecture, using default csr0 setting\n");
910 	i |= 0x4800;
911 #endif
912 	iowrite32(i, ioaddr + PCIBusCfg);
913 
914 	np->csr6 = 0;
915 	/* 128 byte Tx threshold;
916 		Transmit on; Receive on; */
917 	update_csr6(dev, 0x00022002 | update_link(dev) | __set_rx_mode(dev));
918 
919 	/* Clear and Enable interrupts by setting the interrupt mask. */
920 	iowrite32(0x1A0F5, ioaddr + IntrStatus);
921 	iowrite32(0x1A0F5, ioaddr + IntrEnable);
922 
923 	iowrite32(0, ioaddr + RxStartDemand);
924 }
925 
tx_timeout(struct net_device * dev)926 static void tx_timeout(struct net_device *dev)
927 {
928 	struct netdev_private *np = netdev_priv(dev);
929 	void __iomem *ioaddr = np->base_addr;
930 	const int irq = np->pci_dev->irq;
931 
932 	dev_warn(&dev->dev, "Transmit timed out, status %08x, resetting...\n",
933 		 ioread32(ioaddr + IntrStatus));
934 
935 	{
936 		int i;
937 		printk(KERN_DEBUG "  Rx ring %p: ", np->rx_ring);
938 		for (i = 0; i < RX_RING_SIZE; i++)
939 			printk(KERN_CONT " %08x", (unsigned int)np->rx_ring[i].status);
940 		printk(KERN_CONT "\n");
941 		printk(KERN_DEBUG "  Tx ring %p: ", np->tx_ring);
942 		for (i = 0; i < TX_RING_SIZE; i++)
943 			printk(KERN_CONT " %08x", np->tx_ring[i].status);
944 		printk(KERN_CONT "\n");
945 	}
946 	printk(KERN_DEBUG "Tx cur %d Tx dirty %d Tx Full %d, q bytes %d\n",
947 	       np->cur_tx, np->dirty_tx, np->tx_full, np->tx_q_bytes);
948 	printk(KERN_DEBUG "Tx Descriptor addr %xh\n", ioread32(ioaddr+0x4C));
949 
950 	disable_irq(irq);
951 	spin_lock_irq(&np->lock);
952 	/*
953 	 * Under high load dirty_tx and the internal tx descriptor pointer
954 	 * come out of sync, thus perform a software reset and reinitialize
955 	 * everything.
956 	 */
957 
958 	iowrite32(1, np->base_addr+PCIBusCfg);
959 	udelay(1);
960 
961 	free_rxtx_rings(np);
962 	init_rxtx_rings(dev);
963 	init_registers(dev);
964 	spin_unlock_irq(&np->lock);
965 	enable_irq(irq);
966 
967 	netif_wake_queue(dev);
968 	netif_trans_update(dev); /* prevent tx timeout */
969 	np->stats.tx_errors++;
970 }
971 
972 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
alloc_ringdesc(struct net_device * dev)973 static int alloc_ringdesc(struct net_device *dev)
974 {
975 	struct netdev_private *np = netdev_priv(dev);
976 
977 	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
978 
979 	np->rx_ring = pci_alloc_consistent(np->pci_dev,
980 			sizeof(struct w840_rx_desc)*RX_RING_SIZE +
981 			sizeof(struct w840_tx_desc)*TX_RING_SIZE,
982 			&np->ring_dma_addr);
983 	if(!np->rx_ring)
984 		return -ENOMEM;
985 	init_rxtx_rings(dev);
986 	return 0;
987 }
988 
free_ringdesc(struct netdev_private * np)989 static void free_ringdesc(struct netdev_private *np)
990 {
991 	pci_free_consistent(np->pci_dev,
992 			sizeof(struct w840_rx_desc)*RX_RING_SIZE +
993 			sizeof(struct w840_tx_desc)*TX_RING_SIZE,
994 			np->rx_ring, np->ring_dma_addr);
995 
996 }
997 
start_tx(struct sk_buff * skb,struct net_device * dev)998 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
999 {
1000 	struct netdev_private *np = netdev_priv(dev);
1001 	unsigned entry;
1002 
1003 	/* Caution: the write order is important here, set the field
1004 	   with the "ownership" bits last. */
1005 
1006 	/* Calculate the next Tx descriptor entry. */
1007 	entry = np->cur_tx % TX_RING_SIZE;
1008 
1009 	np->tx_addr[entry] = pci_map_single(np->pci_dev,
1010 				skb->data,skb->len, PCI_DMA_TODEVICE);
1011 	np->tx_skbuff[entry] = skb;
1012 
1013 	np->tx_ring[entry].buffer1 = np->tx_addr[entry];
1014 	if (skb->len < TX_BUFLIMIT) {
1015 		np->tx_ring[entry].length = DescWholePkt | skb->len;
1016 	} else {
1017 		int len = skb->len - TX_BUFLIMIT;
1018 
1019 		np->tx_ring[entry].buffer2 = np->tx_addr[entry]+TX_BUFLIMIT;
1020 		np->tx_ring[entry].length = DescWholePkt | (len << 11) | TX_BUFLIMIT;
1021 	}
1022 	if(entry == TX_RING_SIZE-1)
1023 		np->tx_ring[entry].length |= DescEndRing;
1024 
1025 	/* Now acquire the irq spinlock.
1026 	 * The difficult race is the ordering between
1027 	 * increasing np->cur_tx and setting DescOwned:
1028 	 * - if np->cur_tx is increased first the interrupt
1029 	 *   handler could consider the packet as transmitted
1030 	 *   since DescOwned is cleared.
1031 	 * - If DescOwned is set first the NIC could report the
1032 	 *   packet as sent, but the interrupt handler would ignore it
1033 	 *   since the np->cur_tx was not yet increased.
1034 	 */
1035 	spin_lock_irq(&np->lock);
1036 	np->cur_tx++;
1037 
1038 	wmb(); /* flush length, buffer1, buffer2 */
1039 	np->tx_ring[entry].status = DescOwned;
1040 	wmb(); /* flush status and kick the hardware */
1041 	iowrite32(0, np->base_addr + TxStartDemand);
1042 	np->tx_q_bytes += skb->len;
1043 	/* Work around horrible bug in the chip by marking the queue as full
1044 	   when we do not have FIFO room for a maximum sized packet. */
1045 	if (np->cur_tx - np->dirty_tx > TX_QUEUE_LEN ||
1046 		((np->drv_flags & HasBrokenTx) && np->tx_q_bytes > TX_BUG_FIFO_LIMIT)) {
1047 		netif_stop_queue(dev);
1048 		wmb();
1049 		np->tx_full = 1;
1050 	}
1051 	spin_unlock_irq(&np->lock);
1052 
1053 	if (debug > 4) {
1054 		netdev_dbg(dev, "Transmit frame #%d queued in slot %d\n",
1055 			   np->cur_tx, entry);
1056 	}
1057 	return NETDEV_TX_OK;
1058 }
1059 
netdev_tx_done(struct net_device * dev)1060 static void netdev_tx_done(struct net_device *dev)
1061 {
1062 	struct netdev_private *np = netdev_priv(dev);
1063 	for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1064 		int entry = np->dirty_tx % TX_RING_SIZE;
1065 		int tx_status = np->tx_ring[entry].status;
1066 
1067 		if (tx_status < 0)
1068 			break;
1069 		if (tx_status & 0x8000) { 	/* There was an error, log it. */
1070 #ifndef final_version
1071 			if (debug > 1)
1072 				netdev_dbg(dev, "Transmit error, Tx status %08x\n",
1073 					   tx_status);
1074 #endif
1075 			np->stats.tx_errors++;
1076 			if (tx_status & 0x0104) np->stats.tx_aborted_errors++;
1077 			if (tx_status & 0x0C80) np->stats.tx_carrier_errors++;
1078 			if (tx_status & 0x0200) np->stats.tx_window_errors++;
1079 			if (tx_status & 0x0002) np->stats.tx_fifo_errors++;
1080 			if ((tx_status & 0x0080) && np->mii_if.full_duplex == 0)
1081 				np->stats.tx_heartbeat_errors++;
1082 		} else {
1083 #ifndef final_version
1084 			if (debug > 3)
1085 				netdev_dbg(dev, "Transmit slot %d ok, Tx status %08x\n",
1086 					   entry, tx_status);
1087 #endif
1088 			np->stats.tx_bytes += np->tx_skbuff[entry]->len;
1089 			np->stats.collisions += (tx_status >> 3) & 15;
1090 			np->stats.tx_packets++;
1091 		}
1092 		/* Free the original skb. */
1093 		pci_unmap_single(np->pci_dev,np->tx_addr[entry],
1094 					np->tx_skbuff[entry]->len,
1095 					PCI_DMA_TODEVICE);
1096 		np->tx_q_bytes -= np->tx_skbuff[entry]->len;
1097 		dev_kfree_skb_irq(np->tx_skbuff[entry]);
1098 		np->tx_skbuff[entry] = NULL;
1099 	}
1100 	if (np->tx_full &&
1101 		np->cur_tx - np->dirty_tx < TX_QUEUE_LEN_RESTART &&
1102 		np->tx_q_bytes < TX_BUG_FIFO_LIMIT) {
1103 		/* The ring is no longer full, clear tbusy. */
1104 		np->tx_full = 0;
1105 		wmb();
1106 		netif_wake_queue(dev);
1107 	}
1108 }
1109 
1110 /* The interrupt handler does all of the Rx thread work and cleans up
1111    after the Tx thread. */
intr_handler(int irq,void * dev_instance)1112 static irqreturn_t intr_handler(int irq, void *dev_instance)
1113 {
1114 	struct net_device *dev = (struct net_device *)dev_instance;
1115 	struct netdev_private *np = netdev_priv(dev);
1116 	void __iomem *ioaddr = np->base_addr;
1117 	int work_limit = max_interrupt_work;
1118 	int handled = 0;
1119 
1120 	if (!netif_device_present(dev))
1121 		return IRQ_NONE;
1122 	do {
1123 		u32 intr_status = ioread32(ioaddr + IntrStatus);
1124 
1125 		/* Acknowledge all of the current interrupt sources ASAP. */
1126 		iowrite32(intr_status & 0x001ffff, ioaddr + IntrStatus);
1127 
1128 		if (debug > 4)
1129 			netdev_dbg(dev, "Interrupt, status %04x\n", intr_status);
1130 
1131 		if ((intr_status & (NormalIntr|AbnormalIntr)) == 0)
1132 			break;
1133 
1134 		handled = 1;
1135 
1136 		if (intr_status & (RxIntr | RxNoBuf))
1137 			netdev_rx(dev);
1138 		if (intr_status & RxNoBuf)
1139 			iowrite32(0, ioaddr + RxStartDemand);
1140 
1141 		if (intr_status & (TxNoBuf | TxIntr) &&
1142 			np->cur_tx != np->dirty_tx) {
1143 			spin_lock(&np->lock);
1144 			netdev_tx_done(dev);
1145 			spin_unlock(&np->lock);
1146 		}
1147 
1148 		/* Abnormal error summary/uncommon events handlers. */
1149 		if (intr_status & (AbnormalIntr | TxFIFOUnderflow | SystemError |
1150 						   TimerInt | TxDied))
1151 			netdev_error(dev, intr_status);
1152 
1153 		if (--work_limit < 0) {
1154 			dev_warn(&dev->dev,
1155 				 "Too much work at interrupt, status=0x%04x\n",
1156 				 intr_status);
1157 			/* Set the timer to re-enable the other interrupts after
1158 			   10*82usec ticks. */
1159 			spin_lock(&np->lock);
1160 			if (netif_device_present(dev)) {
1161 				iowrite32(AbnormalIntr | TimerInt, ioaddr + IntrEnable);
1162 				iowrite32(10, ioaddr + GPTimer);
1163 			}
1164 			spin_unlock(&np->lock);
1165 			break;
1166 		}
1167 	} while (1);
1168 
1169 	if (debug > 3)
1170 		netdev_dbg(dev, "exiting interrupt, status=%#4.4x\n",
1171 			   ioread32(ioaddr + IntrStatus));
1172 	return IRQ_RETVAL(handled);
1173 }
1174 
1175 /* This routine is logically part of the interrupt handler, but separated
1176    for clarity and better register allocation. */
netdev_rx(struct net_device * dev)1177 static int netdev_rx(struct net_device *dev)
1178 {
1179 	struct netdev_private *np = netdev_priv(dev);
1180 	int entry = np->cur_rx % RX_RING_SIZE;
1181 	int work_limit = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
1182 
1183 	if (debug > 4) {
1184 		netdev_dbg(dev, " In netdev_rx(), entry %d status %04x\n",
1185 			   entry, np->rx_ring[entry].status);
1186 	}
1187 
1188 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1189 	while (--work_limit >= 0) {
1190 		struct w840_rx_desc *desc = np->rx_head_desc;
1191 		s32 status = desc->status;
1192 
1193 		if (debug > 4)
1194 			netdev_dbg(dev, "  netdev_rx() status was %08x\n",
1195 				   status);
1196 		if (status < 0)
1197 			break;
1198 		if ((status & 0x38008300) != 0x0300) {
1199 			if ((status & 0x38000300) != 0x0300) {
1200 				/* Ingore earlier buffers. */
1201 				if ((status & 0xffff) != 0x7fff) {
1202 					dev_warn(&dev->dev,
1203 						 "Oversized Ethernet frame spanned multiple buffers, entry %#x status %04x!\n",
1204 						 np->cur_rx, status);
1205 					np->stats.rx_length_errors++;
1206 				}
1207 			} else if (status & 0x8000) {
1208 				/* There was a fatal error. */
1209 				if (debug > 2)
1210 					netdev_dbg(dev, "Receive error, Rx status %08x\n",
1211 						   status);
1212 				np->stats.rx_errors++; /* end of a packet.*/
1213 				if (status & 0x0890) np->stats.rx_length_errors++;
1214 				if (status & 0x004C) np->stats.rx_frame_errors++;
1215 				if (status & 0x0002) np->stats.rx_crc_errors++;
1216 			}
1217 		} else {
1218 			struct sk_buff *skb;
1219 			/* Omit the four octet CRC from the length. */
1220 			int pkt_len = ((status >> 16) & 0x7ff) - 4;
1221 
1222 #ifndef final_version
1223 			if (debug > 4)
1224 				netdev_dbg(dev, "  netdev_rx() normal Rx pkt length %d status %x\n",
1225 					   pkt_len, status);
1226 #endif
1227 			/* Check if the packet is long enough to accept without copying
1228 			   to a minimally-sized skbuff. */
1229 			if (pkt_len < rx_copybreak &&
1230 			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1231 				skb_reserve(skb, 2);	/* 16 byte align the IP header */
1232 				pci_dma_sync_single_for_cpu(np->pci_dev,np->rx_addr[entry],
1233 							    np->rx_skbuff[entry]->len,
1234 							    PCI_DMA_FROMDEVICE);
1235 				skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
1236 				skb_put(skb, pkt_len);
1237 				pci_dma_sync_single_for_device(np->pci_dev,np->rx_addr[entry],
1238 							       np->rx_skbuff[entry]->len,
1239 							       PCI_DMA_FROMDEVICE);
1240 			} else {
1241 				pci_unmap_single(np->pci_dev,np->rx_addr[entry],
1242 							np->rx_skbuff[entry]->len,
1243 							PCI_DMA_FROMDEVICE);
1244 				skb_put(skb = np->rx_skbuff[entry], pkt_len);
1245 				np->rx_skbuff[entry] = NULL;
1246 			}
1247 #ifndef final_version				/* Remove after testing. */
1248 			/* You will want this info for the initial debug. */
1249 			if (debug > 5)
1250 				netdev_dbg(dev, "  Rx data %pM %pM %02x%02x %pI4\n",
1251 					   &skb->data[0], &skb->data[6],
1252 					   skb->data[12], skb->data[13],
1253 					   &skb->data[14]);
1254 #endif
1255 			skb->protocol = eth_type_trans(skb, dev);
1256 			netif_rx(skb);
1257 			np->stats.rx_packets++;
1258 			np->stats.rx_bytes += pkt_len;
1259 		}
1260 		entry = (++np->cur_rx) % RX_RING_SIZE;
1261 		np->rx_head_desc = &np->rx_ring[entry];
1262 	}
1263 
1264 	/* Refill the Rx ring buffers. */
1265 	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1266 		struct sk_buff *skb;
1267 		entry = np->dirty_rx % RX_RING_SIZE;
1268 		if (np->rx_skbuff[entry] == NULL) {
1269 			skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1270 			np->rx_skbuff[entry] = skb;
1271 			if (skb == NULL)
1272 				break;			/* Better luck next round. */
1273 			np->rx_addr[entry] = pci_map_single(np->pci_dev,
1274 							skb->data,
1275 							np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1276 			np->rx_ring[entry].buffer1 = np->rx_addr[entry];
1277 		}
1278 		wmb();
1279 		np->rx_ring[entry].status = DescOwned;
1280 	}
1281 
1282 	return 0;
1283 }
1284 
netdev_error(struct net_device * dev,int intr_status)1285 static void netdev_error(struct net_device *dev, int intr_status)
1286 {
1287 	struct netdev_private *np = netdev_priv(dev);
1288 	void __iomem *ioaddr = np->base_addr;
1289 
1290 	if (debug > 2)
1291 		netdev_dbg(dev, "Abnormal event, %08x\n", intr_status);
1292 	if (intr_status == 0xffffffff)
1293 		return;
1294 	spin_lock(&np->lock);
1295 	if (intr_status & TxFIFOUnderflow) {
1296 		int new;
1297 		/* Bump up the Tx threshold */
1298 #if 0
1299 		/* This causes lots of dropped packets,
1300 		 * and under high load even tx_timeouts
1301 		 */
1302 		new = np->csr6 + 0x4000;
1303 #else
1304 		new = (np->csr6 >> 14)&0x7f;
1305 		if (new < 64)
1306 			new *= 2;
1307 		 else
1308 		 	new = 127; /* load full packet before starting */
1309 		new = (np->csr6 & ~(0x7F << 14)) | (new<<14);
1310 #endif
1311 		netdev_dbg(dev, "Tx underflow, new csr6 %08x\n", new);
1312 		update_csr6(dev, new);
1313 	}
1314 	if (intr_status & RxDied) {		/* Missed a Rx frame. */
1315 		np->stats.rx_errors++;
1316 	}
1317 	if (intr_status & TimerInt) {
1318 		/* Re-enable other interrupts. */
1319 		if (netif_device_present(dev))
1320 			iowrite32(0x1A0F5, ioaddr + IntrEnable);
1321 	}
1322 	np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1323 	iowrite32(0, ioaddr + RxStartDemand);
1324 	spin_unlock(&np->lock);
1325 }
1326 
get_stats(struct net_device * dev)1327 static struct net_device_stats *get_stats(struct net_device *dev)
1328 {
1329 	struct netdev_private *np = netdev_priv(dev);
1330 	void __iomem *ioaddr = np->base_addr;
1331 
1332 	/* The chip only need report frame silently dropped. */
1333 	spin_lock_irq(&np->lock);
1334 	if (netif_running(dev) && netif_device_present(dev))
1335 		np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1336 	spin_unlock_irq(&np->lock);
1337 
1338 	return &np->stats;
1339 }
1340 
1341 
__set_rx_mode(struct net_device * dev)1342 static u32 __set_rx_mode(struct net_device *dev)
1343 {
1344 	struct netdev_private *np = netdev_priv(dev);
1345 	void __iomem *ioaddr = np->base_addr;
1346 	u32 mc_filter[2];			/* Multicast hash filter */
1347 	u32 rx_mode;
1348 
1349 	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
1350 		memset(mc_filter, 0xff, sizeof(mc_filter));
1351 		rx_mode = RxAcceptBroadcast | AcceptMulticast | RxAcceptAllPhys
1352 			| AcceptMyPhys;
1353 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1354 		   (dev->flags & IFF_ALLMULTI)) {
1355 		/* Too many to match, or accept all multicasts. */
1356 		memset(mc_filter, 0xff, sizeof(mc_filter));
1357 		rx_mode = RxAcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1358 	} else {
1359 		struct netdev_hw_addr *ha;
1360 
1361 		memset(mc_filter, 0, sizeof(mc_filter));
1362 		netdev_for_each_mc_addr(ha, dev) {
1363 			int filbit;
1364 
1365 			filbit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F;
1366 			filbit &= 0x3f;
1367 			mc_filter[filbit >> 5] |= 1 << (filbit & 31);
1368 		}
1369 		rx_mode = RxAcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1370 	}
1371 	iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1372 	iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1373 	return rx_mode;
1374 }
1375 
set_rx_mode(struct net_device * dev)1376 static void set_rx_mode(struct net_device *dev)
1377 {
1378 	struct netdev_private *np = netdev_priv(dev);
1379 	u32 rx_mode = __set_rx_mode(dev);
1380 	spin_lock_irq(&np->lock);
1381 	update_csr6(dev, (np->csr6 & ~0x00F8) | rx_mode);
1382 	spin_unlock_irq(&np->lock);
1383 }
1384 
netdev_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1385 static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1386 {
1387 	struct netdev_private *np = netdev_priv(dev);
1388 
1389 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1390 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1391 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1392 }
1393 
netdev_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1394 static int netdev_get_link_ksettings(struct net_device *dev,
1395 				     struct ethtool_link_ksettings *cmd)
1396 {
1397 	struct netdev_private *np = netdev_priv(dev);
1398 
1399 	spin_lock_irq(&np->lock);
1400 	mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1401 	spin_unlock_irq(&np->lock);
1402 
1403 	return 0;
1404 }
1405 
netdev_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1406 static int netdev_set_link_ksettings(struct net_device *dev,
1407 				     const struct ethtool_link_ksettings *cmd)
1408 {
1409 	struct netdev_private *np = netdev_priv(dev);
1410 	int rc;
1411 
1412 	spin_lock_irq(&np->lock);
1413 	rc = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1414 	spin_unlock_irq(&np->lock);
1415 
1416 	return rc;
1417 }
1418 
netdev_nway_reset(struct net_device * dev)1419 static int netdev_nway_reset(struct net_device *dev)
1420 {
1421 	struct netdev_private *np = netdev_priv(dev);
1422 	return mii_nway_restart(&np->mii_if);
1423 }
1424 
netdev_get_link(struct net_device * dev)1425 static u32 netdev_get_link(struct net_device *dev)
1426 {
1427 	struct netdev_private *np = netdev_priv(dev);
1428 	return mii_link_ok(&np->mii_if);
1429 }
1430 
netdev_get_msglevel(struct net_device * dev)1431 static u32 netdev_get_msglevel(struct net_device *dev)
1432 {
1433 	return debug;
1434 }
1435 
netdev_set_msglevel(struct net_device * dev,u32 value)1436 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1437 {
1438 	debug = value;
1439 }
1440 
1441 static const struct ethtool_ops netdev_ethtool_ops = {
1442 	.get_drvinfo		= netdev_get_drvinfo,
1443 	.nway_reset		= netdev_nway_reset,
1444 	.get_link		= netdev_get_link,
1445 	.get_msglevel		= netdev_get_msglevel,
1446 	.set_msglevel		= netdev_set_msglevel,
1447 	.get_link_ksettings	= netdev_get_link_ksettings,
1448 	.set_link_ksettings	= netdev_set_link_ksettings,
1449 };
1450 
netdev_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1451 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1452 {
1453 	struct mii_ioctl_data *data = if_mii(rq);
1454 	struct netdev_private *np = netdev_priv(dev);
1455 
1456 	switch(cmd) {
1457 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
1458 		data->phy_id = ((struct netdev_private *)netdev_priv(dev))->phys[0] & 0x1f;
1459 		/* Fall Through */
1460 
1461 	case SIOCGMIIREG:		/* Read MII PHY register. */
1462 		spin_lock_irq(&np->lock);
1463 		data->val_out = mdio_read(dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
1464 		spin_unlock_irq(&np->lock);
1465 		return 0;
1466 
1467 	case SIOCSMIIREG:		/* Write MII PHY register. */
1468 		spin_lock_irq(&np->lock);
1469 		mdio_write(dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1470 		spin_unlock_irq(&np->lock);
1471 		return 0;
1472 	default:
1473 		return -EOPNOTSUPP;
1474 	}
1475 }
1476 
netdev_close(struct net_device * dev)1477 static int netdev_close(struct net_device *dev)
1478 {
1479 	struct netdev_private *np = netdev_priv(dev);
1480 	void __iomem *ioaddr = np->base_addr;
1481 
1482 	netif_stop_queue(dev);
1483 
1484 	if (debug > 1) {
1485 		netdev_dbg(dev, "Shutting down ethercard, status was %08x Config %08x\n",
1486 			   ioread32(ioaddr + IntrStatus),
1487 			   ioread32(ioaddr + NetworkConfig));
1488 		netdev_dbg(dev, "Queue pointers were Tx %d / %d,  Rx %d / %d\n",
1489 			   np->cur_tx, np->dirty_tx,
1490 			   np->cur_rx, np->dirty_rx);
1491 	}
1492 
1493  	/* Stop the chip's Tx and Rx processes. */
1494 	spin_lock_irq(&np->lock);
1495 	netif_device_detach(dev);
1496 	update_csr6(dev, 0);
1497 	iowrite32(0x0000, ioaddr + IntrEnable);
1498 	spin_unlock_irq(&np->lock);
1499 
1500 	free_irq(np->pci_dev->irq, dev);
1501 	wmb();
1502 	netif_device_attach(dev);
1503 
1504 	if (ioread32(ioaddr + NetworkConfig) != 0xffffffff)
1505 		np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1506 
1507 #ifdef __i386__
1508 	if (debug > 2) {
1509 		int i;
1510 
1511 		printk(KERN_DEBUG"  Tx ring at %p:\n", np->tx_ring);
1512 		for (i = 0; i < TX_RING_SIZE; i++)
1513 			printk(KERN_DEBUG " #%d desc. %04x %04x %08x\n",
1514 			       i, np->tx_ring[i].length,
1515 			       np->tx_ring[i].status, np->tx_ring[i].buffer1);
1516 		printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1517 		for (i = 0; i < RX_RING_SIZE; i++) {
1518 			printk(KERN_DEBUG " #%d desc. %04x %04x %08x\n",
1519 			       i, np->rx_ring[i].length,
1520 			       np->rx_ring[i].status, np->rx_ring[i].buffer1);
1521 		}
1522 	}
1523 #endif /* __i386__ debugging only */
1524 
1525 	del_timer_sync(&np->timer);
1526 
1527 	free_rxtx_rings(np);
1528 	free_ringdesc(np);
1529 
1530 	return 0;
1531 }
1532 
w840_remove1(struct pci_dev * pdev)1533 static void w840_remove1(struct pci_dev *pdev)
1534 {
1535 	struct net_device *dev = pci_get_drvdata(pdev);
1536 
1537 	if (dev) {
1538 		struct netdev_private *np = netdev_priv(dev);
1539 		unregister_netdev(dev);
1540 		pci_release_regions(pdev);
1541 		pci_iounmap(pdev, np->base_addr);
1542 		free_netdev(dev);
1543 	}
1544 }
1545 
1546 #ifdef CONFIG_PM
1547 
1548 /*
1549  * suspend/resume synchronization:
1550  * - open, close, do_ioctl:
1551  * 	rtnl_lock, & netif_device_detach after the rtnl_unlock.
1552  * - get_stats:
1553  * 	spin_lock_irq(np->lock), doesn't touch hw if not present
1554  * - start_xmit:
1555  * 	synchronize_irq + netif_tx_disable;
1556  * - tx_timeout:
1557  * 	netif_device_detach + netif_tx_disable;
1558  * - set_multicast_list
1559  * 	netif_device_detach + netif_tx_disable;
1560  * - interrupt handler
1561  * 	doesn't touch hw if not present, synchronize_irq waits for
1562  * 	running instances of the interrupt handler.
1563  *
1564  * Disabling hw requires clearing csr6 & IntrEnable.
1565  * update_csr6 & all function that write IntrEnable check netif_device_present
1566  * before settings any bits.
1567  *
1568  * Detach must occur under spin_unlock_irq(), interrupts from a detached
1569  * device would cause an irq storm.
1570  */
w840_suspend(struct pci_dev * pdev,pm_message_t state)1571 static int w840_suspend (struct pci_dev *pdev, pm_message_t state)
1572 {
1573 	struct net_device *dev = pci_get_drvdata (pdev);
1574 	struct netdev_private *np = netdev_priv(dev);
1575 	void __iomem *ioaddr = np->base_addr;
1576 
1577 	rtnl_lock();
1578 	if (netif_running (dev)) {
1579 		del_timer_sync(&np->timer);
1580 
1581 		spin_lock_irq(&np->lock);
1582 		netif_device_detach(dev);
1583 		update_csr6(dev, 0);
1584 		iowrite32(0, ioaddr + IntrEnable);
1585 		spin_unlock_irq(&np->lock);
1586 
1587 		synchronize_irq(np->pci_dev->irq);
1588 		netif_tx_disable(dev);
1589 
1590 		np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1591 
1592 		/* no more hardware accesses behind this line. */
1593 
1594 		BUG_ON(np->csr6 || ioread32(ioaddr + IntrEnable));
1595 
1596 		/* pci_power_off(pdev, -1); */
1597 
1598 		free_rxtx_rings(np);
1599 	} else {
1600 		netif_device_detach(dev);
1601 	}
1602 	rtnl_unlock();
1603 	return 0;
1604 }
1605 
w840_resume(struct pci_dev * pdev)1606 static int w840_resume (struct pci_dev *pdev)
1607 {
1608 	struct net_device *dev = pci_get_drvdata (pdev);
1609 	struct netdev_private *np = netdev_priv(dev);
1610 	int retval = 0;
1611 
1612 	rtnl_lock();
1613 	if (netif_device_present(dev))
1614 		goto out; /* device not suspended */
1615 	if (netif_running(dev)) {
1616 		if ((retval = pci_enable_device(pdev))) {
1617 			dev_err(&dev->dev,
1618 				"pci_enable_device failed in resume\n");
1619 			goto out;
1620 		}
1621 		spin_lock_irq(&np->lock);
1622 		iowrite32(1, np->base_addr+PCIBusCfg);
1623 		ioread32(np->base_addr+PCIBusCfg);
1624 		udelay(1);
1625 		netif_device_attach(dev);
1626 		init_rxtx_rings(dev);
1627 		init_registers(dev);
1628 		spin_unlock_irq(&np->lock);
1629 
1630 		netif_wake_queue(dev);
1631 
1632 		mod_timer(&np->timer, jiffies + 1*HZ);
1633 	} else {
1634 		netif_device_attach(dev);
1635 	}
1636 out:
1637 	rtnl_unlock();
1638 	return retval;
1639 }
1640 #endif
1641 
1642 static struct pci_driver w840_driver = {
1643 	.name		= DRV_NAME,
1644 	.id_table	= w840_pci_tbl,
1645 	.probe		= w840_probe1,
1646 	.remove		= w840_remove1,
1647 #ifdef CONFIG_PM
1648 	.suspend	= w840_suspend,
1649 	.resume		= w840_resume,
1650 #endif
1651 };
1652 
w840_init(void)1653 static int __init w840_init(void)
1654 {
1655 	printk(version);
1656 	return pci_register_driver(&w840_driver);
1657 }
1658 
w840_exit(void)1659 static void __exit w840_exit(void)
1660 {
1661 	pci_unregister_driver(&w840_driver);
1662 }
1663 
1664 module_init(w840_init);
1665 module_exit(w840_exit);
1666