1 /* drivers/net/ethernet/freescale/gianfar.c
2 *
3 * Gianfar Ethernet Driver
4 * This driver is designed for the non-CPM ethernet controllers
5 * on the 85xx and 83xx family of integrated processors
6 * Based on 8260_io/fcc_enet.c
7 *
8 * Author: Andy Fleming
9 * Maintainer: Kumar Gala
10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11 *
12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13 * Copyright 2007 MontaVista Software, Inc.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
25 *
26 * Theory of operation
27 *
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
30 *
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
36 *
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
53 *
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
62 */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <linux/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107
108 #include "gianfar.h"
109
110 #define TX_TIMEOUT (5*HZ)
111
112 const char gfar_driver_version[] = "2.0";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
120 int alloc_cnt);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
145 static void gfar_halt_nodisable(struct gfar_private *priv);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148 const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
154
gfar_init_rxbdp(struct gfar_priv_rx_q * rx_queue,struct rxbd8 * bdp,dma_addr_t buf)155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156 dma_addr_t buf)
157 {
158 u32 lstatus;
159
160 bdp->bufPtr = cpu_to_be32(buf);
161
162 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164 lstatus |= BD_LFLAG(RXBD_WRAP);
165
166 gfar_wmb();
167
168 bdp->lstatus = cpu_to_be32(lstatus);
169 }
170
gfar_init_bds(struct net_device * ndev)171 static void gfar_init_bds(struct net_device *ndev)
172 {
173 struct gfar_private *priv = netdev_priv(ndev);
174 struct gfar __iomem *regs = priv->gfargrp[0].regs;
175 struct gfar_priv_tx_q *tx_queue = NULL;
176 struct gfar_priv_rx_q *rx_queue = NULL;
177 struct txbd8 *txbdp;
178 u32 __iomem *rfbptr;
179 int i, j;
180
181 for (i = 0; i < priv->num_tx_queues; i++) {
182 tx_queue = priv->tx_queue[i];
183 /* Initialize some variables in our dev structure */
184 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
185 tx_queue->dirty_tx = tx_queue->tx_bd_base;
186 tx_queue->cur_tx = tx_queue->tx_bd_base;
187 tx_queue->skb_curtx = 0;
188 tx_queue->skb_dirtytx = 0;
189
190 /* Initialize Transmit Descriptor Ring */
191 txbdp = tx_queue->tx_bd_base;
192 for (j = 0; j < tx_queue->tx_ring_size; j++) {
193 txbdp->lstatus = 0;
194 txbdp->bufPtr = 0;
195 txbdp++;
196 }
197
198 /* Set the last descriptor in the ring to indicate wrap */
199 txbdp--;
200 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
201 TXBD_WRAP);
202 }
203
204 rfbptr = ®s->rfbptr0;
205 for (i = 0; i < priv->num_rx_queues; i++) {
206 rx_queue = priv->rx_queue[i];
207
208 rx_queue->next_to_clean = 0;
209 rx_queue->next_to_use = 0;
210 rx_queue->next_to_alloc = 0;
211
212 /* make sure next_to_clean != next_to_use after this
213 * by leaving at least 1 unused descriptor
214 */
215 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
216
217 rx_queue->rfbptr = rfbptr;
218 rfbptr += 2;
219 }
220 }
221
gfar_alloc_skb_resources(struct net_device * ndev)222 static int gfar_alloc_skb_resources(struct net_device *ndev)
223 {
224 void *vaddr;
225 dma_addr_t addr;
226 int i, j;
227 struct gfar_private *priv = netdev_priv(ndev);
228 struct device *dev = priv->dev;
229 struct gfar_priv_tx_q *tx_queue = NULL;
230 struct gfar_priv_rx_q *rx_queue = NULL;
231
232 priv->total_tx_ring_size = 0;
233 for (i = 0; i < priv->num_tx_queues; i++)
234 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
235
236 priv->total_rx_ring_size = 0;
237 for (i = 0; i < priv->num_rx_queues; i++)
238 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
239
240 /* Allocate memory for the buffer descriptors */
241 vaddr = dma_alloc_coherent(dev,
242 (priv->total_tx_ring_size *
243 sizeof(struct txbd8)) +
244 (priv->total_rx_ring_size *
245 sizeof(struct rxbd8)),
246 &addr, GFP_KERNEL);
247 if (!vaddr)
248 return -ENOMEM;
249
250 for (i = 0; i < priv->num_tx_queues; i++) {
251 tx_queue = priv->tx_queue[i];
252 tx_queue->tx_bd_base = vaddr;
253 tx_queue->tx_bd_dma_base = addr;
254 tx_queue->dev = ndev;
255 /* enet DMA only understands physical addresses */
256 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
257 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
258 }
259
260 /* Start the rx descriptor ring where the tx ring leaves off */
261 for (i = 0; i < priv->num_rx_queues; i++) {
262 rx_queue = priv->rx_queue[i];
263 rx_queue->rx_bd_base = vaddr;
264 rx_queue->rx_bd_dma_base = addr;
265 rx_queue->ndev = ndev;
266 rx_queue->dev = dev;
267 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
268 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
269 }
270
271 /* Setup the skbuff rings */
272 for (i = 0; i < priv->num_tx_queues; i++) {
273 tx_queue = priv->tx_queue[i];
274 tx_queue->tx_skbuff =
275 kmalloc_array(tx_queue->tx_ring_size,
276 sizeof(*tx_queue->tx_skbuff),
277 GFP_KERNEL);
278 if (!tx_queue->tx_skbuff)
279 goto cleanup;
280
281 for (j = 0; j < tx_queue->tx_ring_size; j++)
282 tx_queue->tx_skbuff[j] = NULL;
283 }
284
285 for (i = 0; i < priv->num_rx_queues; i++) {
286 rx_queue = priv->rx_queue[i];
287 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
288 sizeof(*rx_queue->rx_buff),
289 GFP_KERNEL);
290 if (!rx_queue->rx_buff)
291 goto cleanup;
292 }
293
294 gfar_init_bds(ndev);
295
296 return 0;
297
298 cleanup:
299 free_skb_resources(priv);
300 return -ENOMEM;
301 }
302
gfar_init_tx_rx_base(struct gfar_private * priv)303 static void gfar_init_tx_rx_base(struct gfar_private *priv)
304 {
305 struct gfar __iomem *regs = priv->gfargrp[0].regs;
306 u32 __iomem *baddr;
307 int i;
308
309 baddr = ®s->tbase0;
310 for (i = 0; i < priv->num_tx_queues; i++) {
311 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
312 baddr += 2;
313 }
314
315 baddr = ®s->rbase0;
316 for (i = 0; i < priv->num_rx_queues; i++) {
317 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
318 baddr += 2;
319 }
320 }
321
gfar_init_rqprm(struct gfar_private * priv)322 static void gfar_init_rqprm(struct gfar_private *priv)
323 {
324 struct gfar __iomem *regs = priv->gfargrp[0].regs;
325 u32 __iomem *baddr;
326 int i;
327
328 baddr = ®s->rqprm0;
329 for (i = 0; i < priv->num_rx_queues; i++) {
330 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
331 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
332 baddr++;
333 }
334 }
335
gfar_rx_offload_en(struct gfar_private * priv)336 static void gfar_rx_offload_en(struct gfar_private *priv)
337 {
338 /* set this when rx hw offload (TOE) functions are being used */
339 priv->uses_rxfcb = 0;
340
341 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
342 priv->uses_rxfcb = 1;
343
344 if (priv->hwts_rx_en || priv->rx_filer_enable)
345 priv->uses_rxfcb = 1;
346 }
347
gfar_mac_rx_config(struct gfar_private * priv)348 static void gfar_mac_rx_config(struct gfar_private *priv)
349 {
350 struct gfar __iomem *regs = priv->gfargrp[0].regs;
351 u32 rctrl = 0;
352
353 if (priv->rx_filer_enable) {
354 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
355 /* Program the RIR0 reg with the required distribution */
356 if (priv->poll_mode == GFAR_SQ_POLLING)
357 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0);
358 else /* GFAR_MQ_POLLING */
359 gfar_write(®s->rir0, DEFAULT_8RXQ_RIR0);
360 }
361
362 /* Restore PROMISC mode */
363 if (priv->ndev->flags & IFF_PROMISC)
364 rctrl |= RCTRL_PROM;
365
366 if (priv->ndev->features & NETIF_F_RXCSUM)
367 rctrl |= RCTRL_CHECKSUMMING;
368
369 if (priv->extended_hash)
370 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
371
372 if (priv->padding) {
373 rctrl &= ~RCTRL_PAL_MASK;
374 rctrl |= RCTRL_PADDING(priv->padding);
375 }
376
377 /* Enable HW time stamping if requested from user space */
378 if (priv->hwts_rx_en)
379 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
380
381 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
382 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383
384 /* Clear the LFC bit */
385 gfar_write(®s->rctrl, rctrl);
386 /* Init flow control threshold values */
387 gfar_init_rqprm(priv);
388 gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL);
389 rctrl |= RCTRL_LFC;
390
391 /* Init rctrl based on our settings */
392 gfar_write(®s->rctrl, rctrl);
393 }
394
gfar_mac_tx_config(struct gfar_private * priv)395 static void gfar_mac_tx_config(struct gfar_private *priv)
396 {
397 struct gfar __iomem *regs = priv->gfargrp[0].regs;
398 u32 tctrl = 0;
399
400 if (priv->ndev->features & NETIF_F_IP_CSUM)
401 tctrl |= TCTRL_INIT_CSUM;
402
403 if (priv->prio_sched_en)
404 tctrl |= TCTRL_TXSCHED_PRIO;
405 else {
406 tctrl |= TCTRL_TXSCHED_WRRS;
407 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT);
408 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT);
409 }
410
411 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
412 tctrl |= TCTRL_VLINS;
413
414 gfar_write(®s->tctrl, tctrl);
415 }
416
gfar_configure_coalescing(struct gfar_private * priv,unsigned long tx_mask,unsigned long rx_mask)417 static void gfar_configure_coalescing(struct gfar_private *priv,
418 unsigned long tx_mask, unsigned long rx_mask)
419 {
420 struct gfar __iomem *regs = priv->gfargrp[0].regs;
421 u32 __iomem *baddr;
422
423 if (priv->mode == MQ_MG_MODE) {
424 int i = 0;
425
426 baddr = ®s->txic0;
427 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
428 gfar_write(baddr + i, 0);
429 if (likely(priv->tx_queue[i]->txcoalescing))
430 gfar_write(baddr + i, priv->tx_queue[i]->txic);
431 }
432
433 baddr = ®s->rxic0;
434 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
435 gfar_write(baddr + i, 0);
436 if (likely(priv->rx_queue[i]->rxcoalescing))
437 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
438 }
439 } else {
440 /* Backward compatible case -- even if we enable
441 * multiple queues, there's only single reg to program
442 */
443 gfar_write(®s->txic, 0);
444 if (likely(priv->tx_queue[0]->txcoalescing))
445 gfar_write(®s->txic, priv->tx_queue[0]->txic);
446
447 gfar_write(®s->rxic, 0);
448 if (unlikely(priv->rx_queue[0]->rxcoalescing))
449 gfar_write(®s->rxic, priv->rx_queue[0]->rxic);
450 }
451 }
452
gfar_configure_coalescing_all(struct gfar_private * priv)453 void gfar_configure_coalescing_all(struct gfar_private *priv)
454 {
455 gfar_configure_coalescing(priv, 0xFF, 0xFF);
456 }
457
gfar_get_stats(struct net_device * dev)458 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
459 {
460 struct gfar_private *priv = netdev_priv(dev);
461 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
462 unsigned long tx_packets = 0, tx_bytes = 0;
463 int i;
464
465 for (i = 0; i < priv->num_rx_queues; i++) {
466 rx_packets += priv->rx_queue[i]->stats.rx_packets;
467 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
468 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
469 }
470
471 dev->stats.rx_packets = rx_packets;
472 dev->stats.rx_bytes = rx_bytes;
473 dev->stats.rx_dropped = rx_dropped;
474
475 for (i = 0; i < priv->num_tx_queues; i++) {
476 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
477 tx_packets += priv->tx_queue[i]->stats.tx_packets;
478 }
479
480 dev->stats.tx_bytes = tx_bytes;
481 dev->stats.tx_packets = tx_packets;
482
483 return &dev->stats;
484 }
485
gfar_set_mac_addr(struct net_device * dev,void * p)486 static int gfar_set_mac_addr(struct net_device *dev, void *p)
487 {
488 eth_mac_addr(dev, p);
489
490 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
491
492 return 0;
493 }
494
495 static const struct net_device_ops gfar_netdev_ops = {
496 .ndo_open = gfar_enet_open,
497 .ndo_start_xmit = gfar_start_xmit,
498 .ndo_stop = gfar_close,
499 .ndo_change_mtu = gfar_change_mtu,
500 .ndo_set_features = gfar_set_features,
501 .ndo_set_rx_mode = gfar_set_multi,
502 .ndo_tx_timeout = gfar_timeout,
503 .ndo_do_ioctl = gfar_ioctl,
504 .ndo_get_stats = gfar_get_stats,
505 .ndo_set_mac_address = gfar_set_mac_addr,
506 .ndo_validate_addr = eth_validate_addr,
507 #ifdef CONFIG_NET_POLL_CONTROLLER
508 .ndo_poll_controller = gfar_netpoll,
509 #endif
510 };
511
gfar_ints_disable(struct gfar_private * priv)512 static void gfar_ints_disable(struct gfar_private *priv)
513 {
514 int i;
515 for (i = 0; i < priv->num_grps; i++) {
516 struct gfar __iomem *regs = priv->gfargrp[i].regs;
517 /* Clear IEVENT */
518 gfar_write(®s->ievent, IEVENT_INIT_CLEAR);
519
520 /* Initialize IMASK */
521 gfar_write(®s->imask, IMASK_INIT_CLEAR);
522 }
523 }
524
gfar_ints_enable(struct gfar_private * priv)525 static void gfar_ints_enable(struct gfar_private *priv)
526 {
527 int i;
528 for (i = 0; i < priv->num_grps; i++) {
529 struct gfar __iomem *regs = priv->gfargrp[i].regs;
530 /* Unmask the interrupts we look for */
531 gfar_write(®s->imask, IMASK_DEFAULT);
532 }
533 }
534
gfar_alloc_tx_queues(struct gfar_private * priv)535 static int gfar_alloc_tx_queues(struct gfar_private *priv)
536 {
537 int i;
538
539 for (i = 0; i < priv->num_tx_queues; i++) {
540 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
541 GFP_KERNEL);
542 if (!priv->tx_queue[i])
543 return -ENOMEM;
544
545 priv->tx_queue[i]->tx_skbuff = NULL;
546 priv->tx_queue[i]->qindex = i;
547 priv->tx_queue[i]->dev = priv->ndev;
548 spin_lock_init(&(priv->tx_queue[i]->txlock));
549 }
550 return 0;
551 }
552
gfar_alloc_rx_queues(struct gfar_private * priv)553 static int gfar_alloc_rx_queues(struct gfar_private *priv)
554 {
555 int i;
556
557 for (i = 0; i < priv->num_rx_queues; i++) {
558 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
559 GFP_KERNEL);
560 if (!priv->rx_queue[i])
561 return -ENOMEM;
562
563 priv->rx_queue[i]->qindex = i;
564 priv->rx_queue[i]->ndev = priv->ndev;
565 }
566 return 0;
567 }
568
gfar_free_tx_queues(struct gfar_private * priv)569 static void gfar_free_tx_queues(struct gfar_private *priv)
570 {
571 int i;
572
573 for (i = 0; i < priv->num_tx_queues; i++)
574 kfree(priv->tx_queue[i]);
575 }
576
gfar_free_rx_queues(struct gfar_private * priv)577 static void gfar_free_rx_queues(struct gfar_private *priv)
578 {
579 int i;
580
581 for (i = 0; i < priv->num_rx_queues; i++)
582 kfree(priv->rx_queue[i]);
583 }
584
unmap_group_regs(struct gfar_private * priv)585 static void unmap_group_regs(struct gfar_private *priv)
586 {
587 int i;
588
589 for (i = 0; i < MAXGROUPS; i++)
590 if (priv->gfargrp[i].regs)
591 iounmap(priv->gfargrp[i].regs);
592 }
593
free_gfar_dev(struct gfar_private * priv)594 static void free_gfar_dev(struct gfar_private *priv)
595 {
596 int i, j;
597
598 for (i = 0; i < priv->num_grps; i++)
599 for (j = 0; j < GFAR_NUM_IRQS; j++) {
600 kfree(priv->gfargrp[i].irqinfo[j]);
601 priv->gfargrp[i].irqinfo[j] = NULL;
602 }
603
604 free_netdev(priv->ndev);
605 }
606
disable_napi(struct gfar_private * priv)607 static void disable_napi(struct gfar_private *priv)
608 {
609 int i;
610
611 for (i = 0; i < priv->num_grps; i++) {
612 napi_disable(&priv->gfargrp[i].napi_rx);
613 napi_disable(&priv->gfargrp[i].napi_tx);
614 }
615 }
616
enable_napi(struct gfar_private * priv)617 static void enable_napi(struct gfar_private *priv)
618 {
619 int i;
620
621 for (i = 0; i < priv->num_grps; i++) {
622 napi_enable(&priv->gfargrp[i].napi_rx);
623 napi_enable(&priv->gfargrp[i].napi_tx);
624 }
625 }
626
gfar_parse_group(struct device_node * np,struct gfar_private * priv,const char * model)627 static int gfar_parse_group(struct device_node *np,
628 struct gfar_private *priv, const char *model)
629 {
630 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
631 int i;
632
633 for (i = 0; i < GFAR_NUM_IRQS; i++) {
634 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
635 GFP_KERNEL);
636 if (!grp->irqinfo[i])
637 return -ENOMEM;
638 }
639
640 grp->regs = of_iomap(np, 0);
641 if (!grp->regs)
642 return -ENOMEM;
643
644 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
645
646 /* If we aren't the FEC we have multiple interrupts */
647 if (model && strcasecmp(model, "FEC")) {
648 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
649 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
650 if (!gfar_irq(grp, TX)->irq ||
651 !gfar_irq(grp, RX)->irq ||
652 !gfar_irq(grp, ER)->irq)
653 return -EINVAL;
654 }
655
656 grp->priv = priv;
657 spin_lock_init(&grp->grplock);
658 if (priv->mode == MQ_MG_MODE) {
659 u32 rxq_mask, txq_mask;
660 int ret;
661
662 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
663 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
664
665 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
666 if (!ret) {
667 grp->rx_bit_map = rxq_mask ?
668 rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
669 }
670
671 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
672 if (!ret) {
673 grp->tx_bit_map = txq_mask ?
674 txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
675 }
676
677 if (priv->poll_mode == GFAR_SQ_POLLING) {
678 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
679 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
680 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
681 }
682 } else {
683 grp->rx_bit_map = 0xFF;
684 grp->tx_bit_map = 0xFF;
685 }
686
687 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
688 * right to left, so we need to revert the 8 bits to get the q index
689 */
690 grp->rx_bit_map = bitrev8(grp->rx_bit_map);
691 grp->tx_bit_map = bitrev8(grp->tx_bit_map);
692
693 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
694 * also assign queues to groups
695 */
696 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
697 if (!grp->rx_queue)
698 grp->rx_queue = priv->rx_queue[i];
699 grp->num_rx_queues++;
700 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
701 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
702 priv->rx_queue[i]->grp = grp;
703 }
704
705 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
706 if (!grp->tx_queue)
707 grp->tx_queue = priv->tx_queue[i];
708 grp->num_tx_queues++;
709 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
710 priv->tqueue |= (TQUEUE_EN0 >> i);
711 priv->tx_queue[i]->grp = grp;
712 }
713
714 priv->num_grps++;
715
716 return 0;
717 }
718
gfar_of_group_count(struct device_node * np)719 static int gfar_of_group_count(struct device_node *np)
720 {
721 struct device_node *child;
722 int num = 0;
723
724 for_each_available_child_of_node(np, child)
725 if (!of_node_cmp(child->name, "queue-group"))
726 num++;
727
728 return num;
729 }
730
gfar_of_init(struct platform_device * ofdev,struct net_device ** pdev)731 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
732 {
733 const char *model;
734 const char *ctype;
735 const void *mac_addr;
736 int err = 0, i;
737 struct net_device *dev = NULL;
738 struct gfar_private *priv = NULL;
739 struct device_node *np = ofdev->dev.of_node;
740 struct device_node *child = NULL;
741 u32 stash_len = 0;
742 u32 stash_idx = 0;
743 unsigned int num_tx_qs, num_rx_qs;
744 unsigned short mode, poll_mode;
745
746 if (!np)
747 return -ENODEV;
748
749 if (of_device_is_compatible(np, "fsl,etsec2")) {
750 mode = MQ_MG_MODE;
751 poll_mode = GFAR_SQ_POLLING;
752 } else {
753 mode = SQ_SG_MODE;
754 poll_mode = GFAR_SQ_POLLING;
755 }
756
757 if (mode == SQ_SG_MODE) {
758 num_tx_qs = 1;
759 num_rx_qs = 1;
760 } else { /* MQ_MG_MODE */
761 /* get the actual number of supported groups */
762 unsigned int num_grps = gfar_of_group_count(np);
763
764 if (num_grps == 0 || num_grps > MAXGROUPS) {
765 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
766 num_grps);
767 pr_err("Cannot do alloc_etherdev, aborting\n");
768 return -EINVAL;
769 }
770
771 if (poll_mode == GFAR_SQ_POLLING) {
772 num_tx_qs = num_grps; /* one txq per int group */
773 num_rx_qs = num_grps; /* one rxq per int group */
774 } else { /* GFAR_MQ_POLLING */
775 u32 tx_queues, rx_queues;
776 int ret;
777
778 /* parse the num of HW tx and rx queues */
779 ret = of_property_read_u32(np, "fsl,num_tx_queues",
780 &tx_queues);
781 num_tx_qs = ret ? 1 : tx_queues;
782
783 ret = of_property_read_u32(np, "fsl,num_rx_queues",
784 &rx_queues);
785 num_rx_qs = ret ? 1 : rx_queues;
786 }
787 }
788
789 if (num_tx_qs > MAX_TX_QS) {
790 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
791 num_tx_qs, MAX_TX_QS);
792 pr_err("Cannot do alloc_etherdev, aborting\n");
793 return -EINVAL;
794 }
795
796 if (num_rx_qs > MAX_RX_QS) {
797 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
798 num_rx_qs, MAX_RX_QS);
799 pr_err("Cannot do alloc_etherdev, aborting\n");
800 return -EINVAL;
801 }
802
803 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
804 dev = *pdev;
805 if (NULL == dev)
806 return -ENOMEM;
807
808 priv = netdev_priv(dev);
809 priv->ndev = dev;
810
811 priv->mode = mode;
812 priv->poll_mode = poll_mode;
813
814 priv->num_tx_queues = num_tx_qs;
815 netif_set_real_num_rx_queues(dev, num_rx_qs);
816 priv->num_rx_queues = num_rx_qs;
817
818 err = gfar_alloc_tx_queues(priv);
819 if (err)
820 goto tx_alloc_failed;
821
822 err = gfar_alloc_rx_queues(priv);
823 if (err)
824 goto rx_alloc_failed;
825
826 err = of_property_read_string(np, "model", &model);
827 if (err) {
828 pr_err("Device model property missing, aborting\n");
829 goto rx_alloc_failed;
830 }
831
832 /* Init Rx queue filer rule set linked list */
833 INIT_LIST_HEAD(&priv->rx_list.list);
834 priv->rx_list.count = 0;
835 mutex_init(&priv->rx_queue_access);
836
837 for (i = 0; i < MAXGROUPS; i++)
838 priv->gfargrp[i].regs = NULL;
839
840 /* Parse and initialize group specific information */
841 if (priv->mode == MQ_MG_MODE) {
842 for_each_available_child_of_node(np, child) {
843 if (of_node_cmp(child->name, "queue-group"))
844 continue;
845
846 err = gfar_parse_group(child, priv, model);
847 if (err)
848 goto err_grp_init;
849 }
850 } else { /* SQ_SG_MODE */
851 err = gfar_parse_group(np, priv, model);
852 if (err)
853 goto err_grp_init;
854 }
855
856 if (of_property_read_bool(np, "bd-stash")) {
857 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
858 priv->bd_stash_en = 1;
859 }
860
861 err = of_property_read_u32(np, "rx-stash-len", &stash_len);
862
863 if (err == 0)
864 priv->rx_stash_size = stash_len;
865
866 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
867
868 if (err == 0)
869 priv->rx_stash_index = stash_idx;
870
871 if (stash_len || stash_idx)
872 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
873
874 mac_addr = of_get_mac_address(np);
875
876 if (mac_addr)
877 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
878
879 if (model && !strcasecmp(model, "TSEC"))
880 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
881 FSL_GIANFAR_DEV_HAS_COALESCE |
882 FSL_GIANFAR_DEV_HAS_RMON |
883 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
884
885 if (model && !strcasecmp(model, "eTSEC"))
886 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
887 FSL_GIANFAR_DEV_HAS_COALESCE |
888 FSL_GIANFAR_DEV_HAS_RMON |
889 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
890 FSL_GIANFAR_DEV_HAS_CSUM |
891 FSL_GIANFAR_DEV_HAS_VLAN |
892 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
893 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
894 FSL_GIANFAR_DEV_HAS_TIMER |
895 FSL_GIANFAR_DEV_HAS_RX_FILER;
896
897 err = of_property_read_string(np, "phy-connection-type", &ctype);
898
899 /* We only care about rgmii-id. The rest are autodetected */
900 if (err == 0 && !strcmp(ctype, "rgmii-id"))
901 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
902 else
903 priv->interface = PHY_INTERFACE_MODE_MII;
904
905 if (of_find_property(np, "fsl,magic-packet", NULL))
906 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
907
908 if (of_get_property(np, "fsl,wake-on-filer", NULL))
909 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
910
911 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
912
913 /* In the case of a fixed PHY, the DT node associated
914 * to the PHY is the Ethernet MAC DT node.
915 */
916 if (!priv->phy_node && of_phy_is_fixed_link(np)) {
917 err = of_phy_register_fixed_link(np);
918 if (err)
919 goto err_grp_init;
920
921 priv->phy_node = of_node_get(np);
922 }
923
924 /* Find the TBI PHY. If it's not there, we don't support SGMII */
925 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
926
927 return 0;
928
929 err_grp_init:
930 unmap_group_regs(priv);
931 rx_alloc_failed:
932 gfar_free_rx_queues(priv);
933 tx_alloc_failed:
934 gfar_free_tx_queues(priv);
935 free_gfar_dev(priv);
936 return err;
937 }
938
gfar_hwtstamp_set(struct net_device * netdev,struct ifreq * ifr)939 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
940 {
941 struct hwtstamp_config config;
942 struct gfar_private *priv = netdev_priv(netdev);
943
944 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
945 return -EFAULT;
946
947 /* reserved for future extensions */
948 if (config.flags)
949 return -EINVAL;
950
951 switch (config.tx_type) {
952 case HWTSTAMP_TX_OFF:
953 priv->hwts_tx_en = 0;
954 break;
955 case HWTSTAMP_TX_ON:
956 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
957 return -ERANGE;
958 priv->hwts_tx_en = 1;
959 break;
960 default:
961 return -ERANGE;
962 }
963
964 switch (config.rx_filter) {
965 case HWTSTAMP_FILTER_NONE:
966 if (priv->hwts_rx_en) {
967 priv->hwts_rx_en = 0;
968 reset_gfar(netdev);
969 }
970 break;
971 default:
972 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
973 return -ERANGE;
974 if (!priv->hwts_rx_en) {
975 priv->hwts_rx_en = 1;
976 reset_gfar(netdev);
977 }
978 config.rx_filter = HWTSTAMP_FILTER_ALL;
979 break;
980 }
981
982 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
983 -EFAULT : 0;
984 }
985
gfar_hwtstamp_get(struct net_device * netdev,struct ifreq * ifr)986 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
987 {
988 struct hwtstamp_config config;
989 struct gfar_private *priv = netdev_priv(netdev);
990
991 config.flags = 0;
992 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
993 config.rx_filter = (priv->hwts_rx_en ?
994 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
995
996 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
997 -EFAULT : 0;
998 }
999
gfar_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1000 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1001 {
1002 struct phy_device *phydev = dev->phydev;
1003
1004 if (!netif_running(dev))
1005 return -EINVAL;
1006
1007 if (cmd == SIOCSHWTSTAMP)
1008 return gfar_hwtstamp_set(dev, rq);
1009 if (cmd == SIOCGHWTSTAMP)
1010 return gfar_hwtstamp_get(dev, rq);
1011
1012 if (!phydev)
1013 return -ENODEV;
1014
1015 return phy_mii_ioctl(phydev, rq, cmd);
1016 }
1017
cluster_entry_per_class(struct gfar_private * priv,u32 rqfar,u32 class)1018 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1019 u32 class)
1020 {
1021 u32 rqfpr = FPR_FILER_MASK;
1022 u32 rqfcr = 0x0;
1023
1024 rqfar--;
1025 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1026 priv->ftp_rqfpr[rqfar] = rqfpr;
1027 priv->ftp_rqfcr[rqfar] = rqfcr;
1028 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1029
1030 rqfar--;
1031 rqfcr = RQFCR_CMP_NOMATCH;
1032 priv->ftp_rqfpr[rqfar] = rqfpr;
1033 priv->ftp_rqfcr[rqfar] = rqfcr;
1034 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1035
1036 rqfar--;
1037 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1038 rqfpr = class;
1039 priv->ftp_rqfcr[rqfar] = rqfcr;
1040 priv->ftp_rqfpr[rqfar] = rqfpr;
1041 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1042
1043 rqfar--;
1044 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1045 rqfpr = class;
1046 priv->ftp_rqfcr[rqfar] = rqfcr;
1047 priv->ftp_rqfpr[rqfar] = rqfpr;
1048 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1049
1050 return rqfar;
1051 }
1052
gfar_init_filer_table(struct gfar_private * priv)1053 static void gfar_init_filer_table(struct gfar_private *priv)
1054 {
1055 int i = 0x0;
1056 u32 rqfar = MAX_FILER_IDX;
1057 u32 rqfcr = 0x0;
1058 u32 rqfpr = FPR_FILER_MASK;
1059
1060 /* Default rule */
1061 rqfcr = RQFCR_CMP_MATCH;
1062 priv->ftp_rqfcr[rqfar] = rqfcr;
1063 priv->ftp_rqfpr[rqfar] = rqfpr;
1064 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1065
1066 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1067 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1068 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1069 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1070 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1071 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1072
1073 /* cur_filer_idx indicated the first non-masked rule */
1074 priv->cur_filer_idx = rqfar;
1075
1076 /* Rest are masked rules */
1077 rqfcr = RQFCR_CMP_NOMATCH;
1078 for (i = 0; i < rqfar; i++) {
1079 priv->ftp_rqfcr[i] = rqfcr;
1080 priv->ftp_rqfpr[i] = rqfpr;
1081 gfar_write_filer(priv, i, rqfcr, rqfpr);
1082 }
1083 }
1084
1085 #ifdef CONFIG_PPC
__gfar_detect_errata_83xx(struct gfar_private * priv)1086 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1087 {
1088 unsigned int pvr = mfspr(SPRN_PVR);
1089 unsigned int svr = mfspr(SPRN_SVR);
1090 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1091 unsigned int rev = svr & 0xffff;
1092
1093 /* MPC8313 Rev 2.0 and higher; All MPC837x */
1094 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1095 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1096 priv->errata |= GFAR_ERRATA_74;
1097
1098 /* MPC8313 and MPC837x all rev */
1099 if ((pvr == 0x80850010 && mod == 0x80b0) ||
1100 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1101 priv->errata |= GFAR_ERRATA_76;
1102
1103 /* MPC8313 Rev < 2.0 */
1104 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1105 priv->errata |= GFAR_ERRATA_12;
1106 }
1107
__gfar_detect_errata_85xx(struct gfar_private * priv)1108 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1109 {
1110 unsigned int svr = mfspr(SPRN_SVR);
1111
1112 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1113 priv->errata |= GFAR_ERRATA_12;
1114 /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
1115 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1116 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
1117 ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
1118 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1119 }
1120 #endif
1121
gfar_detect_errata(struct gfar_private * priv)1122 static void gfar_detect_errata(struct gfar_private *priv)
1123 {
1124 struct device *dev = &priv->ofdev->dev;
1125
1126 /* no plans to fix */
1127 priv->errata |= GFAR_ERRATA_A002;
1128
1129 #ifdef CONFIG_PPC
1130 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1131 __gfar_detect_errata_85xx(priv);
1132 else /* non-mpc85xx parts, i.e. e300 core based */
1133 __gfar_detect_errata_83xx(priv);
1134 #endif
1135
1136 if (priv->errata)
1137 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1138 priv->errata);
1139 }
1140
gfar_mac_reset(struct gfar_private * priv)1141 void gfar_mac_reset(struct gfar_private *priv)
1142 {
1143 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1144 u32 tempval;
1145
1146 /* Reset MAC layer */
1147 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET);
1148
1149 /* We need to delay at least 3 TX clocks */
1150 udelay(3);
1151
1152 /* the soft reset bit is not self-resetting, so we need to
1153 * clear it before resuming normal operation
1154 */
1155 gfar_write(®s->maccfg1, 0);
1156
1157 udelay(3);
1158
1159 gfar_rx_offload_en(priv);
1160
1161 /* Initialize the max receive frame/buffer lengths */
1162 gfar_write(®s->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1163 gfar_write(®s->mrblr, GFAR_RXB_SIZE);
1164
1165 /* Initialize the Minimum Frame Length Register */
1166 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS);
1167
1168 /* Initialize MACCFG2. */
1169 tempval = MACCFG2_INIT_SETTINGS;
1170
1171 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1172 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1,
1173 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1174 */
1175 if (gfar_has_errata(priv, GFAR_ERRATA_74))
1176 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1177
1178 gfar_write(®s->maccfg2, tempval);
1179
1180 /* Clear mac addr hash registers */
1181 gfar_write(®s->igaddr0, 0);
1182 gfar_write(®s->igaddr1, 0);
1183 gfar_write(®s->igaddr2, 0);
1184 gfar_write(®s->igaddr3, 0);
1185 gfar_write(®s->igaddr4, 0);
1186 gfar_write(®s->igaddr5, 0);
1187 gfar_write(®s->igaddr6, 0);
1188 gfar_write(®s->igaddr7, 0);
1189
1190 gfar_write(®s->gaddr0, 0);
1191 gfar_write(®s->gaddr1, 0);
1192 gfar_write(®s->gaddr2, 0);
1193 gfar_write(®s->gaddr3, 0);
1194 gfar_write(®s->gaddr4, 0);
1195 gfar_write(®s->gaddr5, 0);
1196 gfar_write(®s->gaddr6, 0);
1197 gfar_write(®s->gaddr7, 0);
1198
1199 if (priv->extended_hash)
1200 gfar_clear_exact_match(priv->ndev);
1201
1202 gfar_mac_rx_config(priv);
1203
1204 gfar_mac_tx_config(priv);
1205
1206 gfar_set_mac_address(priv->ndev);
1207
1208 gfar_set_multi(priv->ndev);
1209
1210 /* clear ievent and imask before configuring coalescing */
1211 gfar_ints_disable(priv);
1212
1213 /* Configure the coalescing support */
1214 gfar_configure_coalescing_all(priv);
1215 }
1216
gfar_hw_init(struct gfar_private * priv)1217 static void gfar_hw_init(struct gfar_private *priv)
1218 {
1219 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1220 u32 attrs;
1221
1222 /* Stop the DMA engine now, in case it was running before
1223 * (The firmware could have used it, and left it running).
1224 */
1225 gfar_halt(priv);
1226
1227 gfar_mac_reset(priv);
1228
1229 /* Zero out the rmon mib registers if it has them */
1230 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1231 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1232
1233 /* Mask off the CAM interrupts */
1234 gfar_write(®s->rmon.cam1, 0xffffffff);
1235 gfar_write(®s->rmon.cam2, 0xffffffff);
1236 }
1237
1238 /* Initialize ECNTRL */
1239 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS);
1240
1241 /* Set the extraction length and index */
1242 attrs = ATTRELI_EL(priv->rx_stash_size) |
1243 ATTRELI_EI(priv->rx_stash_index);
1244
1245 gfar_write(®s->attreli, attrs);
1246
1247 /* Start with defaults, and add stashing
1248 * depending on driver parameters
1249 */
1250 attrs = ATTR_INIT_SETTINGS;
1251
1252 if (priv->bd_stash_en)
1253 attrs |= ATTR_BDSTASH;
1254
1255 if (priv->rx_stash_size != 0)
1256 attrs |= ATTR_BUFSTASH;
1257
1258 gfar_write(®s->attr, attrs);
1259
1260 /* FIFO configs */
1261 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1262 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1263 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1264
1265 /* Program the interrupt steering regs, only for MG devices */
1266 if (priv->num_grps > 1)
1267 gfar_write_isrg(priv);
1268 }
1269
gfar_init_addr_hash_table(struct gfar_private * priv)1270 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1271 {
1272 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1273
1274 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1275 priv->extended_hash = 1;
1276 priv->hash_width = 9;
1277
1278 priv->hash_regs[0] = ®s->igaddr0;
1279 priv->hash_regs[1] = ®s->igaddr1;
1280 priv->hash_regs[2] = ®s->igaddr2;
1281 priv->hash_regs[3] = ®s->igaddr3;
1282 priv->hash_regs[4] = ®s->igaddr4;
1283 priv->hash_regs[5] = ®s->igaddr5;
1284 priv->hash_regs[6] = ®s->igaddr6;
1285 priv->hash_regs[7] = ®s->igaddr7;
1286 priv->hash_regs[8] = ®s->gaddr0;
1287 priv->hash_regs[9] = ®s->gaddr1;
1288 priv->hash_regs[10] = ®s->gaddr2;
1289 priv->hash_regs[11] = ®s->gaddr3;
1290 priv->hash_regs[12] = ®s->gaddr4;
1291 priv->hash_regs[13] = ®s->gaddr5;
1292 priv->hash_regs[14] = ®s->gaddr6;
1293 priv->hash_regs[15] = ®s->gaddr7;
1294
1295 } else {
1296 priv->extended_hash = 0;
1297 priv->hash_width = 8;
1298
1299 priv->hash_regs[0] = ®s->gaddr0;
1300 priv->hash_regs[1] = ®s->gaddr1;
1301 priv->hash_regs[2] = ®s->gaddr2;
1302 priv->hash_regs[3] = ®s->gaddr3;
1303 priv->hash_regs[4] = ®s->gaddr4;
1304 priv->hash_regs[5] = ®s->gaddr5;
1305 priv->hash_regs[6] = ®s->gaddr6;
1306 priv->hash_regs[7] = ®s->gaddr7;
1307 }
1308 }
1309
1310 /* Set up the ethernet device structure, private data,
1311 * and anything else we need before we start
1312 */
gfar_probe(struct platform_device * ofdev)1313 static int gfar_probe(struct platform_device *ofdev)
1314 {
1315 struct device_node *np = ofdev->dev.of_node;
1316 struct net_device *dev = NULL;
1317 struct gfar_private *priv = NULL;
1318 int err = 0, i;
1319
1320 err = gfar_of_init(ofdev, &dev);
1321
1322 if (err)
1323 return err;
1324
1325 priv = netdev_priv(dev);
1326 priv->ndev = dev;
1327 priv->ofdev = ofdev;
1328 priv->dev = &ofdev->dev;
1329 SET_NETDEV_DEV(dev, &ofdev->dev);
1330
1331 INIT_WORK(&priv->reset_task, gfar_reset_task);
1332
1333 platform_set_drvdata(ofdev, priv);
1334
1335 gfar_detect_errata(priv);
1336
1337 /* Set the dev->base_addr to the gfar reg region */
1338 dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1339
1340 /* Fill in the dev structure */
1341 dev->watchdog_timeo = TX_TIMEOUT;
1342 /* MTU range: 50 - 9586 */
1343 dev->mtu = 1500;
1344 dev->min_mtu = 50;
1345 dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
1346 dev->netdev_ops = &gfar_netdev_ops;
1347 dev->ethtool_ops = &gfar_ethtool_ops;
1348
1349 /* Register for napi ...We are registering NAPI for each grp */
1350 for (i = 0; i < priv->num_grps; i++) {
1351 if (priv->poll_mode == GFAR_SQ_POLLING) {
1352 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1353 gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1354 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1355 gfar_poll_tx_sq, 2);
1356 } else {
1357 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1358 gfar_poll_rx, GFAR_DEV_WEIGHT);
1359 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1360 gfar_poll_tx, 2);
1361 }
1362 }
1363
1364 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1365 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1366 NETIF_F_RXCSUM;
1367 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1368 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1369 }
1370
1371 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1372 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1373 NETIF_F_HW_VLAN_CTAG_RX;
1374 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1375 }
1376
1377 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1378
1379 gfar_init_addr_hash_table(priv);
1380
1381 /* Insert receive time stamps into padding alignment bytes, and
1382 * plus 2 bytes padding to ensure the cpu alignment.
1383 */
1384 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1385 priv->padding = 8 + DEFAULT_PADDING;
1386
1387 if (dev->features & NETIF_F_IP_CSUM ||
1388 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1389 dev->needed_headroom = GMAC_FCB_LEN;
1390
1391 /* Initializing some of the rx/tx queue level parameters */
1392 for (i = 0; i < priv->num_tx_queues; i++) {
1393 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1394 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1395 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1396 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1397 }
1398
1399 for (i = 0; i < priv->num_rx_queues; i++) {
1400 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1401 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1402 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1403 }
1404
1405 /* Always enable rx filer if available */
1406 priv->rx_filer_enable =
1407 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1408 /* Enable most messages by default */
1409 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1410 /* use pritority h/w tx queue scheduling for single queue devices */
1411 if (priv->num_tx_queues == 1)
1412 priv->prio_sched_en = 1;
1413
1414 set_bit(GFAR_DOWN, &priv->state);
1415
1416 gfar_hw_init(priv);
1417
1418 /* Carrier starts down, phylib will bring it up */
1419 netif_carrier_off(dev);
1420
1421 err = register_netdev(dev);
1422
1423 if (err) {
1424 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1425 goto register_fail;
1426 }
1427
1428 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1429 priv->wol_supported |= GFAR_WOL_MAGIC;
1430
1431 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1432 priv->rx_filer_enable)
1433 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1434
1435 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1436
1437 /* fill out IRQ number and name fields */
1438 for (i = 0; i < priv->num_grps; i++) {
1439 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1440 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1441 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1442 dev->name, "_g", '0' + i, "_tx");
1443 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1444 dev->name, "_g", '0' + i, "_rx");
1445 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1446 dev->name, "_g", '0' + i, "_er");
1447 } else
1448 strcpy(gfar_irq(grp, TX)->name, dev->name);
1449 }
1450
1451 /* Initialize the filer table */
1452 gfar_init_filer_table(priv);
1453
1454 /* Print out the device info */
1455 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1456
1457 /* Even more device info helps when determining which kernel
1458 * provided which set of benchmarks.
1459 */
1460 netdev_info(dev, "Running with NAPI enabled\n");
1461 for (i = 0; i < priv->num_rx_queues; i++)
1462 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1463 i, priv->rx_queue[i]->rx_ring_size);
1464 for (i = 0; i < priv->num_tx_queues; i++)
1465 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1466 i, priv->tx_queue[i]->tx_ring_size);
1467
1468 return 0;
1469
1470 register_fail:
1471 if (of_phy_is_fixed_link(np))
1472 of_phy_deregister_fixed_link(np);
1473 unmap_group_regs(priv);
1474 gfar_free_rx_queues(priv);
1475 gfar_free_tx_queues(priv);
1476 of_node_put(priv->phy_node);
1477 of_node_put(priv->tbi_node);
1478 free_gfar_dev(priv);
1479 return err;
1480 }
1481
gfar_remove(struct platform_device * ofdev)1482 static int gfar_remove(struct platform_device *ofdev)
1483 {
1484 struct gfar_private *priv = platform_get_drvdata(ofdev);
1485 struct device_node *np = ofdev->dev.of_node;
1486
1487 of_node_put(priv->phy_node);
1488 of_node_put(priv->tbi_node);
1489
1490 unregister_netdev(priv->ndev);
1491
1492 if (of_phy_is_fixed_link(np))
1493 of_phy_deregister_fixed_link(np);
1494
1495 unmap_group_regs(priv);
1496 gfar_free_rx_queues(priv);
1497 gfar_free_tx_queues(priv);
1498 free_gfar_dev(priv);
1499
1500 return 0;
1501 }
1502
1503 #ifdef CONFIG_PM
1504
__gfar_filer_disable(struct gfar_private * priv)1505 static void __gfar_filer_disable(struct gfar_private *priv)
1506 {
1507 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1508 u32 temp;
1509
1510 temp = gfar_read(®s->rctrl);
1511 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1512 gfar_write(®s->rctrl, temp);
1513 }
1514
__gfar_filer_enable(struct gfar_private * priv)1515 static void __gfar_filer_enable(struct gfar_private *priv)
1516 {
1517 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1518 u32 temp;
1519
1520 temp = gfar_read(®s->rctrl);
1521 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1522 gfar_write(®s->rctrl, temp);
1523 }
1524
1525 /* Filer rules implementing wol capabilities */
gfar_filer_config_wol(struct gfar_private * priv)1526 static void gfar_filer_config_wol(struct gfar_private *priv)
1527 {
1528 unsigned int i;
1529 u32 rqfcr;
1530
1531 __gfar_filer_disable(priv);
1532
1533 /* clear the filer table, reject any packet by default */
1534 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1535 for (i = 0; i <= MAX_FILER_IDX; i++)
1536 gfar_write_filer(priv, i, rqfcr, 0);
1537
1538 i = 0;
1539 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1540 /* unicast packet, accept it */
1541 struct net_device *ndev = priv->ndev;
1542 /* get the default rx queue index */
1543 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1544 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1545 (ndev->dev_addr[1] << 8) |
1546 ndev->dev_addr[2];
1547
1548 rqfcr = (qindex << 10) | RQFCR_AND |
1549 RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1550
1551 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1552
1553 dest_mac_addr = (ndev->dev_addr[3] << 16) |
1554 (ndev->dev_addr[4] << 8) |
1555 ndev->dev_addr[5];
1556 rqfcr = (qindex << 10) | RQFCR_GPI |
1557 RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1558 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1559 }
1560
1561 __gfar_filer_enable(priv);
1562 }
1563
gfar_filer_restore_table(struct gfar_private * priv)1564 static void gfar_filer_restore_table(struct gfar_private *priv)
1565 {
1566 u32 rqfcr, rqfpr;
1567 unsigned int i;
1568
1569 __gfar_filer_disable(priv);
1570
1571 for (i = 0; i <= MAX_FILER_IDX; i++) {
1572 rqfcr = priv->ftp_rqfcr[i];
1573 rqfpr = priv->ftp_rqfpr[i];
1574 gfar_write_filer(priv, i, rqfcr, rqfpr);
1575 }
1576
1577 __gfar_filer_enable(priv);
1578 }
1579
1580 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
gfar_start_wol_filer(struct gfar_private * priv)1581 static void gfar_start_wol_filer(struct gfar_private *priv)
1582 {
1583 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1584 u32 tempval;
1585 int i = 0;
1586
1587 /* Enable Rx hw queues */
1588 gfar_write(®s->rqueue, priv->rqueue);
1589
1590 /* Initialize DMACTRL to have WWR and WOP */
1591 tempval = gfar_read(®s->dmactrl);
1592 tempval |= DMACTRL_INIT_SETTINGS;
1593 gfar_write(®s->dmactrl, tempval);
1594
1595 /* Make sure we aren't stopped */
1596 tempval = gfar_read(®s->dmactrl);
1597 tempval &= ~DMACTRL_GRS;
1598 gfar_write(®s->dmactrl, tempval);
1599
1600 for (i = 0; i < priv->num_grps; i++) {
1601 regs = priv->gfargrp[i].regs;
1602 /* Clear RHLT, so that the DMA starts polling now */
1603 gfar_write(®s->rstat, priv->gfargrp[i].rstat);
1604 /* enable the Filer General Purpose Interrupt */
1605 gfar_write(®s->imask, IMASK_FGPI);
1606 }
1607
1608 /* Enable Rx DMA */
1609 tempval = gfar_read(®s->maccfg1);
1610 tempval |= MACCFG1_RX_EN;
1611 gfar_write(®s->maccfg1, tempval);
1612 }
1613
gfar_suspend(struct device * dev)1614 static int gfar_suspend(struct device *dev)
1615 {
1616 struct gfar_private *priv = dev_get_drvdata(dev);
1617 struct net_device *ndev = priv->ndev;
1618 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1619 u32 tempval;
1620 u16 wol = priv->wol_opts;
1621
1622 if (!netif_running(ndev))
1623 return 0;
1624
1625 disable_napi(priv);
1626 netif_tx_lock(ndev);
1627 netif_device_detach(ndev);
1628 netif_tx_unlock(ndev);
1629
1630 gfar_halt(priv);
1631
1632 if (wol & GFAR_WOL_MAGIC) {
1633 /* Enable interrupt on Magic Packet */
1634 gfar_write(®s->imask, IMASK_MAG);
1635
1636 /* Enable Magic Packet mode */
1637 tempval = gfar_read(®s->maccfg2);
1638 tempval |= MACCFG2_MPEN;
1639 gfar_write(®s->maccfg2, tempval);
1640
1641 /* re-enable the Rx block */
1642 tempval = gfar_read(®s->maccfg1);
1643 tempval |= MACCFG1_RX_EN;
1644 gfar_write(®s->maccfg1, tempval);
1645
1646 } else if (wol & GFAR_WOL_FILER_UCAST) {
1647 gfar_filer_config_wol(priv);
1648 gfar_start_wol_filer(priv);
1649
1650 } else {
1651 phy_stop(ndev->phydev);
1652 }
1653
1654 return 0;
1655 }
1656
gfar_resume(struct device * dev)1657 static int gfar_resume(struct device *dev)
1658 {
1659 struct gfar_private *priv = dev_get_drvdata(dev);
1660 struct net_device *ndev = priv->ndev;
1661 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1662 u32 tempval;
1663 u16 wol = priv->wol_opts;
1664
1665 if (!netif_running(ndev))
1666 return 0;
1667
1668 if (wol & GFAR_WOL_MAGIC) {
1669 /* Disable Magic Packet mode */
1670 tempval = gfar_read(®s->maccfg2);
1671 tempval &= ~MACCFG2_MPEN;
1672 gfar_write(®s->maccfg2, tempval);
1673
1674 } else if (wol & GFAR_WOL_FILER_UCAST) {
1675 /* need to stop rx only, tx is already down */
1676 gfar_halt(priv);
1677 gfar_filer_restore_table(priv);
1678
1679 } else {
1680 phy_start(ndev->phydev);
1681 }
1682
1683 gfar_start(priv);
1684
1685 netif_device_attach(ndev);
1686 enable_napi(priv);
1687
1688 return 0;
1689 }
1690
gfar_restore(struct device * dev)1691 static int gfar_restore(struct device *dev)
1692 {
1693 struct gfar_private *priv = dev_get_drvdata(dev);
1694 struct net_device *ndev = priv->ndev;
1695
1696 if (!netif_running(ndev)) {
1697 netif_device_attach(ndev);
1698
1699 return 0;
1700 }
1701
1702 gfar_init_bds(ndev);
1703
1704 gfar_mac_reset(priv);
1705
1706 gfar_init_tx_rx_base(priv);
1707
1708 gfar_start(priv);
1709
1710 priv->oldlink = 0;
1711 priv->oldspeed = 0;
1712 priv->oldduplex = -1;
1713
1714 if (ndev->phydev)
1715 phy_start(ndev->phydev);
1716
1717 netif_device_attach(ndev);
1718 enable_napi(priv);
1719
1720 return 0;
1721 }
1722
1723 static const struct dev_pm_ops gfar_pm_ops = {
1724 .suspend = gfar_suspend,
1725 .resume = gfar_resume,
1726 .freeze = gfar_suspend,
1727 .thaw = gfar_resume,
1728 .restore = gfar_restore,
1729 };
1730
1731 #define GFAR_PM_OPS (&gfar_pm_ops)
1732
1733 #else
1734
1735 #define GFAR_PM_OPS NULL
1736
1737 #endif
1738
1739 /* Reads the controller's registers to determine what interface
1740 * connects it to the PHY.
1741 */
gfar_get_interface(struct net_device * dev)1742 static phy_interface_t gfar_get_interface(struct net_device *dev)
1743 {
1744 struct gfar_private *priv = netdev_priv(dev);
1745 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1746 u32 ecntrl;
1747
1748 ecntrl = gfar_read(®s->ecntrl);
1749
1750 if (ecntrl & ECNTRL_SGMII_MODE)
1751 return PHY_INTERFACE_MODE_SGMII;
1752
1753 if (ecntrl & ECNTRL_TBI_MODE) {
1754 if (ecntrl & ECNTRL_REDUCED_MODE)
1755 return PHY_INTERFACE_MODE_RTBI;
1756 else
1757 return PHY_INTERFACE_MODE_TBI;
1758 }
1759
1760 if (ecntrl & ECNTRL_REDUCED_MODE) {
1761 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1762 return PHY_INTERFACE_MODE_RMII;
1763 }
1764 else {
1765 phy_interface_t interface = priv->interface;
1766
1767 /* This isn't autodetected right now, so it must
1768 * be set by the device tree or platform code.
1769 */
1770 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1771 return PHY_INTERFACE_MODE_RGMII_ID;
1772
1773 return PHY_INTERFACE_MODE_RGMII;
1774 }
1775 }
1776
1777 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1778 return PHY_INTERFACE_MODE_GMII;
1779
1780 return PHY_INTERFACE_MODE_MII;
1781 }
1782
1783
1784 /* Initializes driver's PHY state, and attaches to the PHY.
1785 * Returns 0 on success.
1786 */
init_phy(struct net_device * dev)1787 static int init_phy(struct net_device *dev)
1788 {
1789 struct gfar_private *priv = netdev_priv(dev);
1790 uint gigabit_support =
1791 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1792 GFAR_SUPPORTED_GBIT : 0;
1793 phy_interface_t interface;
1794 struct phy_device *phydev;
1795 struct ethtool_eee edata;
1796
1797 priv->oldlink = 0;
1798 priv->oldspeed = 0;
1799 priv->oldduplex = -1;
1800
1801 interface = gfar_get_interface(dev);
1802
1803 phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1804 interface);
1805 if (!phydev) {
1806 dev_err(&dev->dev, "could not attach to PHY\n");
1807 return -ENODEV;
1808 }
1809
1810 if (interface == PHY_INTERFACE_MODE_SGMII)
1811 gfar_configure_serdes(dev);
1812
1813 /* Remove any features not supported by the controller */
1814 phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1815 phydev->advertising = phydev->supported;
1816
1817 /* Add support for flow control, but don't advertise it by default */
1818 phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1819
1820 /* disable EEE autoneg, EEE not supported by eTSEC */
1821 memset(&edata, 0, sizeof(struct ethtool_eee));
1822 phy_ethtool_set_eee(phydev, &edata);
1823
1824 return 0;
1825 }
1826
1827 /* Initialize TBI PHY interface for communicating with the
1828 * SERDES lynx PHY on the chip. We communicate with this PHY
1829 * through the MDIO bus on each controller, treating it as a
1830 * "normal" PHY at the address found in the TBIPA register. We assume
1831 * that the TBIPA register is valid. Either the MDIO bus code will set
1832 * it to a value that doesn't conflict with other PHYs on the bus, or the
1833 * value doesn't matter, as there are no other PHYs on the bus.
1834 */
gfar_configure_serdes(struct net_device * dev)1835 static void gfar_configure_serdes(struct net_device *dev)
1836 {
1837 struct gfar_private *priv = netdev_priv(dev);
1838 struct phy_device *tbiphy;
1839
1840 if (!priv->tbi_node) {
1841 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1842 "device tree specify a tbi-handle\n");
1843 return;
1844 }
1845
1846 tbiphy = of_phy_find_device(priv->tbi_node);
1847 if (!tbiphy) {
1848 dev_err(&dev->dev, "error: Could not get TBI device\n");
1849 return;
1850 }
1851
1852 /* If the link is already up, we must already be ok, and don't need to
1853 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1854 * everything for us? Resetting it takes the link down and requires
1855 * several seconds for it to come back.
1856 */
1857 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1858 put_device(&tbiphy->mdio.dev);
1859 return;
1860 }
1861
1862 /* Single clk mode, mii mode off(for serdes communication) */
1863 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1864
1865 phy_write(tbiphy, MII_ADVERTISE,
1866 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1867 ADVERTISE_1000XPSE_ASYM);
1868
1869 phy_write(tbiphy, MII_BMCR,
1870 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1871 BMCR_SPEED1000);
1872
1873 put_device(&tbiphy->mdio.dev);
1874 }
1875
__gfar_is_rx_idle(struct gfar_private * priv)1876 static int __gfar_is_rx_idle(struct gfar_private *priv)
1877 {
1878 u32 res;
1879
1880 /* Normaly TSEC should not hang on GRS commands, so we should
1881 * actually wait for IEVENT_GRSC flag.
1882 */
1883 if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1884 return 0;
1885
1886 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1887 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1888 * and the Rx can be safely reset.
1889 */
1890 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1891 res &= 0x7f807f80;
1892 if ((res & 0xffff) == (res >> 16))
1893 return 1;
1894
1895 return 0;
1896 }
1897
1898 /* Halt the receive and transmit queues */
gfar_halt_nodisable(struct gfar_private * priv)1899 static void gfar_halt_nodisable(struct gfar_private *priv)
1900 {
1901 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1902 u32 tempval;
1903 unsigned int timeout;
1904 int stopped;
1905
1906 gfar_ints_disable(priv);
1907
1908 if (gfar_is_dma_stopped(priv))
1909 return;
1910
1911 /* Stop the DMA, and wait for it to stop */
1912 tempval = gfar_read(®s->dmactrl);
1913 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1914 gfar_write(®s->dmactrl, tempval);
1915
1916 retry:
1917 timeout = 1000;
1918 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1919 cpu_relax();
1920 timeout--;
1921 }
1922
1923 if (!timeout)
1924 stopped = gfar_is_dma_stopped(priv);
1925
1926 if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1927 !__gfar_is_rx_idle(priv))
1928 goto retry;
1929 }
1930
1931 /* Halt the receive and transmit queues */
gfar_halt(struct gfar_private * priv)1932 void gfar_halt(struct gfar_private *priv)
1933 {
1934 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1935 u32 tempval;
1936
1937 /* Dissable the Rx/Tx hw queues */
1938 gfar_write(®s->rqueue, 0);
1939 gfar_write(®s->tqueue, 0);
1940
1941 mdelay(10);
1942
1943 gfar_halt_nodisable(priv);
1944
1945 /* Disable Rx/Tx DMA */
1946 tempval = gfar_read(®s->maccfg1);
1947 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1948 gfar_write(®s->maccfg1, tempval);
1949 }
1950
stop_gfar(struct net_device * dev)1951 void stop_gfar(struct net_device *dev)
1952 {
1953 struct gfar_private *priv = netdev_priv(dev);
1954
1955 netif_tx_stop_all_queues(dev);
1956
1957 smp_mb__before_atomic();
1958 set_bit(GFAR_DOWN, &priv->state);
1959 smp_mb__after_atomic();
1960
1961 disable_napi(priv);
1962
1963 /* disable ints and gracefully shut down Rx/Tx DMA */
1964 gfar_halt(priv);
1965
1966 phy_stop(dev->phydev);
1967
1968 free_skb_resources(priv);
1969 }
1970
free_skb_tx_queue(struct gfar_priv_tx_q * tx_queue)1971 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1972 {
1973 struct txbd8 *txbdp;
1974 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1975 int i, j;
1976
1977 txbdp = tx_queue->tx_bd_base;
1978
1979 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1980 if (!tx_queue->tx_skbuff[i])
1981 continue;
1982
1983 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1984 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1985 txbdp->lstatus = 0;
1986 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1987 j++) {
1988 txbdp++;
1989 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1990 be16_to_cpu(txbdp->length),
1991 DMA_TO_DEVICE);
1992 }
1993 txbdp++;
1994 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1995 tx_queue->tx_skbuff[i] = NULL;
1996 }
1997 kfree(tx_queue->tx_skbuff);
1998 tx_queue->tx_skbuff = NULL;
1999 }
2000
free_skb_rx_queue(struct gfar_priv_rx_q * rx_queue)2001 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
2002 {
2003 int i;
2004
2005 struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
2006
2007 if (rx_queue->skb)
2008 dev_kfree_skb(rx_queue->skb);
2009
2010 for (i = 0; i < rx_queue->rx_ring_size; i++) {
2011 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
2012
2013 rxbdp->lstatus = 0;
2014 rxbdp->bufPtr = 0;
2015 rxbdp++;
2016
2017 if (!rxb->page)
2018 continue;
2019
2020 dma_unmap_page(rx_queue->dev, rxb->dma,
2021 PAGE_SIZE, DMA_FROM_DEVICE);
2022 __free_page(rxb->page);
2023
2024 rxb->page = NULL;
2025 }
2026
2027 kfree(rx_queue->rx_buff);
2028 rx_queue->rx_buff = NULL;
2029 }
2030
2031 /* If there are any tx skbs or rx skbs still around, free them.
2032 * Then free tx_skbuff and rx_skbuff
2033 */
free_skb_resources(struct gfar_private * priv)2034 static void free_skb_resources(struct gfar_private *priv)
2035 {
2036 struct gfar_priv_tx_q *tx_queue = NULL;
2037 struct gfar_priv_rx_q *rx_queue = NULL;
2038 int i;
2039
2040 /* Go through all the buffer descriptors and free their data buffers */
2041 for (i = 0; i < priv->num_tx_queues; i++) {
2042 struct netdev_queue *txq;
2043
2044 tx_queue = priv->tx_queue[i];
2045 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2046 if (tx_queue->tx_skbuff)
2047 free_skb_tx_queue(tx_queue);
2048 netdev_tx_reset_queue(txq);
2049 }
2050
2051 for (i = 0; i < priv->num_rx_queues; i++) {
2052 rx_queue = priv->rx_queue[i];
2053 if (rx_queue->rx_buff)
2054 free_skb_rx_queue(rx_queue);
2055 }
2056
2057 dma_free_coherent(priv->dev,
2058 sizeof(struct txbd8) * priv->total_tx_ring_size +
2059 sizeof(struct rxbd8) * priv->total_rx_ring_size,
2060 priv->tx_queue[0]->tx_bd_base,
2061 priv->tx_queue[0]->tx_bd_dma_base);
2062 }
2063
gfar_start(struct gfar_private * priv)2064 void gfar_start(struct gfar_private *priv)
2065 {
2066 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2067 u32 tempval;
2068 int i = 0;
2069
2070 /* Enable Rx/Tx hw queues */
2071 gfar_write(®s->rqueue, priv->rqueue);
2072 gfar_write(®s->tqueue, priv->tqueue);
2073
2074 /* Initialize DMACTRL to have WWR and WOP */
2075 tempval = gfar_read(®s->dmactrl);
2076 tempval |= DMACTRL_INIT_SETTINGS;
2077 gfar_write(®s->dmactrl, tempval);
2078
2079 /* Make sure we aren't stopped */
2080 tempval = gfar_read(®s->dmactrl);
2081 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2082 gfar_write(®s->dmactrl, tempval);
2083
2084 for (i = 0; i < priv->num_grps; i++) {
2085 regs = priv->gfargrp[i].regs;
2086 /* Clear THLT/RHLT, so that the DMA starts polling now */
2087 gfar_write(®s->tstat, priv->gfargrp[i].tstat);
2088 gfar_write(®s->rstat, priv->gfargrp[i].rstat);
2089 }
2090
2091 /* Enable Rx/Tx DMA */
2092 tempval = gfar_read(®s->maccfg1);
2093 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2094 gfar_write(®s->maccfg1, tempval);
2095
2096 gfar_ints_enable(priv);
2097
2098 netif_trans_update(priv->ndev); /* prevent tx timeout */
2099 }
2100
free_grp_irqs(struct gfar_priv_grp * grp)2101 static void free_grp_irqs(struct gfar_priv_grp *grp)
2102 {
2103 free_irq(gfar_irq(grp, TX)->irq, grp);
2104 free_irq(gfar_irq(grp, RX)->irq, grp);
2105 free_irq(gfar_irq(grp, ER)->irq, grp);
2106 }
2107
register_grp_irqs(struct gfar_priv_grp * grp)2108 static int register_grp_irqs(struct gfar_priv_grp *grp)
2109 {
2110 struct gfar_private *priv = grp->priv;
2111 struct net_device *dev = priv->ndev;
2112 int err;
2113
2114 /* If the device has multiple interrupts, register for
2115 * them. Otherwise, only register for the one
2116 */
2117 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2118 /* Install our interrupt handlers for Error,
2119 * Transmit, and Receive
2120 */
2121 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2122 gfar_irq(grp, ER)->name, grp);
2123 if (err < 0) {
2124 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2125 gfar_irq(grp, ER)->irq);
2126
2127 goto err_irq_fail;
2128 }
2129 enable_irq_wake(gfar_irq(grp, ER)->irq);
2130
2131 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2132 gfar_irq(grp, TX)->name, grp);
2133 if (err < 0) {
2134 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2135 gfar_irq(grp, TX)->irq);
2136 goto tx_irq_fail;
2137 }
2138 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2139 gfar_irq(grp, RX)->name, grp);
2140 if (err < 0) {
2141 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2142 gfar_irq(grp, RX)->irq);
2143 goto rx_irq_fail;
2144 }
2145 enable_irq_wake(gfar_irq(grp, RX)->irq);
2146
2147 } else {
2148 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2149 gfar_irq(grp, TX)->name, grp);
2150 if (err < 0) {
2151 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2152 gfar_irq(grp, TX)->irq);
2153 goto err_irq_fail;
2154 }
2155 enable_irq_wake(gfar_irq(grp, TX)->irq);
2156 }
2157
2158 return 0;
2159
2160 rx_irq_fail:
2161 free_irq(gfar_irq(grp, TX)->irq, grp);
2162 tx_irq_fail:
2163 free_irq(gfar_irq(grp, ER)->irq, grp);
2164 err_irq_fail:
2165 return err;
2166
2167 }
2168
gfar_free_irq(struct gfar_private * priv)2169 static void gfar_free_irq(struct gfar_private *priv)
2170 {
2171 int i;
2172
2173 /* Free the IRQs */
2174 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2175 for (i = 0; i < priv->num_grps; i++)
2176 free_grp_irqs(&priv->gfargrp[i]);
2177 } else {
2178 for (i = 0; i < priv->num_grps; i++)
2179 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2180 &priv->gfargrp[i]);
2181 }
2182 }
2183
gfar_request_irq(struct gfar_private * priv)2184 static int gfar_request_irq(struct gfar_private *priv)
2185 {
2186 int err, i, j;
2187
2188 for (i = 0; i < priv->num_grps; i++) {
2189 err = register_grp_irqs(&priv->gfargrp[i]);
2190 if (err) {
2191 for (j = 0; j < i; j++)
2192 free_grp_irqs(&priv->gfargrp[j]);
2193 return err;
2194 }
2195 }
2196
2197 return 0;
2198 }
2199
2200 /* Bring the controller up and running */
startup_gfar(struct net_device * ndev)2201 int startup_gfar(struct net_device *ndev)
2202 {
2203 struct gfar_private *priv = netdev_priv(ndev);
2204 int err;
2205
2206 gfar_mac_reset(priv);
2207
2208 err = gfar_alloc_skb_resources(ndev);
2209 if (err)
2210 return err;
2211
2212 gfar_init_tx_rx_base(priv);
2213
2214 smp_mb__before_atomic();
2215 clear_bit(GFAR_DOWN, &priv->state);
2216 smp_mb__after_atomic();
2217
2218 /* Start Rx/Tx DMA and enable the interrupts */
2219 gfar_start(priv);
2220
2221 /* force link state update after mac reset */
2222 priv->oldlink = 0;
2223 priv->oldspeed = 0;
2224 priv->oldduplex = -1;
2225
2226 phy_start(ndev->phydev);
2227
2228 enable_napi(priv);
2229
2230 netif_tx_wake_all_queues(ndev);
2231
2232 return 0;
2233 }
2234
2235 /* Called when something needs to use the ethernet device
2236 * Returns 0 for success.
2237 */
gfar_enet_open(struct net_device * dev)2238 static int gfar_enet_open(struct net_device *dev)
2239 {
2240 struct gfar_private *priv = netdev_priv(dev);
2241 int err;
2242
2243 err = init_phy(dev);
2244 if (err)
2245 return err;
2246
2247 err = gfar_request_irq(priv);
2248 if (err)
2249 return err;
2250
2251 err = startup_gfar(dev);
2252 if (err)
2253 return err;
2254
2255 return err;
2256 }
2257
gfar_add_fcb(struct sk_buff * skb)2258 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2259 {
2260 struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
2261
2262 memset(fcb, 0, GMAC_FCB_LEN);
2263
2264 return fcb;
2265 }
2266
gfar_tx_checksum(struct sk_buff * skb,struct txfcb * fcb,int fcb_length)2267 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2268 int fcb_length)
2269 {
2270 /* If we're here, it's a IP packet with a TCP or UDP
2271 * payload. We set it to checksum, using a pseudo-header
2272 * we provide
2273 */
2274 u8 flags = TXFCB_DEFAULT;
2275
2276 /* Tell the controller what the protocol is
2277 * And provide the already calculated phcs
2278 */
2279 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2280 flags |= TXFCB_UDP;
2281 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2282 } else
2283 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2284
2285 /* l3os is the distance between the start of the
2286 * frame (skb->data) and the start of the IP hdr.
2287 * l4os is the distance between the start of the
2288 * l3 hdr and the l4 hdr
2289 */
2290 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2291 fcb->l4os = skb_network_header_len(skb);
2292
2293 fcb->flags = flags;
2294 }
2295
gfar_tx_vlan(struct sk_buff * skb,struct txfcb * fcb)2296 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2297 {
2298 fcb->flags |= TXFCB_VLN;
2299 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2300 }
2301
skip_txbd(struct txbd8 * bdp,int stride,struct txbd8 * base,int ring_size)2302 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2303 struct txbd8 *base, int ring_size)
2304 {
2305 struct txbd8 *new_bd = bdp + stride;
2306
2307 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2308 }
2309
next_txbd(struct txbd8 * bdp,struct txbd8 * base,int ring_size)2310 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2311 int ring_size)
2312 {
2313 return skip_txbd(bdp, 1, base, ring_size);
2314 }
2315
2316 /* eTSEC12: csum generation not supported for some fcb offsets */
gfar_csum_errata_12(struct gfar_private * priv,unsigned long fcb_addr)2317 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2318 unsigned long fcb_addr)
2319 {
2320 return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2321 (fcb_addr % 0x20) > 0x18);
2322 }
2323
2324 /* eTSEC76: csum generation for frames larger than 2500 may
2325 * cause excess delays before start of transmission
2326 */
gfar_csum_errata_76(struct gfar_private * priv,unsigned int len)2327 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2328 unsigned int len)
2329 {
2330 return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2331 (len > 2500));
2332 }
2333
2334 /* This is called by the kernel when a frame is ready for transmission.
2335 * It is pointed to by the dev->hard_start_xmit function pointer
2336 */
gfar_start_xmit(struct sk_buff * skb,struct net_device * dev)2337 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2338 {
2339 struct gfar_private *priv = netdev_priv(dev);
2340 struct gfar_priv_tx_q *tx_queue = NULL;
2341 struct netdev_queue *txq;
2342 struct gfar __iomem *regs = NULL;
2343 struct txfcb *fcb = NULL;
2344 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2345 u32 lstatus;
2346 skb_frag_t *frag;
2347 int i, rq = 0;
2348 int do_tstamp, do_csum, do_vlan;
2349 u32 bufaddr;
2350 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2351
2352 rq = skb->queue_mapping;
2353 tx_queue = priv->tx_queue[rq];
2354 txq = netdev_get_tx_queue(dev, rq);
2355 base = tx_queue->tx_bd_base;
2356 regs = tx_queue->grp->regs;
2357
2358 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2359 do_vlan = skb_vlan_tag_present(skb);
2360 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2361 priv->hwts_tx_en;
2362
2363 if (do_csum || do_vlan)
2364 fcb_len = GMAC_FCB_LEN;
2365
2366 /* check if time stamp should be generated */
2367 if (unlikely(do_tstamp))
2368 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2369
2370 /* make space for additional header when fcb is needed */
2371 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2372 struct sk_buff *skb_new;
2373
2374 skb_new = skb_realloc_headroom(skb, fcb_len);
2375 if (!skb_new) {
2376 dev->stats.tx_errors++;
2377 dev_kfree_skb_any(skb);
2378 return NETDEV_TX_OK;
2379 }
2380
2381 if (skb->sk)
2382 skb_set_owner_w(skb_new, skb->sk);
2383 dev_consume_skb_any(skb);
2384 skb = skb_new;
2385 }
2386
2387 /* total number of fragments in the SKB */
2388 nr_frags = skb_shinfo(skb)->nr_frags;
2389
2390 /* calculate the required number of TxBDs for this skb */
2391 if (unlikely(do_tstamp))
2392 nr_txbds = nr_frags + 2;
2393 else
2394 nr_txbds = nr_frags + 1;
2395
2396 /* check if there is space to queue this packet */
2397 if (nr_txbds > tx_queue->num_txbdfree) {
2398 /* no space, stop the queue */
2399 netif_tx_stop_queue(txq);
2400 dev->stats.tx_fifo_errors++;
2401 return NETDEV_TX_BUSY;
2402 }
2403
2404 /* Update transmit stats */
2405 bytes_sent = skb->len;
2406 tx_queue->stats.tx_bytes += bytes_sent;
2407 /* keep Tx bytes on wire for BQL accounting */
2408 GFAR_CB(skb)->bytes_sent = bytes_sent;
2409 tx_queue->stats.tx_packets++;
2410
2411 txbdp = txbdp_start = tx_queue->cur_tx;
2412 lstatus = be32_to_cpu(txbdp->lstatus);
2413
2414 /* Add TxPAL between FCB and frame if required */
2415 if (unlikely(do_tstamp)) {
2416 skb_push(skb, GMAC_TXPAL_LEN);
2417 memset(skb->data, 0, GMAC_TXPAL_LEN);
2418 }
2419
2420 /* Add TxFCB if required */
2421 if (fcb_len) {
2422 fcb = gfar_add_fcb(skb);
2423 lstatus |= BD_LFLAG(TXBD_TOE);
2424 }
2425
2426 /* Set up checksumming */
2427 if (do_csum) {
2428 gfar_tx_checksum(skb, fcb, fcb_len);
2429
2430 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2431 unlikely(gfar_csum_errata_76(priv, skb->len))) {
2432 __skb_pull(skb, GMAC_FCB_LEN);
2433 skb_checksum_help(skb);
2434 if (do_vlan || do_tstamp) {
2435 /* put back a new fcb for vlan/tstamp TOE */
2436 fcb = gfar_add_fcb(skb);
2437 } else {
2438 /* Tx TOE not used */
2439 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2440 fcb = NULL;
2441 }
2442 }
2443 }
2444
2445 if (do_vlan)
2446 gfar_tx_vlan(skb, fcb);
2447
2448 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2449 DMA_TO_DEVICE);
2450 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2451 goto dma_map_err;
2452
2453 txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2454
2455 /* Time stamp insertion requires one additional TxBD */
2456 if (unlikely(do_tstamp))
2457 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2458 tx_queue->tx_ring_size);
2459
2460 if (likely(!nr_frags)) {
2461 if (likely(!do_tstamp))
2462 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2463 } else {
2464 u32 lstatus_start = lstatus;
2465
2466 /* Place the fragment addresses and lengths into the TxBDs */
2467 frag = &skb_shinfo(skb)->frags[0];
2468 for (i = 0; i < nr_frags; i++, frag++) {
2469 unsigned int size;
2470
2471 /* Point at the next BD, wrapping as needed */
2472 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2473
2474 size = skb_frag_size(frag);
2475
2476 lstatus = be32_to_cpu(txbdp->lstatus) | size |
2477 BD_LFLAG(TXBD_READY);
2478
2479 /* Handle the last BD specially */
2480 if (i == nr_frags - 1)
2481 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2482
2483 bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
2484 size, DMA_TO_DEVICE);
2485 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2486 goto dma_map_err;
2487
2488 /* set the TxBD length and buffer pointer */
2489 txbdp->bufPtr = cpu_to_be32(bufaddr);
2490 txbdp->lstatus = cpu_to_be32(lstatus);
2491 }
2492
2493 lstatus = lstatus_start;
2494 }
2495
2496 /* If time stamping is requested one additional TxBD must be set up. The
2497 * first TxBD points to the FCB and must have a data length of
2498 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2499 * the full frame length.
2500 */
2501 if (unlikely(do_tstamp)) {
2502 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2503
2504 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2505 bufaddr += fcb_len;
2506
2507 lstatus_ts |= BD_LFLAG(TXBD_READY) |
2508 (skb_headlen(skb) - fcb_len);
2509 if (!nr_frags)
2510 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2511
2512 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2513 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2514 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2515
2516 /* Setup tx hardware time stamping */
2517 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2518 fcb->ptp = 1;
2519 } else {
2520 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2521 }
2522
2523 netdev_tx_sent_queue(txq, bytes_sent);
2524
2525 gfar_wmb();
2526
2527 txbdp_start->lstatus = cpu_to_be32(lstatus);
2528
2529 gfar_wmb(); /* force lstatus write before tx_skbuff */
2530
2531 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2532
2533 /* Update the current skb pointer to the next entry we will use
2534 * (wrapping if necessary)
2535 */
2536 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2537 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2538
2539 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2540
2541 /* We can work in parallel with gfar_clean_tx_ring(), except
2542 * when modifying num_txbdfree. Note that we didn't grab the lock
2543 * when we were reading the num_txbdfree and checking for available
2544 * space, that's because outside of this function it can only grow.
2545 */
2546 spin_lock_bh(&tx_queue->txlock);
2547 /* reduce TxBD free count */
2548 tx_queue->num_txbdfree -= (nr_txbds);
2549 spin_unlock_bh(&tx_queue->txlock);
2550
2551 /* If the next BD still needs to be cleaned up, then the bds
2552 * are full. We need to tell the kernel to stop sending us stuff.
2553 */
2554 if (!tx_queue->num_txbdfree) {
2555 netif_tx_stop_queue(txq);
2556
2557 dev->stats.tx_fifo_errors++;
2558 }
2559
2560 /* Tell the DMA to go go go */
2561 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2562
2563 return NETDEV_TX_OK;
2564
2565 dma_map_err:
2566 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2567 if (do_tstamp)
2568 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2569 for (i = 0; i < nr_frags; i++) {
2570 lstatus = be32_to_cpu(txbdp->lstatus);
2571 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2572 break;
2573
2574 lstatus &= ~BD_LFLAG(TXBD_READY);
2575 txbdp->lstatus = cpu_to_be32(lstatus);
2576 bufaddr = be32_to_cpu(txbdp->bufPtr);
2577 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2578 DMA_TO_DEVICE);
2579 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2580 }
2581 gfar_wmb();
2582 dev_kfree_skb_any(skb);
2583 return NETDEV_TX_OK;
2584 }
2585
2586 /* Stops the kernel queue, and halts the controller */
gfar_close(struct net_device * dev)2587 static int gfar_close(struct net_device *dev)
2588 {
2589 struct gfar_private *priv = netdev_priv(dev);
2590
2591 cancel_work_sync(&priv->reset_task);
2592 stop_gfar(dev);
2593
2594 /* Disconnect from the PHY */
2595 phy_disconnect(dev->phydev);
2596
2597 gfar_free_irq(priv);
2598
2599 return 0;
2600 }
2601
2602 /* Changes the mac address if the controller is not running. */
gfar_set_mac_address(struct net_device * dev)2603 static int gfar_set_mac_address(struct net_device *dev)
2604 {
2605 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2606
2607 return 0;
2608 }
2609
gfar_change_mtu(struct net_device * dev,int new_mtu)2610 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2611 {
2612 struct gfar_private *priv = netdev_priv(dev);
2613
2614 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2615 cpu_relax();
2616
2617 if (dev->flags & IFF_UP)
2618 stop_gfar(dev);
2619
2620 dev->mtu = new_mtu;
2621
2622 if (dev->flags & IFF_UP)
2623 startup_gfar(dev);
2624
2625 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2626
2627 return 0;
2628 }
2629
reset_gfar(struct net_device * ndev)2630 void reset_gfar(struct net_device *ndev)
2631 {
2632 struct gfar_private *priv = netdev_priv(ndev);
2633
2634 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2635 cpu_relax();
2636
2637 stop_gfar(ndev);
2638 startup_gfar(ndev);
2639
2640 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2641 }
2642
2643 /* gfar_reset_task gets scheduled when a packet has not been
2644 * transmitted after a set amount of time.
2645 * For now, assume that clearing out all the structures, and
2646 * starting over will fix the problem.
2647 */
gfar_reset_task(struct work_struct * work)2648 static void gfar_reset_task(struct work_struct *work)
2649 {
2650 struct gfar_private *priv = container_of(work, struct gfar_private,
2651 reset_task);
2652 reset_gfar(priv->ndev);
2653 }
2654
gfar_timeout(struct net_device * dev)2655 static void gfar_timeout(struct net_device *dev)
2656 {
2657 struct gfar_private *priv = netdev_priv(dev);
2658
2659 dev->stats.tx_errors++;
2660 schedule_work(&priv->reset_task);
2661 }
2662
2663 /* Interrupt Handler for Transmit complete */
gfar_clean_tx_ring(struct gfar_priv_tx_q * tx_queue)2664 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2665 {
2666 struct net_device *dev = tx_queue->dev;
2667 struct netdev_queue *txq;
2668 struct gfar_private *priv = netdev_priv(dev);
2669 struct txbd8 *bdp, *next = NULL;
2670 struct txbd8 *lbdp = NULL;
2671 struct txbd8 *base = tx_queue->tx_bd_base;
2672 struct sk_buff *skb;
2673 int skb_dirtytx;
2674 int tx_ring_size = tx_queue->tx_ring_size;
2675 int frags = 0, nr_txbds = 0;
2676 int i;
2677 int howmany = 0;
2678 int tqi = tx_queue->qindex;
2679 unsigned int bytes_sent = 0;
2680 u32 lstatus;
2681 size_t buflen;
2682
2683 txq = netdev_get_tx_queue(dev, tqi);
2684 bdp = tx_queue->dirty_tx;
2685 skb_dirtytx = tx_queue->skb_dirtytx;
2686
2687 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2688 bool do_tstamp;
2689
2690 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2691 priv->hwts_tx_en;
2692
2693 frags = skb_shinfo(skb)->nr_frags;
2694
2695 /* When time stamping, one additional TxBD must be freed.
2696 * Also, we need to dma_unmap_single() the TxPAL.
2697 */
2698 if (unlikely(do_tstamp))
2699 nr_txbds = frags + 2;
2700 else
2701 nr_txbds = frags + 1;
2702
2703 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2704
2705 lstatus = be32_to_cpu(lbdp->lstatus);
2706
2707 /* Only clean completed frames */
2708 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2709 (lstatus & BD_LENGTH_MASK))
2710 break;
2711
2712 if (unlikely(do_tstamp)) {
2713 next = next_txbd(bdp, base, tx_ring_size);
2714 buflen = be16_to_cpu(next->length) +
2715 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2716 } else
2717 buflen = be16_to_cpu(bdp->length);
2718
2719 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2720 buflen, DMA_TO_DEVICE);
2721
2722 if (unlikely(do_tstamp)) {
2723 struct skb_shared_hwtstamps shhwtstamps;
2724 u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2725 ~0x7UL);
2726
2727 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2728 shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2729 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2730 skb_tstamp_tx(skb, &shhwtstamps);
2731 gfar_clear_txbd_status(bdp);
2732 bdp = next;
2733 }
2734
2735 gfar_clear_txbd_status(bdp);
2736 bdp = next_txbd(bdp, base, tx_ring_size);
2737
2738 for (i = 0; i < frags; i++) {
2739 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2740 be16_to_cpu(bdp->length),
2741 DMA_TO_DEVICE);
2742 gfar_clear_txbd_status(bdp);
2743 bdp = next_txbd(bdp, base, tx_ring_size);
2744 }
2745
2746 bytes_sent += GFAR_CB(skb)->bytes_sent;
2747
2748 dev_kfree_skb_any(skb);
2749
2750 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2751
2752 skb_dirtytx = (skb_dirtytx + 1) &
2753 TX_RING_MOD_MASK(tx_ring_size);
2754
2755 howmany++;
2756 spin_lock(&tx_queue->txlock);
2757 tx_queue->num_txbdfree += nr_txbds;
2758 spin_unlock(&tx_queue->txlock);
2759 }
2760
2761 /* If we freed a buffer, we can restart transmission, if necessary */
2762 if (tx_queue->num_txbdfree &&
2763 netif_tx_queue_stopped(txq) &&
2764 !(test_bit(GFAR_DOWN, &priv->state)))
2765 netif_wake_subqueue(priv->ndev, tqi);
2766
2767 /* Update dirty indicators */
2768 tx_queue->skb_dirtytx = skb_dirtytx;
2769 tx_queue->dirty_tx = bdp;
2770
2771 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2772 }
2773
gfar_new_page(struct gfar_priv_rx_q * rxq,struct gfar_rx_buff * rxb)2774 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2775 {
2776 struct page *page;
2777 dma_addr_t addr;
2778
2779 page = dev_alloc_page();
2780 if (unlikely(!page))
2781 return false;
2782
2783 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2784 if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2785 __free_page(page);
2786
2787 return false;
2788 }
2789
2790 rxb->dma = addr;
2791 rxb->page = page;
2792 rxb->page_offset = 0;
2793
2794 return true;
2795 }
2796
gfar_rx_alloc_err(struct gfar_priv_rx_q * rx_queue)2797 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2798 {
2799 struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2800 struct gfar_extra_stats *estats = &priv->extra_stats;
2801
2802 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2803 atomic64_inc(&estats->rx_alloc_err);
2804 }
2805
gfar_alloc_rx_buffs(struct gfar_priv_rx_q * rx_queue,int alloc_cnt)2806 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2807 int alloc_cnt)
2808 {
2809 struct rxbd8 *bdp;
2810 struct gfar_rx_buff *rxb;
2811 int i;
2812
2813 i = rx_queue->next_to_use;
2814 bdp = &rx_queue->rx_bd_base[i];
2815 rxb = &rx_queue->rx_buff[i];
2816
2817 while (alloc_cnt--) {
2818 /* try reuse page */
2819 if (unlikely(!rxb->page)) {
2820 if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2821 gfar_rx_alloc_err(rx_queue);
2822 break;
2823 }
2824 }
2825
2826 /* Setup the new RxBD */
2827 gfar_init_rxbdp(rx_queue, bdp,
2828 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2829
2830 /* Update to the next pointer */
2831 bdp++;
2832 rxb++;
2833
2834 if (unlikely(++i == rx_queue->rx_ring_size)) {
2835 i = 0;
2836 bdp = rx_queue->rx_bd_base;
2837 rxb = rx_queue->rx_buff;
2838 }
2839 }
2840
2841 rx_queue->next_to_use = i;
2842 rx_queue->next_to_alloc = i;
2843 }
2844
count_errors(u32 lstatus,struct net_device * ndev)2845 static void count_errors(u32 lstatus, struct net_device *ndev)
2846 {
2847 struct gfar_private *priv = netdev_priv(ndev);
2848 struct net_device_stats *stats = &ndev->stats;
2849 struct gfar_extra_stats *estats = &priv->extra_stats;
2850
2851 /* If the packet was truncated, none of the other errors matter */
2852 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2853 stats->rx_length_errors++;
2854
2855 atomic64_inc(&estats->rx_trunc);
2856
2857 return;
2858 }
2859 /* Count the errors, if there were any */
2860 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2861 stats->rx_length_errors++;
2862
2863 if (lstatus & BD_LFLAG(RXBD_LARGE))
2864 atomic64_inc(&estats->rx_large);
2865 else
2866 atomic64_inc(&estats->rx_short);
2867 }
2868 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2869 stats->rx_frame_errors++;
2870 atomic64_inc(&estats->rx_nonoctet);
2871 }
2872 if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2873 atomic64_inc(&estats->rx_crcerr);
2874 stats->rx_crc_errors++;
2875 }
2876 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2877 atomic64_inc(&estats->rx_overrun);
2878 stats->rx_over_errors++;
2879 }
2880 }
2881
gfar_receive(int irq,void * grp_id)2882 irqreturn_t gfar_receive(int irq, void *grp_id)
2883 {
2884 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2885 unsigned long flags;
2886 u32 imask, ievent;
2887
2888 ievent = gfar_read(&grp->regs->ievent);
2889
2890 if (unlikely(ievent & IEVENT_FGPI)) {
2891 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2892 return IRQ_HANDLED;
2893 }
2894
2895 if (likely(napi_schedule_prep(&grp->napi_rx))) {
2896 spin_lock_irqsave(&grp->grplock, flags);
2897 imask = gfar_read(&grp->regs->imask);
2898 imask &= IMASK_RX_DISABLED;
2899 gfar_write(&grp->regs->imask, imask);
2900 spin_unlock_irqrestore(&grp->grplock, flags);
2901 __napi_schedule(&grp->napi_rx);
2902 } else {
2903 /* Clear IEVENT, so interrupts aren't called again
2904 * because of the packets that have already arrived.
2905 */
2906 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2907 }
2908
2909 return IRQ_HANDLED;
2910 }
2911
2912 /* Interrupt Handler for Transmit complete */
gfar_transmit(int irq,void * grp_id)2913 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2914 {
2915 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2916 unsigned long flags;
2917 u32 imask;
2918
2919 if (likely(napi_schedule_prep(&grp->napi_tx))) {
2920 spin_lock_irqsave(&grp->grplock, flags);
2921 imask = gfar_read(&grp->regs->imask);
2922 imask &= IMASK_TX_DISABLED;
2923 gfar_write(&grp->regs->imask, imask);
2924 spin_unlock_irqrestore(&grp->grplock, flags);
2925 __napi_schedule(&grp->napi_tx);
2926 } else {
2927 /* Clear IEVENT, so interrupts aren't called again
2928 * because of the packets that have already arrived.
2929 */
2930 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2931 }
2932
2933 return IRQ_HANDLED;
2934 }
2935
gfar_add_rx_frag(struct gfar_rx_buff * rxb,u32 lstatus,struct sk_buff * skb,bool first)2936 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2937 struct sk_buff *skb, bool first)
2938 {
2939 int size = lstatus & BD_LENGTH_MASK;
2940 struct page *page = rxb->page;
2941 bool last = !!(lstatus & BD_LFLAG(RXBD_LAST));
2942
2943 /* Remove the FCS from the packet length */
2944 if (last)
2945 size -= ETH_FCS_LEN;
2946
2947 if (likely(first)) {
2948 skb_put(skb, size);
2949 } else {
2950 /* the last fragments' length contains the full frame length */
2951 if (last)
2952 size -= skb->len;
2953
2954 /* Add the last fragment if it contains something other than
2955 * the FCS, otherwise drop it and trim off any part of the FCS
2956 * that was already received.
2957 */
2958 if (size > 0)
2959 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2960 rxb->page_offset + RXBUF_ALIGNMENT,
2961 size, GFAR_RXB_TRUESIZE);
2962 else if (size < 0)
2963 pskb_trim(skb, skb->len + size);
2964 }
2965
2966 /* try reuse page */
2967 if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2968 return false;
2969
2970 /* change offset to the other half */
2971 rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2972
2973 page_ref_inc(page);
2974
2975 return true;
2976 }
2977
gfar_reuse_rx_page(struct gfar_priv_rx_q * rxq,struct gfar_rx_buff * old_rxb)2978 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2979 struct gfar_rx_buff *old_rxb)
2980 {
2981 struct gfar_rx_buff *new_rxb;
2982 u16 nta = rxq->next_to_alloc;
2983
2984 new_rxb = &rxq->rx_buff[nta];
2985
2986 /* find next buf that can reuse a page */
2987 nta++;
2988 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2989
2990 /* copy page reference */
2991 *new_rxb = *old_rxb;
2992
2993 /* sync for use by the device */
2994 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2995 old_rxb->page_offset,
2996 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2997 }
2998
gfar_get_next_rxbuff(struct gfar_priv_rx_q * rx_queue,u32 lstatus,struct sk_buff * skb)2999 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
3000 u32 lstatus, struct sk_buff *skb)
3001 {
3002 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
3003 struct page *page = rxb->page;
3004 bool first = false;
3005
3006 if (likely(!skb)) {
3007 void *buff_addr = page_address(page) + rxb->page_offset;
3008
3009 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
3010 if (unlikely(!skb)) {
3011 gfar_rx_alloc_err(rx_queue);
3012 return NULL;
3013 }
3014 skb_reserve(skb, RXBUF_ALIGNMENT);
3015 first = true;
3016 }
3017
3018 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
3019 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
3020
3021 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
3022 /* reuse the free half of the page */
3023 gfar_reuse_rx_page(rx_queue, rxb);
3024 } else {
3025 /* page cannot be reused, unmap it */
3026 dma_unmap_page(rx_queue->dev, rxb->dma,
3027 PAGE_SIZE, DMA_FROM_DEVICE);
3028 }
3029
3030 /* clear rxb content */
3031 rxb->page = NULL;
3032
3033 return skb;
3034 }
3035
gfar_rx_checksum(struct sk_buff * skb,struct rxfcb * fcb)3036 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3037 {
3038 /* If valid headers were found, and valid sums
3039 * were verified, then we tell the kernel that no
3040 * checksumming is necessary. Otherwise, it is [FIXME]
3041 */
3042 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3043 (RXFCB_CIP | RXFCB_CTU))
3044 skb->ip_summed = CHECKSUM_UNNECESSARY;
3045 else
3046 skb_checksum_none_assert(skb);
3047 }
3048
3049 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
gfar_process_frame(struct net_device * ndev,struct sk_buff * skb)3050 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3051 {
3052 struct gfar_private *priv = netdev_priv(ndev);
3053 struct rxfcb *fcb = NULL;
3054
3055 /* fcb is at the beginning if exists */
3056 fcb = (struct rxfcb *)skb->data;
3057
3058 /* Remove the FCB from the skb
3059 * Remove the padded bytes, if there are any
3060 */
3061 if (priv->uses_rxfcb)
3062 skb_pull(skb, GMAC_FCB_LEN);
3063
3064 /* Get receive timestamp from the skb */
3065 if (priv->hwts_rx_en) {
3066 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3067 u64 *ns = (u64 *) skb->data;
3068
3069 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3070 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
3071 }
3072
3073 if (priv->padding)
3074 skb_pull(skb, priv->padding);
3075
3076 if (ndev->features & NETIF_F_RXCSUM)
3077 gfar_rx_checksum(skb, fcb);
3078
3079 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3080 * Even if vlan rx accel is disabled, on some chips
3081 * RXFCB_VLN is pseudo randomly set.
3082 */
3083 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3084 be16_to_cpu(fcb->flags) & RXFCB_VLN)
3085 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3086 be16_to_cpu(fcb->vlctl));
3087 }
3088
3089 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3090 * until the budget/quota has been reached. Returns the number
3091 * of frames handled
3092 */
gfar_clean_rx_ring(struct gfar_priv_rx_q * rx_queue,int rx_work_limit)3093 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3094 {
3095 struct net_device *ndev = rx_queue->ndev;
3096 struct gfar_private *priv = netdev_priv(ndev);
3097 struct rxbd8 *bdp;
3098 int i, howmany = 0;
3099 struct sk_buff *skb = rx_queue->skb;
3100 int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3101 unsigned int total_bytes = 0, total_pkts = 0;
3102
3103 /* Get the first full descriptor */
3104 i = rx_queue->next_to_clean;
3105
3106 while (rx_work_limit--) {
3107 u32 lstatus;
3108
3109 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3110 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3111 cleaned_cnt = 0;
3112 }
3113
3114 bdp = &rx_queue->rx_bd_base[i];
3115 lstatus = be32_to_cpu(bdp->lstatus);
3116 if (lstatus & BD_LFLAG(RXBD_EMPTY))
3117 break;
3118
3119 /* order rx buffer descriptor reads */
3120 rmb();
3121
3122 /* fetch next to clean buffer from the ring */
3123 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3124 if (unlikely(!skb))
3125 break;
3126
3127 cleaned_cnt++;
3128 howmany++;
3129
3130 if (unlikely(++i == rx_queue->rx_ring_size))
3131 i = 0;
3132
3133 rx_queue->next_to_clean = i;
3134
3135 /* fetch next buffer if not the last in frame */
3136 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3137 continue;
3138
3139 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3140 count_errors(lstatus, ndev);
3141
3142 /* discard faulty buffer */
3143 dev_kfree_skb(skb);
3144 skb = NULL;
3145 rx_queue->stats.rx_dropped++;
3146 continue;
3147 }
3148
3149 gfar_process_frame(ndev, skb);
3150
3151 /* Increment the number of packets */
3152 total_pkts++;
3153 total_bytes += skb->len;
3154
3155 skb_record_rx_queue(skb, rx_queue->qindex);
3156
3157 skb->protocol = eth_type_trans(skb, ndev);
3158
3159 /* Send the packet up the stack */
3160 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3161
3162 skb = NULL;
3163 }
3164
3165 /* Store incomplete frames for completion */
3166 rx_queue->skb = skb;
3167
3168 rx_queue->stats.rx_packets += total_pkts;
3169 rx_queue->stats.rx_bytes += total_bytes;
3170
3171 if (cleaned_cnt)
3172 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3173
3174 /* Update Last Free RxBD pointer for LFC */
3175 if (unlikely(priv->tx_actual_en)) {
3176 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3177
3178 gfar_write(rx_queue->rfbptr, bdp_dma);
3179 }
3180
3181 return howmany;
3182 }
3183
gfar_poll_rx_sq(struct napi_struct * napi,int budget)3184 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3185 {
3186 struct gfar_priv_grp *gfargrp =
3187 container_of(napi, struct gfar_priv_grp, napi_rx);
3188 struct gfar __iomem *regs = gfargrp->regs;
3189 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3190 int work_done = 0;
3191
3192 /* Clear IEVENT, so interrupts aren't called again
3193 * because of the packets that have already arrived
3194 */
3195 gfar_write(®s->ievent, IEVENT_RX_MASK);
3196
3197 work_done = gfar_clean_rx_ring(rx_queue, budget);
3198
3199 if (work_done < budget) {
3200 u32 imask;
3201 napi_complete_done(napi, work_done);
3202 /* Clear the halt bit in RSTAT */
3203 gfar_write(®s->rstat, gfargrp->rstat);
3204
3205 spin_lock_irq(&gfargrp->grplock);
3206 imask = gfar_read(®s->imask);
3207 imask |= IMASK_RX_DEFAULT;
3208 gfar_write(®s->imask, imask);
3209 spin_unlock_irq(&gfargrp->grplock);
3210 }
3211
3212 return work_done;
3213 }
3214
gfar_poll_tx_sq(struct napi_struct * napi,int budget)3215 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3216 {
3217 struct gfar_priv_grp *gfargrp =
3218 container_of(napi, struct gfar_priv_grp, napi_tx);
3219 struct gfar __iomem *regs = gfargrp->regs;
3220 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3221 u32 imask;
3222
3223 /* Clear IEVENT, so interrupts aren't called again
3224 * because of the packets that have already arrived
3225 */
3226 gfar_write(®s->ievent, IEVENT_TX_MASK);
3227
3228 /* run Tx cleanup to completion */
3229 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3230 gfar_clean_tx_ring(tx_queue);
3231
3232 napi_complete(napi);
3233
3234 spin_lock_irq(&gfargrp->grplock);
3235 imask = gfar_read(®s->imask);
3236 imask |= IMASK_TX_DEFAULT;
3237 gfar_write(®s->imask, imask);
3238 spin_unlock_irq(&gfargrp->grplock);
3239
3240 return 0;
3241 }
3242
gfar_poll_rx(struct napi_struct * napi,int budget)3243 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3244 {
3245 struct gfar_priv_grp *gfargrp =
3246 container_of(napi, struct gfar_priv_grp, napi_rx);
3247 struct gfar_private *priv = gfargrp->priv;
3248 struct gfar __iomem *regs = gfargrp->regs;
3249 struct gfar_priv_rx_q *rx_queue = NULL;
3250 int work_done = 0, work_done_per_q = 0;
3251 int i, budget_per_q = 0;
3252 unsigned long rstat_rxf;
3253 int num_act_queues;
3254
3255 /* Clear IEVENT, so interrupts aren't called again
3256 * because of the packets that have already arrived
3257 */
3258 gfar_write(®s->ievent, IEVENT_RX_MASK);
3259
3260 rstat_rxf = gfar_read(®s->rstat) & RSTAT_RXF_MASK;
3261
3262 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3263 if (num_act_queues)
3264 budget_per_q = budget/num_act_queues;
3265
3266 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3267 /* skip queue if not active */
3268 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3269 continue;
3270
3271 rx_queue = priv->rx_queue[i];
3272 work_done_per_q =
3273 gfar_clean_rx_ring(rx_queue, budget_per_q);
3274 work_done += work_done_per_q;
3275
3276 /* finished processing this queue */
3277 if (work_done_per_q < budget_per_q) {
3278 /* clear active queue hw indication */
3279 gfar_write(®s->rstat,
3280 RSTAT_CLEAR_RXF0 >> i);
3281 num_act_queues--;
3282
3283 if (!num_act_queues)
3284 break;
3285 }
3286 }
3287
3288 if (!num_act_queues) {
3289 u32 imask;
3290 napi_complete_done(napi, work_done);
3291
3292 /* Clear the halt bit in RSTAT */
3293 gfar_write(®s->rstat, gfargrp->rstat);
3294
3295 spin_lock_irq(&gfargrp->grplock);
3296 imask = gfar_read(®s->imask);
3297 imask |= IMASK_RX_DEFAULT;
3298 gfar_write(®s->imask, imask);
3299 spin_unlock_irq(&gfargrp->grplock);
3300 }
3301
3302 return work_done;
3303 }
3304
gfar_poll_tx(struct napi_struct * napi,int budget)3305 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3306 {
3307 struct gfar_priv_grp *gfargrp =
3308 container_of(napi, struct gfar_priv_grp, napi_tx);
3309 struct gfar_private *priv = gfargrp->priv;
3310 struct gfar __iomem *regs = gfargrp->regs;
3311 struct gfar_priv_tx_q *tx_queue = NULL;
3312 int has_tx_work = 0;
3313 int i;
3314
3315 /* Clear IEVENT, so interrupts aren't called again
3316 * because of the packets that have already arrived
3317 */
3318 gfar_write(®s->ievent, IEVENT_TX_MASK);
3319
3320 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3321 tx_queue = priv->tx_queue[i];
3322 /* run Tx cleanup to completion */
3323 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3324 gfar_clean_tx_ring(tx_queue);
3325 has_tx_work = 1;
3326 }
3327 }
3328
3329 if (!has_tx_work) {
3330 u32 imask;
3331 napi_complete(napi);
3332
3333 spin_lock_irq(&gfargrp->grplock);
3334 imask = gfar_read(®s->imask);
3335 imask |= IMASK_TX_DEFAULT;
3336 gfar_write(®s->imask, imask);
3337 spin_unlock_irq(&gfargrp->grplock);
3338 }
3339
3340 return 0;
3341 }
3342
3343
3344 #ifdef CONFIG_NET_POLL_CONTROLLER
3345 /* Polling 'interrupt' - used by things like netconsole to send skbs
3346 * without having to re-enable interrupts. It's not called while
3347 * the interrupt routine is executing.
3348 */
gfar_netpoll(struct net_device * dev)3349 static void gfar_netpoll(struct net_device *dev)
3350 {
3351 struct gfar_private *priv = netdev_priv(dev);
3352 int i;
3353
3354 /* If the device has multiple interrupts, run tx/rx */
3355 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3356 for (i = 0; i < priv->num_grps; i++) {
3357 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3358
3359 disable_irq(gfar_irq(grp, TX)->irq);
3360 disable_irq(gfar_irq(grp, RX)->irq);
3361 disable_irq(gfar_irq(grp, ER)->irq);
3362 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3363 enable_irq(gfar_irq(grp, ER)->irq);
3364 enable_irq(gfar_irq(grp, RX)->irq);
3365 enable_irq(gfar_irq(grp, TX)->irq);
3366 }
3367 } else {
3368 for (i = 0; i < priv->num_grps; i++) {
3369 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3370
3371 disable_irq(gfar_irq(grp, TX)->irq);
3372 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3373 enable_irq(gfar_irq(grp, TX)->irq);
3374 }
3375 }
3376 }
3377 #endif
3378
3379 /* The interrupt handler for devices with one interrupt */
gfar_interrupt(int irq,void * grp_id)3380 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3381 {
3382 struct gfar_priv_grp *gfargrp = grp_id;
3383
3384 /* Save ievent for future reference */
3385 u32 events = gfar_read(&gfargrp->regs->ievent);
3386
3387 /* Check for reception */
3388 if (events & IEVENT_RX_MASK)
3389 gfar_receive(irq, grp_id);
3390
3391 /* Check for transmit completion */
3392 if (events & IEVENT_TX_MASK)
3393 gfar_transmit(irq, grp_id);
3394
3395 /* Check for errors */
3396 if (events & IEVENT_ERR_MASK)
3397 gfar_error(irq, grp_id);
3398
3399 return IRQ_HANDLED;
3400 }
3401
3402 /* Called every time the controller might need to be made
3403 * aware of new link state. The PHY code conveys this
3404 * information through variables in the phydev structure, and this
3405 * function converts those variables into the appropriate
3406 * register values, and can bring down the device if needed.
3407 */
adjust_link(struct net_device * dev)3408 static void adjust_link(struct net_device *dev)
3409 {
3410 struct gfar_private *priv = netdev_priv(dev);
3411 struct phy_device *phydev = dev->phydev;
3412
3413 if (unlikely(phydev->link != priv->oldlink ||
3414 (phydev->link && (phydev->duplex != priv->oldduplex ||
3415 phydev->speed != priv->oldspeed))))
3416 gfar_update_link_state(priv);
3417 }
3418
3419 /* Update the hash table based on the current list of multicast
3420 * addresses we subscribe to. Also, change the promiscuity of
3421 * the device based on the flags (this function is called
3422 * whenever dev->flags is changed
3423 */
gfar_set_multi(struct net_device * dev)3424 static void gfar_set_multi(struct net_device *dev)
3425 {
3426 struct netdev_hw_addr *ha;
3427 struct gfar_private *priv = netdev_priv(dev);
3428 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3429 u32 tempval;
3430
3431 if (dev->flags & IFF_PROMISC) {
3432 /* Set RCTRL to PROM */
3433 tempval = gfar_read(®s->rctrl);
3434 tempval |= RCTRL_PROM;
3435 gfar_write(®s->rctrl, tempval);
3436 } else {
3437 /* Set RCTRL to not PROM */
3438 tempval = gfar_read(®s->rctrl);
3439 tempval &= ~(RCTRL_PROM);
3440 gfar_write(®s->rctrl, tempval);
3441 }
3442
3443 if (dev->flags & IFF_ALLMULTI) {
3444 /* Set the hash to rx all multicast frames */
3445 gfar_write(®s->igaddr0, 0xffffffff);
3446 gfar_write(®s->igaddr1, 0xffffffff);
3447 gfar_write(®s->igaddr2, 0xffffffff);
3448 gfar_write(®s->igaddr3, 0xffffffff);
3449 gfar_write(®s->igaddr4, 0xffffffff);
3450 gfar_write(®s->igaddr5, 0xffffffff);
3451 gfar_write(®s->igaddr6, 0xffffffff);
3452 gfar_write(®s->igaddr7, 0xffffffff);
3453 gfar_write(®s->gaddr0, 0xffffffff);
3454 gfar_write(®s->gaddr1, 0xffffffff);
3455 gfar_write(®s->gaddr2, 0xffffffff);
3456 gfar_write(®s->gaddr3, 0xffffffff);
3457 gfar_write(®s->gaddr4, 0xffffffff);
3458 gfar_write(®s->gaddr5, 0xffffffff);
3459 gfar_write(®s->gaddr6, 0xffffffff);
3460 gfar_write(®s->gaddr7, 0xffffffff);
3461 } else {
3462 int em_num;
3463 int idx;
3464
3465 /* zero out the hash */
3466 gfar_write(®s->igaddr0, 0x0);
3467 gfar_write(®s->igaddr1, 0x0);
3468 gfar_write(®s->igaddr2, 0x0);
3469 gfar_write(®s->igaddr3, 0x0);
3470 gfar_write(®s->igaddr4, 0x0);
3471 gfar_write(®s->igaddr5, 0x0);
3472 gfar_write(®s->igaddr6, 0x0);
3473 gfar_write(®s->igaddr7, 0x0);
3474 gfar_write(®s->gaddr0, 0x0);
3475 gfar_write(®s->gaddr1, 0x0);
3476 gfar_write(®s->gaddr2, 0x0);
3477 gfar_write(®s->gaddr3, 0x0);
3478 gfar_write(®s->gaddr4, 0x0);
3479 gfar_write(®s->gaddr5, 0x0);
3480 gfar_write(®s->gaddr6, 0x0);
3481 gfar_write(®s->gaddr7, 0x0);
3482
3483 /* If we have extended hash tables, we need to
3484 * clear the exact match registers to prepare for
3485 * setting them
3486 */
3487 if (priv->extended_hash) {
3488 em_num = GFAR_EM_NUM + 1;
3489 gfar_clear_exact_match(dev);
3490 idx = 1;
3491 } else {
3492 idx = 0;
3493 em_num = 0;
3494 }
3495
3496 if (netdev_mc_empty(dev))
3497 return;
3498
3499 /* Parse the list, and set the appropriate bits */
3500 netdev_for_each_mc_addr(ha, dev) {
3501 if (idx < em_num) {
3502 gfar_set_mac_for_addr(dev, idx, ha->addr);
3503 idx++;
3504 } else
3505 gfar_set_hash_for_addr(dev, ha->addr);
3506 }
3507 }
3508 }
3509
3510
3511 /* Clears each of the exact match registers to zero, so they
3512 * don't interfere with normal reception
3513 */
gfar_clear_exact_match(struct net_device * dev)3514 static void gfar_clear_exact_match(struct net_device *dev)
3515 {
3516 int idx;
3517 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3518
3519 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3520 gfar_set_mac_for_addr(dev, idx, zero_arr);
3521 }
3522
3523 /* Set the appropriate hash bit for the given addr */
3524 /* The algorithm works like so:
3525 * 1) Take the Destination Address (ie the multicast address), and
3526 * do a CRC on it (little endian), and reverse the bits of the
3527 * result.
3528 * 2) Use the 8 most significant bits as a hash into a 256-entry
3529 * table. The table is controlled through 8 32-bit registers:
3530 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3531 * gaddr7. This means that the 3 most significant bits in the
3532 * hash index which gaddr register to use, and the 5 other bits
3533 * indicate which bit (assuming an IBM numbering scheme, which
3534 * for PowerPC (tm) is usually the case) in the register holds
3535 * the entry.
3536 */
gfar_set_hash_for_addr(struct net_device * dev,u8 * addr)3537 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3538 {
3539 u32 tempval;
3540 struct gfar_private *priv = netdev_priv(dev);
3541 u32 result = ether_crc(ETH_ALEN, addr);
3542 int width = priv->hash_width;
3543 u8 whichbit = (result >> (32 - width)) & 0x1f;
3544 u8 whichreg = result >> (32 - width + 5);
3545 u32 value = (1 << (31-whichbit));
3546
3547 tempval = gfar_read(priv->hash_regs[whichreg]);
3548 tempval |= value;
3549 gfar_write(priv->hash_regs[whichreg], tempval);
3550 }
3551
3552
3553 /* There are multiple MAC Address register pairs on some controllers
3554 * This function sets the numth pair to a given address
3555 */
gfar_set_mac_for_addr(struct net_device * dev,int num,const u8 * addr)3556 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3557 const u8 *addr)
3558 {
3559 struct gfar_private *priv = netdev_priv(dev);
3560 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3561 u32 tempval;
3562 u32 __iomem *macptr = ®s->macstnaddr1;
3563
3564 macptr += num*2;
3565
3566 /* For a station address of 0x12345678ABCD in transmission
3567 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3568 * MACnADDR2 is set to 0x34120000.
3569 */
3570 tempval = (addr[5] << 24) | (addr[4] << 16) |
3571 (addr[3] << 8) | addr[2];
3572
3573 gfar_write(macptr, tempval);
3574
3575 tempval = (addr[1] << 24) | (addr[0] << 16);
3576
3577 gfar_write(macptr+1, tempval);
3578 }
3579
3580 /* GFAR error interrupt handler */
gfar_error(int irq,void * grp_id)3581 static irqreturn_t gfar_error(int irq, void *grp_id)
3582 {
3583 struct gfar_priv_grp *gfargrp = grp_id;
3584 struct gfar __iomem *regs = gfargrp->regs;
3585 struct gfar_private *priv= gfargrp->priv;
3586 struct net_device *dev = priv->ndev;
3587
3588 /* Save ievent for future reference */
3589 u32 events = gfar_read(®s->ievent);
3590
3591 /* Clear IEVENT */
3592 gfar_write(®s->ievent, events & IEVENT_ERR_MASK);
3593
3594 /* Magic Packet is not an error. */
3595 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3596 (events & IEVENT_MAG))
3597 events &= ~IEVENT_MAG;
3598
3599 /* Hmm... */
3600 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3601 netdev_dbg(dev,
3602 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3603 events, gfar_read(®s->imask));
3604
3605 /* Update the error counters */
3606 if (events & IEVENT_TXE) {
3607 dev->stats.tx_errors++;
3608
3609 if (events & IEVENT_LC)
3610 dev->stats.tx_window_errors++;
3611 if (events & IEVENT_CRL)
3612 dev->stats.tx_aborted_errors++;
3613 if (events & IEVENT_XFUN) {
3614 netif_dbg(priv, tx_err, dev,
3615 "TX FIFO underrun, packet dropped\n");
3616 dev->stats.tx_dropped++;
3617 atomic64_inc(&priv->extra_stats.tx_underrun);
3618
3619 schedule_work(&priv->reset_task);
3620 }
3621 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3622 }
3623 if (events & IEVENT_BSY) {
3624 dev->stats.rx_over_errors++;
3625 atomic64_inc(&priv->extra_stats.rx_bsy);
3626
3627 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3628 gfar_read(®s->rstat));
3629 }
3630 if (events & IEVENT_BABR) {
3631 dev->stats.rx_errors++;
3632 atomic64_inc(&priv->extra_stats.rx_babr);
3633
3634 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3635 }
3636 if (events & IEVENT_EBERR) {
3637 atomic64_inc(&priv->extra_stats.eberr);
3638 netif_dbg(priv, rx_err, dev, "bus error\n");
3639 }
3640 if (events & IEVENT_RXC)
3641 netif_dbg(priv, rx_status, dev, "control frame\n");
3642
3643 if (events & IEVENT_BABT) {
3644 atomic64_inc(&priv->extra_stats.tx_babt);
3645 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3646 }
3647 return IRQ_HANDLED;
3648 }
3649
gfar_get_flowctrl_cfg(struct gfar_private * priv)3650 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3651 {
3652 struct net_device *ndev = priv->ndev;
3653 struct phy_device *phydev = ndev->phydev;
3654 u32 val = 0;
3655
3656 if (!phydev->duplex)
3657 return val;
3658
3659 if (!priv->pause_aneg_en) {
3660 if (priv->tx_pause_en)
3661 val |= MACCFG1_TX_FLOW;
3662 if (priv->rx_pause_en)
3663 val |= MACCFG1_RX_FLOW;
3664 } else {
3665 u16 lcl_adv, rmt_adv;
3666 u8 flowctrl;
3667 /* get link partner capabilities */
3668 rmt_adv = 0;
3669 if (phydev->pause)
3670 rmt_adv = LPA_PAUSE_CAP;
3671 if (phydev->asym_pause)
3672 rmt_adv |= LPA_PAUSE_ASYM;
3673
3674 lcl_adv = 0;
3675 if (phydev->advertising & ADVERTISED_Pause)
3676 lcl_adv |= ADVERTISE_PAUSE_CAP;
3677 if (phydev->advertising & ADVERTISED_Asym_Pause)
3678 lcl_adv |= ADVERTISE_PAUSE_ASYM;
3679
3680 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3681 if (flowctrl & FLOW_CTRL_TX)
3682 val |= MACCFG1_TX_FLOW;
3683 if (flowctrl & FLOW_CTRL_RX)
3684 val |= MACCFG1_RX_FLOW;
3685 }
3686
3687 return val;
3688 }
3689
gfar_update_link_state(struct gfar_private * priv)3690 static noinline void gfar_update_link_state(struct gfar_private *priv)
3691 {
3692 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3693 struct net_device *ndev = priv->ndev;
3694 struct phy_device *phydev = ndev->phydev;
3695 struct gfar_priv_rx_q *rx_queue = NULL;
3696 int i;
3697
3698 if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3699 return;
3700
3701 if (phydev->link) {
3702 u32 tempval1 = gfar_read(®s->maccfg1);
3703 u32 tempval = gfar_read(®s->maccfg2);
3704 u32 ecntrl = gfar_read(®s->ecntrl);
3705 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
3706
3707 if (phydev->duplex != priv->oldduplex) {
3708 if (!(phydev->duplex))
3709 tempval &= ~(MACCFG2_FULL_DUPLEX);
3710 else
3711 tempval |= MACCFG2_FULL_DUPLEX;
3712
3713 priv->oldduplex = phydev->duplex;
3714 }
3715
3716 if (phydev->speed != priv->oldspeed) {
3717 switch (phydev->speed) {
3718 case 1000:
3719 tempval =
3720 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3721
3722 ecntrl &= ~(ECNTRL_R100);
3723 break;
3724 case 100:
3725 case 10:
3726 tempval =
3727 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3728
3729 /* Reduced mode distinguishes
3730 * between 10 and 100
3731 */
3732 if (phydev->speed == SPEED_100)
3733 ecntrl |= ECNTRL_R100;
3734 else
3735 ecntrl &= ~(ECNTRL_R100);
3736 break;
3737 default:
3738 netif_warn(priv, link, priv->ndev,
3739 "Ack! Speed (%d) is not 10/100/1000!\n",
3740 phydev->speed);
3741 break;
3742 }
3743
3744 priv->oldspeed = phydev->speed;
3745 }
3746
3747 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3748 tempval1 |= gfar_get_flowctrl_cfg(priv);
3749
3750 /* Turn last free buffer recording on */
3751 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3752 for (i = 0; i < priv->num_rx_queues; i++) {
3753 u32 bdp_dma;
3754
3755 rx_queue = priv->rx_queue[i];
3756 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3757 gfar_write(rx_queue->rfbptr, bdp_dma);
3758 }
3759
3760 priv->tx_actual_en = 1;
3761 }
3762
3763 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3764 priv->tx_actual_en = 0;
3765
3766 gfar_write(®s->maccfg1, tempval1);
3767 gfar_write(®s->maccfg2, tempval);
3768 gfar_write(®s->ecntrl, ecntrl);
3769
3770 if (!priv->oldlink)
3771 priv->oldlink = 1;
3772
3773 } else if (priv->oldlink) {
3774 priv->oldlink = 0;
3775 priv->oldspeed = 0;
3776 priv->oldduplex = -1;
3777 }
3778
3779 if (netif_msg_link(priv))
3780 phy_print_status(phydev);
3781 }
3782
3783 static const struct of_device_id gfar_match[] =
3784 {
3785 {
3786 .type = "network",
3787 .compatible = "gianfar",
3788 },
3789 {
3790 .compatible = "fsl,etsec2",
3791 },
3792 {},
3793 };
3794 MODULE_DEVICE_TABLE(of, gfar_match);
3795
3796 /* Structure for a device driver */
3797 static struct platform_driver gfar_driver = {
3798 .driver = {
3799 .name = "fsl-gianfar",
3800 .pm = GFAR_PM_OPS,
3801 .of_match_table = gfar_match,
3802 },
3803 .probe = gfar_probe,
3804 .remove = gfar_remove,
3805 };
3806
3807 module_platform_driver(gfar_driver);
3808