• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2014-2015 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22 
23 #include "hnae.h"
24 #include "hns_enet.h"
25 #include "hns_dsaf_mac.h"
26 
27 #define NIC_MAX_Q_PER_VF 16
28 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
29 
30 #define SERVICE_TIMER_HZ (1 * HZ)
31 
32 #define RCB_IRQ_NOT_INITED 0
33 #define RCB_IRQ_INITED 1
34 #define HNS_BUFFER_SIZE_2048 2048
35 
36 #define BD_MAX_SEND_SIZE 8191
37 #define SKB_TMP_LEN(SKB) \
38 	(((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
39 
fill_v2_desc_hw(struct hnae_ring * ring,void * priv,int size,int send_sz,dma_addr_t dma,int frag_end,int buf_num,enum hns_desc_type type,int mtu)40 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
41 			    int send_sz, dma_addr_t dma, int frag_end,
42 			    int buf_num, enum hns_desc_type type, int mtu)
43 {
44 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
45 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
46 	struct iphdr *iphdr;
47 	struct ipv6hdr *ipv6hdr;
48 	struct sk_buff *skb;
49 	__be16 protocol;
50 	u8 bn_pid = 0;
51 	u8 rrcfv = 0;
52 	u8 ip_offset = 0;
53 	u8 tvsvsn = 0;
54 	u16 mss = 0;
55 	u8 l4_len = 0;
56 	u16 paylen = 0;
57 
58 	desc_cb->priv = priv;
59 	desc_cb->length = size;
60 	desc_cb->dma = dma;
61 	desc_cb->type = type;
62 
63 	desc->addr = cpu_to_le64(dma);
64 	desc->tx.send_size = cpu_to_le16((u16)send_sz);
65 
66 	/* config bd buffer end */
67 	hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
68 	hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
69 
70 	/* fill port_id in the tx bd for sending management pkts */
71 	hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
72 		       HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
73 
74 	if (type == DESC_TYPE_SKB) {
75 		skb = (struct sk_buff *)priv;
76 
77 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
78 			skb_reset_mac_len(skb);
79 			protocol = skb->protocol;
80 			ip_offset = ETH_HLEN;
81 
82 			if (protocol == htons(ETH_P_8021Q)) {
83 				ip_offset += VLAN_HLEN;
84 				protocol = vlan_get_protocol(skb);
85 				skb->protocol = protocol;
86 			}
87 
88 			if (skb->protocol == htons(ETH_P_IP)) {
89 				iphdr = ip_hdr(skb);
90 				hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
91 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
92 
93 				/* check for tcp/udp header */
94 				if (iphdr->protocol == IPPROTO_TCP &&
95 				    skb_is_gso(skb)) {
96 					hnae_set_bit(tvsvsn,
97 						     HNSV2_TXD_TSE_B, 1);
98 					l4_len = tcp_hdrlen(skb);
99 					mss = skb_shinfo(skb)->gso_size;
100 					paylen = skb->len - SKB_TMP_LEN(skb);
101 				}
102 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
103 				hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
104 				ipv6hdr = ipv6_hdr(skb);
105 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
106 
107 				/* check for tcp/udp header */
108 				if (ipv6hdr->nexthdr == IPPROTO_TCP &&
109 				    skb_is_gso(skb) && skb_is_gso_v6(skb)) {
110 					hnae_set_bit(tvsvsn,
111 						     HNSV2_TXD_TSE_B, 1);
112 					l4_len = tcp_hdrlen(skb);
113 					mss = skb_shinfo(skb)->gso_size;
114 					paylen = skb->len - SKB_TMP_LEN(skb);
115 				}
116 			}
117 			desc->tx.ip_offset = ip_offset;
118 			desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
119 			desc->tx.mss = cpu_to_le16(mss);
120 			desc->tx.l4_len = l4_len;
121 			desc->tx.paylen = cpu_to_le16(paylen);
122 		}
123 	}
124 
125 	hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
126 
127 	desc->tx.bn_pid = bn_pid;
128 	desc->tx.ra_ri_cs_fe_vld = rrcfv;
129 
130 	ring_ptr_move_fw(ring, next_to_use);
131 }
132 
fill_v2_desc(struct hnae_ring * ring,void * priv,int size,dma_addr_t dma,int frag_end,int buf_num,enum hns_desc_type type,int mtu)133 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
134 			 int size, dma_addr_t dma, int frag_end,
135 			 int buf_num, enum hns_desc_type type, int mtu)
136 {
137 	fill_v2_desc_hw(ring, priv, size, size, dma, frag_end,
138 			buf_num, type, mtu);
139 }
140 
141 static const struct acpi_device_id hns_enet_acpi_match[] = {
142 	{ "HISI00C1", 0 },
143 	{ "HISI00C2", 0 },
144 	{ },
145 };
146 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
147 
fill_desc(struct hnae_ring * ring,void * priv,int size,dma_addr_t dma,int frag_end,int buf_num,enum hns_desc_type type,int mtu)148 static void fill_desc(struct hnae_ring *ring, void *priv,
149 		      int size, dma_addr_t dma, int frag_end,
150 		      int buf_num, enum hns_desc_type type, int mtu)
151 {
152 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
153 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
154 	struct sk_buff *skb;
155 	__be16 protocol;
156 	u32 ip_offset;
157 	u32 asid_bufnum_pid = 0;
158 	u32 flag_ipoffset = 0;
159 
160 	desc_cb->priv = priv;
161 	desc_cb->length = size;
162 	desc_cb->dma = dma;
163 	desc_cb->type = type;
164 
165 	desc->addr = cpu_to_le64(dma);
166 	desc->tx.send_size = cpu_to_le16((u16)size);
167 
168 	/*config bd buffer end */
169 	flag_ipoffset |= 1 << HNS_TXD_VLD_B;
170 
171 	asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
172 
173 	if (type == DESC_TYPE_SKB) {
174 		skb = (struct sk_buff *)priv;
175 
176 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
177 			protocol = skb->protocol;
178 			ip_offset = ETH_HLEN;
179 
180 			/*if it is a SW VLAN check the next protocol*/
181 			if (protocol == htons(ETH_P_8021Q)) {
182 				ip_offset += VLAN_HLEN;
183 				protocol = vlan_get_protocol(skb);
184 				skb->protocol = protocol;
185 			}
186 
187 			if (skb->protocol == htons(ETH_P_IP)) {
188 				flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
189 				/* check for tcp/udp header */
190 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
191 
192 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
193 				/* ipv6 has not l3 cs, check for L4 header */
194 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
195 			}
196 
197 			flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
198 		}
199 	}
200 
201 	flag_ipoffset |= frag_end << HNS_TXD_FE_B;
202 
203 	desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
204 	desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
205 
206 	ring_ptr_move_fw(ring, next_to_use);
207 }
208 
unfill_desc(struct hnae_ring * ring)209 static void unfill_desc(struct hnae_ring *ring)
210 {
211 	ring_ptr_move_bw(ring, next_to_use);
212 }
213 
hns_nic_maybe_stop_tx(struct sk_buff ** out_skb,int * bnum,struct hnae_ring * ring)214 static int hns_nic_maybe_stop_tx(
215 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
216 {
217 	struct sk_buff *skb = *out_skb;
218 	struct sk_buff *new_skb = NULL;
219 	int buf_num;
220 
221 	/* no. of segments (plus a header) */
222 	buf_num = skb_shinfo(skb)->nr_frags + 1;
223 
224 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
225 		if (ring_space(ring) < 1)
226 			return -EBUSY;
227 
228 		new_skb = skb_copy(skb, GFP_ATOMIC);
229 		if (!new_skb)
230 			return -ENOMEM;
231 
232 		dev_kfree_skb_any(skb);
233 		*out_skb = new_skb;
234 		buf_num = 1;
235 	} else if (buf_num > ring_space(ring)) {
236 		return -EBUSY;
237 	}
238 
239 	*bnum = buf_num;
240 	return 0;
241 }
242 
hns_nic_maybe_stop_tso(struct sk_buff ** out_skb,int * bnum,struct hnae_ring * ring)243 static int hns_nic_maybe_stop_tso(
244 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
245 {
246 	int i;
247 	int size;
248 	int buf_num;
249 	int frag_num;
250 	struct sk_buff *skb = *out_skb;
251 	struct sk_buff *new_skb = NULL;
252 	struct skb_frag_struct *frag;
253 
254 	size = skb_headlen(skb);
255 	buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
256 
257 	frag_num = skb_shinfo(skb)->nr_frags;
258 	for (i = 0; i < frag_num; i++) {
259 		frag = &skb_shinfo(skb)->frags[i];
260 		size = skb_frag_size(frag);
261 		buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
262 	}
263 
264 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
265 		buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
266 		if (ring_space(ring) < buf_num)
267 			return -EBUSY;
268 		/* manual split the send packet */
269 		new_skb = skb_copy(skb, GFP_ATOMIC);
270 		if (!new_skb)
271 			return -ENOMEM;
272 		dev_kfree_skb_any(skb);
273 		*out_skb = new_skb;
274 
275 	} else if (ring_space(ring) < buf_num) {
276 		return -EBUSY;
277 	}
278 
279 	*bnum = buf_num;
280 	return 0;
281 }
282 
fill_tso_desc(struct hnae_ring * ring,void * priv,int size,dma_addr_t dma,int frag_end,int buf_num,enum hns_desc_type type,int mtu)283 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
284 			  int size, dma_addr_t dma, int frag_end,
285 			  int buf_num, enum hns_desc_type type, int mtu)
286 {
287 	int frag_buf_num;
288 	int sizeoflast;
289 	int k;
290 
291 	frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
292 	sizeoflast = size % BD_MAX_SEND_SIZE;
293 	sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
294 
295 	/* when the frag size is bigger than hardware, split this frag */
296 	for (k = 0; k < frag_buf_num; k++)
297 		fill_v2_desc_hw(ring, priv, k == 0 ? size : 0,
298 				(k == frag_buf_num - 1) ?
299 					sizeoflast : BD_MAX_SEND_SIZE,
300 				dma + BD_MAX_SEND_SIZE * k,
301 				frag_end && (k == frag_buf_num - 1) ? 1 : 0,
302 				buf_num,
303 				(type == DESC_TYPE_SKB && !k) ?
304 					DESC_TYPE_SKB : DESC_TYPE_PAGE,
305 				mtu);
306 }
307 
hns_nic_net_xmit_hw(struct net_device * ndev,struct sk_buff * skb,struct hns_nic_ring_data * ring_data)308 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
309 				struct sk_buff *skb,
310 				struct hns_nic_ring_data *ring_data)
311 {
312 	struct hns_nic_priv *priv = netdev_priv(ndev);
313 	struct hnae_ring *ring = ring_data->ring;
314 	struct device *dev = ring_to_dev(ring);
315 	struct netdev_queue *dev_queue;
316 	struct skb_frag_struct *frag;
317 	int buf_num;
318 	int seg_num;
319 	dma_addr_t dma;
320 	int size, next_to_use;
321 	int i;
322 
323 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
324 	case -EBUSY:
325 		ring->stats.tx_busy++;
326 		goto out_net_tx_busy;
327 	case -ENOMEM:
328 		ring->stats.sw_err_cnt++;
329 		netdev_err(ndev, "no memory to xmit!\n");
330 		goto out_err_tx_ok;
331 	default:
332 		break;
333 	}
334 
335 	/* no. of segments (plus a header) */
336 	seg_num = skb_shinfo(skb)->nr_frags + 1;
337 	next_to_use = ring->next_to_use;
338 
339 	/* fill the first part */
340 	size = skb_headlen(skb);
341 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
342 	if (dma_mapping_error(dev, dma)) {
343 		netdev_err(ndev, "TX head DMA map failed\n");
344 		ring->stats.sw_err_cnt++;
345 		goto out_err_tx_ok;
346 	}
347 	priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
348 			    buf_num, DESC_TYPE_SKB, ndev->mtu);
349 
350 	/* fill the fragments */
351 	for (i = 1; i < seg_num; i++) {
352 		frag = &skb_shinfo(skb)->frags[i - 1];
353 		size = skb_frag_size(frag);
354 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
355 		if (dma_mapping_error(dev, dma)) {
356 			netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
357 			ring->stats.sw_err_cnt++;
358 			goto out_map_frag_fail;
359 		}
360 		priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
361 				    seg_num - 1 == i ? 1 : 0, buf_num,
362 				    DESC_TYPE_PAGE, ndev->mtu);
363 	}
364 
365 	/*complete translate all packets*/
366 	dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
367 	netdev_tx_sent_queue(dev_queue, skb->len);
368 
369 	netif_trans_update(ndev);
370 	ndev->stats.tx_bytes += skb->len;
371 	ndev->stats.tx_packets++;
372 
373 	wmb(); /* commit all data before submit */
374 	assert(skb->queue_mapping < priv->ae_handle->q_num);
375 	hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
376 
377 	return NETDEV_TX_OK;
378 
379 out_map_frag_fail:
380 
381 	while (ring->next_to_use != next_to_use) {
382 		unfill_desc(ring);
383 		if (ring->next_to_use != next_to_use)
384 			dma_unmap_page(dev,
385 				       ring->desc_cb[ring->next_to_use].dma,
386 				       ring->desc_cb[ring->next_to_use].length,
387 				       DMA_TO_DEVICE);
388 		else
389 			dma_unmap_single(dev,
390 					 ring->desc_cb[next_to_use].dma,
391 					 ring->desc_cb[next_to_use].length,
392 					 DMA_TO_DEVICE);
393 	}
394 
395 out_err_tx_ok:
396 
397 	dev_kfree_skb_any(skb);
398 	return NETDEV_TX_OK;
399 
400 out_net_tx_busy:
401 
402 	netif_stop_subqueue(ndev, skb->queue_mapping);
403 
404 	/* Herbert's original patch had:
405 	 *  smp_mb__after_netif_stop_queue();
406 	 * but since that doesn't exist yet, just open code it.
407 	 */
408 	smp_mb();
409 	return NETDEV_TX_BUSY;
410 }
411 
412 /**
413  * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE
414  * @data: pointer to the start of the headers
415  * @max: total length of section to find headers in
416  *
417  * This function is meant to determine the length of headers that will
418  * be recognized by hardware for LRO, GRO, and RSC offloads.  The main
419  * motivation of doing this is to only perform one pull for IPv4 TCP
420  * packets so that we can do basic things like calculating the gso_size
421  * based on the average data per packet.
422  **/
hns_nic_get_headlen(unsigned char * data,u32 flag,unsigned int max_size)423 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag,
424 					unsigned int max_size)
425 {
426 	unsigned char *network;
427 	u8 hlen;
428 
429 	/* this should never happen, but better safe than sorry */
430 	if (max_size < ETH_HLEN)
431 		return max_size;
432 
433 	/* initialize network frame pointer */
434 	network = data;
435 
436 	/* set first protocol and move network header forward */
437 	network += ETH_HLEN;
438 
439 	/* handle any vlan tag if present */
440 	if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S)
441 		== HNS_RX_FLAG_VLAN_PRESENT) {
442 		if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
443 			return max_size;
444 
445 		network += VLAN_HLEN;
446 	}
447 
448 	/* handle L3 protocols */
449 	if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
450 		== HNS_RX_FLAG_L3ID_IPV4) {
451 		if ((typeof(max_size))(network - data) >
452 		    (max_size - sizeof(struct iphdr)))
453 			return max_size;
454 
455 		/* access ihl as a u8 to avoid unaligned access on ia64 */
456 		hlen = (network[0] & 0x0F) << 2;
457 
458 		/* verify hlen meets minimum size requirements */
459 		if (hlen < sizeof(struct iphdr))
460 			return network - data;
461 
462 		/* record next protocol if header is present */
463 	} else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
464 		== HNS_RX_FLAG_L3ID_IPV6) {
465 		if ((typeof(max_size))(network - data) >
466 		    (max_size - sizeof(struct ipv6hdr)))
467 			return max_size;
468 
469 		/* record next protocol */
470 		hlen = sizeof(struct ipv6hdr);
471 	} else {
472 		return network - data;
473 	}
474 
475 	/* relocate pointer to start of L4 header */
476 	network += hlen;
477 
478 	/* finally sort out TCP/UDP */
479 	if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
480 		== HNS_RX_FLAG_L4ID_TCP) {
481 		if ((typeof(max_size))(network - data) >
482 		    (max_size - sizeof(struct tcphdr)))
483 			return max_size;
484 
485 		/* access doff as a u8 to avoid unaligned access on ia64 */
486 		hlen = (network[12] & 0xF0) >> 2;
487 
488 		/* verify hlen meets minimum size requirements */
489 		if (hlen < sizeof(struct tcphdr))
490 			return network - data;
491 
492 		network += hlen;
493 	} else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
494 		== HNS_RX_FLAG_L4ID_UDP) {
495 		if ((typeof(max_size))(network - data) >
496 		    (max_size - sizeof(struct udphdr)))
497 			return max_size;
498 
499 		network += sizeof(struct udphdr);
500 	}
501 
502 	/* If everything has gone correctly network should be the
503 	 * data section of the packet and will be the end of the header.
504 	 * If not then it probably represents the end of the last recognized
505 	 * header.
506 	 */
507 	if ((typeof(max_size))(network - data) < max_size)
508 		return network - data;
509 	else
510 		return max_size;
511 }
512 
hns_nic_reuse_page(struct sk_buff * skb,int i,struct hnae_ring * ring,int pull_len,struct hnae_desc_cb * desc_cb)513 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
514 			       struct hnae_ring *ring, int pull_len,
515 			       struct hnae_desc_cb *desc_cb)
516 {
517 	struct hnae_desc *desc;
518 	int truesize, size;
519 	int last_offset;
520 	bool twobufs;
521 
522 	twobufs = ((PAGE_SIZE < 8192) &&
523 		hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
524 
525 	desc = &ring->desc[ring->next_to_clean];
526 	size = le16_to_cpu(desc->rx.size);
527 
528 	if (twobufs) {
529 		truesize = hnae_buf_size(ring);
530 	} else {
531 		truesize = ALIGN(size, L1_CACHE_BYTES);
532 		last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
533 	}
534 
535 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
536 			size - pull_len, truesize);
537 
538 	 /* avoid re-using remote pages,flag default unreuse */
539 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
540 		return;
541 
542 	if (twobufs) {
543 		/* if we are only owner of page we can reuse it */
544 		if (likely(page_count(desc_cb->priv) == 1)) {
545 			/* flip page offset to other buffer */
546 			desc_cb->page_offset ^= truesize;
547 
548 			desc_cb->reuse_flag = 1;
549 			/* bump ref count on page before it is given*/
550 			get_page(desc_cb->priv);
551 		}
552 		return;
553 	}
554 
555 	/* move offset up to the next cache line */
556 	desc_cb->page_offset += truesize;
557 
558 	if (desc_cb->page_offset <= last_offset) {
559 		desc_cb->reuse_flag = 1;
560 		/* bump ref count on page before it is given*/
561 		get_page(desc_cb->priv);
562 	}
563 }
564 
get_v2rx_desc_bnum(u32 bnum_flag,int * out_bnum)565 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
566 {
567 	*out_bnum = hnae_get_field(bnum_flag,
568 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
569 }
570 
get_rx_desc_bnum(u32 bnum_flag,int * out_bnum)571 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
572 {
573 	*out_bnum = hnae_get_field(bnum_flag,
574 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
575 }
576 
hns_nic_rx_checksum(struct hns_nic_ring_data * ring_data,struct sk_buff * skb,u32 flag)577 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
578 				struct sk_buff *skb, u32 flag)
579 {
580 	struct net_device *netdev = ring_data->napi.dev;
581 	u32 l3id;
582 	u32 l4id;
583 
584 	/* check if RX checksum offload is enabled */
585 	if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
586 		return;
587 
588 	/* In hardware, we only support checksum for the following protocols:
589 	 * 1) IPv4,
590 	 * 2) TCP(over IPv4 or IPv6),
591 	 * 3) UDP(over IPv4 or IPv6),
592 	 * 4) SCTP(over IPv4 or IPv6)
593 	 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
594 	 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
595 	 *
596 	 * Hardware limitation:
597 	 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
598 	 * Error" bit (which usually can be used to indicate whether checksum
599 	 * was calculated by the hardware and if there was any error encountered
600 	 * during checksum calculation).
601 	 *
602 	 * Software workaround:
603 	 * We do get info within the RX descriptor about the kind of L3/L4
604 	 * protocol coming in the packet and the error status. These errors
605 	 * might not just be checksum errors but could be related to version,
606 	 * length of IPv4, UDP, TCP etc.
607 	 * Because there is no-way of knowing if it is a L3/L4 error due to bad
608 	 * checksum or any other L3/L4 error, we will not (cannot) convey
609 	 * checksum status for such cases to upper stack and will not maintain
610 	 * the RX L3/L4 checksum counters as well.
611 	 */
612 
613 	l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
614 	l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
615 
616 	/*  check L3 protocol for which checksum is supported */
617 	if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
618 		return;
619 
620 	/* check for any(not just checksum)flagged L3 protocol errors */
621 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
622 		return;
623 
624 	/* we do not support checksum of fragmented packets */
625 	if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
626 		return;
627 
628 	/*  check L4 protocol for which checksum is supported */
629 	if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
630 	    (l4id != HNS_RX_FLAG_L4ID_UDP) &&
631 	    (l4id != HNS_RX_FLAG_L4ID_SCTP))
632 		return;
633 
634 	/* check for any(not just checksum)flagged L4 protocol errors */
635 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
636 		return;
637 
638 	/* now, this has to be a packet with valid RX checksum */
639 	skb->ip_summed = CHECKSUM_UNNECESSARY;
640 }
641 
hns_nic_poll_rx_skb(struct hns_nic_ring_data * ring_data,struct sk_buff ** out_skb,int * out_bnum)642 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
643 			       struct sk_buff **out_skb, int *out_bnum)
644 {
645 	struct hnae_ring *ring = ring_data->ring;
646 	struct net_device *ndev = ring_data->napi.dev;
647 	struct hns_nic_priv *priv = netdev_priv(ndev);
648 	struct sk_buff *skb;
649 	struct hnae_desc *desc;
650 	struct hnae_desc_cb *desc_cb;
651 	unsigned char *va;
652 	int bnum, length, i;
653 	int pull_len;
654 	u32 bnum_flag;
655 
656 	desc = &ring->desc[ring->next_to_clean];
657 	desc_cb = &ring->desc_cb[ring->next_to_clean];
658 
659 	prefetch(desc);
660 
661 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
662 
663 	/* prefetch first cache line of first page */
664 	prefetch(va);
665 #if L1_CACHE_BYTES < 128
666 	prefetch(va + L1_CACHE_BYTES);
667 #endif
668 
669 	skb = *out_skb = napi_alloc_skb(&ring_data->napi,
670 					HNS_RX_HEAD_SIZE);
671 	if (unlikely(!skb)) {
672 		ring->stats.sw_err_cnt++;
673 		return -ENOMEM;
674 	}
675 
676 	prefetchw(skb->data);
677 	length = le16_to_cpu(desc->rx.pkt_len);
678 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
679 	priv->ops.get_rxd_bnum(bnum_flag, &bnum);
680 	*out_bnum = bnum;
681 
682 	if (length <= HNS_RX_HEAD_SIZE) {
683 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
684 
685 		/* we can reuse buffer as-is, just make sure it is local */
686 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
687 			desc_cb->reuse_flag = 1;
688 		else /* this page cannot be reused so discard it */
689 			put_page(desc_cb->priv);
690 
691 		ring_ptr_move_fw(ring, next_to_clean);
692 
693 		if (unlikely(bnum != 1)) { /* check err*/
694 			*out_bnum = 1;
695 			goto out_bnum_err;
696 		}
697 	} else {
698 		ring->stats.seg_pkt_cnt++;
699 
700 		pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE);
701 		memcpy(__skb_put(skb, pull_len), va,
702 		       ALIGN(pull_len, sizeof(long)));
703 
704 		hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
705 		ring_ptr_move_fw(ring, next_to_clean);
706 
707 		if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
708 			*out_bnum = 1;
709 			goto out_bnum_err;
710 		}
711 		for (i = 1; i < bnum; i++) {
712 			desc = &ring->desc[ring->next_to_clean];
713 			desc_cb = &ring->desc_cb[ring->next_to_clean];
714 
715 			hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
716 			ring_ptr_move_fw(ring, next_to_clean);
717 		}
718 	}
719 
720 	/* check except process, free skb and jump the desc */
721 	if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
722 out_bnum_err:
723 		*out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
724 		netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
725 			   bnum, ring->max_desc_num_per_pkt,
726 			   length, (int)MAX_SKB_FRAGS,
727 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
728 		ring->stats.err_bd_num++;
729 		dev_kfree_skb_any(skb);
730 		return -EDOM;
731 	}
732 
733 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
734 
735 	if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
736 		netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
737 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
738 		ring->stats.non_vld_descs++;
739 		dev_kfree_skb_any(skb);
740 		return -EINVAL;
741 	}
742 
743 	if (unlikely((!desc->rx.pkt_len) ||
744 		     hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
745 		ring->stats.err_pkt_len++;
746 		dev_kfree_skb_any(skb);
747 		return -EFAULT;
748 	}
749 
750 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
751 		ring->stats.l2_err++;
752 		dev_kfree_skb_any(skb);
753 		return -EFAULT;
754 	}
755 
756 	ring->stats.rx_pkts++;
757 	ring->stats.rx_bytes += skb->len;
758 
759 	/* indicate to upper stack if our hardware has already calculated
760 	 * the RX checksum
761 	 */
762 	hns_nic_rx_checksum(ring_data, skb, bnum_flag);
763 
764 	return 0;
765 }
766 
767 static void
hns_nic_alloc_rx_buffers(struct hns_nic_ring_data * ring_data,int cleand_count)768 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
769 {
770 	int i, ret;
771 	struct hnae_desc_cb res_cbs;
772 	struct hnae_desc_cb *desc_cb;
773 	struct hnae_ring *ring = ring_data->ring;
774 	struct net_device *ndev = ring_data->napi.dev;
775 
776 	for (i = 0; i < cleand_count; i++) {
777 		desc_cb = &ring->desc_cb[ring->next_to_use];
778 		if (desc_cb->reuse_flag) {
779 			ring->stats.reuse_pg_cnt++;
780 			hnae_reuse_buffer(ring, ring->next_to_use);
781 		} else {
782 			ret = hnae_reserve_buffer_map(ring, &res_cbs);
783 			if (ret) {
784 				ring->stats.sw_err_cnt++;
785 				netdev_err(ndev, "hnae reserve buffer map failed.\n");
786 				break;
787 			}
788 			hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
789 		}
790 
791 		ring_ptr_move_fw(ring, next_to_use);
792 	}
793 
794 	wmb(); /* make all data has been write before submit */
795 	writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
796 }
797 
798 /* return error number for error or number of desc left to take
799  */
hns_nic_rx_up_pro(struct hns_nic_ring_data * ring_data,struct sk_buff * skb)800 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
801 			      struct sk_buff *skb)
802 {
803 	struct net_device *ndev = ring_data->napi.dev;
804 
805 	skb->protocol = eth_type_trans(skb, ndev);
806 	(void)napi_gro_receive(&ring_data->napi, skb);
807 }
808 
hns_desc_unused(struct hnae_ring * ring)809 static int hns_desc_unused(struct hnae_ring *ring)
810 {
811 	int ntc = ring->next_to_clean;
812 	int ntu = ring->next_to_use;
813 
814 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
815 }
816 
817 #define HNS_LOWEST_LATENCY_RATE		27	/* 27 MB/s */
818 #define HNS_LOW_LATENCY_RATE			80	/* 80 MB/s */
819 
820 #define HNS_COAL_BDNUM			3
821 
hns_coal_rx_bdnum(struct hnae_ring * ring)822 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
823 {
824 	bool coal_enable = ring->q->handle->coal_adapt_en;
825 
826 	if (coal_enable &&
827 	    ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
828 		return HNS_COAL_BDNUM;
829 	else
830 		return 0;
831 }
832 
hns_update_rx_rate(struct hnae_ring * ring)833 static void hns_update_rx_rate(struct hnae_ring *ring)
834 {
835 	bool coal_enable = ring->q->handle->coal_adapt_en;
836 	u32 time_passed_ms;
837 	u64 total_bytes;
838 
839 	if (!coal_enable ||
840 	    time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
841 		return;
842 
843 	/* ring->stats.rx_bytes overflowed */
844 	if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
845 		ring->coal_last_rx_bytes = ring->stats.rx_bytes;
846 		ring->coal_last_jiffies = jiffies;
847 		return;
848 	}
849 
850 	total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
851 	time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
852 	do_div(total_bytes, time_passed_ms);
853 	ring->coal_rx_rate = total_bytes >> 10;
854 
855 	ring->coal_last_rx_bytes = ring->stats.rx_bytes;
856 	ring->coal_last_jiffies = jiffies;
857 }
858 
859 /**
860  * smooth_alg - smoothing algrithm for adjusting coalesce parameter
861  **/
smooth_alg(u32 new_param,u32 old_param)862 static u32 smooth_alg(u32 new_param, u32 old_param)
863 {
864 	u32 gap = (new_param > old_param) ? new_param - old_param
865 					  : old_param - new_param;
866 
867 	if (gap > 8)
868 		gap >>= 3;
869 
870 	if (new_param > old_param)
871 		return old_param + gap;
872 	else
873 		return old_param - gap;
874 }
875 
876 /**
877  * hns_nic_adp_coalesce - self adapte coalesce according to rx rate
878  * @ring_data: pointer to hns_nic_ring_data
879  **/
hns_nic_adpt_coalesce(struct hns_nic_ring_data * ring_data)880 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
881 {
882 	struct hnae_ring *ring = ring_data->ring;
883 	struct hnae_handle *handle = ring->q->handle;
884 	u32 new_coal_param, old_coal_param = ring->coal_param;
885 
886 	if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
887 		new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
888 	else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
889 		new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
890 	else
891 		new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
892 
893 	if (new_coal_param == old_coal_param &&
894 	    new_coal_param == handle->coal_param)
895 		return;
896 
897 	new_coal_param = smooth_alg(new_coal_param, old_coal_param);
898 	ring->coal_param = new_coal_param;
899 
900 	/**
901 	 * Because all ring in one port has one coalesce param, when one ring
902 	 * calculate its own coalesce param, it cannot write to hardware at
903 	 * once. There are three conditions as follows:
904 	 *       1. current ring's coalesce param is larger than the hardware.
905 	 *       2. or ring which adapt last time can change again.
906 	 *       3. timeout.
907 	 */
908 	if (new_coal_param == handle->coal_param) {
909 		handle->coal_last_jiffies = jiffies;
910 		handle->coal_ring_idx = ring_data->queue_index;
911 	} else if (new_coal_param > handle->coal_param ||
912 		   handle->coal_ring_idx == ring_data->queue_index ||
913 		   time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
914 		handle->dev->ops->set_coalesce_usecs(handle,
915 					new_coal_param);
916 		handle->dev->ops->set_coalesce_frames(handle,
917 					1, new_coal_param);
918 		handle->coal_param = new_coal_param;
919 		handle->coal_ring_idx = ring_data->queue_index;
920 		handle->coal_last_jiffies = jiffies;
921 	}
922 }
923 
hns_nic_rx_poll_one(struct hns_nic_ring_data * ring_data,int budget,void * v)924 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
925 			       int budget, void *v)
926 {
927 	struct hnae_ring *ring = ring_data->ring;
928 	struct sk_buff *skb;
929 	int num, bnum;
930 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
931 	int recv_pkts, recv_bds, clean_count, err;
932 	int unused_count = hns_desc_unused(ring);
933 
934 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
935 	rmb(); /* make sure num taken effect before the other data is touched */
936 
937 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
938 	num -= unused_count;
939 
940 	while (recv_pkts < budget && recv_bds < num) {
941 		/* reuse or realloc buffers */
942 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
943 			hns_nic_alloc_rx_buffers(ring_data,
944 						 clean_count + unused_count);
945 			clean_count = 0;
946 			unused_count = hns_desc_unused(ring);
947 		}
948 
949 		/* poll one pkt */
950 		err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
951 		if (unlikely(!skb)) /* this fault cannot be repaired */
952 			goto out;
953 
954 		recv_bds += bnum;
955 		clean_count += bnum;
956 		if (unlikely(err)) {  /* do jump the err */
957 			recv_pkts++;
958 			continue;
959 		}
960 
961 		/* do update ip stack process*/
962 		((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
963 							ring_data, skb);
964 		recv_pkts++;
965 	}
966 
967 out:
968 	/* make all data has been write before submit */
969 	if (clean_count + unused_count > 0)
970 		hns_nic_alloc_rx_buffers(ring_data,
971 					 clean_count + unused_count);
972 
973 	return recv_pkts;
974 }
975 
hns_nic_rx_fini_pro(struct hns_nic_ring_data * ring_data)976 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
977 {
978 	struct hnae_ring *ring = ring_data->ring;
979 	int num = 0;
980 	bool rx_stopped;
981 
982 	hns_update_rx_rate(ring);
983 
984 	/* for hardware bug fixed */
985 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
986 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
987 
988 	if (num <= hns_coal_rx_bdnum(ring)) {
989 		if (ring->q->handle->coal_adapt_en)
990 			hns_nic_adpt_coalesce(ring_data);
991 
992 		rx_stopped = true;
993 	} else {
994 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
995 			ring_data->ring, 1);
996 
997 		rx_stopped = false;
998 	}
999 
1000 	return rx_stopped;
1001 }
1002 
hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data * ring_data)1003 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1004 {
1005 	struct hnae_ring *ring = ring_data->ring;
1006 	int num;
1007 
1008 	hns_update_rx_rate(ring);
1009 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
1010 
1011 	if (num <= hns_coal_rx_bdnum(ring)) {
1012 		if (ring->q->handle->coal_adapt_en)
1013 			hns_nic_adpt_coalesce(ring_data);
1014 
1015 		return true;
1016 	}
1017 
1018 	return false;
1019 }
1020 
hns_nic_reclaim_one_desc(struct hnae_ring * ring,int * bytes,int * pkts)1021 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
1022 					    int *bytes, int *pkts)
1023 {
1024 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
1025 
1026 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
1027 	(*bytes) += desc_cb->length;
1028 	/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
1029 	hnae_free_buffer_detach(ring, ring->next_to_clean);
1030 
1031 	ring_ptr_move_fw(ring, next_to_clean);
1032 }
1033 
is_valid_clean_head(struct hnae_ring * ring,int h)1034 static int is_valid_clean_head(struct hnae_ring *ring, int h)
1035 {
1036 	int u = ring->next_to_use;
1037 	int c = ring->next_to_clean;
1038 
1039 	if (unlikely(h > ring->desc_num))
1040 		return 0;
1041 
1042 	assert(u > 0 && u < ring->desc_num);
1043 	assert(c > 0 && c < ring->desc_num);
1044 	assert(u != c && h != c); /* must be checked before call this func */
1045 
1046 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
1047 }
1048 
1049 /* netif_tx_lock will turn down the performance, set only when necessary */
1050 #ifdef CONFIG_NET_POLL_CONTROLLER
1051 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock)
1052 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock)
1053 #else
1054 #define NETIF_TX_LOCK(ring)
1055 #define NETIF_TX_UNLOCK(ring)
1056 #endif
1057 
1058 /* reclaim all desc in one budget
1059  * return error or number of desc left
1060  */
hns_nic_tx_poll_one(struct hns_nic_ring_data * ring_data,int budget,void * v)1061 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
1062 			       int budget, void *v)
1063 {
1064 	struct hnae_ring *ring = ring_data->ring;
1065 	struct net_device *ndev = ring_data->napi.dev;
1066 	struct netdev_queue *dev_queue;
1067 	struct hns_nic_priv *priv = netdev_priv(ndev);
1068 	int head;
1069 	int bytes, pkts;
1070 
1071 	NETIF_TX_LOCK(ring);
1072 
1073 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1074 	rmb(); /* make sure head is ready before touch any data */
1075 
1076 	if (is_ring_empty(ring) || head == ring->next_to_clean) {
1077 		NETIF_TX_UNLOCK(ring);
1078 		return 0; /* no data to poll */
1079 	}
1080 
1081 	if (!is_valid_clean_head(ring, head)) {
1082 		netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
1083 			   ring->next_to_use, ring->next_to_clean);
1084 		ring->stats.io_err_cnt++;
1085 		NETIF_TX_UNLOCK(ring);
1086 		return -EIO;
1087 	}
1088 
1089 	bytes = 0;
1090 	pkts = 0;
1091 	while (head != ring->next_to_clean) {
1092 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1093 		/* issue prefetch for next Tx descriptor */
1094 		prefetch(&ring->desc_cb[ring->next_to_clean]);
1095 	}
1096 	/* update tx ring statistics. */
1097 	ring->stats.tx_pkts += pkts;
1098 	ring->stats.tx_bytes += bytes;
1099 
1100 	NETIF_TX_UNLOCK(ring);
1101 
1102 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1103 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
1104 
1105 	if (unlikely(priv->link && !netif_carrier_ok(ndev)))
1106 		netif_carrier_on(ndev);
1107 
1108 	if (unlikely(pkts && netif_carrier_ok(ndev) &&
1109 		     (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
1110 		/* Make sure that anybody stopping the queue after this
1111 		 * sees the new next_to_clean.
1112 		 */
1113 		smp_mb();
1114 		if (netif_tx_queue_stopped(dev_queue) &&
1115 		    !test_bit(NIC_STATE_DOWN, &priv->state)) {
1116 			netif_tx_wake_queue(dev_queue);
1117 			ring->stats.restart_queue++;
1118 		}
1119 	}
1120 	return 0;
1121 }
1122 
hns_nic_tx_fini_pro(struct hns_nic_ring_data * ring_data)1123 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1124 {
1125 	struct hnae_ring *ring = ring_data->ring;
1126 	int head;
1127 
1128 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1129 
1130 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1131 
1132 	if (head != ring->next_to_clean) {
1133 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1134 			ring_data->ring, 1);
1135 
1136 		return false;
1137 	} else {
1138 		return true;
1139 	}
1140 }
1141 
hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data * ring_data)1142 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1143 {
1144 	struct hnae_ring *ring = ring_data->ring;
1145 	int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1146 
1147 	if (head == ring->next_to_clean)
1148 		return true;
1149 	else
1150 		return false;
1151 }
1152 
hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data * ring_data)1153 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1154 {
1155 	struct hnae_ring *ring = ring_data->ring;
1156 	struct net_device *ndev = ring_data->napi.dev;
1157 	struct netdev_queue *dev_queue;
1158 	int head;
1159 	int bytes, pkts;
1160 
1161 	NETIF_TX_LOCK(ring);
1162 
1163 	head = ring->next_to_use; /* ntu :soft setted ring position*/
1164 	bytes = 0;
1165 	pkts = 0;
1166 	while (head != ring->next_to_clean)
1167 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1168 
1169 	NETIF_TX_UNLOCK(ring);
1170 
1171 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1172 	netdev_tx_reset_queue(dev_queue);
1173 }
1174 
hns_nic_common_poll(struct napi_struct * napi,int budget)1175 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1176 {
1177 	int clean_complete = 0;
1178 	struct hns_nic_ring_data *ring_data =
1179 		container_of(napi, struct hns_nic_ring_data, napi);
1180 	struct hnae_ring *ring = ring_data->ring;
1181 
1182 	clean_complete += ring_data->poll_one(
1183 				ring_data, budget - clean_complete,
1184 				ring_data->ex_process);
1185 
1186 	if (clean_complete < budget) {
1187 		if (ring_data->fini_process(ring_data)) {
1188 			napi_complete(napi);
1189 			ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1190 		} else {
1191 			return budget;
1192 		}
1193 	}
1194 
1195 	return clean_complete;
1196 }
1197 
hns_irq_handle(int irq,void * dev)1198 static irqreturn_t hns_irq_handle(int irq, void *dev)
1199 {
1200 	struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1201 
1202 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1203 		ring_data->ring, 1);
1204 	napi_schedule(&ring_data->napi);
1205 
1206 	return IRQ_HANDLED;
1207 }
1208 
1209 /**
1210  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1211  *@ndev: net device
1212  */
hns_nic_adjust_link(struct net_device * ndev)1213 static void hns_nic_adjust_link(struct net_device *ndev)
1214 {
1215 	struct hns_nic_priv *priv = netdev_priv(ndev);
1216 	struct hnae_handle *h = priv->ae_handle;
1217 	int state = 1;
1218 
1219 	/* If there is no phy, do not need adjust link */
1220 	if (ndev->phydev) {
1221 		/* When phy link down, do nothing */
1222 		if (ndev->phydev->link == 0)
1223 			return;
1224 
1225 		if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1226 						  ndev->phydev->duplex)) {
1227 			/* because Hi161X chip don't support to change gmac
1228 			 * speed and duplex with traffic. Delay 200ms to
1229 			 * make sure there is no more data in chip FIFO.
1230 			 */
1231 			netif_carrier_off(ndev);
1232 			msleep(200);
1233 			h->dev->ops->adjust_link(h, ndev->phydev->speed,
1234 						 ndev->phydev->duplex);
1235 			netif_carrier_on(ndev);
1236 		}
1237 	}
1238 
1239 	state = state && h->dev->ops->get_status(h);
1240 
1241 	if (state != priv->link) {
1242 		if (state) {
1243 			netif_carrier_on(ndev);
1244 			netif_tx_wake_all_queues(ndev);
1245 			netdev_info(ndev, "link up\n");
1246 		} else {
1247 			netif_carrier_off(ndev);
1248 			netdev_info(ndev, "link down\n");
1249 		}
1250 		priv->link = state;
1251 	}
1252 }
1253 
1254 /**
1255  *hns_nic_init_phy - init phy
1256  *@ndev: net device
1257  *@h: ae handle
1258  * Return 0 on success, negative on failure
1259  */
hns_nic_init_phy(struct net_device * ndev,struct hnae_handle * h)1260 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1261 {
1262 	struct phy_device *phy_dev = h->phy_dev;
1263 	int ret;
1264 
1265 	if (!h->phy_dev)
1266 		return 0;
1267 
1268 	phy_dev->supported &= h->if_support;
1269 	phy_dev->advertising = phy_dev->supported;
1270 
1271 	if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1272 		phy_dev->autoneg = false;
1273 
1274 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1275 		phy_dev->dev_flags = 0;
1276 
1277 		ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1278 					 h->phy_if);
1279 	} else {
1280 		ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1281 	}
1282 	if (unlikely(ret))
1283 		return -ENODEV;
1284 
1285 	return 0;
1286 }
1287 
hns_nic_ring_open(struct net_device * netdev,int idx)1288 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1289 {
1290 	struct hns_nic_priv *priv = netdev_priv(netdev);
1291 	struct hnae_handle *h = priv->ae_handle;
1292 
1293 	napi_enable(&priv->ring_data[idx].napi);
1294 
1295 	enable_irq(priv->ring_data[idx].ring->irq);
1296 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1297 
1298 	return 0;
1299 }
1300 
hns_nic_net_set_mac_address(struct net_device * ndev,void * p)1301 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1302 {
1303 	struct hns_nic_priv *priv = netdev_priv(ndev);
1304 	struct hnae_handle *h = priv->ae_handle;
1305 	struct sockaddr *mac_addr = p;
1306 	int ret;
1307 
1308 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1309 		return -EADDRNOTAVAIL;
1310 
1311 	ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1312 	if (ret) {
1313 		netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1314 		return ret;
1315 	}
1316 
1317 	memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1318 
1319 	return 0;
1320 }
1321 
hns_nic_update_stats(struct net_device * netdev)1322 void hns_nic_update_stats(struct net_device *netdev)
1323 {
1324 	struct hns_nic_priv *priv = netdev_priv(netdev);
1325 	struct hnae_handle *h = priv->ae_handle;
1326 
1327 	h->dev->ops->update_stats(h, &netdev->stats);
1328 }
1329 
1330 /* set mac addr if it is configed. or leave it to the AE driver */
hns_init_mac_addr(struct net_device * ndev)1331 static void hns_init_mac_addr(struct net_device *ndev)
1332 {
1333 	struct hns_nic_priv *priv = netdev_priv(ndev);
1334 
1335 	if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1336 		eth_hw_addr_random(ndev);
1337 		dev_warn(priv->dev, "No valid mac, use random mac %pM",
1338 			 ndev->dev_addr);
1339 	}
1340 }
1341 
hns_nic_ring_close(struct net_device * netdev,int idx)1342 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1343 {
1344 	struct hns_nic_priv *priv = netdev_priv(netdev);
1345 	struct hnae_handle *h = priv->ae_handle;
1346 
1347 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1348 	disable_irq(priv->ring_data[idx].ring->irq);
1349 
1350 	napi_disable(&priv->ring_data[idx].napi);
1351 }
1352 
hns_nic_init_affinity_mask(int q_num,int ring_idx,struct hnae_ring * ring,cpumask_t * mask)1353 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1354 				      struct hnae_ring *ring, cpumask_t *mask)
1355 {
1356 	int cpu;
1357 
1358 	/* Diffrent irq banlance between 16core and 32core.
1359 	 * The cpu mask set by ring index according to the ring flag
1360 	 * which indicate the ring is tx or rx.
1361 	 */
1362 	if (q_num == num_possible_cpus()) {
1363 		if (is_tx_ring(ring))
1364 			cpu = ring_idx;
1365 		else
1366 			cpu = ring_idx - q_num;
1367 	} else {
1368 		if (is_tx_ring(ring))
1369 			cpu = ring_idx * 2;
1370 		else
1371 			cpu = (ring_idx - q_num) * 2 + 1;
1372 	}
1373 
1374 	cpumask_clear(mask);
1375 	cpumask_set_cpu(cpu, mask);
1376 
1377 	return cpu;
1378 }
1379 
hns_nic_free_irq(int q_num,struct hns_nic_priv * priv)1380 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv)
1381 {
1382 	int i;
1383 
1384 	for (i = 0; i < q_num * 2; i++) {
1385 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1386 			irq_set_affinity_hint(priv->ring_data[i].ring->irq,
1387 					      NULL);
1388 			free_irq(priv->ring_data[i].ring->irq,
1389 				 &priv->ring_data[i]);
1390 			priv->ring_data[i].ring->irq_init_flag =
1391 				RCB_IRQ_NOT_INITED;
1392 		}
1393 	}
1394 }
1395 
hns_nic_init_irq(struct hns_nic_priv * priv)1396 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1397 {
1398 	struct hnae_handle *h = priv->ae_handle;
1399 	struct hns_nic_ring_data *rd;
1400 	int i;
1401 	int ret;
1402 	int cpu;
1403 
1404 	for (i = 0; i < h->q_num * 2; i++) {
1405 		rd = &priv->ring_data[i];
1406 
1407 		if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1408 			break;
1409 
1410 		snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1411 			 "%s-%s%d", priv->netdev->name,
1412 			 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1413 
1414 		rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1415 
1416 		ret = request_irq(rd->ring->irq,
1417 				  hns_irq_handle, 0, rd->ring->ring_name, rd);
1418 		if (ret) {
1419 			netdev_err(priv->netdev, "request irq(%d) fail\n",
1420 				   rd->ring->irq);
1421 			goto out_free_irq;
1422 		}
1423 		disable_irq(rd->ring->irq);
1424 
1425 		cpu = hns_nic_init_affinity_mask(h->q_num, i,
1426 						 rd->ring, &rd->mask);
1427 
1428 		if (cpu_online(cpu))
1429 			irq_set_affinity_hint(rd->ring->irq,
1430 					      &rd->mask);
1431 
1432 		rd->ring->irq_init_flag = RCB_IRQ_INITED;
1433 	}
1434 
1435 	return 0;
1436 
1437 out_free_irq:
1438 	hns_nic_free_irq(h->q_num, priv);
1439 	return ret;
1440 }
1441 
hns_nic_net_up(struct net_device * ndev)1442 static int hns_nic_net_up(struct net_device *ndev)
1443 {
1444 	struct hns_nic_priv *priv = netdev_priv(ndev);
1445 	struct hnae_handle *h = priv->ae_handle;
1446 	int i, j;
1447 	int ret;
1448 
1449 	if (!test_bit(NIC_STATE_DOWN, &priv->state))
1450 		return 0;
1451 
1452 	ret = hns_nic_init_irq(priv);
1453 	if (ret != 0) {
1454 		netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1455 		return ret;
1456 	}
1457 
1458 	for (i = 0; i < h->q_num * 2; i++) {
1459 		ret = hns_nic_ring_open(ndev, i);
1460 		if (ret)
1461 			goto out_has_some_queues;
1462 	}
1463 
1464 	ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1465 	if (ret)
1466 		goto out_set_mac_addr_err;
1467 
1468 	ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1469 	if (ret)
1470 		goto out_start_err;
1471 
1472 	if (ndev->phydev)
1473 		phy_start(ndev->phydev);
1474 
1475 	clear_bit(NIC_STATE_DOWN, &priv->state);
1476 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1477 
1478 	return 0;
1479 
1480 out_start_err:
1481 	netif_stop_queue(ndev);
1482 out_set_mac_addr_err:
1483 out_has_some_queues:
1484 	for (j = i - 1; j >= 0; j--)
1485 		hns_nic_ring_close(ndev, j);
1486 
1487 	hns_nic_free_irq(h->q_num, priv);
1488 	set_bit(NIC_STATE_DOWN, &priv->state);
1489 
1490 	return ret;
1491 }
1492 
hns_nic_net_down(struct net_device * ndev)1493 static void hns_nic_net_down(struct net_device *ndev)
1494 {
1495 	int i;
1496 	struct hnae_ae_ops *ops;
1497 	struct hns_nic_priv *priv = netdev_priv(ndev);
1498 
1499 	if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1500 		return;
1501 
1502 	(void)del_timer_sync(&priv->service_timer);
1503 	netif_tx_stop_all_queues(ndev);
1504 	netif_carrier_off(ndev);
1505 	netif_tx_disable(ndev);
1506 	priv->link = 0;
1507 
1508 	if (ndev->phydev)
1509 		phy_stop(ndev->phydev);
1510 
1511 	ops = priv->ae_handle->dev->ops;
1512 
1513 	if (ops->stop)
1514 		ops->stop(priv->ae_handle);
1515 
1516 	netif_tx_stop_all_queues(ndev);
1517 
1518 	for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1519 		hns_nic_ring_close(ndev, i);
1520 		hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1521 
1522 		/* clean tx buffers*/
1523 		hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1524 	}
1525 }
1526 
hns_nic_net_reset(struct net_device * ndev)1527 void hns_nic_net_reset(struct net_device *ndev)
1528 {
1529 	struct hns_nic_priv *priv = netdev_priv(ndev);
1530 	struct hnae_handle *handle = priv->ae_handle;
1531 
1532 	while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1533 		usleep_range(1000, 2000);
1534 
1535 	(void)hnae_reinit_handle(handle);
1536 
1537 	clear_bit(NIC_STATE_RESETTING, &priv->state);
1538 }
1539 
hns_nic_net_reinit(struct net_device * netdev)1540 void hns_nic_net_reinit(struct net_device *netdev)
1541 {
1542 	struct hns_nic_priv *priv = netdev_priv(netdev);
1543 	enum hnae_port_type type = priv->ae_handle->port_type;
1544 
1545 	netif_trans_update(priv->netdev);
1546 	while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1547 		usleep_range(1000, 2000);
1548 
1549 	hns_nic_net_down(netdev);
1550 
1551 	/* Only do hns_nic_net_reset in debug mode
1552 	 * because of hardware limitation.
1553 	 */
1554 	if (type == HNAE_PORT_DEBUG)
1555 		hns_nic_net_reset(netdev);
1556 
1557 	(void)hns_nic_net_up(netdev);
1558 	clear_bit(NIC_STATE_REINITING, &priv->state);
1559 }
1560 
hns_nic_net_open(struct net_device * ndev)1561 static int hns_nic_net_open(struct net_device *ndev)
1562 {
1563 	struct hns_nic_priv *priv = netdev_priv(ndev);
1564 	struct hnae_handle *h = priv->ae_handle;
1565 	int ret;
1566 
1567 	if (test_bit(NIC_STATE_TESTING, &priv->state))
1568 		return -EBUSY;
1569 
1570 	priv->link = 0;
1571 	netif_carrier_off(ndev);
1572 
1573 	ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1574 	if (ret < 0) {
1575 		netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1576 			   ret);
1577 		return ret;
1578 	}
1579 
1580 	ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1581 	if (ret < 0) {
1582 		netdev_err(ndev,
1583 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1584 		return ret;
1585 	}
1586 
1587 	ret = hns_nic_net_up(ndev);
1588 	if (ret) {
1589 		netdev_err(ndev,
1590 			   "hns net up fail, ret=%d!\n", ret);
1591 		return ret;
1592 	}
1593 
1594 	return 0;
1595 }
1596 
hns_nic_net_stop(struct net_device * ndev)1597 static int hns_nic_net_stop(struct net_device *ndev)
1598 {
1599 	hns_nic_net_down(ndev);
1600 
1601 	return 0;
1602 }
1603 
1604 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1605 #define HNS_TX_TIMEO_LIMIT (40 * HZ)
hns_nic_net_timeout(struct net_device * ndev)1606 static void hns_nic_net_timeout(struct net_device *ndev)
1607 {
1608 	struct hns_nic_priv *priv = netdev_priv(ndev);
1609 
1610 	if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) {
1611 		ndev->watchdog_timeo *= 2;
1612 		netdev_info(ndev, "watchdog_timo changed to %d.\n",
1613 			    ndev->watchdog_timeo);
1614 	} else {
1615 		ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1616 		hns_tx_timeout_reset(priv);
1617 	}
1618 }
1619 
hns_nic_do_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)1620 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1621 			    int cmd)
1622 {
1623 	struct phy_device *phy_dev = netdev->phydev;
1624 
1625 	if (!netif_running(netdev))
1626 		return -EINVAL;
1627 
1628 	if (!phy_dev)
1629 		return -ENOTSUPP;
1630 
1631 	return phy_mii_ioctl(phy_dev, ifr, cmd);
1632 }
1633 
1634 /* use only for netconsole to poll with the device without interrupt */
1635 #ifdef CONFIG_NET_POLL_CONTROLLER
hns_nic_poll_controller(struct net_device * ndev)1636 void hns_nic_poll_controller(struct net_device *ndev)
1637 {
1638 	struct hns_nic_priv *priv = netdev_priv(ndev);
1639 	unsigned long flags;
1640 	int i;
1641 
1642 	local_irq_save(flags);
1643 	for (i = 0; i < priv->ae_handle->q_num * 2; i++)
1644 		napi_schedule(&priv->ring_data[i].napi);
1645 	local_irq_restore(flags);
1646 }
1647 #endif
1648 
hns_nic_net_xmit(struct sk_buff * skb,struct net_device * ndev)1649 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1650 				    struct net_device *ndev)
1651 {
1652 	struct hns_nic_priv *priv = netdev_priv(ndev);
1653 
1654 	assert(skb->queue_mapping < ndev->ae_handle->q_num);
1655 
1656 	return hns_nic_net_xmit_hw(ndev, skb,
1657 				   &tx_ring_data(priv, skb->queue_mapping));
1658 }
1659 
hns_nic_drop_rx_fetch(struct hns_nic_ring_data * ring_data,struct sk_buff * skb)1660 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1661 				  struct sk_buff *skb)
1662 {
1663 	dev_kfree_skb_any(skb);
1664 }
1665 
1666 #define HNS_LB_TX_RING	0
hns_assemble_skb(struct net_device * ndev)1667 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1668 {
1669 	struct sk_buff *skb;
1670 	struct ethhdr *ethhdr;
1671 	int frame_len;
1672 
1673 	/* allocate test skb */
1674 	skb = alloc_skb(64, GFP_KERNEL);
1675 	if (!skb)
1676 		return NULL;
1677 
1678 	skb_put(skb, 64);
1679 	skb->dev = ndev;
1680 	memset(skb->data, 0xFF, skb->len);
1681 
1682 	/* must be tcp/ip package */
1683 	ethhdr = (struct ethhdr *)skb->data;
1684 	ethhdr->h_proto = htons(ETH_P_IP);
1685 
1686 	frame_len = skb->len & (~1ul);
1687 	memset(&skb->data[frame_len / 2], 0xAA,
1688 	       frame_len / 2 - 1);
1689 
1690 	skb->queue_mapping = HNS_LB_TX_RING;
1691 
1692 	return skb;
1693 }
1694 
hns_enable_serdes_lb(struct net_device * ndev)1695 static int hns_enable_serdes_lb(struct net_device *ndev)
1696 {
1697 	struct hns_nic_priv *priv = netdev_priv(ndev);
1698 	struct hnae_handle *h = priv->ae_handle;
1699 	struct hnae_ae_ops *ops = h->dev->ops;
1700 	int speed, duplex;
1701 	int ret;
1702 
1703 	ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1704 	if (ret)
1705 		return ret;
1706 
1707 	ret = ops->start ? ops->start(h) : 0;
1708 	if (ret)
1709 		return ret;
1710 
1711 	/* link adjust duplex*/
1712 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1713 		speed = 1000;
1714 	else
1715 		speed = 10000;
1716 	duplex = 1;
1717 
1718 	ops->adjust_link(h, speed, duplex);
1719 
1720 	/* wait h/w ready */
1721 	mdelay(300);
1722 
1723 	return 0;
1724 }
1725 
hns_disable_serdes_lb(struct net_device * ndev)1726 static void hns_disable_serdes_lb(struct net_device *ndev)
1727 {
1728 	struct hns_nic_priv *priv = netdev_priv(ndev);
1729 	struct hnae_handle *h = priv->ae_handle;
1730 	struct hnae_ae_ops *ops = h->dev->ops;
1731 
1732 	ops->stop(h);
1733 	ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1734 }
1735 
1736 /**
1737  *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1738  *function as follows:
1739  *    1. if one rx ring has found the page_offset is not equal 0 between head
1740  *       and tail, it means that the chip fetched the wrong descs for the ring
1741  *       which buffer size is 4096.
1742  *    2. we set the chip serdes loopback and set rss indirection to the ring.
1743  *    3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1744  *       recieving all packages and it will fetch new descriptions.
1745  *    4. recover to the original state.
1746  *
1747  *@ndev: net device
1748  */
hns_nic_clear_all_rx_fetch(struct net_device * ndev)1749 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1750 {
1751 	struct hns_nic_priv *priv = netdev_priv(ndev);
1752 	struct hnae_handle *h = priv->ae_handle;
1753 	struct hnae_ae_ops *ops = h->dev->ops;
1754 	struct hns_nic_ring_data *rd;
1755 	struct hnae_ring *ring;
1756 	struct sk_buff *skb;
1757 	u32 *org_indir;
1758 	u32 *cur_indir;
1759 	int indir_size;
1760 	int head, tail;
1761 	int fetch_num;
1762 	int i, j;
1763 	bool found;
1764 	int retry_times;
1765 	int ret = 0;
1766 
1767 	/* alloc indir memory */
1768 	indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1769 	org_indir = kzalloc(indir_size, GFP_KERNEL);
1770 	if (!org_indir)
1771 		return -ENOMEM;
1772 
1773 	/* store the orginal indirection */
1774 	ops->get_rss(h, org_indir, NULL, NULL);
1775 
1776 	cur_indir = kzalloc(indir_size, GFP_KERNEL);
1777 	if (!cur_indir) {
1778 		ret = -ENOMEM;
1779 		goto cur_indir_alloc_err;
1780 	}
1781 
1782 	/* set loopback */
1783 	if (hns_enable_serdes_lb(ndev)) {
1784 		ret = -EINVAL;
1785 		goto enable_serdes_lb_err;
1786 	}
1787 
1788 	/* foreach every rx ring to clear fetch desc */
1789 	for (i = 0; i < h->q_num; i++) {
1790 		ring = &h->qs[i]->rx_ring;
1791 		head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1792 		tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1793 		found = false;
1794 		fetch_num = ring_dist(ring, head, tail);
1795 
1796 		while (head != tail) {
1797 			if (ring->desc_cb[head].page_offset != 0) {
1798 				found = true;
1799 				break;
1800 			}
1801 
1802 			head++;
1803 			if (head == ring->desc_num)
1804 				head = 0;
1805 		}
1806 
1807 		if (found) {
1808 			for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1809 				cur_indir[j] = i;
1810 			ops->set_rss(h, cur_indir, NULL, 0);
1811 
1812 			for (j = 0; j < fetch_num; j++) {
1813 				/* alloc one skb and init */
1814 				skb = hns_assemble_skb(ndev);
1815 				if (!skb)
1816 					goto out;
1817 				rd = &tx_ring_data(priv, skb->queue_mapping);
1818 				hns_nic_net_xmit_hw(ndev, skb, rd);
1819 
1820 				retry_times = 0;
1821 				while (retry_times++ < 10) {
1822 					mdelay(10);
1823 					/* clean rx */
1824 					rd = &rx_ring_data(priv, i);
1825 					if (rd->poll_one(rd, fetch_num,
1826 							 hns_nic_drop_rx_fetch))
1827 						break;
1828 				}
1829 
1830 				retry_times = 0;
1831 				while (retry_times++ < 10) {
1832 					mdelay(10);
1833 					/* clean tx ring 0 send package */
1834 					rd = &tx_ring_data(priv,
1835 							   HNS_LB_TX_RING);
1836 					if (rd->poll_one(rd, fetch_num, NULL))
1837 						break;
1838 				}
1839 			}
1840 		}
1841 	}
1842 
1843 out:
1844 	/* restore everything */
1845 	ops->set_rss(h, org_indir, NULL, 0);
1846 	hns_disable_serdes_lb(ndev);
1847 enable_serdes_lb_err:
1848 	kfree(cur_indir);
1849 cur_indir_alloc_err:
1850 	kfree(org_indir);
1851 
1852 	return ret;
1853 }
1854 
hns_nic_change_mtu(struct net_device * ndev,int new_mtu)1855 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1856 {
1857 	struct hns_nic_priv *priv = netdev_priv(ndev);
1858 	struct hnae_handle *h = priv->ae_handle;
1859 	bool if_running = netif_running(ndev);
1860 	int ret;
1861 
1862 	/* MTU < 68 is an error and causes problems on some kernels */
1863 	if (new_mtu < 68)
1864 		return -EINVAL;
1865 
1866 	/* MTU no change */
1867 	if (new_mtu == ndev->mtu)
1868 		return 0;
1869 
1870 	if (!h->dev->ops->set_mtu)
1871 		return -ENOTSUPP;
1872 
1873 	if (if_running) {
1874 		(void)hns_nic_net_stop(ndev);
1875 		msleep(100);
1876 	}
1877 
1878 	if (priv->enet_ver != AE_VERSION_1 &&
1879 	    ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1880 	    new_mtu > BD_SIZE_2048_MAX_MTU) {
1881 		/* update desc */
1882 		hnae_reinit_all_ring_desc(h);
1883 
1884 		/* clear the package which the chip has fetched */
1885 		ret = hns_nic_clear_all_rx_fetch(ndev);
1886 
1887 		/* the page offset must be consist with desc */
1888 		hnae_reinit_all_ring_page_off(h);
1889 
1890 		if (ret) {
1891 			netdev_err(ndev, "clear the fetched desc fail\n");
1892 			goto out;
1893 		}
1894 	}
1895 
1896 	ret = h->dev->ops->set_mtu(h, new_mtu);
1897 	if (ret) {
1898 		netdev_err(ndev, "set mtu fail, return value %d\n",
1899 			   ret);
1900 		goto out;
1901 	}
1902 
1903 	/* finally, set new mtu to netdevice */
1904 	ndev->mtu = new_mtu;
1905 
1906 out:
1907 	if (if_running) {
1908 		if (hns_nic_net_open(ndev)) {
1909 			netdev_err(ndev, "hns net open fail\n");
1910 			ret = -EINVAL;
1911 		}
1912 	}
1913 
1914 	return ret;
1915 }
1916 
hns_nic_set_features(struct net_device * netdev,netdev_features_t features)1917 static int hns_nic_set_features(struct net_device *netdev,
1918 				netdev_features_t features)
1919 {
1920 	struct hns_nic_priv *priv = netdev_priv(netdev);
1921 
1922 	switch (priv->enet_ver) {
1923 	case AE_VERSION_1:
1924 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1925 			netdev_info(netdev, "enet v1 do not support tso!\n");
1926 		break;
1927 	default:
1928 		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1929 			priv->ops.fill_desc = fill_tso_desc;
1930 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1931 			/* The chip only support 7*4096 */
1932 			netif_set_gso_max_size(netdev, 7 * 4096);
1933 		} else {
1934 			priv->ops.fill_desc = fill_v2_desc;
1935 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1936 		}
1937 		break;
1938 	}
1939 	netdev->features = features;
1940 	return 0;
1941 }
1942 
hns_nic_fix_features(struct net_device * netdev,netdev_features_t features)1943 static netdev_features_t hns_nic_fix_features(
1944 		struct net_device *netdev, netdev_features_t features)
1945 {
1946 	struct hns_nic_priv *priv = netdev_priv(netdev);
1947 
1948 	switch (priv->enet_ver) {
1949 	case AE_VERSION_1:
1950 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1951 				NETIF_F_HW_VLAN_CTAG_FILTER);
1952 		break;
1953 	default:
1954 		break;
1955 	}
1956 	return features;
1957 }
1958 
hns_nic_uc_sync(struct net_device * netdev,const unsigned char * addr)1959 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1960 {
1961 	struct hns_nic_priv *priv = netdev_priv(netdev);
1962 	struct hnae_handle *h = priv->ae_handle;
1963 
1964 	if (h->dev->ops->add_uc_addr)
1965 		return h->dev->ops->add_uc_addr(h, addr);
1966 
1967 	return 0;
1968 }
1969 
hns_nic_uc_unsync(struct net_device * netdev,const unsigned char * addr)1970 static int hns_nic_uc_unsync(struct net_device *netdev,
1971 			     const unsigned char *addr)
1972 {
1973 	struct hns_nic_priv *priv = netdev_priv(netdev);
1974 	struct hnae_handle *h = priv->ae_handle;
1975 
1976 	if (h->dev->ops->rm_uc_addr)
1977 		return h->dev->ops->rm_uc_addr(h, addr);
1978 
1979 	return 0;
1980 }
1981 
1982 /**
1983  * nic_set_multicast_list - set mutl mac address
1984  * @netdev: net device
1985  * @p: mac address
1986  *
1987  * return void
1988  */
hns_set_multicast_list(struct net_device * ndev)1989 void hns_set_multicast_list(struct net_device *ndev)
1990 {
1991 	struct hns_nic_priv *priv = netdev_priv(ndev);
1992 	struct hnae_handle *h = priv->ae_handle;
1993 	struct netdev_hw_addr *ha = NULL;
1994 
1995 	if (!h)	{
1996 		netdev_err(ndev, "hnae handle is null\n");
1997 		return;
1998 	}
1999 
2000 	if (h->dev->ops->clr_mc_addr)
2001 		if (h->dev->ops->clr_mc_addr(h))
2002 			netdev_err(ndev, "clear multicast address fail\n");
2003 
2004 	if (h->dev->ops->set_mc_addr) {
2005 		netdev_for_each_mc_addr(ha, ndev)
2006 			if (h->dev->ops->set_mc_addr(h, ha->addr))
2007 				netdev_err(ndev, "set multicast fail\n");
2008 	}
2009 }
2010 
hns_nic_set_rx_mode(struct net_device * ndev)2011 void hns_nic_set_rx_mode(struct net_device *ndev)
2012 {
2013 	struct hns_nic_priv *priv = netdev_priv(ndev);
2014 	struct hnae_handle *h = priv->ae_handle;
2015 
2016 	if (h->dev->ops->set_promisc_mode) {
2017 		if (ndev->flags & IFF_PROMISC)
2018 			h->dev->ops->set_promisc_mode(h, 1);
2019 		else
2020 			h->dev->ops->set_promisc_mode(h, 0);
2021 	}
2022 
2023 	hns_set_multicast_list(ndev);
2024 
2025 	if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
2026 		netdev_err(ndev, "sync uc address fail\n");
2027 }
2028 
hns_nic_get_stats64(struct net_device * ndev,struct rtnl_link_stats64 * stats)2029 static void hns_nic_get_stats64(struct net_device *ndev,
2030 				struct rtnl_link_stats64 *stats)
2031 {
2032 	int idx = 0;
2033 	u64 tx_bytes = 0;
2034 	u64 rx_bytes = 0;
2035 	u64 tx_pkts = 0;
2036 	u64 rx_pkts = 0;
2037 	struct hns_nic_priv *priv = netdev_priv(ndev);
2038 	struct hnae_handle *h = priv->ae_handle;
2039 
2040 	for (idx = 0; idx < h->q_num; idx++) {
2041 		tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
2042 		tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
2043 		rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
2044 		rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
2045 	}
2046 
2047 	stats->tx_bytes = tx_bytes;
2048 	stats->tx_packets = tx_pkts;
2049 	stats->rx_bytes = rx_bytes;
2050 	stats->rx_packets = rx_pkts;
2051 
2052 	stats->rx_errors = ndev->stats.rx_errors;
2053 	stats->multicast = ndev->stats.multicast;
2054 	stats->rx_length_errors = ndev->stats.rx_length_errors;
2055 	stats->rx_crc_errors = ndev->stats.rx_crc_errors;
2056 	stats->rx_missed_errors = ndev->stats.rx_missed_errors;
2057 
2058 	stats->tx_errors = ndev->stats.tx_errors;
2059 	stats->rx_dropped = ndev->stats.rx_dropped;
2060 	stats->tx_dropped = ndev->stats.tx_dropped;
2061 	stats->collisions = ndev->stats.collisions;
2062 	stats->rx_over_errors = ndev->stats.rx_over_errors;
2063 	stats->rx_frame_errors = ndev->stats.rx_frame_errors;
2064 	stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
2065 	stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
2066 	stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
2067 	stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
2068 	stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
2069 	stats->tx_window_errors = ndev->stats.tx_window_errors;
2070 	stats->rx_compressed = ndev->stats.rx_compressed;
2071 	stats->tx_compressed = ndev->stats.tx_compressed;
2072 }
2073 
2074 static u16
hns_nic_select_queue(struct net_device * ndev,struct sk_buff * skb,void * accel_priv,select_queue_fallback_t fallback)2075 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
2076 		     void *accel_priv, select_queue_fallback_t fallback)
2077 {
2078 	struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
2079 	struct hns_nic_priv *priv = netdev_priv(ndev);
2080 
2081 	/* fix hardware broadcast/multicast packets queue loopback */
2082 	if (!AE_IS_VER1(priv->enet_ver) &&
2083 	    is_multicast_ether_addr(eth_hdr->h_dest))
2084 		return 0;
2085 	else
2086 		return fallback(ndev, skb);
2087 }
2088 
2089 static const struct net_device_ops hns_nic_netdev_ops = {
2090 	.ndo_open = hns_nic_net_open,
2091 	.ndo_stop = hns_nic_net_stop,
2092 	.ndo_start_xmit = hns_nic_net_xmit,
2093 	.ndo_tx_timeout = hns_nic_net_timeout,
2094 	.ndo_set_mac_address = hns_nic_net_set_mac_address,
2095 	.ndo_change_mtu = hns_nic_change_mtu,
2096 	.ndo_do_ioctl = hns_nic_do_ioctl,
2097 	.ndo_set_features = hns_nic_set_features,
2098 	.ndo_fix_features = hns_nic_fix_features,
2099 	.ndo_get_stats64 = hns_nic_get_stats64,
2100 #ifdef CONFIG_NET_POLL_CONTROLLER
2101 	.ndo_poll_controller = hns_nic_poll_controller,
2102 #endif
2103 	.ndo_set_rx_mode = hns_nic_set_rx_mode,
2104 	.ndo_select_queue = hns_nic_select_queue,
2105 };
2106 
hns_nic_update_link_status(struct net_device * netdev)2107 static void hns_nic_update_link_status(struct net_device *netdev)
2108 {
2109 	struct hns_nic_priv *priv = netdev_priv(netdev);
2110 
2111 	struct hnae_handle *h = priv->ae_handle;
2112 
2113 	if (h->phy_dev) {
2114 		if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
2115 			return;
2116 
2117 		(void)genphy_read_status(h->phy_dev);
2118 	}
2119 	hns_nic_adjust_link(netdev);
2120 }
2121 
2122 /* for dumping key regs*/
hns_nic_dump(struct hns_nic_priv * priv)2123 static void hns_nic_dump(struct hns_nic_priv *priv)
2124 {
2125 	struct hnae_handle *h = priv->ae_handle;
2126 	struct hnae_ae_ops *ops = h->dev->ops;
2127 	u32 *data, reg_num, i;
2128 
2129 	if (ops->get_regs_len && ops->get_regs) {
2130 		reg_num = ops->get_regs_len(priv->ae_handle);
2131 		reg_num = (reg_num + 3ul) & ~3ul;
2132 		data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
2133 		if (data) {
2134 			ops->get_regs(priv->ae_handle, data);
2135 			for (i = 0; i < reg_num; i += 4)
2136 				pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
2137 					i, data[i], data[i + 1],
2138 					data[i + 2], data[i + 3]);
2139 			kfree(data);
2140 		}
2141 	}
2142 
2143 	for (i = 0; i < h->q_num; i++) {
2144 		pr_info("tx_queue%d_next_to_clean:%d\n",
2145 			i, h->qs[i]->tx_ring.next_to_clean);
2146 		pr_info("tx_queue%d_next_to_use:%d\n",
2147 			i, h->qs[i]->tx_ring.next_to_use);
2148 		pr_info("rx_queue%d_next_to_clean:%d\n",
2149 			i, h->qs[i]->rx_ring.next_to_clean);
2150 		pr_info("rx_queue%d_next_to_use:%d\n",
2151 			i, h->qs[i]->rx_ring.next_to_use);
2152 	}
2153 }
2154 
2155 /* for resetting subtask */
hns_nic_reset_subtask(struct hns_nic_priv * priv)2156 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2157 {
2158 	enum hnae_port_type type = priv->ae_handle->port_type;
2159 
2160 	if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2161 		return;
2162 	clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2163 
2164 	/* If we're already down, removing or resetting, just bail */
2165 	if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2166 	    test_bit(NIC_STATE_REMOVING, &priv->state) ||
2167 	    test_bit(NIC_STATE_RESETTING, &priv->state))
2168 		return;
2169 
2170 	hns_nic_dump(priv);
2171 	netdev_info(priv->netdev, "try to reset %s port!\n",
2172 		    (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2173 
2174 	rtnl_lock();
2175 	/* put off any impending NetWatchDogTimeout */
2176 	netif_trans_update(priv->netdev);
2177 	hns_nic_net_reinit(priv->netdev);
2178 
2179 	rtnl_unlock();
2180 }
2181 
2182 /* for doing service complete*/
hns_nic_service_event_complete(struct hns_nic_priv * priv)2183 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2184 {
2185 	WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2186 	/* make sure to commit the things */
2187 	smp_mb__before_atomic();
2188 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2189 }
2190 
hns_nic_service_task(struct work_struct * work)2191 static void hns_nic_service_task(struct work_struct *work)
2192 {
2193 	struct hns_nic_priv *priv
2194 		= container_of(work, struct hns_nic_priv, service_task);
2195 	struct hnae_handle *h = priv->ae_handle;
2196 
2197 	hns_nic_reset_subtask(priv);
2198 	hns_nic_update_link_status(priv->netdev);
2199 	h->dev->ops->update_led_status(h);
2200 	hns_nic_update_stats(priv->netdev);
2201 
2202 	hns_nic_service_event_complete(priv);
2203 }
2204 
hns_nic_task_schedule(struct hns_nic_priv * priv)2205 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2206 {
2207 	if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2208 	    !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2209 	    !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2210 		(void)schedule_work(&priv->service_task);
2211 }
2212 
hns_nic_service_timer(unsigned long data)2213 static void hns_nic_service_timer(unsigned long data)
2214 {
2215 	struct hns_nic_priv *priv = (struct hns_nic_priv *)data;
2216 
2217 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2218 
2219 	hns_nic_task_schedule(priv);
2220 }
2221 
2222 /**
2223  * hns_tx_timeout_reset - initiate reset due to Tx timeout
2224  * @priv: driver private struct
2225  **/
hns_tx_timeout_reset(struct hns_nic_priv * priv)2226 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2227 {
2228 	/* Do the reset outside of interrupt context */
2229 	if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2230 		set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2231 		netdev_warn(priv->netdev,
2232 			    "initiating reset due to tx timeout(%llu,0x%lx)\n",
2233 			    priv->tx_timeout_count, priv->state);
2234 		priv->tx_timeout_count++;
2235 		hns_nic_task_schedule(priv);
2236 	}
2237 }
2238 
hns_nic_init_ring_data(struct hns_nic_priv * priv)2239 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2240 {
2241 	struct hnae_handle *h = priv->ae_handle;
2242 	struct hns_nic_ring_data *rd;
2243 	bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2244 	int i;
2245 
2246 	if (h->q_num > NIC_MAX_Q_PER_VF) {
2247 		netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2248 		return -EINVAL;
2249 	}
2250 
2251 	priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2,
2252 				  GFP_KERNEL);
2253 	if (!priv->ring_data)
2254 		return -ENOMEM;
2255 
2256 	for (i = 0; i < h->q_num; i++) {
2257 		rd = &priv->ring_data[i];
2258 		rd->queue_index = i;
2259 		rd->ring = &h->qs[i]->tx_ring;
2260 		rd->poll_one = hns_nic_tx_poll_one;
2261 		rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2262 			hns_nic_tx_fini_pro_v2;
2263 
2264 		netif_napi_add(priv->netdev, &rd->napi,
2265 			       hns_nic_common_poll, NAPI_POLL_WEIGHT);
2266 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2267 	}
2268 	for (i = h->q_num; i < h->q_num * 2; i++) {
2269 		rd = &priv->ring_data[i];
2270 		rd->queue_index = i - h->q_num;
2271 		rd->ring = &h->qs[i - h->q_num]->rx_ring;
2272 		rd->poll_one = hns_nic_rx_poll_one;
2273 		rd->ex_process = hns_nic_rx_up_pro;
2274 		rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2275 			hns_nic_rx_fini_pro_v2;
2276 
2277 		netif_napi_add(priv->netdev, &rd->napi,
2278 			       hns_nic_common_poll, NAPI_POLL_WEIGHT);
2279 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2280 	}
2281 
2282 	return 0;
2283 }
2284 
hns_nic_uninit_ring_data(struct hns_nic_priv * priv)2285 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2286 {
2287 	struct hnae_handle *h = priv->ae_handle;
2288 	int i;
2289 
2290 	for (i = 0; i < h->q_num * 2; i++) {
2291 		netif_napi_del(&priv->ring_data[i].napi);
2292 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2293 			(void)irq_set_affinity_hint(
2294 				priv->ring_data[i].ring->irq,
2295 				NULL);
2296 			free_irq(priv->ring_data[i].ring->irq,
2297 				 &priv->ring_data[i]);
2298 		}
2299 
2300 		priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2301 	}
2302 	kfree(priv->ring_data);
2303 }
2304 
hns_nic_set_priv_ops(struct net_device * netdev)2305 static void hns_nic_set_priv_ops(struct net_device *netdev)
2306 {
2307 	struct hns_nic_priv *priv = netdev_priv(netdev);
2308 	struct hnae_handle *h = priv->ae_handle;
2309 
2310 	if (AE_IS_VER1(priv->enet_ver)) {
2311 		priv->ops.fill_desc = fill_desc;
2312 		priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2313 		priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2314 	} else {
2315 		priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2316 		if ((netdev->features & NETIF_F_TSO) ||
2317 		    (netdev->features & NETIF_F_TSO6)) {
2318 			priv->ops.fill_desc = fill_tso_desc;
2319 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2320 			/* This chip only support 7*4096 */
2321 			netif_set_gso_max_size(netdev, 7 * 4096);
2322 		} else {
2323 			priv->ops.fill_desc = fill_v2_desc;
2324 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2325 		}
2326 		/* enable tso when init
2327 		 * control tso on/off through TSE bit in bd
2328 		 */
2329 		h->dev->ops->set_tso_stats(h, 1);
2330 	}
2331 }
2332 
hns_nic_try_get_ae(struct net_device * ndev)2333 static int hns_nic_try_get_ae(struct net_device *ndev)
2334 {
2335 	struct hns_nic_priv *priv = netdev_priv(ndev);
2336 	struct hnae_handle *h;
2337 	int ret;
2338 
2339 	h = hnae_get_handle(&priv->netdev->dev,
2340 			    priv->fwnode, priv->port_id, NULL);
2341 	if (IS_ERR_OR_NULL(h)) {
2342 		ret = -ENODEV;
2343 		dev_dbg(priv->dev, "has not handle, register notifier!\n");
2344 		goto out;
2345 	}
2346 	priv->ae_handle = h;
2347 
2348 	ret = hns_nic_init_phy(ndev, h);
2349 	if (ret) {
2350 		dev_err(priv->dev, "probe phy device fail!\n");
2351 		goto out_init_phy;
2352 	}
2353 
2354 	ret = hns_nic_init_ring_data(priv);
2355 	if (ret) {
2356 		ret = -ENOMEM;
2357 		goto out_init_ring_data;
2358 	}
2359 
2360 	hns_nic_set_priv_ops(ndev);
2361 
2362 	ret = register_netdev(ndev);
2363 	if (ret) {
2364 		dev_err(priv->dev, "probe register netdev fail!\n");
2365 		goto out_reg_ndev_fail;
2366 	}
2367 	return 0;
2368 
2369 out_reg_ndev_fail:
2370 	hns_nic_uninit_ring_data(priv);
2371 	priv->ring_data = NULL;
2372 out_init_phy:
2373 out_init_ring_data:
2374 	hnae_put_handle(priv->ae_handle);
2375 	priv->ae_handle = NULL;
2376 out:
2377 	return ret;
2378 }
2379 
hns_nic_notifier_action(struct notifier_block * nb,unsigned long action,void * data)2380 static int hns_nic_notifier_action(struct notifier_block *nb,
2381 				   unsigned long action, void *data)
2382 {
2383 	struct hns_nic_priv *priv =
2384 		container_of(nb, struct hns_nic_priv, notifier_block);
2385 
2386 	assert(action == HNAE_AE_REGISTER);
2387 
2388 	if (!hns_nic_try_get_ae(priv->netdev)) {
2389 		hnae_unregister_notifier(&priv->notifier_block);
2390 		priv->notifier_block.notifier_call = NULL;
2391 	}
2392 	return 0;
2393 }
2394 
hns_nic_dev_probe(struct platform_device * pdev)2395 static int hns_nic_dev_probe(struct platform_device *pdev)
2396 {
2397 	struct device *dev = &pdev->dev;
2398 	struct net_device *ndev;
2399 	struct hns_nic_priv *priv;
2400 	u32 port_id;
2401 	int ret;
2402 
2403 	ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2404 	if (!ndev)
2405 		return -ENOMEM;
2406 
2407 	platform_set_drvdata(pdev, ndev);
2408 
2409 	priv = netdev_priv(ndev);
2410 	priv->dev = dev;
2411 	priv->netdev = ndev;
2412 
2413 	if (dev_of_node(dev)) {
2414 		struct device_node *ae_node;
2415 
2416 		if (of_device_is_compatible(dev->of_node,
2417 					    "hisilicon,hns-nic-v1"))
2418 			priv->enet_ver = AE_VERSION_1;
2419 		else
2420 			priv->enet_ver = AE_VERSION_2;
2421 
2422 		ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2423 		if (!ae_node) {
2424 			ret = -ENODEV;
2425 			dev_err(dev, "not find ae-handle\n");
2426 			goto out_read_prop_fail;
2427 		}
2428 		priv->fwnode = &ae_node->fwnode;
2429 	} else if (is_acpi_node(dev->fwnode)) {
2430 		struct acpi_reference_args args;
2431 
2432 		if (acpi_dev_found(hns_enet_acpi_match[0].id))
2433 			priv->enet_ver = AE_VERSION_1;
2434 		else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2435 			priv->enet_ver = AE_VERSION_2;
2436 		else
2437 			return -ENXIO;
2438 
2439 		/* try to find port-idx-in-ae first */
2440 		ret = acpi_node_get_property_reference(dev->fwnode,
2441 						       "ae-handle", 0, &args);
2442 		if (ret) {
2443 			dev_err(dev, "not find ae-handle\n");
2444 			goto out_read_prop_fail;
2445 		}
2446 		priv->fwnode = acpi_fwnode_handle(args.adev);
2447 	} else {
2448 		dev_err(dev, "cannot read cfg data from OF or acpi\n");
2449 		return -ENXIO;
2450 	}
2451 
2452 	ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2453 	if (ret) {
2454 		/* only for old code compatible */
2455 		ret = device_property_read_u32(dev, "port-id", &port_id);
2456 		if (ret)
2457 			goto out_read_prop_fail;
2458 		/* for old dts, we need to caculate the port offset */
2459 		port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2460 			: port_id - HNS_SRV_OFFSET;
2461 	}
2462 	priv->port_id = port_id;
2463 
2464 	hns_init_mac_addr(ndev);
2465 
2466 	ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2467 	ndev->priv_flags |= IFF_UNICAST_FLT;
2468 	ndev->netdev_ops = &hns_nic_netdev_ops;
2469 	hns_ethtool_set_ops(ndev);
2470 
2471 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2472 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2473 		NETIF_F_GRO;
2474 	ndev->vlan_features |=
2475 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2476 	ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2477 
2478 	/* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2479 	ndev->min_mtu = MAC_MIN_MTU;
2480 	switch (priv->enet_ver) {
2481 	case AE_VERSION_2:
2482 		ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE;
2483 		ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2484 			NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2485 			NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2486 		ndev->max_mtu = MAC_MAX_MTU_V2 -
2487 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2488 		break;
2489 	default:
2490 		ndev->max_mtu = MAC_MAX_MTU -
2491 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2492 		break;
2493 	}
2494 
2495 	SET_NETDEV_DEV(ndev, dev);
2496 
2497 	if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2498 		dev_dbg(dev, "set mask to 64bit\n");
2499 	else
2500 		dev_err(dev, "set mask to 64bit fail!\n");
2501 
2502 	/* carrier off reporting is important to ethtool even BEFORE open */
2503 	netif_carrier_off(ndev);
2504 
2505 	setup_timer(&priv->service_timer, hns_nic_service_timer,
2506 		    (unsigned long)priv);
2507 	INIT_WORK(&priv->service_task, hns_nic_service_task);
2508 
2509 	set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2510 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2511 	set_bit(NIC_STATE_DOWN, &priv->state);
2512 
2513 	if (hns_nic_try_get_ae(priv->netdev)) {
2514 		priv->notifier_block.notifier_call = hns_nic_notifier_action;
2515 		ret = hnae_register_notifier(&priv->notifier_block);
2516 		if (ret) {
2517 			dev_err(dev, "register notifier fail!\n");
2518 			goto out_notify_fail;
2519 		}
2520 		dev_dbg(dev, "has not handle, register notifier!\n");
2521 	}
2522 
2523 	return 0;
2524 
2525 out_notify_fail:
2526 	(void)cancel_work_sync(&priv->service_task);
2527 out_read_prop_fail:
2528 	/* safe for ACPI FW */
2529 	of_node_put(to_of_node(priv->fwnode));
2530 	free_netdev(ndev);
2531 	return ret;
2532 }
2533 
hns_nic_dev_remove(struct platform_device * pdev)2534 static int hns_nic_dev_remove(struct platform_device *pdev)
2535 {
2536 	struct net_device *ndev = platform_get_drvdata(pdev);
2537 	struct hns_nic_priv *priv = netdev_priv(ndev);
2538 
2539 	if (ndev->reg_state != NETREG_UNINITIALIZED)
2540 		unregister_netdev(ndev);
2541 
2542 	if (priv->ring_data)
2543 		hns_nic_uninit_ring_data(priv);
2544 	priv->ring_data = NULL;
2545 
2546 	if (ndev->phydev)
2547 		phy_disconnect(ndev->phydev);
2548 
2549 	if (!IS_ERR_OR_NULL(priv->ae_handle))
2550 		hnae_put_handle(priv->ae_handle);
2551 	priv->ae_handle = NULL;
2552 	if (priv->notifier_block.notifier_call)
2553 		hnae_unregister_notifier(&priv->notifier_block);
2554 	priv->notifier_block.notifier_call = NULL;
2555 
2556 	set_bit(NIC_STATE_REMOVING, &priv->state);
2557 	(void)cancel_work_sync(&priv->service_task);
2558 
2559 	/* safe for ACPI FW */
2560 	of_node_put(to_of_node(priv->fwnode));
2561 
2562 	free_netdev(ndev);
2563 	return 0;
2564 }
2565 
2566 static const struct of_device_id hns_enet_of_match[] = {
2567 	{.compatible = "hisilicon,hns-nic-v1",},
2568 	{.compatible = "hisilicon,hns-nic-v2",},
2569 	{},
2570 };
2571 
2572 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2573 
2574 static struct platform_driver hns_nic_dev_driver = {
2575 	.driver = {
2576 		.name = "hns-nic",
2577 		.of_match_table = hns_enet_of_match,
2578 		.acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2579 	},
2580 	.probe = hns_nic_dev_probe,
2581 	.remove = hns_nic_dev_remove,
2582 };
2583 
2584 module_platform_driver(hns_nic_dev_driver);
2585 
2586 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2587 MODULE_AUTHOR("Hisilicon, Inc.");
2588 MODULE_LICENSE("GPL");
2589 MODULE_ALIAS("platform:hns-nic");
2590