1 /*
2 * Copyright (c) 2014-2015 Hisilicon Limited.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 */
9
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22
23 #include "hnae.h"
24 #include "hns_enet.h"
25 #include "hns_dsaf_mac.h"
26
27 #define NIC_MAX_Q_PER_VF 16
28 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
29
30 #define SERVICE_TIMER_HZ (1 * HZ)
31
32 #define RCB_IRQ_NOT_INITED 0
33 #define RCB_IRQ_INITED 1
34 #define HNS_BUFFER_SIZE_2048 2048
35
36 #define BD_MAX_SEND_SIZE 8191
37 #define SKB_TMP_LEN(SKB) \
38 (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
39
fill_v2_desc_hw(struct hnae_ring * ring,void * priv,int size,int send_sz,dma_addr_t dma,int frag_end,int buf_num,enum hns_desc_type type,int mtu)40 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
41 int send_sz, dma_addr_t dma, int frag_end,
42 int buf_num, enum hns_desc_type type, int mtu)
43 {
44 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
45 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
46 struct iphdr *iphdr;
47 struct ipv6hdr *ipv6hdr;
48 struct sk_buff *skb;
49 __be16 protocol;
50 u8 bn_pid = 0;
51 u8 rrcfv = 0;
52 u8 ip_offset = 0;
53 u8 tvsvsn = 0;
54 u16 mss = 0;
55 u8 l4_len = 0;
56 u16 paylen = 0;
57
58 desc_cb->priv = priv;
59 desc_cb->length = size;
60 desc_cb->dma = dma;
61 desc_cb->type = type;
62
63 desc->addr = cpu_to_le64(dma);
64 desc->tx.send_size = cpu_to_le16((u16)send_sz);
65
66 /* config bd buffer end */
67 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
68 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
69
70 /* fill port_id in the tx bd for sending management pkts */
71 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
72 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
73
74 if (type == DESC_TYPE_SKB) {
75 skb = (struct sk_buff *)priv;
76
77 if (skb->ip_summed == CHECKSUM_PARTIAL) {
78 skb_reset_mac_len(skb);
79 protocol = skb->protocol;
80 ip_offset = ETH_HLEN;
81
82 if (protocol == htons(ETH_P_8021Q)) {
83 ip_offset += VLAN_HLEN;
84 protocol = vlan_get_protocol(skb);
85 skb->protocol = protocol;
86 }
87
88 if (skb->protocol == htons(ETH_P_IP)) {
89 iphdr = ip_hdr(skb);
90 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
91 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
92
93 /* check for tcp/udp header */
94 if (iphdr->protocol == IPPROTO_TCP &&
95 skb_is_gso(skb)) {
96 hnae_set_bit(tvsvsn,
97 HNSV2_TXD_TSE_B, 1);
98 l4_len = tcp_hdrlen(skb);
99 mss = skb_shinfo(skb)->gso_size;
100 paylen = skb->len - SKB_TMP_LEN(skb);
101 }
102 } else if (skb->protocol == htons(ETH_P_IPV6)) {
103 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
104 ipv6hdr = ipv6_hdr(skb);
105 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
106
107 /* check for tcp/udp header */
108 if (ipv6hdr->nexthdr == IPPROTO_TCP &&
109 skb_is_gso(skb) && skb_is_gso_v6(skb)) {
110 hnae_set_bit(tvsvsn,
111 HNSV2_TXD_TSE_B, 1);
112 l4_len = tcp_hdrlen(skb);
113 mss = skb_shinfo(skb)->gso_size;
114 paylen = skb->len - SKB_TMP_LEN(skb);
115 }
116 }
117 desc->tx.ip_offset = ip_offset;
118 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
119 desc->tx.mss = cpu_to_le16(mss);
120 desc->tx.l4_len = l4_len;
121 desc->tx.paylen = cpu_to_le16(paylen);
122 }
123 }
124
125 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
126
127 desc->tx.bn_pid = bn_pid;
128 desc->tx.ra_ri_cs_fe_vld = rrcfv;
129
130 ring_ptr_move_fw(ring, next_to_use);
131 }
132
fill_v2_desc(struct hnae_ring * ring,void * priv,int size,dma_addr_t dma,int frag_end,int buf_num,enum hns_desc_type type,int mtu)133 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
134 int size, dma_addr_t dma, int frag_end,
135 int buf_num, enum hns_desc_type type, int mtu)
136 {
137 fill_v2_desc_hw(ring, priv, size, size, dma, frag_end,
138 buf_num, type, mtu);
139 }
140
141 static const struct acpi_device_id hns_enet_acpi_match[] = {
142 { "HISI00C1", 0 },
143 { "HISI00C2", 0 },
144 { },
145 };
146 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
147
fill_desc(struct hnae_ring * ring,void * priv,int size,dma_addr_t dma,int frag_end,int buf_num,enum hns_desc_type type,int mtu)148 static void fill_desc(struct hnae_ring *ring, void *priv,
149 int size, dma_addr_t dma, int frag_end,
150 int buf_num, enum hns_desc_type type, int mtu)
151 {
152 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
153 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
154 struct sk_buff *skb;
155 __be16 protocol;
156 u32 ip_offset;
157 u32 asid_bufnum_pid = 0;
158 u32 flag_ipoffset = 0;
159
160 desc_cb->priv = priv;
161 desc_cb->length = size;
162 desc_cb->dma = dma;
163 desc_cb->type = type;
164
165 desc->addr = cpu_to_le64(dma);
166 desc->tx.send_size = cpu_to_le16((u16)size);
167
168 /*config bd buffer end */
169 flag_ipoffset |= 1 << HNS_TXD_VLD_B;
170
171 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
172
173 if (type == DESC_TYPE_SKB) {
174 skb = (struct sk_buff *)priv;
175
176 if (skb->ip_summed == CHECKSUM_PARTIAL) {
177 protocol = skb->protocol;
178 ip_offset = ETH_HLEN;
179
180 /*if it is a SW VLAN check the next protocol*/
181 if (protocol == htons(ETH_P_8021Q)) {
182 ip_offset += VLAN_HLEN;
183 protocol = vlan_get_protocol(skb);
184 skb->protocol = protocol;
185 }
186
187 if (skb->protocol == htons(ETH_P_IP)) {
188 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
189 /* check for tcp/udp header */
190 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
191
192 } else if (skb->protocol == htons(ETH_P_IPV6)) {
193 /* ipv6 has not l3 cs, check for L4 header */
194 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
195 }
196
197 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
198 }
199 }
200
201 flag_ipoffset |= frag_end << HNS_TXD_FE_B;
202
203 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
204 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
205
206 ring_ptr_move_fw(ring, next_to_use);
207 }
208
unfill_desc(struct hnae_ring * ring)209 static void unfill_desc(struct hnae_ring *ring)
210 {
211 ring_ptr_move_bw(ring, next_to_use);
212 }
213
hns_nic_maybe_stop_tx(struct sk_buff ** out_skb,int * bnum,struct hnae_ring * ring)214 static int hns_nic_maybe_stop_tx(
215 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
216 {
217 struct sk_buff *skb = *out_skb;
218 struct sk_buff *new_skb = NULL;
219 int buf_num;
220
221 /* no. of segments (plus a header) */
222 buf_num = skb_shinfo(skb)->nr_frags + 1;
223
224 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
225 if (ring_space(ring) < 1)
226 return -EBUSY;
227
228 new_skb = skb_copy(skb, GFP_ATOMIC);
229 if (!new_skb)
230 return -ENOMEM;
231
232 dev_kfree_skb_any(skb);
233 *out_skb = new_skb;
234 buf_num = 1;
235 } else if (buf_num > ring_space(ring)) {
236 return -EBUSY;
237 }
238
239 *bnum = buf_num;
240 return 0;
241 }
242
hns_nic_maybe_stop_tso(struct sk_buff ** out_skb,int * bnum,struct hnae_ring * ring)243 static int hns_nic_maybe_stop_tso(
244 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
245 {
246 int i;
247 int size;
248 int buf_num;
249 int frag_num;
250 struct sk_buff *skb = *out_skb;
251 struct sk_buff *new_skb = NULL;
252 struct skb_frag_struct *frag;
253
254 size = skb_headlen(skb);
255 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
256
257 frag_num = skb_shinfo(skb)->nr_frags;
258 for (i = 0; i < frag_num; i++) {
259 frag = &skb_shinfo(skb)->frags[i];
260 size = skb_frag_size(frag);
261 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
262 }
263
264 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
265 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
266 if (ring_space(ring) < buf_num)
267 return -EBUSY;
268 /* manual split the send packet */
269 new_skb = skb_copy(skb, GFP_ATOMIC);
270 if (!new_skb)
271 return -ENOMEM;
272 dev_kfree_skb_any(skb);
273 *out_skb = new_skb;
274
275 } else if (ring_space(ring) < buf_num) {
276 return -EBUSY;
277 }
278
279 *bnum = buf_num;
280 return 0;
281 }
282
fill_tso_desc(struct hnae_ring * ring,void * priv,int size,dma_addr_t dma,int frag_end,int buf_num,enum hns_desc_type type,int mtu)283 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
284 int size, dma_addr_t dma, int frag_end,
285 int buf_num, enum hns_desc_type type, int mtu)
286 {
287 int frag_buf_num;
288 int sizeoflast;
289 int k;
290
291 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
292 sizeoflast = size % BD_MAX_SEND_SIZE;
293 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
294
295 /* when the frag size is bigger than hardware, split this frag */
296 for (k = 0; k < frag_buf_num; k++)
297 fill_v2_desc_hw(ring, priv, k == 0 ? size : 0,
298 (k == frag_buf_num - 1) ?
299 sizeoflast : BD_MAX_SEND_SIZE,
300 dma + BD_MAX_SEND_SIZE * k,
301 frag_end && (k == frag_buf_num - 1) ? 1 : 0,
302 buf_num,
303 (type == DESC_TYPE_SKB && !k) ?
304 DESC_TYPE_SKB : DESC_TYPE_PAGE,
305 mtu);
306 }
307
hns_nic_net_xmit_hw(struct net_device * ndev,struct sk_buff * skb,struct hns_nic_ring_data * ring_data)308 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
309 struct sk_buff *skb,
310 struct hns_nic_ring_data *ring_data)
311 {
312 struct hns_nic_priv *priv = netdev_priv(ndev);
313 struct hnae_ring *ring = ring_data->ring;
314 struct device *dev = ring_to_dev(ring);
315 struct netdev_queue *dev_queue;
316 struct skb_frag_struct *frag;
317 int buf_num;
318 int seg_num;
319 dma_addr_t dma;
320 int size, next_to_use;
321 int i;
322
323 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
324 case -EBUSY:
325 ring->stats.tx_busy++;
326 goto out_net_tx_busy;
327 case -ENOMEM:
328 ring->stats.sw_err_cnt++;
329 netdev_err(ndev, "no memory to xmit!\n");
330 goto out_err_tx_ok;
331 default:
332 break;
333 }
334
335 /* no. of segments (plus a header) */
336 seg_num = skb_shinfo(skb)->nr_frags + 1;
337 next_to_use = ring->next_to_use;
338
339 /* fill the first part */
340 size = skb_headlen(skb);
341 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
342 if (dma_mapping_error(dev, dma)) {
343 netdev_err(ndev, "TX head DMA map failed\n");
344 ring->stats.sw_err_cnt++;
345 goto out_err_tx_ok;
346 }
347 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
348 buf_num, DESC_TYPE_SKB, ndev->mtu);
349
350 /* fill the fragments */
351 for (i = 1; i < seg_num; i++) {
352 frag = &skb_shinfo(skb)->frags[i - 1];
353 size = skb_frag_size(frag);
354 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
355 if (dma_mapping_error(dev, dma)) {
356 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
357 ring->stats.sw_err_cnt++;
358 goto out_map_frag_fail;
359 }
360 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
361 seg_num - 1 == i ? 1 : 0, buf_num,
362 DESC_TYPE_PAGE, ndev->mtu);
363 }
364
365 /*complete translate all packets*/
366 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
367 netdev_tx_sent_queue(dev_queue, skb->len);
368
369 netif_trans_update(ndev);
370 ndev->stats.tx_bytes += skb->len;
371 ndev->stats.tx_packets++;
372
373 wmb(); /* commit all data before submit */
374 assert(skb->queue_mapping < priv->ae_handle->q_num);
375 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
376
377 return NETDEV_TX_OK;
378
379 out_map_frag_fail:
380
381 while (ring->next_to_use != next_to_use) {
382 unfill_desc(ring);
383 if (ring->next_to_use != next_to_use)
384 dma_unmap_page(dev,
385 ring->desc_cb[ring->next_to_use].dma,
386 ring->desc_cb[ring->next_to_use].length,
387 DMA_TO_DEVICE);
388 else
389 dma_unmap_single(dev,
390 ring->desc_cb[next_to_use].dma,
391 ring->desc_cb[next_to_use].length,
392 DMA_TO_DEVICE);
393 }
394
395 out_err_tx_ok:
396
397 dev_kfree_skb_any(skb);
398 return NETDEV_TX_OK;
399
400 out_net_tx_busy:
401
402 netif_stop_subqueue(ndev, skb->queue_mapping);
403
404 /* Herbert's original patch had:
405 * smp_mb__after_netif_stop_queue();
406 * but since that doesn't exist yet, just open code it.
407 */
408 smp_mb();
409 return NETDEV_TX_BUSY;
410 }
411
412 /**
413 * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE
414 * @data: pointer to the start of the headers
415 * @max: total length of section to find headers in
416 *
417 * This function is meant to determine the length of headers that will
418 * be recognized by hardware for LRO, GRO, and RSC offloads. The main
419 * motivation of doing this is to only perform one pull for IPv4 TCP
420 * packets so that we can do basic things like calculating the gso_size
421 * based on the average data per packet.
422 **/
hns_nic_get_headlen(unsigned char * data,u32 flag,unsigned int max_size)423 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag,
424 unsigned int max_size)
425 {
426 unsigned char *network;
427 u8 hlen;
428
429 /* this should never happen, but better safe than sorry */
430 if (max_size < ETH_HLEN)
431 return max_size;
432
433 /* initialize network frame pointer */
434 network = data;
435
436 /* set first protocol and move network header forward */
437 network += ETH_HLEN;
438
439 /* handle any vlan tag if present */
440 if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S)
441 == HNS_RX_FLAG_VLAN_PRESENT) {
442 if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
443 return max_size;
444
445 network += VLAN_HLEN;
446 }
447
448 /* handle L3 protocols */
449 if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
450 == HNS_RX_FLAG_L3ID_IPV4) {
451 if ((typeof(max_size))(network - data) >
452 (max_size - sizeof(struct iphdr)))
453 return max_size;
454
455 /* access ihl as a u8 to avoid unaligned access on ia64 */
456 hlen = (network[0] & 0x0F) << 2;
457
458 /* verify hlen meets minimum size requirements */
459 if (hlen < sizeof(struct iphdr))
460 return network - data;
461
462 /* record next protocol if header is present */
463 } else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
464 == HNS_RX_FLAG_L3ID_IPV6) {
465 if ((typeof(max_size))(network - data) >
466 (max_size - sizeof(struct ipv6hdr)))
467 return max_size;
468
469 /* record next protocol */
470 hlen = sizeof(struct ipv6hdr);
471 } else {
472 return network - data;
473 }
474
475 /* relocate pointer to start of L4 header */
476 network += hlen;
477
478 /* finally sort out TCP/UDP */
479 if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
480 == HNS_RX_FLAG_L4ID_TCP) {
481 if ((typeof(max_size))(network - data) >
482 (max_size - sizeof(struct tcphdr)))
483 return max_size;
484
485 /* access doff as a u8 to avoid unaligned access on ia64 */
486 hlen = (network[12] & 0xF0) >> 2;
487
488 /* verify hlen meets minimum size requirements */
489 if (hlen < sizeof(struct tcphdr))
490 return network - data;
491
492 network += hlen;
493 } else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
494 == HNS_RX_FLAG_L4ID_UDP) {
495 if ((typeof(max_size))(network - data) >
496 (max_size - sizeof(struct udphdr)))
497 return max_size;
498
499 network += sizeof(struct udphdr);
500 }
501
502 /* If everything has gone correctly network should be the
503 * data section of the packet and will be the end of the header.
504 * If not then it probably represents the end of the last recognized
505 * header.
506 */
507 if ((typeof(max_size))(network - data) < max_size)
508 return network - data;
509 else
510 return max_size;
511 }
512
hns_nic_reuse_page(struct sk_buff * skb,int i,struct hnae_ring * ring,int pull_len,struct hnae_desc_cb * desc_cb)513 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
514 struct hnae_ring *ring, int pull_len,
515 struct hnae_desc_cb *desc_cb)
516 {
517 struct hnae_desc *desc;
518 int truesize, size;
519 int last_offset;
520 bool twobufs;
521
522 twobufs = ((PAGE_SIZE < 8192) &&
523 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
524
525 desc = &ring->desc[ring->next_to_clean];
526 size = le16_to_cpu(desc->rx.size);
527
528 if (twobufs) {
529 truesize = hnae_buf_size(ring);
530 } else {
531 truesize = ALIGN(size, L1_CACHE_BYTES);
532 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
533 }
534
535 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
536 size - pull_len, truesize);
537
538 /* avoid re-using remote pages,flag default unreuse */
539 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
540 return;
541
542 if (twobufs) {
543 /* if we are only owner of page we can reuse it */
544 if (likely(page_count(desc_cb->priv) == 1)) {
545 /* flip page offset to other buffer */
546 desc_cb->page_offset ^= truesize;
547
548 desc_cb->reuse_flag = 1;
549 /* bump ref count on page before it is given*/
550 get_page(desc_cb->priv);
551 }
552 return;
553 }
554
555 /* move offset up to the next cache line */
556 desc_cb->page_offset += truesize;
557
558 if (desc_cb->page_offset <= last_offset) {
559 desc_cb->reuse_flag = 1;
560 /* bump ref count on page before it is given*/
561 get_page(desc_cb->priv);
562 }
563 }
564
get_v2rx_desc_bnum(u32 bnum_flag,int * out_bnum)565 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
566 {
567 *out_bnum = hnae_get_field(bnum_flag,
568 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
569 }
570
get_rx_desc_bnum(u32 bnum_flag,int * out_bnum)571 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
572 {
573 *out_bnum = hnae_get_field(bnum_flag,
574 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
575 }
576
hns_nic_rx_checksum(struct hns_nic_ring_data * ring_data,struct sk_buff * skb,u32 flag)577 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
578 struct sk_buff *skb, u32 flag)
579 {
580 struct net_device *netdev = ring_data->napi.dev;
581 u32 l3id;
582 u32 l4id;
583
584 /* check if RX checksum offload is enabled */
585 if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
586 return;
587
588 /* In hardware, we only support checksum for the following protocols:
589 * 1) IPv4,
590 * 2) TCP(over IPv4 or IPv6),
591 * 3) UDP(over IPv4 or IPv6),
592 * 4) SCTP(over IPv4 or IPv6)
593 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
594 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
595 *
596 * Hardware limitation:
597 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
598 * Error" bit (which usually can be used to indicate whether checksum
599 * was calculated by the hardware and if there was any error encountered
600 * during checksum calculation).
601 *
602 * Software workaround:
603 * We do get info within the RX descriptor about the kind of L3/L4
604 * protocol coming in the packet and the error status. These errors
605 * might not just be checksum errors but could be related to version,
606 * length of IPv4, UDP, TCP etc.
607 * Because there is no-way of knowing if it is a L3/L4 error due to bad
608 * checksum or any other L3/L4 error, we will not (cannot) convey
609 * checksum status for such cases to upper stack and will not maintain
610 * the RX L3/L4 checksum counters as well.
611 */
612
613 l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
614 l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
615
616 /* check L3 protocol for which checksum is supported */
617 if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
618 return;
619
620 /* check for any(not just checksum)flagged L3 protocol errors */
621 if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
622 return;
623
624 /* we do not support checksum of fragmented packets */
625 if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
626 return;
627
628 /* check L4 protocol for which checksum is supported */
629 if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
630 (l4id != HNS_RX_FLAG_L4ID_UDP) &&
631 (l4id != HNS_RX_FLAG_L4ID_SCTP))
632 return;
633
634 /* check for any(not just checksum)flagged L4 protocol errors */
635 if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
636 return;
637
638 /* now, this has to be a packet with valid RX checksum */
639 skb->ip_summed = CHECKSUM_UNNECESSARY;
640 }
641
hns_nic_poll_rx_skb(struct hns_nic_ring_data * ring_data,struct sk_buff ** out_skb,int * out_bnum)642 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
643 struct sk_buff **out_skb, int *out_bnum)
644 {
645 struct hnae_ring *ring = ring_data->ring;
646 struct net_device *ndev = ring_data->napi.dev;
647 struct hns_nic_priv *priv = netdev_priv(ndev);
648 struct sk_buff *skb;
649 struct hnae_desc *desc;
650 struct hnae_desc_cb *desc_cb;
651 unsigned char *va;
652 int bnum, length, i;
653 int pull_len;
654 u32 bnum_flag;
655
656 desc = &ring->desc[ring->next_to_clean];
657 desc_cb = &ring->desc_cb[ring->next_to_clean];
658
659 prefetch(desc);
660
661 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
662
663 /* prefetch first cache line of first page */
664 prefetch(va);
665 #if L1_CACHE_BYTES < 128
666 prefetch(va + L1_CACHE_BYTES);
667 #endif
668
669 skb = *out_skb = napi_alloc_skb(&ring_data->napi,
670 HNS_RX_HEAD_SIZE);
671 if (unlikely(!skb)) {
672 ring->stats.sw_err_cnt++;
673 return -ENOMEM;
674 }
675
676 prefetchw(skb->data);
677 length = le16_to_cpu(desc->rx.pkt_len);
678 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
679 priv->ops.get_rxd_bnum(bnum_flag, &bnum);
680 *out_bnum = bnum;
681
682 if (length <= HNS_RX_HEAD_SIZE) {
683 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
684
685 /* we can reuse buffer as-is, just make sure it is local */
686 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
687 desc_cb->reuse_flag = 1;
688 else /* this page cannot be reused so discard it */
689 put_page(desc_cb->priv);
690
691 ring_ptr_move_fw(ring, next_to_clean);
692
693 if (unlikely(bnum != 1)) { /* check err*/
694 *out_bnum = 1;
695 goto out_bnum_err;
696 }
697 } else {
698 ring->stats.seg_pkt_cnt++;
699
700 pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE);
701 memcpy(__skb_put(skb, pull_len), va,
702 ALIGN(pull_len, sizeof(long)));
703
704 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
705 ring_ptr_move_fw(ring, next_to_clean);
706
707 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
708 *out_bnum = 1;
709 goto out_bnum_err;
710 }
711 for (i = 1; i < bnum; i++) {
712 desc = &ring->desc[ring->next_to_clean];
713 desc_cb = &ring->desc_cb[ring->next_to_clean];
714
715 hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
716 ring_ptr_move_fw(ring, next_to_clean);
717 }
718 }
719
720 /* check except process, free skb and jump the desc */
721 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
722 out_bnum_err:
723 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
724 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
725 bnum, ring->max_desc_num_per_pkt,
726 length, (int)MAX_SKB_FRAGS,
727 ((u64 *)desc)[0], ((u64 *)desc)[1]);
728 ring->stats.err_bd_num++;
729 dev_kfree_skb_any(skb);
730 return -EDOM;
731 }
732
733 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
734
735 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
736 netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
737 ((u64 *)desc)[0], ((u64 *)desc)[1]);
738 ring->stats.non_vld_descs++;
739 dev_kfree_skb_any(skb);
740 return -EINVAL;
741 }
742
743 if (unlikely((!desc->rx.pkt_len) ||
744 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
745 ring->stats.err_pkt_len++;
746 dev_kfree_skb_any(skb);
747 return -EFAULT;
748 }
749
750 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
751 ring->stats.l2_err++;
752 dev_kfree_skb_any(skb);
753 return -EFAULT;
754 }
755
756 ring->stats.rx_pkts++;
757 ring->stats.rx_bytes += skb->len;
758
759 /* indicate to upper stack if our hardware has already calculated
760 * the RX checksum
761 */
762 hns_nic_rx_checksum(ring_data, skb, bnum_flag);
763
764 return 0;
765 }
766
767 static void
hns_nic_alloc_rx_buffers(struct hns_nic_ring_data * ring_data,int cleand_count)768 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
769 {
770 int i, ret;
771 struct hnae_desc_cb res_cbs;
772 struct hnae_desc_cb *desc_cb;
773 struct hnae_ring *ring = ring_data->ring;
774 struct net_device *ndev = ring_data->napi.dev;
775
776 for (i = 0; i < cleand_count; i++) {
777 desc_cb = &ring->desc_cb[ring->next_to_use];
778 if (desc_cb->reuse_flag) {
779 ring->stats.reuse_pg_cnt++;
780 hnae_reuse_buffer(ring, ring->next_to_use);
781 } else {
782 ret = hnae_reserve_buffer_map(ring, &res_cbs);
783 if (ret) {
784 ring->stats.sw_err_cnt++;
785 netdev_err(ndev, "hnae reserve buffer map failed.\n");
786 break;
787 }
788 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
789 }
790
791 ring_ptr_move_fw(ring, next_to_use);
792 }
793
794 wmb(); /* make all data has been write before submit */
795 writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
796 }
797
798 /* return error number for error or number of desc left to take
799 */
hns_nic_rx_up_pro(struct hns_nic_ring_data * ring_data,struct sk_buff * skb)800 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
801 struct sk_buff *skb)
802 {
803 struct net_device *ndev = ring_data->napi.dev;
804
805 skb->protocol = eth_type_trans(skb, ndev);
806 (void)napi_gro_receive(&ring_data->napi, skb);
807 }
808
hns_desc_unused(struct hnae_ring * ring)809 static int hns_desc_unused(struct hnae_ring *ring)
810 {
811 int ntc = ring->next_to_clean;
812 int ntu = ring->next_to_use;
813
814 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
815 }
816
817 #define HNS_LOWEST_LATENCY_RATE 27 /* 27 MB/s */
818 #define HNS_LOW_LATENCY_RATE 80 /* 80 MB/s */
819
820 #define HNS_COAL_BDNUM 3
821
hns_coal_rx_bdnum(struct hnae_ring * ring)822 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
823 {
824 bool coal_enable = ring->q->handle->coal_adapt_en;
825
826 if (coal_enable &&
827 ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
828 return HNS_COAL_BDNUM;
829 else
830 return 0;
831 }
832
hns_update_rx_rate(struct hnae_ring * ring)833 static void hns_update_rx_rate(struct hnae_ring *ring)
834 {
835 bool coal_enable = ring->q->handle->coal_adapt_en;
836 u32 time_passed_ms;
837 u64 total_bytes;
838
839 if (!coal_enable ||
840 time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
841 return;
842
843 /* ring->stats.rx_bytes overflowed */
844 if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
845 ring->coal_last_rx_bytes = ring->stats.rx_bytes;
846 ring->coal_last_jiffies = jiffies;
847 return;
848 }
849
850 total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
851 time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
852 do_div(total_bytes, time_passed_ms);
853 ring->coal_rx_rate = total_bytes >> 10;
854
855 ring->coal_last_rx_bytes = ring->stats.rx_bytes;
856 ring->coal_last_jiffies = jiffies;
857 }
858
859 /**
860 * smooth_alg - smoothing algrithm for adjusting coalesce parameter
861 **/
smooth_alg(u32 new_param,u32 old_param)862 static u32 smooth_alg(u32 new_param, u32 old_param)
863 {
864 u32 gap = (new_param > old_param) ? new_param - old_param
865 : old_param - new_param;
866
867 if (gap > 8)
868 gap >>= 3;
869
870 if (new_param > old_param)
871 return old_param + gap;
872 else
873 return old_param - gap;
874 }
875
876 /**
877 * hns_nic_adp_coalesce - self adapte coalesce according to rx rate
878 * @ring_data: pointer to hns_nic_ring_data
879 **/
hns_nic_adpt_coalesce(struct hns_nic_ring_data * ring_data)880 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
881 {
882 struct hnae_ring *ring = ring_data->ring;
883 struct hnae_handle *handle = ring->q->handle;
884 u32 new_coal_param, old_coal_param = ring->coal_param;
885
886 if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
887 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
888 else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
889 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
890 else
891 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
892
893 if (new_coal_param == old_coal_param &&
894 new_coal_param == handle->coal_param)
895 return;
896
897 new_coal_param = smooth_alg(new_coal_param, old_coal_param);
898 ring->coal_param = new_coal_param;
899
900 /**
901 * Because all ring in one port has one coalesce param, when one ring
902 * calculate its own coalesce param, it cannot write to hardware at
903 * once. There are three conditions as follows:
904 * 1. current ring's coalesce param is larger than the hardware.
905 * 2. or ring which adapt last time can change again.
906 * 3. timeout.
907 */
908 if (new_coal_param == handle->coal_param) {
909 handle->coal_last_jiffies = jiffies;
910 handle->coal_ring_idx = ring_data->queue_index;
911 } else if (new_coal_param > handle->coal_param ||
912 handle->coal_ring_idx == ring_data->queue_index ||
913 time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
914 handle->dev->ops->set_coalesce_usecs(handle,
915 new_coal_param);
916 handle->dev->ops->set_coalesce_frames(handle,
917 1, new_coal_param);
918 handle->coal_param = new_coal_param;
919 handle->coal_ring_idx = ring_data->queue_index;
920 handle->coal_last_jiffies = jiffies;
921 }
922 }
923
hns_nic_rx_poll_one(struct hns_nic_ring_data * ring_data,int budget,void * v)924 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
925 int budget, void *v)
926 {
927 struct hnae_ring *ring = ring_data->ring;
928 struct sk_buff *skb;
929 int num, bnum;
930 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
931 int recv_pkts, recv_bds, clean_count, err;
932 int unused_count = hns_desc_unused(ring);
933
934 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
935 rmb(); /* make sure num taken effect before the other data is touched */
936
937 recv_pkts = 0, recv_bds = 0, clean_count = 0;
938 num -= unused_count;
939
940 while (recv_pkts < budget && recv_bds < num) {
941 /* reuse or realloc buffers */
942 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
943 hns_nic_alloc_rx_buffers(ring_data,
944 clean_count + unused_count);
945 clean_count = 0;
946 unused_count = hns_desc_unused(ring);
947 }
948
949 /* poll one pkt */
950 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
951 if (unlikely(!skb)) /* this fault cannot be repaired */
952 goto out;
953
954 recv_bds += bnum;
955 clean_count += bnum;
956 if (unlikely(err)) { /* do jump the err */
957 recv_pkts++;
958 continue;
959 }
960
961 /* do update ip stack process*/
962 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
963 ring_data, skb);
964 recv_pkts++;
965 }
966
967 out:
968 /* make all data has been write before submit */
969 if (clean_count + unused_count > 0)
970 hns_nic_alloc_rx_buffers(ring_data,
971 clean_count + unused_count);
972
973 return recv_pkts;
974 }
975
hns_nic_rx_fini_pro(struct hns_nic_ring_data * ring_data)976 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
977 {
978 struct hnae_ring *ring = ring_data->ring;
979 int num = 0;
980 bool rx_stopped;
981
982 hns_update_rx_rate(ring);
983
984 /* for hardware bug fixed */
985 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
986 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
987
988 if (num <= hns_coal_rx_bdnum(ring)) {
989 if (ring->q->handle->coal_adapt_en)
990 hns_nic_adpt_coalesce(ring_data);
991
992 rx_stopped = true;
993 } else {
994 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
995 ring_data->ring, 1);
996
997 rx_stopped = false;
998 }
999
1000 return rx_stopped;
1001 }
1002
hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data * ring_data)1003 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1004 {
1005 struct hnae_ring *ring = ring_data->ring;
1006 int num;
1007
1008 hns_update_rx_rate(ring);
1009 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
1010
1011 if (num <= hns_coal_rx_bdnum(ring)) {
1012 if (ring->q->handle->coal_adapt_en)
1013 hns_nic_adpt_coalesce(ring_data);
1014
1015 return true;
1016 }
1017
1018 return false;
1019 }
1020
hns_nic_reclaim_one_desc(struct hnae_ring * ring,int * bytes,int * pkts)1021 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
1022 int *bytes, int *pkts)
1023 {
1024 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
1025
1026 (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
1027 (*bytes) += desc_cb->length;
1028 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
1029 hnae_free_buffer_detach(ring, ring->next_to_clean);
1030
1031 ring_ptr_move_fw(ring, next_to_clean);
1032 }
1033
is_valid_clean_head(struct hnae_ring * ring,int h)1034 static int is_valid_clean_head(struct hnae_ring *ring, int h)
1035 {
1036 int u = ring->next_to_use;
1037 int c = ring->next_to_clean;
1038
1039 if (unlikely(h > ring->desc_num))
1040 return 0;
1041
1042 assert(u > 0 && u < ring->desc_num);
1043 assert(c > 0 && c < ring->desc_num);
1044 assert(u != c && h != c); /* must be checked before call this func */
1045
1046 return u > c ? (h > c && h <= u) : (h > c || h <= u);
1047 }
1048
1049 /* netif_tx_lock will turn down the performance, set only when necessary */
1050 #ifdef CONFIG_NET_POLL_CONTROLLER
1051 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock)
1052 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock)
1053 #else
1054 #define NETIF_TX_LOCK(ring)
1055 #define NETIF_TX_UNLOCK(ring)
1056 #endif
1057
1058 /* reclaim all desc in one budget
1059 * return error or number of desc left
1060 */
hns_nic_tx_poll_one(struct hns_nic_ring_data * ring_data,int budget,void * v)1061 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
1062 int budget, void *v)
1063 {
1064 struct hnae_ring *ring = ring_data->ring;
1065 struct net_device *ndev = ring_data->napi.dev;
1066 struct netdev_queue *dev_queue;
1067 struct hns_nic_priv *priv = netdev_priv(ndev);
1068 int head;
1069 int bytes, pkts;
1070
1071 NETIF_TX_LOCK(ring);
1072
1073 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1074 rmb(); /* make sure head is ready before touch any data */
1075
1076 if (is_ring_empty(ring) || head == ring->next_to_clean) {
1077 NETIF_TX_UNLOCK(ring);
1078 return 0; /* no data to poll */
1079 }
1080
1081 if (!is_valid_clean_head(ring, head)) {
1082 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
1083 ring->next_to_use, ring->next_to_clean);
1084 ring->stats.io_err_cnt++;
1085 NETIF_TX_UNLOCK(ring);
1086 return -EIO;
1087 }
1088
1089 bytes = 0;
1090 pkts = 0;
1091 while (head != ring->next_to_clean) {
1092 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1093 /* issue prefetch for next Tx descriptor */
1094 prefetch(&ring->desc_cb[ring->next_to_clean]);
1095 }
1096 /* update tx ring statistics. */
1097 ring->stats.tx_pkts += pkts;
1098 ring->stats.tx_bytes += bytes;
1099
1100 NETIF_TX_UNLOCK(ring);
1101
1102 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1103 netdev_tx_completed_queue(dev_queue, pkts, bytes);
1104
1105 if (unlikely(priv->link && !netif_carrier_ok(ndev)))
1106 netif_carrier_on(ndev);
1107
1108 if (unlikely(pkts && netif_carrier_ok(ndev) &&
1109 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
1110 /* Make sure that anybody stopping the queue after this
1111 * sees the new next_to_clean.
1112 */
1113 smp_mb();
1114 if (netif_tx_queue_stopped(dev_queue) &&
1115 !test_bit(NIC_STATE_DOWN, &priv->state)) {
1116 netif_tx_wake_queue(dev_queue);
1117 ring->stats.restart_queue++;
1118 }
1119 }
1120 return 0;
1121 }
1122
hns_nic_tx_fini_pro(struct hns_nic_ring_data * ring_data)1123 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1124 {
1125 struct hnae_ring *ring = ring_data->ring;
1126 int head;
1127
1128 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1129
1130 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1131
1132 if (head != ring->next_to_clean) {
1133 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1134 ring_data->ring, 1);
1135
1136 return false;
1137 } else {
1138 return true;
1139 }
1140 }
1141
hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data * ring_data)1142 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1143 {
1144 struct hnae_ring *ring = ring_data->ring;
1145 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1146
1147 if (head == ring->next_to_clean)
1148 return true;
1149 else
1150 return false;
1151 }
1152
hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data * ring_data)1153 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1154 {
1155 struct hnae_ring *ring = ring_data->ring;
1156 struct net_device *ndev = ring_data->napi.dev;
1157 struct netdev_queue *dev_queue;
1158 int head;
1159 int bytes, pkts;
1160
1161 NETIF_TX_LOCK(ring);
1162
1163 head = ring->next_to_use; /* ntu :soft setted ring position*/
1164 bytes = 0;
1165 pkts = 0;
1166 while (head != ring->next_to_clean)
1167 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1168
1169 NETIF_TX_UNLOCK(ring);
1170
1171 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1172 netdev_tx_reset_queue(dev_queue);
1173 }
1174
hns_nic_common_poll(struct napi_struct * napi,int budget)1175 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1176 {
1177 int clean_complete = 0;
1178 struct hns_nic_ring_data *ring_data =
1179 container_of(napi, struct hns_nic_ring_data, napi);
1180 struct hnae_ring *ring = ring_data->ring;
1181
1182 clean_complete += ring_data->poll_one(
1183 ring_data, budget - clean_complete,
1184 ring_data->ex_process);
1185
1186 if (clean_complete < budget) {
1187 if (ring_data->fini_process(ring_data)) {
1188 napi_complete(napi);
1189 ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1190 } else {
1191 return budget;
1192 }
1193 }
1194
1195 return clean_complete;
1196 }
1197
hns_irq_handle(int irq,void * dev)1198 static irqreturn_t hns_irq_handle(int irq, void *dev)
1199 {
1200 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1201
1202 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1203 ring_data->ring, 1);
1204 napi_schedule(&ring_data->napi);
1205
1206 return IRQ_HANDLED;
1207 }
1208
1209 /**
1210 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1211 *@ndev: net device
1212 */
hns_nic_adjust_link(struct net_device * ndev)1213 static void hns_nic_adjust_link(struct net_device *ndev)
1214 {
1215 struct hns_nic_priv *priv = netdev_priv(ndev);
1216 struct hnae_handle *h = priv->ae_handle;
1217 int state = 1;
1218
1219 /* If there is no phy, do not need adjust link */
1220 if (ndev->phydev) {
1221 /* When phy link down, do nothing */
1222 if (ndev->phydev->link == 0)
1223 return;
1224
1225 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1226 ndev->phydev->duplex)) {
1227 /* because Hi161X chip don't support to change gmac
1228 * speed and duplex with traffic. Delay 200ms to
1229 * make sure there is no more data in chip FIFO.
1230 */
1231 netif_carrier_off(ndev);
1232 msleep(200);
1233 h->dev->ops->adjust_link(h, ndev->phydev->speed,
1234 ndev->phydev->duplex);
1235 netif_carrier_on(ndev);
1236 }
1237 }
1238
1239 state = state && h->dev->ops->get_status(h);
1240
1241 if (state != priv->link) {
1242 if (state) {
1243 netif_carrier_on(ndev);
1244 netif_tx_wake_all_queues(ndev);
1245 netdev_info(ndev, "link up\n");
1246 } else {
1247 netif_carrier_off(ndev);
1248 netdev_info(ndev, "link down\n");
1249 }
1250 priv->link = state;
1251 }
1252 }
1253
1254 /**
1255 *hns_nic_init_phy - init phy
1256 *@ndev: net device
1257 *@h: ae handle
1258 * Return 0 on success, negative on failure
1259 */
hns_nic_init_phy(struct net_device * ndev,struct hnae_handle * h)1260 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1261 {
1262 struct phy_device *phy_dev = h->phy_dev;
1263 int ret;
1264
1265 if (!h->phy_dev)
1266 return 0;
1267
1268 phy_dev->supported &= h->if_support;
1269 phy_dev->advertising = phy_dev->supported;
1270
1271 if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1272 phy_dev->autoneg = false;
1273
1274 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1275 phy_dev->dev_flags = 0;
1276
1277 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1278 h->phy_if);
1279 } else {
1280 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1281 }
1282 if (unlikely(ret))
1283 return -ENODEV;
1284
1285 return 0;
1286 }
1287
hns_nic_ring_open(struct net_device * netdev,int idx)1288 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1289 {
1290 struct hns_nic_priv *priv = netdev_priv(netdev);
1291 struct hnae_handle *h = priv->ae_handle;
1292
1293 napi_enable(&priv->ring_data[idx].napi);
1294
1295 enable_irq(priv->ring_data[idx].ring->irq);
1296 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1297
1298 return 0;
1299 }
1300
hns_nic_net_set_mac_address(struct net_device * ndev,void * p)1301 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1302 {
1303 struct hns_nic_priv *priv = netdev_priv(ndev);
1304 struct hnae_handle *h = priv->ae_handle;
1305 struct sockaddr *mac_addr = p;
1306 int ret;
1307
1308 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1309 return -EADDRNOTAVAIL;
1310
1311 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1312 if (ret) {
1313 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1314 return ret;
1315 }
1316
1317 memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1318
1319 return 0;
1320 }
1321
hns_nic_update_stats(struct net_device * netdev)1322 void hns_nic_update_stats(struct net_device *netdev)
1323 {
1324 struct hns_nic_priv *priv = netdev_priv(netdev);
1325 struct hnae_handle *h = priv->ae_handle;
1326
1327 h->dev->ops->update_stats(h, &netdev->stats);
1328 }
1329
1330 /* set mac addr if it is configed. or leave it to the AE driver */
hns_init_mac_addr(struct net_device * ndev)1331 static void hns_init_mac_addr(struct net_device *ndev)
1332 {
1333 struct hns_nic_priv *priv = netdev_priv(ndev);
1334
1335 if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1336 eth_hw_addr_random(ndev);
1337 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1338 ndev->dev_addr);
1339 }
1340 }
1341
hns_nic_ring_close(struct net_device * netdev,int idx)1342 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1343 {
1344 struct hns_nic_priv *priv = netdev_priv(netdev);
1345 struct hnae_handle *h = priv->ae_handle;
1346
1347 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1348 disable_irq(priv->ring_data[idx].ring->irq);
1349
1350 napi_disable(&priv->ring_data[idx].napi);
1351 }
1352
hns_nic_init_affinity_mask(int q_num,int ring_idx,struct hnae_ring * ring,cpumask_t * mask)1353 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1354 struct hnae_ring *ring, cpumask_t *mask)
1355 {
1356 int cpu;
1357
1358 /* Diffrent irq banlance between 16core and 32core.
1359 * The cpu mask set by ring index according to the ring flag
1360 * which indicate the ring is tx or rx.
1361 */
1362 if (q_num == num_possible_cpus()) {
1363 if (is_tx_ring(ring))
1364 cpu = ring_idx;
1365 else
1366 cpu = ring_idx - q_num;
1367 } else {
1368 if (is_tx_ring(ring))
1369 cpu = ring_idx * 2;
1370 else
1371 cpu = (ring_idx - q_num) * 2 + 1;
1372 }
1373
1374 cpumask_clear(mask);
1375 cpumask_set_cpu(cpu, mask);
1376
1377 return cpu;
1378 }
1379
hns_nic_free_irq(int q_num,struct hns_nic_priv * priv)1380 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv)
1381 {
1382 int i;
1383
1384 for (i = 0; i < q_num * 2; i++) {
1385 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1386 irq_set_affinity_hint(priv->ring_data[i].ring->irq,
1387 NULL);
1388 free_irq(priv->ring_data[i].ring->irq,
1389 &priv->ring_data[i]);
1390 priv->ring_data[i].ring->irq_init_flag =
1391 RCB_IRQ_NOT_INITED;
1392 }
1393 }
1394 }
1395
hns_nic_init_irq(struct hns_nic_priv * priv)1396 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1397 {
1398 struct hnae_handle *h = priv->ae_handle;
1399 struct hns_nic_ring_data *rd;
1400 int i;
1401 int ret;
1402 int cpu;
1403
1404 for (i = 0; i < h->q_num * 2; i++) {
1405 rd = &priv->ring_data[i];
1406
1407 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1408 break;
1409
1410 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1411 "%s-%s%d", priv->netdev->name,
1412 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1413
1414 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1415
1416 ret = request_irq(rd->ring->irq,
1417 hns_irq_handle, 0, rd->ring->ring_name, rd);
1418 if (ret) {
1419 netdev_err(priv->netdev, "request irq(%d) fail\n",
1420 rd->ring->irq);
1421 goto out_free_irq;
1422 }
1423 disable_irq(rd->ring->irq);
1424
1425 cpu = hns_nic_init_affinity_mask(h->q_num, i,
1426 rd->ring, &rd->mask);
1427
1428 if (cpu_online(cpu))
1429 irq_set_affinity_hint(rd->ring->irq,
1430 &rd->mask);
1431
1432 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1433 }
1434
1435 return 0;
1436
1437 out_free_irq:
1438 hns_nic_free_irq(h->q_num, priv);
1439 return ret;
1440 }
1441
hns_nic_net_up(struct net_device * ndev)1442 static int hns_nic_net_up(struct net_device *ndev)
1443 {
1444 struct hns_nic_priv *priv = netdev_priv(ndev);
1445 struct hnae_handle *h = priv->ae_handle;
1446 int i, j;
1447 int ret;
1448
1449 if (!test_bit(NIC_STATE_DOWN, &priv->state))
1450 return 0;
1451
1452 ret = hns_nic_init_irq(priv);
1453 if (ret != 0) {
1454 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1455 return ret;
1456 }
1457
1458 for (i = 0; i < h->q_num * 2; i++) {
1459 ret = hns_nic_ring_open(ndev, i);
1460 if (ret)
1461 goto out_has_some_queues;
1462 }
1463
1464 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1465 if (ret)
1466 goto out_set_mac_addr_err;
1467
1468 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1469 if (ret)
1470 goto out_start_err;
1471
1472 if (ndev->phydev)
1473 phy_start(ndev->phydev);
1474
1475 clear_bit(NIC_STATE_DOWN, &priv->state);
1476 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1477
1478 return 0;
1479
1480 out_start_err:
1481 netif_stop_queue(ndev);
1482 out_set_mac_addr_err:
1483 out_has_some_queues:
1484 for (j = i - 1; j >= 0; j--)
1485 hns_nic_ring_close(ndev, j);
1486
1487 hns_nic_free_irq(h->q_num, priv);
1488 set_bit(NIC_STATE_DOWN, &priv->state);
1489
1490 return ret;
1491 }
1492
hns_nic_net_down(struct net_device * ndev)1493 static void hns_nic_net_down(struct net_device *ndev)
1494 {
1495 int i;
1496 struct hnae_ae_ops *ops;
1497 struct hns_nic_priv *priv = netdev_priv(ndev);
1498
1499 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1500 return;
1501
1502 (void)del_timer_sync(&priv->service_timer);
1503 netif_tx_stop_all_queues(ndev);
1504 netif_carrier_off(ndev);
1505 netif_tx_disable(ndev);
1506 priv->link = 0;
1507
1508 if (ndev->phydev)
1509 phy_stop(ndev->phydev);
1510
1511 ops = priv->ae_handle->dev->ops;
1512
1513 if (ops->stop)
1514 ops->stop(priv->ae_handle);
1515
1516 netif_tx_stop_all_queues(ndev);
1517
1518 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1519 hns_nic_ring_close(ndev, i);
1520 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1521
1522 /* clean tx buffers*/
1523 hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1524 }
1525 }
1526
hns_nic_net_reset(struct net_device * ndev)1527 void hns_nic_net_reset(struct net_device *ndev)
1528 {
1529 struct hns_nic_priv *priv = netdev_priv(ndev);
1530 struct hnae_handle *handle = priv->ae_handle;
1531
1532 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1533 usleep_range(1000, 2000);
1534
1535 (void)hnae_reinit_handle(handle);
1536
1537 clear_bit(NIC_STATE_RESETTING, &priv->state);
1538 }
1539
hns_nic_net_reinit(struct net_device * netdev)1540 void hns_nic_net_reinit(struct net_device *netdev)
1541 {
1542 struct hns_nic_priv *priv = netdev_priv(netdev);
1543 enum hnae_port_type type = priv->ae_handle->port_type;
1544
1545 netif_trans_update(priv->netdev);
1546 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1547 usleep_range(1000, 2000);
1548
1549 hns_nic_net_down(netdev);
1550
1551 /* Only do hns_nic_net_reset in debug mode
1552 * because of hardware limitation.
1553 */
1554 if (type == HNAE_PORT_DEBUG)
1555 hns_nic_net_reset(netdev);
1556
1557 (void)hns_nic_net_up(netdev);
1558 clear_bit(NIC_STATE_REINITING, &priv->state);
1559 }
1560
hns_nic_net_open(struct net_device * ndev)1561 static int hns_nic_net_open(struct net_device *ndev)
1562 {
1563 struct hns_nic_priv *priv = netdev_priv(ndev);
1564 struct hnae_handle *h = priv->ae_handle;
1565 int ret;
1566
1567 if (test_bit(NIC_STATE_TESTING, &priv->state))
1568 return -EBUSY;
1569
1570 priv->link = 0;
1571 netif_carrier_off(ndev);
1572
1573 ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1574 if (ret < 0) {
1575 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1576 ret);
1577 return ret;
1578 }
1579
1580 ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1581 if (ret < 0) {
1582 netdev_err(ndev,
1583 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1584 return ret;
1585 }
1586
1587 ret = hns_nic_net_up(ndev);
1588 if (ret) {
1589 netdev_err(ndev,
1590 "hns net up fail, ret=%d!\n", ret);
1591 return ret;
1592 }
1593
1594 return 0;
1595 }
1596
hns_nic_net_stop(struct net_device * ndev)1597 static int hns_nic_net_stop(struct net_device *ndev)
1598 {
1599 hns_nic_net_down(ndev);
1600
1601 return 0;
1602 }
1603
1604 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1605 #define HNS_TX_TIMEO_LIMIT (40 * HZ)
hns_nic_net_timeout(struct net_device * ndev)1606 static void hns_nic_net_timeout(struct net_device *ndev)
1607 {
1608 struct hns_nic_priv *priv = netdev_priv(ndev);
1609
1610 if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) {
1611 ndev->watchdog_timeo *= 2;
1612 netdev_info(ndev, "watchdog_timo changed to %d.\n",
1613 ndev->watchdog_timeo);
1614 } else {
1615 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1616 hns_tx_timeout_reset(priv);
1617 }
1618 }
1619
hns_nic_do_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)1620 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1621 int cmd)
1622 {
1623 struct phy_device *phy_dev = netdev->phydev;
1624
1625 if (!netif_running(netdev))
1626 return -EINVAL;
1627
1628 if (!phy_dev)
1629 return -ENOTSUPP;
1630
1631 return phy_mii_ioctl(phy_dev, ifr, cmd);
1632 }
1633
1634 /* use only for netconsole to poll with the device without interrupt */
1635 #ifdef CONFIG_NET_POLL_CONTROLLER
hns_nic_poll_controller(struct net_device * ndev)1636 void hns_nic_poll_controller(struct net_device *ndev)
1637 {
1638 struct hns_nic_priv *priv = netdev_priv(ndev);
1639 unsigned long flags;
1640 int i;
1641
1642 local_irq_save(flags);
1643 for (i = 0; i < priv->ae_handle->q_num * 2; i++)
1644 napi_schedule(&priv->ring_data[i].napi);
1645 local_irq_restore(flags);
1646 }
1647 #endif
1648
hns_nic_net_xmit(struct sk_buff * skb,struct net_device * ndev)1649 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1650 struct net_device *ndev)
1651 {
1652 struct hns_nic_priv *priv = netdev_priv(ndev);
1653
1654 assert(skb->queue_mapping < ndev->ae_handle->q_num);
1655
1656 return hns_nic_net_xmit_hw(ndev, skb,
1657 &tx_ring_data(priv, skb->queue_mapping));
1658 }
1659
hns_nic_drop_rx_fetch(struct hns_nic_ring_data * ring_data,struct sk_buff * skb)1660 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1661 struct sk_buff *skb)
1662 {
1663 dev_kfree_skb_any(skb);
1664 }
1665
1666 #define HNS_LB_TX_RING 0
hns_assemble_skb(struct net_device * ndev)1667 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1668 {
1669 struct sk_buff *skb;
1670 struct ethhdr *ethhdr;
1671 int frame_len;
1672
1673 /* allocate test skb */
1674 skb = alloc_skb(64, GFP_KERNEL);
1675 if (!skb)
1676 return NULL;
1677
1678 skb_put(skb, 64);
1679 skb->dev = ndev;
1680 memset(skb->data, 0xFF, skb->len);
1681
1682 /* must be tcp/ip package */
1683 ethhdr = (struct ethhdr *)skb->data;
1684 ethhdr->h_proto = htons(ETH_P_IP);
1685
1686 frame_len = skb->len & (~1ul);
1687 memset(&skb->data[frame_len / 2], 0xAA,
1688 frame_len / 2 - 1);
1689
1690 skb->queue_mapping = HNS_LB_TX_RING;
1691
1692 return skb;
1693 }
1694
hns_enable_serdes_lb(struct net_device * ndev)1695 static int hns_enable_serdes_lb(struct net_device *ndev)
1696 {
1697 struct hns_nic_priv *priv = netdev_priv(ndev);
1698 struct hnae_handle *h = priv->ae_handle;
1699 struct hnae_ae_ops *ops = h->dev->ops;
1700 int speed, duplex;
1701 int ret;
1702
1703 ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1704 if (ret)
1705 return ret;
1706
1707 ret = ops->start ? ops->start(h) : 0;
1708 if (ret)
1709 return ret;
1710
1711 /* link adjust duplex*/
1712 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1713 speed = 1000;
1714 else
1715 speed = 10000;
1716 duplex = 1;
1717
1718 ops->adjust_link(h, speed, duplex);
1719
1720 /* wait h/w ready */
1721 mdelay(300);
1722
1723 return 0;
1724 }
1725
hns_disable_serdes_lb(struct net_device * ndev)1726 static void hns_disable_serdes_lb(struct net_device *ndev)
1727 {
1728 struct hns_nic_priv *priv = netdev_priv(ndev);
1729 struct hnae_handle *h = priv->ae_handle;
1730 struct hnae_ae_ops *ops = h->dev->ops;
1731
1732 ops->stop(h);
1733 ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1734 }
1735
1736 /**
1737 *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1738 *function as follows:
1739 * 1. if one rx ring has found the page_offset is not equal 0 between head
1740 * and tail, it means that the chip fetched the wrong descs for the ring
1741 * which buffer size is 4096.
1742 * 2. we set the chip serdes loopback and set rss indirection to the ring.
1743 * 3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1744 * recieving all packages and it will fetch new descriptions.
1745 * 4. recover to the original state.
1746 *
1747 *@ndev: net device
1748 */
hns_nic_clear_all_rx_fetch(struct net_device * ndev)1749 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1750 {
1751 struct hns_nic_priv *priv = netdev_priv(ndev);
1752 struct hnae_handle *h = priv->ae_handle;
1753 struct hnae_ae_ops *ops = h->dev->ops;
1754 struct hns_nic_ring_data *rd;
1755 struct hnae_ring *ring;
1756 struct sk_buff *skb;
1757 u32 *org_indir;
1758 u32 *cur_indir;
1759 int indir_size;
1760 int head, tail;
1761 int fetch_num;
1762 int i, j;
1763 bool found;
1764 int retry_times;
1765 int ret = 0;
1766
1767 /* alloc indir memory */
1768 indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1769 org_indir = kzalloc(indir_size, GFP_KERNEL);
1770 if (!org_indir)
1771 return -ENOMEM;
1772
1773 /* store the orginal indirection */
1774 ops->get_rss(h, org_indir, NULL, NULL);
1775
1776 cur_indir = kzalloc(indir_size, GFP_KERNEL);
1777 if (!cur_indir) {
1778 ret = -ENOMEM;
1779 goto cur_indir_alloc_err;
1780 }
1781
1782 /* set loopback */
1783 if (hns_enable_serdes_lb(ndev)) {
1784 ret = -EINVAL;
1785 goto enable_serdes_lb_err;
1786 }
1787
1788 /* foreach every rx ring to clear fetch desc */
1789 for (i = 0; i < h->q_num; i++) {
1790 ring = &h->qs[i]->rx_ring;
1791 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1792 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1793 found = false;
1794 fetch_num = ring_dist(ring, head, tail);
1795
1796 while (head != tail) {
1797 if (ring->desc_cb[head].page_offset != 0) {
1798 found = true;
1799 break;
1800 }
1801
1802 head++;
1803 if (head == ring->desc_num)
1804 head = 0;
1805 }
1806
1807 if (found) {
1808 for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1809 cur_indir[j] = i;
1810 ops->set_rss(h, cur_indir, NULL, 0);
1811
1812 for (j = 0; j < fetch_num; j++) {
1813 /* alloc one skb and init */
1814 skb = hns_assemble_skb(ndev);
1815 if (!skb)
1816 goto out;
1817 rd = &tx_ring_data(priv, skb->queue_mapping);
1818 hns_nic_net_xmit_hw(ndev, skb, rd);
1819
1820 retry_times = 0;
1821 while (retry_times++ < 10) {
1822 mdelay(10);
1823 /* clean rx */
1824 rd = &rx_ring_data(priv, i);
1825 if (rd->poll_one(rd, fetch_num,
1826 hns_nic_drop_rx_fetch))
1827 break;
1828 }
1829
1830 retry_times = 0;
1831 while (retry_times++ < 10) {
1832 mdelay(10);
1833 /* clean tx ring 0 send package */
1834 rd = &tx_ring_data(priv,
1835 HNS_LB_TX_RING);
1836 if (rd->poll_one(rd, fetch_num, NULL))
1837 break;
1838 }
1839 }
1840 }
1841 }
1842
1843 out:
1844 /* restore everything */
1845 ops->set_rss(h, org_indir, NULL, 0);
1846 hns_disable_serdes_lb(ndev);
1847 enable_serdes_lb_err:
1848 kfree(cur_indir);
1849 cur_indir_alloc_err:
1850 kfree(org_indir);
1851
1852 return ret;
1853 }
1854
hns_nic_change_mtu(struct net_device * ndev,int new_mtu)1855 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1856 {
1857 struct hns_nic_priv *priv = netdev_priv(ndev);
1858 struct hnae_handle *h = priv->ae_handle;
1859 bool if_running = netif_running(ndev);
1860 int ret;
1861
1862 /* MTU < 68 is an error and causes problems on some kernels */
1863 if (new_mtu < 68)
1864 return -EINVAL;
1865
1866 /* MTU no change */
1867 if (new_mtu == ndev->mtu)
1868 return 0;
1869
1870 if (!h->dev->ops->set_mtu)
1871 return -ENOTSUPP;
1872
1873 if (if_running) {
1874 (void)hns_nic_net_stop(ndev);
1875 msleep(100);
1876 }
1877
1878 if (priv->enet_ver != AE_VERSION_1 &&
1879 ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1880 new_mtu > BD_SIZE_2048_MAX_MTU) {
1881 /* update desc */
1882 hnae_reinit_all_ring_desc(h);
1883
1884 /* clear the package which the chip has fetched */
1885 ret = hns_nic_clear_all_rx_fetch(ndev);
1886
1887 /* the page offset must be consist with desc */
1888 hnae_reinit_all_ring_page_off(h);
1889
1890 if (ret) {
1891 netdev_err(ndev, "clear the fetched desc fail\n");
1892 goto out;
1893 }
1894 }
1895
1896 ret = h->dev->ops->set_mtu(h, new_mtu);
1897 if (ret) {
1898 netdev_err(ndev, "set mtu fail, return value %d\n",
1899 ret);
1900 goto out;
1901 }
1902
1903 /* finally, set new mtu to netdevice */
1904 ndev->mtu = new_mtu;
1905
1906 out:
1907 if (if_running) {
1908 if (hns_nic_net_open(ndev)) {
1909 netdev_err(ndev, "hns net open fail\n");
1910 ret = -EINVAL;
1911 }
1912 }
1913
1914 return ret;
1915 }
1916
hns_nic_set_features(struct net_device * netdev,netdev_features_t features)1917 static int hns_nic_set_features(struct net_device *netdev,
1918 netdev_features_t features)
1919 {
1920 struct hns_nic_priv *priv = netdev_priv(netdev);
1921
1922 switch (priv->enet_ver) {
1923 case AE_VERSION_1:
1924 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1925 netdev_info(netdev, "enet v1 do not support tso!\n");
1926 break;
1927 default:
1928 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1929 priv->ops.fill_desc = fill_tso_desc;
1930 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1931 /* The chip only support 7*4096 */
1932 netif_set_gso_max_size(netdev, 7 * 4096);
1933 } else {
1934 priv->ops.fill_desc = fill_v2_desc;
1935 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1936 }
1937 break;
1938 }
1939 netdev->features = features;
1940 return 0;
1941 }
1942
hns_nic_fix_features(struct net_device * netdev,netdev_features_t features)1943 static netdev_features_t hns_nic_fix_features(
1944 struct net_device *netdev, netdev_features_t features)
1945 {
1946 struct hns_nic_priv *priv = netdev_priv(netdev);
1947
1948 switch (priv->enet_ver) {
1949 case AE_VERSION_1:
1950 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1951 NETIF_F_HW_VLAN_CTAG_FILTER);
1952 break;
1953 default:
1954 break;
1955 }
1956 return features;
1957 }
1958
hns_nic_uc_sync(struct net_device * netdev,const unsigned char * addr)1959 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1960 {
1961 struct hns_nic_priv *priv = netdev_priv(netdev);
1962 struct hnae_handle *h = priv->ae_handle;
1963
1964 if (h->dev->ops->add_uc_addr)
1965 return h->dev->ops->add_uc_addr(h, addr);
1966
1967 return 0;
1968 }
1969
hns_nic_uc_unsync(struct net_device * netdev,const unsigned char * addr)1970 static int hns_nic_uc_unsync(struct net_device *netdev,
1971 const unsigned char *addr)
1972 {
1973 struct hns_nic_priv *priv = netdev_priv(netdev);
1974 struct hnae_handle *h = priv->ae_handle;
1975
1976 if (h->dev->ops->rm_uc_addr)
1977 return h->dev->ops->rm_uc_addr(h, addr);
1978
1979 return 0;
1980 }
1981
1982 /**
1983 * nic_set_multicast_list - set mutl mac address
1984 * @netdev: net device
1985 * @p: mac address
1986 *
1987 * return void
1988 */
hns_set_multicast_list(struct net_device * ndev)1989 void hns_set_multicast_list(struct net_device *ndev)
1990 {
1991 struct hns_nic_priv *priv = netdev_priv(ndev);
1992 struct hnae_handle *h = priv->ae_handle;
1993 struct netdev_hw_addr *ha = NULL;
1994
1995 if (!h) {
1996 netdev_err(ndev, "hnae handle is null\n");
1997 return;
1998 }
1999
2000 if (h->dev->ops->clr_mc_addr)
2001 if (h->dev->ops->clr_mc_addr(h))
2002 netdev_err(ndev, "clear multicast address fail\n");
2003
2004 if (h->dev->ops->set_mc_addr) {
2005 netdev_for_each_mc_addr(ha, ndev)
2006 if (h->dev->ops->set_mc_addr(h, ha->addr))
2007 netdev_err(ndev, "set multicast fail\n");
2008 }
2009 }
2010
hns_nic_set_rx_mode(struct net_device * ndev)2011 void hns_nic_set_rx_mode(struct net_device *ndev)
2012 {
2013 struct hns_nic_priv *priv = netdev_priv(ndev);
2014 struct hnae_handle *h = priv->ae_handle;
2015
2016 if (h->dev->ops->set_promisc_mode) {
2017 if (ndev->flags & IFF_PROMISC)
2018 h->dev->ops->set_promisc_mode(h, 1);
2019 else
2020 h->dev->ops->set_promisc_mode(h, 0);
2021 }
2022
2023 hns_set_multicast_list(ndev);
2024
2025 if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
2026 netdev_err(ndev, "sync uc address fail\n");
2027 }
2028
hns_nic_get_stats64(struct net_device * ndev,struct rtnl_link_stats64 * stats)2029 static void hns_nic_get_stats64(struct net_device *ndev,
2030 struct rtnl_link_stats64 *stats)
2031 {
2032 int idx = 0;
2033 u64 tx_bytes = 0;
2034 u64 rx_bytes = 0;
2035 u64 tx_pkts = 0;
2036 u64 rx_pkts = 0;
2037 struct hns_nic_priv *priv = netdev_priv(ndev);
2038 struct hnae_handle *h = priv->ae_handle;
2039
2040 for (idx = 0; idx < h->q_num; idx++) {
2041 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
2042 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
2043 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
2044 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
2045 }
2046
2047 stats->tx_bytes = tx_bytes;
2048 stats->tx_packets = tx_pkts;
2049 stats->rx_bytes = rx_bytes;
2050 stats->rx_packets = rx_pkts;
2051
2052 stats->rx_errors = ndev->stats.rx_errors;
2053 stats->multicast = ndev->stats.multicast;
2054 stats->rx_length_errors = ndev->stats.rx_length_errors;
2055 stats->rx_crc_errors = ndev->stats.rx_crc_errors;
2056 stats->rx_missed_errors = ndev->stats.rx_missed_errors;
2057
2058 stats->tx_errors = ndev->stats.tx_errors;
2059 stats->rx_dropped = ndev->stats.rx_dropped;
2060 stats->tx_dropped = ndev->stats.tx_dropped;
2061 stats->collisions = ndev->stats.collisions;
2062 stats->rx_over_errors = ndev->stats.rx_over_errors;
2063 stats->rx_frame_errors = ndev->stats.rx_frame_errors;
2064 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
2065 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
2066 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
2067 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
2068 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
2069 stats->tx_window_errors = ndev->stats.tx_window_errors;
2070 stats->rx_compressed = ndev->stats.rx_compressed;
2071 stats->tx_compressed = ndev->stats.tx_compressed;
2072 }
2073
2074 static u16
hns_nic_select_queue(struct net_device * ndev,struct sk_buff * skb,void * accel_priv,select_queue_fallback_t fallback)2075 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
2076 void *accel_priv, select_queue_fallback_t fallback)
2077 {
2078 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
2079 struct hns_nic_priv *priv = netdev_priv(ndev);
2080
2081 /* fix hardware broadcast/multicast packets queue loopback */
2082 if (!AE_IS_VER1(priv->enet_ver) &&
2083 is_multicast_ether_addr(eth_hdr->h_dest))
2084 return 0;
2085 else
2086 return fallback(ndev, skb);
2087 }
2088
2089 static const struct net_device_ops hns_nic_netdev_ops = {
2090 .ndo_open = hns_nic_net_open,
2091 .ndo_stop = hns_nic_net_stop,
2092 .ndo_start_xmit = hns_nic_net_xmit,
2093 .ndo_tx_timeout = hns_nic_net_timeout,
2094 .ndo_set_mac_address = hns_nic_net_set_mac_address,
2095 .ndo_change_mtu = hns_nic_change_mtu,
2096 .ndo_do_ioctl = hns_nic_do_ioctl,
2097 .ndo_set_features = hns_nic_set_features,
2098 .ndo_fix_features = hns_nic_fix_features,
2099 .ndo_get_stats64 = hns_nic_get_stats64,
2100 #ifdef CONFIG_NET_POLL_CONTROLLER
2101 .ndo_poll_controller = hns_nic_poll_controller,
2102 #endif
2103 .ndo_set_rx_mode = hns_nic_set_rx_mode,
2104 .ndo_select_queue = hns_nic_select_queue,
2105 };
2106
hns_nic_update_link_status(struct net_device * netdev)2107 static void hns_nic_update_link_status(struct net_device *netdev)
2108 {
2109 struct hns_nic_priv *priv = netdev_priv(netdev);
2110
2111 struct hnae_handle *h = priv->ae_handle;
2112
2113 if (h->phy_dev) {
2114 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
2115 return;
2116
2117 (void)genphy_read_status(h->phy_dev);
2118 }
2119 hns_nic_adjust_link(netdev);
2120 }
2121
2122 /* for dumping key regs*/
hns_nic_dump(struct hns_nic_priv * priv)2123 static void hns_nic_dump(struct hns_nic_priv *priv)
2124 {
2125 struct hnae_handle *h = priv->ae_handle;
2126 struct hnae_ae_ops *ops = h->dev->ops;
2127 u32 *data, reg_num, i;
2128
2129 if (ops->get_regs_len && ops->get_regs) {
2130 reg_num = ops->get_regs_len(priv->ae_handle);
2131 reg_num = (reg_num + 3ul) & ~3ul;
2132 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
2133 if (data) {
2134 ops->get_regs(priv->ae_handle, data);
2135 for (i = 0; i < reg_num; i += 4)
2136 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
2137 i, data[i], data[i + 1],
2138 data[i + 2], data[i + 3]);
2139 kfree(data);
2140 }
2141 }
2142
2143 for (i = 0; i < h->q_num; i++) {
2144 pr_info("tx_queue%d_next_to_clean:%d\n",
2145 i, h->qs[i]->tx_ring.next_to_clean);
2146 pr_info("tx_queue%d_next_to_use:%d\n",
2147 i, h->qs[i]->tx_ring.next_to_use);
2148 pr_info("rx_queue%d_next_to_clean:%d\n",
2149 i, h->qs[i]->rx_ring.next_to_clean);
2150 pr_info("rx_queue%d_next_to_use:%d\n",
2151 i, h->qs[i]->rx_ring.next_to_use);
2152 }
2153 }
2154
2155 /* for resetting subtask */
hns_nic_reset_subtask(struct hns_nic_priv * priv)2156 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2157 {
2158 enum hnae_port_type type = priv->ae_handle->port_type;
2159
2160 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2161 return;
2162 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2163
2164 /* If we're already down, removing or resetting, just bail */
2165 if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2166 test_bit(NIC_STATE_REMOVING, &priv->state) ||
2167 test_bit(NIC_STATE_RESETTING, &priv->state))
2168 return;
2169
2170 hns_nic_dump(priv);
2171 netdev_info(priv->netdev, "try to reset %s port!\n",
2172 (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2173
2174 rtnl_lock();
2175 /* put off any impending NetWatchDogTimeout */
2176 netif_trans_update(priv->netdev);
2177 hns_nic_net_reinit(priv->netdev);
2178
2179 rtnl_unlock();
2180 }
2181
2182 /* for doing service complete*/
hns_nic_service_event_complete(struct hns_nic_priv * priv)2183 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2184 {
2185 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2186 /* make sure to commit the things */
2187 smp_mb__before_atomic();
2188 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2189 }
2190
hns_nic_service_task(struct work_struct * work)2191 static void hns_nic_service_task(struct work_struct *work)
2192 {
2193 struct hns_nic_priv *priv
2194 = container_of(work, struct hns_nic_priv, service_task);
2195 struct hnae_handle *h = priv->ae_handle;
2196
2197 hns_nic_reset_subtask(priv);
2198 hns_nic_update_link_status(priv->netdev);
2199 h->dev->ops->update_led_status(h);
2200 hns_nic_update_stats(priv->netdev);
2201
2202 hns_nic_service_event_complete(priv);
2203 }
2204
hns_nic_task_schedule(struct hns_nic_priv * priv)2205 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2206 {
2207 if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2208 !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2209 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2210 (void)schedule_work(&priv->service_task);
2211 }
2212
hns_nic_service_timer(unsigned long data)2213 static void hns_nic_service_timer(unsigned long data)
2214 {
2215 struct hns_nic_priv *priv = (struct hns_nic_priv *)data;
2216
2217 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2218
2219 hns_nic_task_schedule(priv);
2220 }
2221
2222 /**
2223 * hns_tx_timeout_reset - initiate reset due to Tx timeout
2224 * @priv: driver private struct
2225 **/
hns_tx_timeout_reset(struct hns_nic_priv * priv)2226 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2227 {
2228 /* Do the reset outside of interrupt context */
2229 if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2230 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2231 netdev_warn(priv->netdev,
2232 "initiating reset due to tx timeout(%llu,0x%lx)\n",
2233 priv->tx_timeout_count, priv->state);
2234 priv->tx_timeout_count++;
2235 hns_nic_task_schedule(priv);
2236 }
2237 }
2238
hns_nic_init_ring_data(struct hns_nic_priv * priv)2239 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2240 {
2241 struct hnae_handle *h = priv->ae_handle;
2242 struct hns_nic_ring_data *rd;
2243 bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2244 int i;
2245
2246 if (h->q_num > NIC_MAX_Q_PER_VF) {
2247 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2248 return -EINVAL;
2249 }
2250
2251 priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2,
2252 GFP_KERNEL);
2253 if (!priv->ring_data)
2254 return -ENOMEM;
2255
2256 for (i = 0; i < h->q_num; i++) {
2257 rd = &priv->ring_data[i];
2258 rd->queue_index = i;
2259 rd->ring = &h->qs[i]->tx_ring;
2260 rd->poll_one = hns_nic_tx_poll_one;
2261 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2262 hns_nic_tx_fini_pro_v2;
2263
2264 netif_napi_add(priv->netdev, &rd->napi,
2265 hns_nic_common_poll, NAPI_POLL_WEIGHT);
2266 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2267 }
2268 for (i = h->q_num; i < h->q_num * 2; i++) {
2269 rd = &priv->ring_data[i];
2270 rd->queue_index = i - h->q_num;
2271 rd->ring = &h->qs[i - h->q_num]->rx_ring;
2272 rd->poll_one = hns_nic_rx_poll_one;
2273 rd->ex_process = hns_nic_rx_up_pro;
2274 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2275 hns_nic_rx_fini_pro_v2;
2276
2277 netif_napi_add(priv->netdev, &rd->napi,
2278 hns_nic_common_poll, NAPI_POLL_WEIGHT);
2279 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2280 }
2281
2282 return 0;
2283 }
2284
hns_nic_uninit_ring_data(struct hns_nic_priv * priv)2285 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2286 {
2287 struct hnae_handle *h = priv->ae_handle;
2288 int i;
2289
2290 for (i = 0; i < h->q_num * 2; i++) {
2291 netif_napi_del(&priv->ring_data[i].napi);
2292 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2293 (void)irq_set_affinity_hint(
2294 priv->ring_data[i].ring->irq,
2295 NULL);
2296 free_irq(priv->ring_data[i].ring->irq,
2297 &priv->ring_data[i]);
2298 }
2299
2300 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2301 }
2302 kfree(priv->ring_data);
2303 }
2304
hns_nic_set_priv_ops(struct net_device * netdev)2305 static void hns_nic_set_priv_ops(struct net_device *netdev)
2306 {
2307 struct hns_nic_priv *priv = netdev_priv(netdev);
2308 struct hnae_handle *h = priv->ae_handle;
2309
2310 if (AE_IS_VER1(priv->enet_ver)) {
2311 priv->ops.fill_desc = fill_desc;
2312 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2313 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2314 } else {
2315 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2316 if ((netdev->features & NETIF_F_TSO) ||
2317 (netdev->features & NETIF_F_TSO6)) {
2318 priv->ops.fill_desc = fill_tso_desc;
2319 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2320 /* This chip only support 7*4096 */
2321 netif_set_gso_max_size(netdev, 7 * 4096);
2322 } else {
2323 priv->ops.fill_desc = fill_v2_desc;
2324 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2325 }
2326 /* enable tso when init
2327 * control tso on/off through TSE bit in bd
2328 */
2329 h->dev->ops->set_tso_stats(h, 1);
2330 }
2331 }
2332
hns_nic_try_get_ae(struct net_device * ndev)2333 static int hns_nic_try_get_ae(struct net_device *ndev)
2334 {
2335 struct hns_nic_priv *priv = netdev_priv(ndev);
2336 struct hnae_handle *h;
2337 int ret;
2338
2339 h = hnae_get_handle(&priv->netdev->dev,
2340 priv->fwnode, priv->port_id, NULL);
2341 if (IS_ERR_OR_NULL(h)) {
2342 ret = -ENODEV;
2343 dev_dbg(priv->dev, "has not handle, register notifier!\n");
2344 goto out;
2345 }
2346 priv->ae_handle = h;
2347
2348 ret = hns_nic_init_phy(ndev, h);
2349 if (ret) {
2350 dev_err(priv->dev, "probe phy device fail!\n");
2351 goto out_init_phy;
2352 }
2353
2354 ret = hns_nic_init_ring_data(priv);
2355 if (ret) {
2356 ret = -ENOMEM;
2357 goto out_init_ring_data;
2358 }
2359
2360 hns_nic_set_priv_ops(ndev);
2361
2362 ret = register_netdev(ndev);
2363 if (ret) {
2364 dev_err(priv->dev, "probe register netdev fail!\n");
2365 goto out_reg_ndev_fail;
2366 }
2367 return 0;
2368
2369 out_reg_ndev_fail:
2370 hns_nic_uninit_ring_data(priv);
2371 priv->ring_data = NULL;
2372 out_init_phy:
2373 out_init_ring_data:
2374 hnae_put_handle(priv->ae_handle);
2375 priv->ae_handle = NULL;
2376 out:
2377 return ret;
2378 }
2379
hns_nic_notifier_action(struct notifier_block * nb,unsigned long action,void * data)2380 static int hns_nic_notifier_action(struct notifier_block *nb,
2381 unsigned long action, void *data)
2382 {
2383 struct hns_nic_priv *priv =
2384 container_of(nb, struct hns_nic_priv, notifier_block);
2385
2386 assert(action == HNAE_AE_REGISTER);
2387
2388 if (!hns_nic_try_get_ae(priv->netdev)) {
2389 hnae_unregister_notifier(&priv->notifier_block);
2390 priv->notifier_block.notifier_call = NULL;
2391 }
2392 return 0;
2393 }
2394
hns_nic_dev_probe(struct platform_device * pdev)2395 static int hns_nic_dev_probe(struct platform_device *pdev)
2396 {
2397 struct device *dev = &pdev->dev;
2398 struct net_device *ndev;
2399 struct hns_nic_priv *priv;
2400 u32 port_id;
2401 int ret;
2402
2403 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2404 if (!ndev)
2405 return -ENOMEM;
2406
2407 platform_set_drvdata(pdev, ndev);
2408
2409 priv = netdev_priv(ndev);
2410 priv->dev = dev;
2411 priv->netdev = ndev;
2412
2413 if (dev_of_node(dev)) {
2414 struct device_node *ae_node;
2415
2416 if (of_device_is_compatible(dev->of_node,
2417 "hisilicon,hns-nic-v1"))
2418 priv->enet_ver = AE_VERSION_1;
2419 else
2420 priv->enet_ver = AE_VERSION_2;
2421
2422 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2423 if (!ae_node) {
2424 ret = -ENODEV;
2425 dev_err(dev, "not find ae-handle\n");
2426 goto out_read_prop_fail;
2427 }
2428 priv->fwnode = &ae_node->fwnode;
2429 } else if (is_acpi_node(dev->fwnode)) {
2430 struct acpi_reference_args args;
2431
2432 if (acpi_dev_found(hns_enet_acpi_match[0].id))
2433 priv->enet_ver = AE_VERSION_1;
2434 else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2435 priv->enet_ver = AE_VERSION_2;
2436 else
2437 return -ENXIO;
2438
2439 /* try to find port-idx-in-ae first */
2440 ret = acpi_node_get_property_reference(dev->fwnode,
2441 "ae-handle", 0, &args);
2442 if (ret) {
2443 dev_err(dev, "not find ae-handle\n");
2444 goto out_read_prop_fail;
2445 }
2446 priv->fwnode = acpi_fwnode_handle(args.adev);
2447 } else {
2448 dev_err(dev, "cannot read cfg data from OF or acpi\n");
2449 return -ENXIO;
2450 }
2451
2452 ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2453 if (ret) {
2454 /* only for old code compatible */
2455 ret = device_property_read_u32(dev, "port-id", &port_id);
2456 if (ret)
2457 goto out_read_prop_fail;
2458 /* for old dts, we need to caculate the port offset */
2459 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2460 : port_id - HNS_SRV_OFFSET;
2461 }
2462 priv->port_id = port_id;
2463
2464 hns_init_mac_addr(ndev);
2465
2466 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2467 ndev->priv_flags |= IFF_UNICAST_FLT;
2468 ndev->netdev_ops = &hns_nic_netdev_ops;
2469 hns_ethtool_set_ops(ndev);
2470
2471 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2472 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2473 NETIF_F_GRO;
2474 ndev->vlan_features |=
2475 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2476 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2477
2478 /* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2479 ndev->min_mtu = MAC_MIN_MTU;
2480 switch (priv->enet_ver) {
2481 case AE_VERSION_2:
2482 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE;
2483 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2484 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2485 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2486 ndev->max_mtu = MAC_MAX_MTU_V2 -
2487 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2488 break;
2489 default:
2490 ndev->max_mtu = MAC_MAX_MTU -
2491 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2492 break;
2493 }
2494
2495 SET_NETDEV_DEV(ndev, dev);
2496
2497 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2498 dev_dbg(dev, "set mask to 64bit\n");
2499 else
2500 dev_err(dev, "set mask to 64bit fail!\n");
2501
2502 /* carrier off reporting is important to ethtool even BEFORE open */
2503 netif_carrier_off(ndev);
2504
2505 setup_timer(&priv->service_timer, hns_nic_service_timer,
2506 (unsigned long)priv);
2507 INIT_WORK(&priv->service_task, hns_nic_service_task);
2508
2509 set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2510 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2511 set_bit(NIC_STATE_DOWN, &priv->state);
2512
2513 if (hns_nic_try_get_ae(priv->netdev)) {
2514 priv->notifier_block.notifier_call = hns_nic_notifier_action;
2515 ret = hnae_register_notifier(&priv->notifier_block);
2516 if (ret) {
2517 dev_err(dev, "register notifier fail!\n");
2518 goto out_notify_fail;
2519 }
2520 dev_dbg(dev, "has not handle, register notifier!\n");
2521 }
2522
2523 return 0;
2524
2525 out_notify_fail:
2526 (void)cancel_work_sync(&priv->service_task);
2527 out_read_prop_fail:
2528 /* safe for ACPI FW */
2529 of_node_put(to_of_node(priv->fwnode));
2530 free_netdev(ndev);
2531 return ret;
2532 }
2533
hns_nic_dev_remove(struct platform_device * pdev)2534 static int hns_nic_dev_remove(struct platform_device *pdev)
2535 {
2536 struct net_device *ndev = platform_get_drvdata(pdev);
2537 struct hns_nic_priv *priv = netdev_priv(ndev);
2538
2539 if (ndev->reg_state != NETREG_UNINITIALIZED)
2540 unregister_netdev(ndev);
2541
2542 if (priv->ring_data)
2543 hns_nic_uninit_ring_data(priv);
2544 priv->ring_data = NULL;
2545
2546 if (ndev->phydev)
2547 phy_disconnect(ndev->phydev);
2548
2549 if (!IS_ERR_OR_NULL(priv->ae_handle))
2550 hnae_put_handle(priv->ae_handle);
2551 priv->ae_handle = NULL;
2552 if (priv->notifier_block.notifier_call)
2553 hnae_unregister_notifier(&priv->notifier_block);
2554 priv->notifier_block.notifier_call = NULL;
2555
2556 set_bit(NIC_STATE_REMOVING, &priv->state);
2557 (void)cancel_work_sync(&priv->service_task);
2558
2559 /* safe for ACPI FW */
2560 of_node_put(to_of_node(priv->fwnode));
2561
2562 free_netdev(ndev);
2563 return 0;
2564 }
2565
2566 static const struct of_device_id hns_enet_of_match[] = {
2567 {.compatible = "hisilicon,hns-nic-v1",},
2568 {.compatible = "hisilicon,hns-nic-v2",},
2569 {},
2570 };
2571
2572 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2573
2574 static struct platform_driver hns_nic_dev_driver = {
2575 .driver = {
2576 .name = "hns-nic",
2577 .of_match_table = hns_enet_of_match,
2578 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2579 },
2580 .probe = hns_nic_dev_probe,
2581 .remove = hns_nic_dev_remove,
2582 };
2583
2584 module_platform_driver(hns_nic_dev_driver);
2585
2586 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2587 MODULE_AUTHOR("Hisilicon, Inc.");
2588 MODULE_LICENSE("GPL");
2589 MODULE_ALIAS("platform:hns-nic");
2590