• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2  *
3  * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/pci.h>
21 #include <linux/ptp_classify.h>
22 
23 #include "igb.h"
24 
25 #define INCVALUE_MASK		0x7fffffff
26 #define ISGN			0x80000000
27 
28 /* The 82580 timesync updates the system timer every 8ns by 8ns,
29  * and this update value cannot be reprogrammed.
30  *
31  * Neither the 82576 nor the 82580 offer registers wide enough to hold
32  * nanoseconds time values for very long. For the 82580, SYSTIM always
33  * counts nanoseconds, but the upper 24 bits are not available. The
34  * frequency is adjusted by changing the 32 bit fractional nanoseconds
35  * register, TIMINCA.
36  *
37  * For the 82576, the SYSTIM register time unit is affect by the
38  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
39  * field are needed to provide the nominal 16 nanosecond period,
40  * leaving 19 bits for fractional nanoseconds.
41  *
42  * We scale the NIC clock cycle by a large factor so that relatively
43  * small clock corrections can be added or subtracted at each clock
44  * tick. The drawbacks of a large factor are a) that the clock
45  * register overflows more quickly (not such a big deal) and b) that
46  * the increment per tick has to fit into 24 bits.  As a result we
47  * need to use a shift of 19 so we can fit a value of 16 into the
48  * TIMINCA register.
49  *
50  *
51  *             SYSTIMH            SYSTIML
52  *        +--------------+   +---+---+------+
53  *  82576 |      32      |   | 8 | 5 |  19  |
54  *        +--------------+   +---+---+------+
55  *         \________ 45 bits _______/  fract
56  *
57  *        +----------+---+   +--------------+
58  *  82580 |    24    | 8 |   |      32      |
59  *        +----------+---+   +--------------+
60  *          reserved  \______ 40 bits _____/
61  *
62  *
63  * The 45 bit 82576 SYSTIM overflows every
64  *   2^45 * 10^-9 / 3600 = 9.77 hours.
65  *
66  * The 40 bit 82580 SYSTIM overflows every
67  *   2^40 * 10^-9 /  60  = 18.3 minutes.
68  *
69  * SYSTIM is converted to real time using a timecounter. As
70  * timecounter_cyc2time() allows old timestamps, the timecounter
71  * needs to be updated at least once per half of the SYSTIM interval.
72  * Scheduling of delayed work is not very accurate, so we aim for 8
73  * minutes to be sure the actual interval is shorter than 9.16 minutes.
74  */
75 
76 #define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 8)
77 #define IGB_PTP_TX_TIMEOUT		(HZ * 15)
78 #define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
79 #define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
80 #define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
81 #define IGB_NBITS_82580			40
82 
83 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
84 
85 /* SYSTIM read access for the 82576 */
igb_ptp_read_82576(const struct cyclecounter * cc)86 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
87 {
88 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
89 	struct e1000_hw *hw = &igb->hw;
90 	u64 val;
91 	u32 lo, hi;
92 
93 	lo = rd32(E1000_SYSTIML);
94 	hi = rd32(E1000_SYSTIMH);
95 
96 	val = ((u64) hi) << 32;
97 	val |= lo;
98 
99 	return val;
100 }
101 
102 /* SYSTIM read access for the 82580 */
igb_ptp_read_82580(const struct cyclecounter * cc)103 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
104 {
105 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
106 	struct e1000_hw *hw = &igb->hw;
107 	u32 lo, hi;
108 	u64 val;
109 
110 	/* The timestamp latches on lowest register read. For the 82580
111 	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
112 	 * need to provide nanosecond resolution, so we just ignore it.
113 	 */
114 	rd32(E1000_SYSTIMR);
115 	lo = rd32(E1000_SYSTIML);
116 	hi = rd32(E1000_SYSTIMH);
117 
118 	val = ((u64) hi) << 32;
119 	val |= lo;
120 
121 	return val;
122 }
123 
124 /* SYSTIM read access for I210/I211 */
igb_ptp_read_i210(struct igb_adapter * adapter,struct timespec64 * ts)125 static void igb_ptp_read_i210(struct igb_adapter *adapter,
126 			      struct timespec64 *ts)
127 {
128 	struct e1000_hw *hw = &adapter->hw;
129 	u32 sec, nsec;
130 
131 	/* The timestamp latches on lowest register read. For I210/I211, the
132 	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
133 	 * resolution, we can ignore it.
134 	 */
135 	rd32(E1000_SYSTIMR);
136 	nsec = rd32(E1000_SYSTIML);
137 	sec = rd32(E1000_SYSTIMH);
138 
139 	ts->tv_sec = sec;
140 	ts->tv_nsec = nsec;
141 }
142 
igb_ptp_write_i210(struct igb_adapter * adapter,const struct timespec64 * ts)143 static void igb_ptp_write_i210(struct igb_adapter *adapter,
144 			       const struct timespec64 *ts)
145 {
146 	struct e1000_hw *hw = &adapter->hw;
147 
148 	/* Writing the SYSTIMR register is not necessary as it only provides
149 	 * sub-nanosecond resolution.
150 	 */
151 	wr32(E1000_SYSTIML, ts->tv_nsec);
152 	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
153 }
154 
155 /**
156  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
157  * @adapter: board private structure
158  * @hwtstamps: timestamp structure to update
159  * @systim: unsigned 64bit system time value.
160  *
161  * We need to convert the system time value stored in the RX/TXSTMP registers
162  * into a hwtstamp which can be used by the upper level timestamping functions.
163  *
164  * The 'tmreg_lock' spinlock is used to protect the consistency of the
165  * system time value. This is needed because reading the 64 bit time
166  * value involves reading two (or three) 32 bit registers. The first
167  * read latches the value. Ditto for writing.
168  *
169  * In addition, here have extended the system time with an overflow
170  * counter in software.
171  **/
igb_ptp_systim_to_hwtstamp(struct igb_adapter * adapter,struct skb_shared_hwtstamps * hwtstamps,u64 systim)172 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
173 				       struct skb_shared_hwtstamps *hwtstamps,
174 				       u64 systim)
175 {
176 	unsigned long flags;
177 	u64 ns;
178 
179 	switch (adapter->hw.mac.type) {
180 	case e1000_82576:
181 	case e1000_82580:
182 	case e1000_i354:
183 	case e1000_i350:
184 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
185 
186 		ns = timecounter_cyc2time(&adapter->tc, systim);
187 
188 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
189 
190 		memset(hwtstamps, 0, sizeof(*hwtstamps));
191 		hwtstamps->hwtstamp = ns_to_ktime(ns);
192 		break;
193 	case e1000_i210:
194 	case e1000_i211:
195 		memset(hwtstamps, 0, sizeof(*hwtstamps));
196 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
197 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
198 						systim & 0xFFFFFFFF);
199 		break;
200 	default:
201 		break;
202 	}
203 }
204 
205 /* PTP clock operations */
igb_ptp_adjfreq_82576(struct ptp_clock_info * ptp,s32 ppb)206 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
207 {
208 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
209 					       ptp_caps);
210 	struct e1000_hw *hw = &igb->hw;
211 	int neg_adj = 0;
212 	u64 rate;
213 	u32 incvalue;
214 
215 	if (ppb < 0) {
216 		neg_adj = 1;
217 		ppb = -ppb;
218 	}
219 	rate = ppb;
220 	rate <<= 14;
221 	rate = div_u64(rate, 1953125);
222 
223 	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
224 
225 	if (neg_adj)
226 		incvalue -= rate;
227 	else
228 		incvalue += rate;
229 
230 	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
231 
232 	return 0;
233 }
234 
igb_ptp_adjfine_82580(struct ptp_clock_info * ptp,long scaled_ppm)235 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
236 {
237 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
238 					       ptp_caps);
239 	struct e1000_hw *hw = &igb->hw;
240 	int neg_adj = 0;
241 	u64 rate;
242 	u32 inca;
243 
244 	if (scaled_ppm < 0) {
245 		neg_adj = 1;
246 		scaled_ppm = -scaled_ppm;
247 	}
248 	rate = scaled_ppm;
249 	rate <<= 13;
250 	rate = div_u64(rate, 15625);
251 
252 	inca = rate & INCVALUE_MASK;
253 	if (neg_adj)
254 		inca |= ISGN;
255 
256 	wr32(E1000_TIMINCA, inca);
257 
258 	return 0;
259 }
260 
igb_ptp_adjtime_82576(struct ptp_clock_info * ptp,s64 delta)261 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
262 {
263 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
264 					       ptp_caps);
265 	unsigned long flags;
266 
267 	spin_lock_irqsave(&igb->tmreg_lock, flags);
268 	timecounter_adjtime(&igb->tc, delta);
269 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
270 
271 	return 0;
272 }
273 
igb_ptp_adjtime_i210(struct ptp_clock_info * ptp,s64 delta)274 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
275 {
276 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
277 					       ptp_caps);
278 	unsigned long flags;
279 	struct timespec64 now, then = ns_to_timespec64(delta);
280 
281 	spin_lock_irqsave(&igb->tmreg_lock, flags);
282 
283 	igb_ptp_read_i210(igb, &now);
284 	now = timespec64_add(now, then);
285 	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
286 
287 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
288 
289 	return 0;
290 }
291 
igb_ptp_gettime_82576(struct ptp_clock_info * ptp,struct timespec64 * ts)292 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
293 				 struct timespec64 *ts)
294 {
295 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
296 					       ptp_caps);
297 	unsigned long flags;
298 	u64 ns;
299 
300 	spin_lock_irqsave(&igb->tmreg_lock, flags);
301 
302 	ns = timecounter_read(&igb->tc);
303 
304 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
305 
306 	*ts = ns_to_timespec64(ns);
307 
308 	return 0;
309 }
310 
igb_ptp_gettime_i210(struct ptp_clock_info * ptp,struct timespec64 * ts)311 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
312 				struct timespec64 *ts)
313 {
314 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
315 					       ptp_caps);
316 	unsigned long flags;
317 
318 	spin_lock_irqsave(&igb->tmreg_lock, flags);
319 
320 	igb_ptp_read_i210(igb, ts);
321 
322 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
323 
324 	return 0;
325 }
326 
igb_ptp_settime_82576(struct ptp_clock_info * ptp,const struct timespec64 * ts)327 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
328 				 const struct timespec64 *ts)
329 {
330 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
331 					       ptp_caps);
332 	unsigned long flags;
333 	u64 ns;
334 
335 	ns = timespec64_to_ns(ts);
336 
337 	spin_lock_irqsave(&igb->tmreg_lock, flags);
338 
339 	timecounter_init(&igb->tc, &igb->cc, ns);
340 
341 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
342 
343 	return 0;
344 }
345 
igb_ptp_settime_i210(struct ptp_clock_info * ptp,const struct timespec64 * ts)346 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
347 				const struct timespec64 *ts)
348 {
349 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
350 					       ptp_caps);
351 	unsigned long flags;
352 
353 	spin_lock_irqsave(&igb->tmreg_lock, flags);
354 
355 	igb_ptp_write_i210(igb, ts);
356 
357 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
358 
359 	return 0;
360 }
361 
igb_pin_direction(int pin,int input,u32 * ctrl,u32 * ctrl_ext)362 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
363 {
364 	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
365 	static const u32 mask[IGB_N_SDP] = {
366 		E1000_CTRL_SDP0_DIR,
367 		E1000_CTRL_SDP1_DIR,
368 		E1000_CTRL_EXT_SDP2_DIR,
369 		E1000_CTRL_EXT_SDP3_DIR,
370 	};
371 
372 	if (input)
373 		*ptr &= ~mask[pin];
374 	else
375 		*ptr |= mask[pin];
376 }
377 
igb_pin_extts(struct igb_adapter * igb,int chan,int pin)378 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
379 {
380 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
381 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
382 	};
383 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
384 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
385 	};
386 	static const u32 ts_sdp_en[IGB_N_SDP] = {
387 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
388 	};
389 	struct e1000_hw *hw = &igb->hw;
390 	u32 ctrl, ctrl_ext, tssdp = 0;
391 
392 	ctrl = rd32(E1000_CTRL);
393 	ctrl_ext = rd32(E1000_CTRL_EXT);
394 	tssdp = rd32(E1000_TSSDP);
395 
396 	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
397 
398 	/* Make sure this pin is not enabled as an output. */
399 	tssdp &= ~ts_sdp_en[pin];
400 
401 	if (chan == 1) {
402 		tssdp &= ~AUX1_SEL_SDP3;
403 		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
404 	} else {
405 		tssdp &= ~AUX0_SEL_SDP3;
406 		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
407 	}
408 
409 	wr32(E1000_TSSDP, tssdp);
410 	wr32(E1000_CTRL, ctrl);
411 	wr32(E1000_CTRL_EXT, ctrl_ext);
412 }
413 
igb_pin_perout(struct igb_adapter * igb,int chan,int pin,int freq)414 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
415 {
416 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
417 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
418 	};
419 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
420 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
421 	};
422 	static const u32 ts_sdp_en[IGB_N_SDP] = {
423 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
424 	};
425 	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
426 		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
427 		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
428 	};
429 	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
430 		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
431 		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
432 	};
433 	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
434 		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
435 		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
436 	};
437 	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
438 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
439 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
440 	};
441 	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
442 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
443 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
444 	};
445 	struct e1000_hw *hw = &igb->hw;
446 	u32 ctrl, ctrl_ext, tssdp = 0;
447 
448 	ctrl = rd32(E1000_CTRL);
449 	ctrl_ext = rd32(E1000_CTRL_EXT);
450 	tssdp = rd32(E1000_TSSDP);
451 
452 	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
453 
454 	/* Make sure this pin is not enabled as an input. */
455 	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
456 		tssdp &= ~AUX0_TS_SDP_EN;
457 
458 	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
459 		tssdp &= ~AUX1_TS_SDP_EN;
460 
461 	tssdp &= ~ts_sdp_sel_clr[pin];
462 	if (freq) {
463 		if (chan == 1)
464 			tssdp |= ts_sdp_sel_fc1[pin];
465 		else
466 			tssdp |= ts_sdp_sel_fc0[pin];
467 	} else {
468 		if (chan == 1)
469 			tssdp |= ts_sdp_sel_tt1[pin];
470 		else
471 			tssdp |= ts_sdp_sel_tt0[pin];
472 	}
473 	tssdp |= ts_sdp_en[pin];
474 
475 	wr32(E1000_TSSDP, tssdp);
476 	wr32(E1000_CTRL, ctrl);
477 	wr32(E1000_CTRL_EXT, ctrl_ext);
478 }
479 
igb_ptp_feature_enable_i210(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)480 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
481 				       struct ptp_clock_request *rq, int on)
482 {
483 	struct igb_adapter *igb =
484 		container_of(ptp, struct igb_adapter, ptp_caps);
485 	struct e1000_hw *hw = &igb->hw;
486 	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
487 	unsigned long flags;
488 	struct timespec64 ts;
489 	int use_freq = 0, pin = -1;
490 	s64 ns;
491 
492 	switch (rq->type) {
493 	case PTP_CLK_REQ_EXTTS:
494 		if (on) {
495 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
496 					   rq->extts.index);
497 			if (pin < 0)
498 				return -EBUSY;
499 		}
500 		if (rq->extts.index == 1) {
501 			tsauxc_mask = TSAUXC_EN_TS1;
502 			tsim_mask = TSINTR_AUTT1;
503 		} else {
504 			tsauxc_mask = TSAUXC_EN_TS0;
505 			tsim_mask = TSINTR_AUTT0;
506 		}
507 		spin_lock_irqsave(&igb->tmreg_lock, flags);
508 		tsauxc = rd32(E1000_TSAUXC);
509 		tsim = rd32(E1000_TSIM);
510 		if (on) {
511 			igb_pin_extts(igb, rq->extts.index, pin);
512 			tsauxc |= tsauxc_mask;
513 			tsim |= tsim_mask;
514 		} else {
515 			tsauxc &= ~tsauxc_mask;
516 			tsim &= ~tsim_mask;
517 		}
518 		wr32(E1000_TSAUXC, tsauxc);
519 		wr32(E1000_TSIM, tsim);
520 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
521 		return 0;
522 
523 	case PTP_CLK_REQ_PEROUT:
524 		if (on) {
525 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
526 					   rq->perout.index);
527 			if (pin < 0)
528 				return -EBUSY;
529 		}
530 		ts.tv_sec = rq->perout.period.sec;
531 		ts.tv_nsec = rq->perout.period.nsec;
532 		ns = timespec64_to_ns(&ts);
533 		ns = ns >> 1;
534 		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
535 			   (ns == 250000000LL) || (ns == 500000000LL))) {
536 			if (ns < 8LL)
537 				return -EINVAL;
538 			use_freq = 1;
539 		}
540 		ts = ns_to_timespec64(ns);
541 		if (rq->perout.index == 1) {
542 			if (use_freq) {
543 				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
544 				tsim_mask = 0;
545 			} else {
546 				tsauxc_mask = TSAUXC_EN_TT1;
547 				tsim_mask = TSINTR_TT1;
548 			}
549 			trgttiml = E1000_TRGTTIML1;
550 			trgttimh = E1000_TRGTTIMH1;
551 			freqout = E1000_FREQOUT1;
552 		} else {
553 			if (use_freq) {
554 				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
555 				tsim_mask = 0;
556 			} else {
557 				tsauxc_mask = TSAUXC_EN_TT0;
558 				tsim_mask = TSINTR_TT0;
559 			}
560 			trgttiml = E1000_TRGTTIML0;
561 			trgttimh = E1000_TRGTTIMH0;
562 			freqout = E1000_FREQOUT0;
563 		}
564 		spin_lock_irqsave(&igb->tmreg_lock, flags);
565 		tsauxc = rd32(E1000_TSAUXC);
566 		tsim = rd32(E1000_TSIM);
567 		if (rq->perout.index == 1) {
568 			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
569 			tsim &= ~TSINTR_TT1;
570 		} else {
571 			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
572 			tsim &= ~TSINTR_TT0;
573 		}
574 		if (on) {
575 			int i = rq->perout.index;
576 			igb_pin_perout(igb, i, pin, use_freq);
577 			igb->perout[i].start.tv_sec = rq->perout.start.sec;
578 			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
579 			igb->perout[i].period.tv_sec = ts.tv_sec;
580 			igb->perout[i].period.tv_nsec = ts.tv_nsec;
581 			wr32(trgttimh, rq->perout.start.sec);
582 			wr32(trgttiml, rq->perout.start.nsec);
583 			if (use_freq)
584 				wr32(freqout, ns);
585 			tsauxc |= tsauxc_mask;
586 			tsim |= tsim_mask;
587 		}
588 		wr32(E1000_TSAUXC, tsauxc);
589 		wr32(E1000_TSIM, tsim);
590 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
591 		return 0;
592 
593 	case PTP_CLK_REQ_PPS:
594 		spin_lock_irqsave(&igb->tmreg_lock, flags);
595 		tsim = rd32(E1000_TSIM);
596 		if (on)
597 			tsim |= TSINTR_SYS_WRAP;
598 		else
599 			tsim &= ~TSINTR_SYS_WRAP;
600 		igb->pps_sys_wrap_on = !!on;
601 		wr32(E1000_TSIM, tsim);
602 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
603 		return 0;
604 	}
605 
606 	return -EOPNOTSUPP;
607 }
608 
igb_ptp_feature_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)609 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
610 				  struct ptp_clock_request *rq, int on)
611 {
612 	return -EOPNOTSUPP;
613 }
614 
igb_ptp_verify_pin(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)615 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
616 			      enum ptp_pin_function func, unsigned int chan)
617 {
618 	switch (func) {
619 	case PTP_PF_NONE:
620 	case PTP_PF_EXTTS:
621 	case PTP_PF_PEROUT:
622 		break;
623 	case PTP_PF_PHYSYNC:
624 		return -1;
625 	}
626 	return 0;
627 }
628 
629 /**
630  * igb_ptp_tx_work
631  * @work: pointer to work struct
632  *
633  * This work function polls the TSYNCTXCTL valid bit to determine when a
634  * timestamp has been taken for the current stored skb.
635  **/
igb_ptp_tx_work(struct work_struct * work)636 static void igb_ptp_tx_work(struct work_struct *work)
637 {
638 	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
639 						   ptp_tx_work);
640 	struct e1000_hw *hw = &adapter->hw;
641 	u32 tsynctxctl;
642 
643 	if (!adapter->ptp_tx_skb)
644 		return;
645 
646 	if (time_is_before_jiffies(adapter->ptp_tx_start +
647 				   IGB_PTP_TX_TIMEOUT)) {
648 		dev_kfree_skb_any(adapter->ptp_tx_skb);
649 		adapter->ptp_tx_skb = NULL;
650 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
651 		adapter->tx_hwtstamp_timeouts++;
652 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
653 		 * interrupt
654 		 */
655 		rd32(E1000_TXSTMPH);
656 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
657 		return;
658 	}
659 
660 	tsynctxctl = rd32(E1000_TSYNCTXCTL);
661 	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
662 		igb_ptp_tx_hwtstamp(adapter);
663 	else
664 		/* reschedule to check later */
665 		schedule_work(&adapter->ptp_tx_work);
666 }
667 
igb_ptp_overflow_check(struct work_struct * work)668 static void igb_ptp_overflow_check(struct work_struct *work)
669 {
670 	struct igb_adapter *igb =
671 		container_of(work, struct igb_adapter, ptp_overflow_work.work);
672 	struct timespec64 ts;
673 
674 	igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
675 
676 	pr_debug("igb overflow check at %lld.%09lu\n",
677 		 (long long) ts.tv_sec, ts.tv_nsec);
678 
679 	schedule_delayed_work(&igb->ptp_overflow_work,
680 			      IGB_SYSTIM_OVERFLOW_PERIOD);
681 }
682 
683 /**
684  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
685  * @adapter: private network adapter structure
686  *
687  * This watchdog task is scheduled to detect error case where hardware has
688  * dropped an Rx packet that was timestamped when the ring is full. The
689  * particular error is rare but leaves the device in a state unable to timestamp
690  * any future packets.
691  **/
igb_ptp_rx_hang(struct igb_adapter * adapter)692 void igb_ptp_rx_hang(struct igb_adapter *adapter)
693 {
694 	struct e1000_hw *hw = &adapter->hw;
695 	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
696 	unsigned long rx_event;
697 
698 	/* Other hardware uses per-packet timestamps */
699 	if (hw->mac.type != e1000_82576)
700 		return;
701 
702 	/* If we don't have a valid timestamp in the registers, just update the
703 	 * timeout counter and exit
704 	 */
705 	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
706 		adapter->last_rx_ptp_check = jiffies;
707 		return;
708 	}
709 
710 	/* Determine the most recent watchdog or rx_timestamp event */
711 	rx_event = adapter->last_rx_ptp_check;
712 	if (time_after(adapter->last_rx_timestamp, rx_event))
713 		rx_event = adapter->last_rx_timestamp;
714 
715 	/* Only need to read the high RXSTMP register to clear the lock */
716 	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
717 		rd32(E1000_RXSTMPH);
718 		adapter->last_rx_ptp_check = jiffies;
719 		adapter->rx_hwtstamp_cleared++;
720 		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
721 	}
722 }
723 
724 /**
725  * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
726  * @adapter: private network adapter structure
727  */
igb_ptp_tx_hang(struct igb_adapter * adapter)728 void igb_ptp_tx_hang(struct igb_adapter *adapter)
729 {
730 	struct e1000_hw *hw = &adapter->hw;
731 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
732 					      IGB_PTP_TX_TIMEOUT);
733 
734 	if (!adapter->ptp_tx_skb)
735 		return;
736 
737 	if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
738 		return;
739 
740 	/* If we haven't received a timestamp within the timeout, it is
741 	 * reasonable to assume that it will never occur, so we can unlock the
742 	 * timestamp bit when this occurs.
743 	 */
744 	if (timeout) {
745 		cancel_work_sync(&adapter->ptp_tx_work);
746 		dev_kfree_skb_any(adapter->ptp_tx_skb);
747 		adapter->ptp_tx_skb = NULL;
748 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
749 		adapter->tx_hwtstamp_timeouts++;
750 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
751 		 * interrupt
752 		 */
753 		rd32(E1000_TXSTMPH);
754 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
755 	}
756 }
757 
758 /**
759  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
760  * @adapter: Board private structure.
761  *
762  * If we were asked to do hardware stamping and such a time stamp is
763  * available, then it must have been for this skb here because we only
764  * allow only one such packet into the queue.
765  **/
igb_ptp_tx_hwtstamp(struct igb_adapter * adapter)766 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
767 {
768 	struct sk_buff *skb = adapter->ptp_tx_skb;
769 	struct e1000_hw *hw = &adapter->hw;
770 	struct skb_shared_hwtstamps shhwtstamps;
771 	u64 regval;
772 	int adjust = 0;
773 
774 	regval = rd32(E1000_TXSTMPL);
775 	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
776 
777 	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
778 	/* adjust timestamp for the TX latency based on link speed */
779 	if (adapter->hw.mac.type == e1000_i210) {
780 		switch (adapter->link_speed) {
781 		case SPEED_10:
782 			adjust = IGB_I210_TX_LATENCY_10;
783 			break;
784 		case SPEED_100:
785 			adjust = IGB_I210_TX_LATENCY_100;
786 			break;
787 		case SPEED_1000:
788 			adjust = IGB_I210_TX_LATENCY_1000;
789 			break;
790 		}
791 	}
792 
793 	shhwtstamps.hwtstamp =
794 		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
795 
796 	/* Clear the lock early before calling skb_tstamp_tx so that
797 	 * applications are not woken up before the lock bit is clear. We use
798 	 * a copy of the skb pointer to ensure other threads can't change it
799 	 * while we're notifying the stack.
800 	 */
801 	adapter->ptp_tx_skb = NULL;
802 	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
803 
804 	/* Notify the stack and free the skb after we've unlocked */
805 	skb_tstamp_tx(skb, &shhwtstamps);
806 	dev_kfree_skb_any(skb);
807 }
808 
809 /**
810  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
811  * @q_vector: Pointer to interrupt specific structure
812  * @va: Pointer to address containing Rx buffer
813  * @skb: Buffer containing timestamp and packet
814  *
815  * This function is meant to retrieve a timestamp from the first buffer of an
816  * incoming frame.  The value is stored in little endian format starting on
817  * byte 8.
818  **/
igb_ptp_rx_pktstamp(struct igb_q_vector * q_vector,void * va,struct sk_buff * skb)819 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
820 			 struct sk_buff *skb)
821 {
822 	__le64 *regval = (__le64 *)va;
823 	struct igb_adapter *adapter = q_vector->adapter;
824 	int adjust = 0;
825 
826 	/* The timestamp is recorded in little endian format.
827 	 * DWORD: 0        1        2        3
828 	 * Field: Reserved Reserved SYSTIML  SYSTIMH
829 	 */
830 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
831 				   le64_to_cpu(regval[1]));
832 
833 	/* adjust timestamp for the RX latency based on link speed */
834 	if (adapter->hw.mac.type == e1000_i210) {
835 		switch (adapter->link_speed) {
836 		case SPEED_10:
837 			adjust = IGB_I210_RX_LATENCY_10;
838 			break;
839 		case SPEED_100:
840 			adjust = IGB_I210_RX_LATENCY_100;
841 			break;
842 		case SPEED_1000:
843 			adjust = IGB_I210_RX_LATENCY_1000;
844 			break;
845 		}
846 	}
847 	skb_hwtstamps(skb)->hwtstamp =
848 		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
849 }
850 
851 /**
852  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
853  * @q_vector: Pointer to interrupt specific structure
854  * @skb: Buffer containing timestamp and packet
855  *
856  * This function is meant to retrieve a timestamp from the internal registers
857  * of the adapter and store it in the skb.
858  **/
igb_ptp_rx_rgtstamp(struct igb_q_vector * q_vector,struct sk_buff * skb)859 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
860 			 struct sk_buff *skb)
861 {
862 	struct igb_adapter *adapter = q_vector->adapter;
863 	struct e1000_hw *hw = &adapter->hw;
864 	u64 regval;
865 	int adjust = 0;
866 
867 	/* If this bit is set, then the RX registers contain the time stamp. No
868 	 * other packet will be time stamped until we read these registers, so
869 	 * read the registers to make them available again. Because only one
870 	 * packet can be time stamped at a time, we know that the register
871 	 * values must belong to this one here and therefore we don't need to
872 	 * compare any of the additional attributes stored for it.
873 	 *
874 	 * If nothing went wrong, then it should have a shared tx_flags that we
875 	 * can turn into a skb_shared_hwtstamps.
876 	 */
877 	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
878 		return;
879 
880 	regval = rd32(E1000_RXSTMPL);
881 	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
882 
883 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
884 
885 	/* adjust timestamp for the RX latency based on link speed */
886 	if (adapter->hw.mac.type == e1000_i210) {
887 		switch (adapter->link_speed) {
888 		case SPEED_10:
889 			adjust = IGB_I210_RX_LATENCY_10;
890 			break;
891 		case SPEED_100:
892 			adjust = IGB_I210_RX_LATENCY_100;
893 			break;
894 		case SPEED_1000:
895 			adjust = IGB_I210_RX_LATENCY_1000;
896 			break;
897 		}
898 	}
899 	skb_hwtstamps(skb)->hwtstamp =
900 		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
901 
902 	/* Update the last_rx_timestamp timer in order to enable watchdog check
903 	 * for error case of latched timestamp on a dropped packet.
904 	 */
905 	adapter->last_rx_timestamp = jiffies;
906 }
907 
908 /**
909  * igb_ptp_get_ts_config - get hardware time stamping config
910  * @netdev:
911  * @ifreq:
912  *
913  * Get the hwtstamp_config settings to return to the user. Rather than attempt
914  * to deconstruct the settings from the registers, just return a shadow copy
915  * of the last known settings.
916  **/
igb_ptp_get_ts_config(struct net_device * netdev,struct ifreq * ifr)917 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
918 {
919 	struct igb_adapter *adapter = netdev_priv(netdev);
920 	struct hwtstamp_config *config = &adapter->tstamp_config;
921 
922 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
923 		-EFAULT : 0;
924 }
925 
926 /**
927  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
928  * @adapter: networking device structure
929  * @config: hwtstamp configuration
930  *
931  * Outgoing time stamping can be enabled and disabled. Play nice and
932  * disable it when requested, although it shouldn't case any overhead
933  * when no packet needs it. At most one packet in the queue may be
934  * marked for time stamping, otherwise it would be impossible to tell
935  * for sure to which packet the hardware time stamp belongs.
936  *
937  * Incoming time stamping has to be configured via the hardware
938  * filters. Not all combinations are supported, in particular event
939  * type has to be specified. Matching the kind of event packet is
940  * not supported, with the exception of "all V2 events regardless of
941  * level 2 or 4".
942  */
igb_ptp_set_timestamp_mode(struct igb_adapter * adapter,struct hwtstamp_config * config)943 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
944 				      struct hwtstamp_config *config)
945 {
946 	struct e1000_hw *hw = &adapter->hw;
947 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
948 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
949 	u32 tsync_rx_cfg = 0;
950 	bool is_l4 = false;
951 	bool is_l2 = false;
952 	u32 regval;
953 
954 	/* reserved for future extensions */
955 	if (config->flags)
956 		return -EINVAL;
957 
958 	switch (config->tx_type) {
959 	case HWTSTAMP_TX_OFF:
960 		tsync_tx_ctl = 0;
961 	case HWTSTAMP_TX_ON:
962 		break;
963 	default:
964 		return -ERANGE;
965 	}
966 
967 	switch (config->rx_filter) {
968 	case HWTSTAMP_FILTER_NONE:
969 		tsync_rx_ctl = 0;
970 		break;
971 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
972 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
973 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
974 		is_l4 = true;
975 		break;
976 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
977 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
978 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
979 		is_l4 = true;
980 		break;
981 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
982 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
983 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
984 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
985 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
986 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
987 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
988 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
989 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
990 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
991 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
992 		is_l2 = true;
993 		is_l4 = true;
994 		break;
995 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
996 	case HWTSTAMP_FILTER_NTP_ALL:
997 	case HWTSTAMP_FILTER_ALL:
998 		/* 82576 cannot timestamp all packets, which it needs to do to
999 		 * support both V1 Sync and Delay_Req messages
1000 		 */
1001 		if (hw->mac.type != e1000_82576) {
1002 			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1003 			config->rx_filter = HWTSTAMP_FILTER_ALL;
1004 			break;
1005 		}
1006 		/* fall through */
1007 	default:
1008 		config->rx_filter = HWTSTAMP_FILTER_NONE;
1009 		return -ERANGE;
1010 	}
1011 
1012 	if (hw->mac.type == e1000_82575) {
1013 		if (tsync_rx_ctl | tsync_tx_ctl)
1014 			return -EINVAL;
1015 		return 0;
1016 	}
1017 
1018 	/* Per-packet timestamping only works if all packets are
1019 	 * timestamped, so enable timestamping in all packets as
1020 	 * long as one Rx filter was configured.
1021 	 */
1022 	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1023 		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1024 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1025 		config->rx_filter = HWTSTAMP_FILTER_ALL;
1026 		is_l2 = true;
1027 		is_l4 = true;
1028 
1029 		if ((hw->mac.type == e1000_i210) ||
1030 		    (hw->mac.type == e1000_i211)) {
1031 			regval = rd32(E1000_RXPBS);
1032 			regval |= E1000_RXPBS_CFG_TS_EN;
1033 			wr32(E1000_RXPBS, regval);
1034 		}
1035 	}
1036 
1037 	/* enable/disable TX */
1038 	regval = rd32(E1000_TSYNCTXCTL);
1039 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
1040 	regval |= tsync_tx_ctl;
1041 	wr32(E1000_TSYNCTXCTL, regval);
1042 
1043 	/* enable/disable RX */
1044 	regval = rd32(E1000_TSYNCRXCTL);
1045 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1046 	regval |= tsync_rx_ctl;
1047 	wr32(E1000_TSYNCRXCTL, regval);
1048 
1049 	/* define which PTP packets are time stamped */
1050 	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1051 
1052 	/* define ethertype filter for timestamped packets */
1053 	if (is_l2)
1054 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1055 		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1056 		      E1000_ETQF_1588 | /* enable timestamping */
1057 		      ETH_P_1588));     /* 1588 eth protocol type */
1058 	else
1059 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1060 
1061 	/* L4 Queue Filter[3]: filter by destination port and protocol */
1062 	if (is_l4) {
1063 		u32 ftqf = (IPPROTO_UDP /* UDP */
1064 			| E1000_FTQF_VF_BP /* VF not compared */
1065 			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1066 			| E1000_FTQF_MASK); /* mask all inputs */
1067 		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1068 
1069 		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1070 		wr32(E1000_IMIREXT(3),
1071 		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1072 		if (hw->mac.type == e1000_82576) {
1073 			/* enable source port check */
1074 			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1075 			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1076 		}
1077 		wr32(E1000_FTQF(3), ftqf);
1078 	} else {
1079 		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1080 	}
1081 	wrfl();
1082 
1083 	/* clear TX/RX time stamp registers, just to be sure */
1084 	regval = rd32(E1000_TXSTMPL);
1085 	regval = rd32(E1000_TXSTMPH);
1086 	regval = rd32(E1000_RXSTMPL);
1087 	regval = rd32(E1000_RXSTMPH);
1088 
1089 	return 0;
1090 }
1091 
1092 /**
1093  * igb_ptp_set_ts_config - set hardware time stamping config
1094  * @netdev:
1095  * @ifreq:
1096  *
1097  **/
igb_ptp_set_ts_config(struct net_device * netdev,struct ifreq * ifr)1098 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1099 {
1100 	struct igb_adapter *adapter = netdev_priv(netdev);
1101 	struct hwtstamp_config config;
1102 	int err;
1103 
1104 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1105 		return -EFAULT;
1106 
1107 	err = igb_ptp_set_timestamp_mode(adapter, &config);
1108 	if (err)
1109 		return err;
1110 
1111 	/* save these settings for future reference */
1112 	memcpy(&adapter->tstamp_config, &config,
1113 	       sizeof(adapter->tstamp_config));
1114 
1115 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1116 		-EFAULT : 0;
1117 }
1118 
1119 /**
1120  * igb_ptp_init - Initialize PTP functionality
1121  * @adapter: Board private structure
1122  *
1123  * This function is called at device probe to initialize the PTP
1124  * functionality.
1125  */
igb_ptp_init(struct igb_adapter * adapter)1126 void igb_ptp_init(struct igb_adapter *adapter)
1127 {
1128 	struct e1000_hw *hw = &adapter->hw;
1129 	struct net_device *netdev = adapter->netdev;
1130 	int i;
1131 
1132 	switch (hw->mac.type) {
1133 	case e1000_82576:
1134 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1135 		adapter->ptp_caps.owner = THIS_MODULE;
1136 		adapter->ptp_caps.max_adj = 999999881;
1137 		adapter->ptp_caps.n_ext_ts = 0;
1138 		adapter->ptp_caps.pps = 0;
1139 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1140 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1141 		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1142 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1143 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1144 		adapter->cc.read = igb_ptp_read_82576;
1145 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1146 		adapter->cc.mult = 1;
1147 		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1148 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1149 		break;
1150 	case e1000_82580:
1151 	case e1000_i354:
1152 	case e1000_i350:
1153 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1154 		adapter->ptp_caps.owner = THIS_MODULE;
1155 		adapter->ptp_caps.max_adj = 62499999;
1156 		adapter->ptp_caps.n_ext_ts = 0;
1157 		adapter->ptp_caps.pps = 0;
1158 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1159 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1160 		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1161 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1162 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1163 		adapter->cc.read = igb_ptp_read_82580;
1164 		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1165 		adapter->cc.mult = 1;
1166 		adapter->cc.shift = 0;
1167 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1168 		break;
1169 	case e1000_i210:
1170 	case e1000_i211:
1171 		for (i = 0; i < IGB_N_SDP; i++) {
1172 			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1173 
1174 			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1175 			ppd->index = i;
1176 			ppd->func = PTP_PF_NONE;
1177 		}
1178 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1179 		adapter->ptp_caps.owner = THIS_MODULE;
1180 		adapter->ptp_caps.max_adj = 62499999;
1181 		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1182 		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1183 		adapter->ptp_caps.n_pins = IGB_N_SDP;
1184 		adapter->ptp_caps.pps = 1;
1185 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1186 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1187 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1188 		adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1189 		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1190 		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1191 		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1192 		break;
1193 	default:
1194 		adapter->ptp_clock = NULL;
1195 		return;
1196 	}
1197 
1198 	spin_lock_init(&adapter->tmreg_lock);
1199 	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1200 
1201 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1202 		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1203 				  igb_ptp_overflow_check);
1204 
1205 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1206 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1207 
1208 	igb_ptp_reset(adapter);
1209 
1210 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1211 						&adapter->pdev->dev);
1212 	if (IS_ERR(adapter->ptp_clock)) {
1213 		adapter->ptp_clock = NULL;
1214 		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1215 	} else if (adapter->ptp_clock) {
1216 		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1217 			 adapter->netdev->name);
1218 		adapter->ptp_flags |= IGB_PTP_ENABLED;
1219 	}
1220 }
1221 
1222 /**
1223  * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1224  * @adapter: Board private structure
1225  *
1226  * This function stops the overflow check work and PTP Tx timestamp work, and
1227  * will prepare the device for OS suspend.
1228  */
igb_ptp_suspend(struct igb_adapter * adapter)1229 void igb_ptp_suspend(struct igb_adapter *adapter)
1230 {
1231 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1232 		return;
1233 
1234 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1235 		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1236 
1237 	cancel_work_sync(&adapter->ptp_tx_work);
1238 	if (adapter->ptp_tx_skb) {
1239 		dev_kfree_skb_any(adapter->ptp_tx_skb);
1240 		adapter->ptp_tx_skb = NULL;
1241 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1242 	}
1243 }
1244 
1245 /**
1246  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1247  * @adapter: Board private structure.
1248  *
1249  * This function stops the PTP support and cancels the delayed work.
1250  **/
igb_ptp_stop(struct igb_adapter * adapter)1251 void igb_ptp_stop(struct igb_adapter *adapter)
1252 {
1253 	igb_ptp_suspend(adapter);
1254 
1255 	if (adapter->ptp_clock) {
1256 		ptp_clock_unregister(adapter->ptp_clock);
1257 		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1258 			 adapter->netdev->name);
1259 		adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1260 	}
1261 }
1262 
1263 /**
1264  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1265  * @adapter: Board private structure.
1266  *
1267  * This function handles the reset work required to re-enable the PTP device.
1268  **/
igb_ptp_reset(struct igb_adapter * adapter)1269 void igb_ptp_reset(struct igb_adapter *adapter)
1270 {
1271 	struct e1000_hw *hw = &adapter->hw;
1272 	unsigned long flags;
1273 
1274 	/* reset the tstamp_config */
1275 	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1276 
1277 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1278 
1279 	switch (adapter->hw.mac.type) {
1280 	case e1000_82576:
1281 		/* Dial the nominal frequency. */
1282 		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1283 		break;
1284 	case e1000_82580:
1285 	case e1000_i354:
1286 	case e1000_i350:
1287 	case e1000_i210:
1288 	case e1000_i211:
1289 		wr32(E1000_TSAUXC, 0x0);
1290 		wr32(E1000_TSSDP, 0x0);
1291 		wr32(E1000_TSIM,
1292 		     TSYNC_INTERRUPTS |
1293 		     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1294 		wr32(E1000_IMS, E1000_IMS_TS);
1295 		break;
1296 	default:
1297 		/* No work to do. */
1298 		goto out;
1299 	}
1300 
1301 	/* Re-initialize the timer. */
1302 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1303 		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1304 
1305 		igb_ptp_write_i210(adapter, &ts);
1306 	} else {
1307 		timecounter_init(&adapter->tc, &adapter->cc,
1308 				 ktime_to_ns(ktime_get_real()));
1309 	}
1310 out:
1311 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1312 
1313 	wrfl();
1314 
1315 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1316 		schedule_delayed_work(&adapter->ptp_overflow_work,
1317 				      IGB_SYSTIM_OVERFLOW_PERIOD);
1318 }
1319