1 /*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/phy_fixed.h>
32 #include <linux/platform_device.h>
33 #include <linux/skbuff.h>
34 #include <net/hwbm.h>
35 #include "mvneta_bm.h"
36 #include <net/ip.h>
37 #include <net/ipv6.h>
38 #include <net/tso.h>
39
40 /* Registers */
41 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
42 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
43 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
44 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
45 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
46 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
47 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
48 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
49 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
50 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
51 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
52 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
53 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
54 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
55 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
56 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
57 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
59 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
60 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
61 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
62 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
63 #define MVNETA_PORT_RX_RESET 0x1cc0
64 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
65 #define MVNETA_PHY_ADDR 0x2000
66 #define MVNETA_PHY_ADDR_MASK 0x1f
67 #define MVNETA_MBUS_RETRY 0x2010
68 #define MVNETA_UNIT_INTR_CAUSE 0x2080
69 #define MVNETA_UNIT_CONTROL 0x20B0
70 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
71 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
72 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
73 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
74 #define MVNETA_BASE_ADDR_ENABLE 0x2290
75 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
76 #define MVNETA_PORT_CONFIG 0x2400
77 #define MVNETA_UNI_PROMISC_MODE BIT(0)
78 #define MVNETA_DEF_RXQ(q) ((q) << 1)
79 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
80 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
81 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
82 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
83 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
84 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
85 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
86 MVNETA_DEF_RXQ_ARP(q) | \
87 MVNETA_DEF_RXQ_TCP(q) | \
88 MVNETA_DEF_RXQ_UDP(q) | \
89 MVNETA_DEF_RXQ_BPDU(q) | \
90 MVNETA_TX_UNSET_ERR_SUM | \
91 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
92 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
93 #define MVNETA_MAC_ADDR_LOW 0x2414
94 #define MVNETA_MAC_ADDR_HIGH 0x2418
95 #define MVNETA_SDMA_CONFIG 0x241c
96 #define MVNETA_SDMA_BRST_SIZE_16 4
97 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
98 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
99 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
100 #define MVNETA_DESC_SWAP BIT(6)
101 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
102 #define MVNETA_PORT_STATUS 0x2444
103 #define MVNETA_TX_IN_PRGRS BIT(1)
104 #define MVNETA_TX_FIFO_EMPTY BIT(8)
105 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
106 #define MVNETA_SERDES_CFG 0x24A0
107 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
108 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
109 #define MVNETA_TYPE_PRIO 0x24bc
110 #define MVNETA_FORCE_UNI BIT(21)
111 #define MVNETA_TXQ_CMD_1 0x24e4
112 #define MVNETA_TXQ_CMD 0x2448
113 #define MVNETA_TXQ_DISABLE_SHIFT 8
114 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
115 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
116 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488
117 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
118 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
119 #define MVNETA_ACC_MODE 0x2500
120 #define MVNETA_BM_ADDRESS 0x2504
121 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
122 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
123 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
124 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
125 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
126 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
127
128 /* Exception Interrupt Port/Queue Cause register
129 *
130 * Their behavior depend of the mapping done using the PCPX2Q
131 * registers. For a given CPU if the bit associated to a queue is not
132 * set, then for the register a read from this CPU will always return
133 * 0 and a write won't do anything
134 */
135
136 #define MVNETA_INTR_NEW_CAUSE 0x25a0
137 #define MVNETA_INTR_NEW_MASK 0x25a4
138
139 /* bits 0..7 = TXQ SENT, one bit per queue.
140 * bits 8..15 = RXQ OCCUP, one bit per queue.
141 * bits 16..23 = RXQ FREE, one bit per queue.
142 * bit 29 = OLD_REG_SUM, see old reg ?
143 * bit 30 = TX_ERR_SUM, one bit for 4 ports
144 * bit 31 = MISC_SUM, one bit for 4 ports
145 */
146 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
147 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
148 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
149 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
150 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
151
152 #define MVNETA_INTR_OLD_CAUSE 0x25a8
153 #define MVNETA_INTR_OLD_MASK 0x25ac
154
155 /* Data Path Port/Queue Cause Register */
156 #define MVNETA_INTR_MISC_CAUSE 0x25b0
157 #define MVNETA_INTR_MISC_MASK 0x25b4
158
159 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
160 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
161 #define MVNETA_CAUSE_PTP BIT(4)
162
163 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
164 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
165 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
166 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
167 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
168 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
169 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
170 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
171
172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
174 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
175
176 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
177 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
178 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
179
180 #define MVNETA_INTR_ENABLE 0x25b8
181 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
182 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
183
184 #define MVNETA_RXQ_CMD 0x2680
185 #define MVNETA_RXQ_DISABLE_SHIFT 8
186 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
187 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
188 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
189 #define MVNETA_GMAC_CTRL_0 0x2c00
190 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
191 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
192 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
193 #define MVNETA_GMAC_CTRL_2 0x2c08
194 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
195 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
196 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
197 #define MVNETA_GMAC2_PORT_RESET BIT(6)
198 #define MVNETA_GMAC_STATUS 0x2c10
199 #define MVNETA_GMAC_LINK_UP BIT(0)
200 #define MVNETA_GMAC_SPEED_1000 BIT(1)
201 #define MVNETA_GMAC_SPEED_100 BIT(2)
202 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
203 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
204 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
205 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
206 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
207 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
208 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
209 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
210 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
211 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
212 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
213 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
214 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
215 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
216 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
217 #define MVNETA_MIB_COUNTERS_BASE 0x3000
218 #define MVNETA_MIB_LATE_COLLISION 0x7c
219 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
220 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
221 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
222 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
223 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
224 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
225 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
226 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
227 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
228 #define MVNETA_TXQ_DEC_SENT_MASK 0xff
229 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
230 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
231 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
232 #define MVNETA_PORT_TX_RESET 0x3cf0
233 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
234 #define MVNETA_TX_MTU 0x3e0c
235 #define MVNETA_TX_TOKEN_SIZE 0x3e14
236 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
237 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
238 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
239
240 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
241
242 /* Descriptor ring Macros */
243 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
244 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
245
246 /* Various constants */
247
248 /* Coalescing */
249 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */
250 #define MVNETA_RX_COAL_PKTS 32
251 #define MVNETA_RX_COAL_USEC 100
252
253 /* The two bytes Marvell header. Either contains a special value used
254 * by Marvell switches when a specific hardware mode is enabled (not
255 * supported by this driver) or is filled automatically by zeroes on
256 * the RX side. Those two bytes being at the front of the Ethernet
257 * header, they allow to have the IP header aligned on a 4 bytes
258 * boundary automatically: the hardware skips those two bytes on its
259 * own.
260 */
261 #define MVNETA_MH_SIZE 2
262
263 #define MVNETA_VLAN_TAG_LEN 4
264
265 #define MVNETA_TX_CSUM_DEF_SIZE 1600
266 #define MVNETA_TX_CSUM_MAX_SIZE 9800
267 #define MVNETA_ACC_MODE_EXT1 1
268 #define MVNETA_ACC_MODE_EXT2 2
269
270 #define MVNETA_MAX_DECODE_WIN 6
271
272 /* Timeout constants */
273 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
274 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
275 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
276
277 #define MVNETA_TX_MTU_MAX 0x3ffff
278
279 /* The RSS lookup table actually has 256 entries but we do not use
280 * them yet
281 */
282 #define MVNETA_RSS_LU_TABLE_SIZE 1
283
284 /* Max number of Rx descriptors */
285 #define MVNETA_MAX_RXD 128
286
287 /* Max number of Tx descriptors */
288 #define MVNETA_MAX_TXD 532
289
290 /* Max number of allowed TCP segments for software TSO */
291 #define MVNETA_MAX_TSO_SEGS 100
292
293 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
294
295 /* descriptor aligned size */
296 #define MVNETA_DESC_ALIGNED_SIZE 32
297
298 /* Number of bytes to be taken into account by HW when putting incoming data
299 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
300 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
301 */
302 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64
303
304 #define MVNETA_RX_PKT_SIZE(mtu) \
305 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
306 ETH_HLEN + ETH_FCS_LEN, \
307 cache_line_size())
308
309 #define IS_TSO_HEADER(txq, addr) \
310 ((addr >= txq->tso_hdrs_phys) && \
311 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
312
313 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
314 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
315
316 struct mvneta_statistic {
317 unsigned short offset;
318 unsigned short type;
319 const char name[ETH_GSTRING_LEN];
320 };
321
322 #define T_REG_32 32
323 #define T_REG_64 64
324
325 static const struct mvneta_statistic mvneta_statistics[] = {
326 { 0x3000, T_REG_64, "good_octets_received", },
327 { 0x3010, T_REG_32, "good_frames_received", },
328 { 0x3008, T_REG_32, "bad_octets_received", },
329 { 0x3014, T_REG_32, "bad_frames_received", },
330 { 0x3018, T_REG_32, "broadcast_frames_received", },
331 { 0x301c, T_REG_32, "multicast_frames_received", },
332 { 0x3050, T_REG_32, "unrec_mac_control_received", },
333 { 0x3058, T_REG_32, "good_fc_received", },
334 { 0x305c, T_REG_32, "bad_fc_received", },
335 { 0x3060, T_REG_32, "undersize_received", },
336 { 0x3064, T_REG_32, "fragments_received", },
337 { 0x3068, T_REG_32, "oversize_received", },
338 { 0x306c, T_REG_32, "jabber_received", },
339 { 0x3070, T_REG_32, "mac_receive_error", },
340 { 0x3074, T_REG_32, "bad_crc_event", },
341 { 0x3078, T_REG_32, "collision", },
342 { 0x307c, T_REG_32, "late_collision", },
343 { 0x2484, T_REG_32, "rx_discard", },
344 { 0x2488, T_REG_32, "rx_overrun", },
345 { 0x3020, T_REG_32, "frames_64_octets", },
346 { 0x3024, T_REG_32, "frames_65_to_127_octets", },
347 { 0x3028, T_REG_32, "frames_128_to_255_octets", },
348 { 0x302c, T_REG_32, "frames_256_to_511_octets", },
349 { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
350 { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
351 { 0x3038, T_REG_64, "good_octets_sent", },
352 { 0x3040, T_REG_32, "good_frames_sent", },
353 { 0x3044, T_REG_32, "excessive_collision", },
354 { 0x3048, T_REG_32, "multicast_frames_sent", },
355 { 0x304c, T_REG_32, "broadcast_frames_sent", },
356 { 0x3054, T_REG_32, "fc_sent", },
357 { 0x300c, T_REG_32, "internal_mac_transmit_err", },
358 };
359
360 struct mvneta_pcpu_stats {
361 struct u64_stats_sync syncp;
362 u64 rx_packets;
363 u64 rx_bytes;
364 u64 tx_packets;
365 u64 tx_bytes;
366 };
367
368 struct mvneta_pcpu_port {
369 /* Pointer to the shared port */
370 struct mvneta_port *pp;
371
372 /* Pointer to the CPU-local NAPI struct */
373 struct napi_struct napi;
374
375 /* Cause of the previous interrupt */
376 u32 cause_rx_tx;
377 };
378
379 struct mvneta_port {
380 u8 id;
381 struct mvneta_pcpu_port __percpu *ports;
382 struct mvneta_pcpu_stats __percpu *stats;
383
384 int pkt_size;
385 unsigned int frag_size;
386 void __iomem *base;
387 struct mvneta_rx_queue *rxqs;
388 struct mvneta_tx_queue *txqs;
389 struct net_device *dev;
390 struct hlist_node node_online;
391 struct hlist_node node_dead;
392 int rxq_def;
393 /* Protect the access to the percpu interrupt registers,
394 * ensuring that the configuration remains coherent.
395 */
396 spinlock_t lock;
397 bool is_stopped;
398
399 u32 cause_rx_tx;
400 struct napi_struct napi;
401
402 /* Core clock */
403 struct clk *clk;
404 /* AXI clock */
405 struct clk *clk_bus;
406 u8 mcast_count[256];
407 u16 tx_ring_size;
408 u16 rx_ring_size;
409
410 struct mii_bus *mii_bus;
411 phy_interface_t phy_interface;
412 struct device_node *phy_node;
413 unsigned int link;
414 unsigned int duplex;
415 unsigned int speed;
416 unsigned int tx_csum_limit;
417 unsigned int use_inband_status:1;
418
419 struct mvneta_bm *bm_priv;
420 struct mvneta_bm_pool *pool_long;
421 struct mvneta_bm_pool *pool_short;
422 int bm_win_id;
423
424 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
425
426 u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
427
428 /* Flags for special SoC configurations */
429 bool neta_armada3700;
430 u16 rx_offset_correction;
431 const struct mbus_dram_target_info *dram_target_info;
432 };
433
434 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
435 * layout of the transmit and reception DMA descriptors, and their
436 * layout is therefore defined by the hardware design
437 */
438
439 #define MVNETA_TX_L3_OFF_SHIFT 0
440 #define MVNETA_TX_IP_HLEN_SHIFT 8
441 #define MVNETA_TX_L4_UDP BIT(16)
442 #define MVNETA_TX_L3_IP6 BIT(17)
443 #define MVNETA_TXD_IP_CSUM BIT(18)
444 #define MVNETA_TXD_Z_PAD BIT(19)
445 #define MVNETA_TXD_L_DESC BIT(20)
446 #define MVNETA_TXD_F_DESC BIT(21)
447 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
448 MVNETA_TXD_L_DESC | \
449 MVNETA_TXD_F_DESC)
450 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
451 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
452
453 #define MVNETA_RXD_ERR_CRC 0x0
454 #define MVNETA_RXD_BM_POOL_SHIFT 13
455 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
456 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
457 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
458 #define MVNETA_RXD_ERR_LEN BIT(18)
459 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
460 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
461 #define MVNETA_RXD_L3_IP4 BIT(25)
462 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
463 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
464
465 #if defined(__LITTLE_ENDIAN)
466 struct mvneta_tx_desc {
467 u32 command; /* Options used by HW for packet transmitting.*/
468 u16 reserverd1; /* csum_l4 (for future use) */
469 u16 data_size; /* Data size of transmitted packet in bytes */
470 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
471 u32 reserved2; /* hw_cmd - (for future use, PMT) */
472 u32 reserved3[4]; /* Reserved - (for future use) */
473 };
474
475 struct mvneta_rx_desc {
476 u32 status; /* Info about received packet */
477 u16 reserved1; /* pnc_info - (for future use, PnC) */
478 u16 data_size; /* Size of received packet in bytes */
479
480 u32 buf_phys_addr; /* Physical address of the buffer */
481 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
482
483 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
484 u16 reserved3; /* prefetch_cmd, for future use */
485 u16 reserved4; /* csum_l4 - (for future use, PnC) */
486
487 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
488 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
489 };
490 #else
491 struct mvneta_tx_desc {
492 u16 data_size; /* Data size of transmitted packet in bytes */
493 u16 reserverd1; /* csum_l4 (for future use) */
494 u32 command; /* Options used by HW for packet transmitting.*/
495 u32 reserved2; /* hw_cmd - (for future use, PMT) */
496 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
497 u32 reserved3[4]; /* Reserved - (for future use) */
498 };
499
500 struct mvneta_rx_desc {
501 u16 data_size; /* Size of received packet in bytes */
502 u16 reserved1; /* pnc_info - (for future use, PnC) */
503 u32 status; /* Info about received packet */
504
505 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
506 u32 buf_phys_addr; /* Physical address of the buffer */
507
508 u16 reserved4; /* csum_l4 - (for future use, PnC) */
509 u16 reserved3; /* prefetch_cmd, for future use */
510 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
511
512 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
513 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
514 };
515 #endif
516
517 struct mvneta_tx_queue {
518 /* Number of this TX queue, in the range 0-7 */
519 u8 id;
520
521 /* Number of TX DMA descriptors in the descriptor ring */
522 int size;
523
524 /* Number of currently used TX DMA descriptor in the
525 * descriptor ring
526 */
527 int count;
528 int pending;
529 int tx_stop_threshold;
530 int tx_wake_threshold;
531
532 /* Array of transmitted skb */
533 struct sk_buff **tx_skb;
534
535 /* Index of last TX DMA descriptor that was inserted */
536 int txq_put_index;
537
538 /* Index of the TX DMA descriptor to be cleaned up */
539 int txq_get_index;
540
541 u32 done_pkts_coal;
542
543 /* Virtual address of the TX DMA descriptors array */
544 struct mvneta_tx_desc *descs;
545
546 /* DMA address of the TX DMA descriptors array */
547 dma_addr_t descs_phys;
548
549 /* Index of the last TX DMA descriptor */
550 int last_desc;
551
552 /* Index of the next TX DMA descriptor to process */
553 int next_desc_to_proc;
554
555 /* DMA buffers for TSO headers */
556 char *tso_hdrs;
557
558 /* DMA address of TSO headers */
559 dma_addr_t tso_hdrs_phys;
560
561 /* Affinity mask for CPUs*/
562 cpumask_t affinity_mask;
563 };
564
565 struct mvneta_rx_queue {
566 /* rx queue number, in the range 0-7 */
567 u8 id;
568
569 /* num of rx descriptors in the rx descriptor ring */
570 int size;
571
572 /* counter of times when mvneta_refill() failed */
573 int missed;
574
575 u32 pkts_coal;
576 u32 time_coal;
577
578 /* Virtual address of the RX buffer */
579 void **buf_virt_addr;
580
581 /* Virtual address of the RX DMA descriptors array */
582 struct mvneta_rx_desc *descs;
583
584 /* DMA address of the RX DMA descriptors array */
585 dma_addr_t descs_phys;
586
587 /* Index of the last RX DMA descriptor */
588 int last_desc;
589
590 /* Index of the next RX DMA descriptor to process */
591 int next_desc_to_proc;
592 };
593
594 static enum cpuhp_state online_hpstate;
595 /* The hardware supports eight (8) rx queues, but we are only allowing
596 * the first one to be used. Therefore, let's just allocate one queue.
597 */
598 static int rxq_number = 8;
599 static int txq_number = 8;
600
601 static int rxq_def;
602
603 static int rx_copybreak __read_mostly = 256;
604
605 /* HW BM need that each port be identify by a unique ID */
606 static int global_port_id;
607
608 #define MVNETA_DRIVER_NAME "mvneta"
609 #define MVNETA_DRIVER_VERSION "1.0"
610
611 /* Utility/helper methods */
612
613 /* Write helper method */
mvreg_write(struct mvneta_port * pp,u32 offset,u32 data)614 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
615 {
616 writel(data, pp->base + offset);
617 }
618
619 /* Read helper method */
mvreg_read(struct mvneta_port * pp,u32 offset)620 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
621 {
622 return readl(pp->base + offset);
623 }
624
625 /* Increment txq get counter */
mvneta_txq_inc_get(struct mvneta_tx_queue * txq)626 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
627 {
628 txq->txq_get_index++;
629 if (txq->txq_get_index == txq->size)
630 txq->txq_get_index = 0;
631 }
632
633 /* Increment txq put counter */
mvneta_txq_inc_put(struct mvneta_tx_queue * txq)634 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
635 {
636 txq->txq_put_index++;
637 if (txq->txq_put_index == txq->size)
638 txq->txq_put_index = 0;
639 }
640
641
642 /* Clear all MIB counters */
mvneta_mib_counters_clear(struct mvneta_port * pp)643 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
644 {
645 int i;
646 u32 dummy;
647
648 /* Perform dummy reads from MIB counters */
649 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
650 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
651 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
652 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
653 }
654
655 /* Get System Network Statistics */
656 static void
mvneta_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)657 mvneta_get_stats64(struct net_device *dev,
658 struct rtnl_link_stats64 *stats)
659 {
660 struct mvneta_port *pp = netdev_priv(dev);
661 unsigned int start;
662 int cpu;
663
664 for_each_possible_cpu(cpu) {
665 struct mvneta_pcpu_stats *cpu_stats;
666 u64 rx_packets;
667 u64 rx_bytes;
668 u64 tx_packets;
669 u64 tx_bytes;
670
671 cpu_stats = per_cpu_ptr(pp->stats, cpu);
672 do {
673 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
674 rx_packets = cpu_stats->rx_packets;
675 rx_bytes = cpu_stats->rx_bytes;
676 tx_packets = cpu_stats->tx_packets;
677 tx_bytes = cpu_stats->tx_bytes;
678 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
679
680 stats->rx_packets += rx_packets;
681 stats->rx_bytes += rx_bytes;
682 stats->tx_packets += tx_packets;
683 stats->tx_bytes += tx_bytes;
684 }
685
686 stats->rx_errors = dev->stats.rx_errors;
687 stats->rx_dropped = dev->stats.rx_dropped;
688
689 stats->tx_dropped = dev->stats.tx_dropped;
690 }
691
692 /* Rx descriptors helper methods */
693
694 /* Checks whether the RX descriptor having this status is both the first
695 * and the last descriptor for the RX packet. Each RX packet is currently
696 * received through a single RX descriptor, so not having each RX
697 * descriptor with its first and last bits set is an error
698 */
mvneta_rxq_desc_is_first_last(u32 status)699 static int mvneta_rxq_desc_is_first_last(u32 status)
700 {
701 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
702 MVNETA_RXD_FIRST_LAST_DESC;
703 }
704
705 /* Add number of descriptors ready to receive new packets */
mvneta_rxq_non_occup_desc_add(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int ndescs)706 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
707 struct mvneta_rx_queue *rxq,
708 int ndescs)
709 {
710 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
711 * be added at once
712 */
713 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
714 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
715 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
716 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
717 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
718 }
719
720 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
721 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
722 }
723
724 /* Get number of RX descriptors occupied by received packets */
mvneta_rxq_busy_desc_num_get(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)725 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
726 struct mvneta_rx_queue *rxq)
727 {
728 u32 val;
729
730 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
731 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
732 }
733
734 /* Update num of rx desc called upon return from rx path or
735 * from mvneta_rxq_drop_pkts().
736 */
mvneta_rxq_desc_num_update(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int rx_done,int rx_filled)737 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
738 struct mvneta_rx_queue *rxq,
739 int rx_done, int rx_filled)
740 {
741 u32 val;
742
743 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
744 val = rx_done |
745 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
746 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
747 return;
748 }
749
750 /* Only 255 descriptors can be added at once */
751 while ((rx_done > 0) || (rx_filled > 0)) {
752 if (rx_done <= 0xff) {
753 val = rx_done;
754 rx_done = 0;
755 } else {
756 val = 0xff;
757 rx_done -= 0xff;
758 }
759 if (rx_filled <= 0xff) {
760 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
761 rx_filled = 0;
762 } else {
763 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
764 rx_filled -= 0xff;
765 }
766 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
767 }
768 }
769
770 /* Get pointer to next RX descriptor to be processed by SW */
771 static struct mvneta_rx_desc *
mvneta_rxq_next_desc_get(struct mvneta_rx_queue * rxq)772 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
773 {
774 int rx_desc = rxq->next_desc_to_proc;
775
776 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
777 prefetch(rxq->descs + rxq->next_desc_to_proc);
778 return rxq->descs + rx_desc;
779 }
780
781 /* Change maximum receive size of the port. */
mvneta_max_rx_size_set(struct mvneta_port * pp,int max_rx_size)782 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
783 {
784 u32 val;
785
786 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
787 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
788 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
789 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
790 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
791 }
792
793
794 /* Set rx queue offset */
mvneta_rxq_offset_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int offset)795 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
796 struct mvneta_rx_queue *rxq,
797 int offset)
798 {
799 u32 val;
800
801 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
802 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
803
804 /* Offset is in */
805 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
806 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
807 }
808
809
810 /* Tx descriptors helper methods */
811
812 /* Update HW with number of TX descriptors to be sent */
mvneta_txq_pend_desc_add(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int pend_desc)813 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
814 struct mvneta_tx_queue *txq,
815 int pend_desc)
816 {
817 u32 val;
818
819 pend_desc += txq->pending;
820
821 /* Only 255 Tx descriptors can be added at once */
822 do {
823 val = min(pend_desc, 255);
824 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
825 pend_desc -= val;
826 } while (pend_desc > 0);
827 txq->pending = 0;
828 }
829
830 /* Get pointer to next TX descriptor to be processed (send) by HW */
831 static struct mvneta_tx_desc *
mvneta_txq_next_desc_get(struct mvneta_tx_queue * txq)832 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
833 {
834 int tx_desc = txq->next_desc_to_proc;
835
836 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
837 return txq->descs + tx_desc;
838 }
839
840 /* Release the last allocated TX descriptor. Useful to handle DMA
841 * mapping failures in the TX path.
842 */
mvneta_txq_desc_put(struct mvneta_tx_queue * txq)843 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
844 {
845 if (txq->next_desc_to_proc == 0)
846 txq->next_desc_to_proc = txq->last_desc - 1;
847 else
848 txq->next_desc_to_proc--;
849 }
850
851 /* Set rxq buf size */
mvneta_rxq_buf_size_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int buf_size)852 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
853 struct mvneta_rx_queue *rxq,
854 int buf_size)
855 {
856 u32 val;
857
858 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
859
860 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
861 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
862
863 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
864 }
865
866 /* Disable buffer management (BM) */
mvneta_rxq_bm_disable(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)867 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
868 struct mvneta_rx_queue *rxq)
869 {
870 u32 val;
871
872 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
873 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
874 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
875 }
876
877 /* Enable buffer management (BM) */
mvneta_rxq_bm_enable(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)878 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
879 struct mvneta_rx_queue *rxq)
880 {
881 u32 val;
882
883 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
884 val |= MVNETA_RXQ_HW_BUF_ALLOC;
885 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
886 }
887
888 /* Notify HW about port's assignment of pool for bigger packets */
mvneta_rxq_long_pool_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)889 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
890 struct mvneta_rx_queue *rxq)
891 {
892 u32 val;
893
894 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
895 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
896 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
897
898 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
899 }
900
901 /* Notify HW about port's assignment of pool for smaller packets */
mvneta_rxq_short_pool_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)902 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
903 struct mvneta_rx_queue *rxq)
904 {
905 u32 val;
906
907 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
908 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
909 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
910
911 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
912 }
913
914 /* Set port's receive buffer size for assigned BM pool */
mvneta_bm_pool_bufsize_set(struct mvneta_port * pp,int buf_size,u8 pool_id)915 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
916 int buf_size,
917 u8 pool_id)
918 {
919 u32 val;
920
921 if (!IS_ALIGNED(buf_size, 8)) {
922 dev_warn(pp->dev->dev.parent,
923 "illegal buf_size value %d, round to %d\n",
924 buf_size, ALIGN(buf_size, 8));
925 buf_size = ALIGN(buf_size, 8);
926 }
927
928 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
929 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
930 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
931 }
932
933 /* Configure MBUS window in order to enable access BM internal SRAM */
mvneta_mbus_io_win_set(struct mvneta_port * pp,u32 base,u32 wsize,u8 target,u8 attr)934 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
935 u8 target, u8 attr)
936 {
937 u32 win_enable, win_protect;
938 int i;
939
940 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
941
942 if (pp->bm_win_id < 0) {
943 /* Find first not occupied window */
944 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
945 if (win_enable & (1 << i)) {
946 pp->bm_win_id = i;
947 break;
948 }
949 }
950 if (i == MVNETA_MAX_DECODE_WIN)
951 return -ENOMEM;
952 } else {
953 i = pp->bm_win_id;
954 }
955
956 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
957 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
958
959 if (i < 4)
960 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
961
962 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
963 (attr << 8) | target);
964
965 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
966
967 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
968 win_protect |= 3 << (2 * i);
969 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
970
971 win_enable &= ~(1 << i);
972 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
973
974 return 0;
975 }
976
mvneta_bm_port_mbus_init(struct mvneta_port * pp)977 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
978 {
979 u32 wsize;
980 u8 target, attr;
981 int err;
982
983 /* Get BM window information */
984 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
985 &target, &attr);
986 if (err < 0)
987 return err;
988
989 pp->bm_win_id = -1;
990
991 /* Open NETA -> BM window */
992 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
993 target, attr);
994 if (err < 0) {
995 netdev_info(pp->dev, "fail to configure mbus window to BM\n");
996 return err;
997 }
998 return 0;
999 }
1000
1001 /* Assign and initialize pools for port. In case of fail
1002 * buffer manager will remain disabled for current port.
1003 */
mvneta_bm_port_init(struct platform_device * pdev,struct mvneta_port * pp)1004 static int mvneta_bm_port_init(struct platform_device *pdev,
1005 struct mvneta_port *pp)
1006 {
1007 struct device_node *dn = pdev->dev.of_node;
1008 u32 long_pool_id, short_pool_id;
1009
1010 if (!pp->neta_armada3700) {
1011 int ret;
1012
1013 ret = mvneta_bm_port_mbus_init(pp);
1014 if (ret)
1015 return ret;
1016 }
1017
1018 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1019 netdev_info(pp->dev, "missing long pool id\n");
1020 return -EINVAL;
1021 }
1022
1023 /* Create port's long pool depending on mtu */
1024 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1025 MVNETA_BM_LONG, pp->id,
1026 MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1027 if (!pp->pool_long) {
1028 netdev_info(pp->dev, "fail to obtain long pool for port\n");
1029 return -ENOMEM;
1030 }
1031
1032 pp->pool_long->port_map |= 1 << pp->id;
1033
1034 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1035 pp->pool_long->id);
1036
1037 /* If short pool id is not defined, assume using single pool */
1038 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1039 short_pool_id = long_pool_id;
1040
1041 /* Create port's short pool */
1042 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1043 MVNETA_BM_SHORT, pp->id,
1044 MVNETA_BM_SHORT_PKT_SIZE);
1045 if (!pp->pool_short) {
1046 netdev_info(pp->dev, "fail to obtain short pool for port\n");
1047 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1048 return -ENOMEM;
1049 }
1050
1051 if (short_pool_id != long_pool_id) {
1052 pp->pool_short->port_map |= 1 << pp->id;
1053 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1054 pp->pool_short->id);
1055 }
1056
1057 return 0;
1058 }
1059
1060 /* Update settings of a pool for bigger packets */
mvneta_bm_update_mtu(struct mvneta_port * pp,int mtu)1061 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1062 {
1063 struct mvneta_bm_pool *bm_pool = pp->pool_long;
1064 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1065 int num;
1066
1067 /* Release all buffers from long pool */
1068 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1069 if (hwbm_pool->buf_num) {
1070 WARN(1, "cannot free all buffers in pool %d\n",
1071 bm_pool->id);
1072 goto bm_mtu_err;
1073 }
1074
1075 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1076 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1077 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1078 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1079
1080 /* Fill entire long pool */
1081 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1082 if (num != hwbm_pool->size) {
1083 WARN(1, "pool %d: %d of %d allocated\n",
1084 bm_pool->id, num, hwbm_pool->size);
1085 goto bm_mtu_err;
1086 }
1087 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1088
1089 return;
1090
1091 bm_mtu_err:
1092 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1093 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1094
1095 pp->bm_priv = NULL;
1096 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1097 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1098 }
1099
1100 /* Start the Ethernet port RX and TX activity */
mvneta_port_up(struct mvneta_port * pp)1101 static void mvneta_port_up(struct mvneta_port *pp)
1102 {
1103 int queue;
1104 u32 q_map;
1105
1106 /* Enable all initialized TXs. */
1107 q_map = 0;
1108 for (queue = 0; queue < txq_number; queue++) {
1109 struct mvneta_tx_queue *txq = &pp->txqs[queue];
1110 if (txq->descs)
1111 q_map |= (1 << queue);
1112 }
1113 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1114
1115 q_map = 0;
1116 /* Enable all initialized RXQs. */
1117 for (queue = 0; queue < rxq_number; queue++) {
1118 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1119
1120 if (rxq->descs)
1121 q_map |= (1 << queue);
1122 }
1123 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1124 }
1125
1126 /* Stop the Ethernet port activity */
mvneta_port_down(struct mvneta_port * pp)1127 static void mvneta_port_down(struct mvneta_port *pp)
1128 {
1129 u32 val;
1130 int count;
1131
1132 /* Stop Rx port activity. Check port Rx activity. */
1133 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1134
1135 /* Issue stop command for active channels only */
1136 if (val != 0)
1137 mvreg_write(pp, MVNETA_RXQ_CMD,
1138 val << MVNETA_RXQ_DISABLE_SHIFT);
1139
1140 /* Wait for all Rx activity to terminate. */
1141 count = 0;
1142 do {
1143 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1144 netdev_warn(pp->dev,
1145 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1146 val);
1147 break;
1148 }
1149 mdelay(1);
1150
1151 val = mvreg_read(pp, MVNETA_RXQ_CMD);
1152 } while (val & MVNETA_RXQ_ENABLE_MASK);
1153
1154 /* Stop Tx port activity. Check port Tx activity. Issue stop
1155 * command for active channels only
1156 */
1157 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1158
1159 if (val != 0)
1160 mvreg_write(pp, MVNETA_TXQ_CMD,
1161 (val << MVNETA_TXQ_DISABLE_SHIFT));
1162
1163 /* Wait for all Tx activity to terminate. */
1164 count = 0;
1165 do {
1166 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1167 netdev_warn(pp->dev,
1168 "TIMEOUT for TX stopped status=0x%08x\n",
1169 val);
1170 break;
1171 }
1172 mdelay(1);
1173
1174 /* Check TX Command reg that all Txqs are stopped */
1175 val = mvreg_read(pp, MVNETA_TXQ_CMD);
1176
1177 } while (val & MVNETA_TXQ_ENABLE_MASK);
1178
1179 /* Double check to verify that TX FIFO is empty */
1180 count = 0;
1181 do {
1182 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1183 netdev_warn(pp->dev,
1184 "TX FIFO empty timeout status=0x%08x\n",
1185 val);
1186 break;
1187 }
1188 mdelay(1);
1189
1190 val = mvreg_read(pp, MVNETA_PORT_STATUS);
1191 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1192 (val & MVNETA_TX_IN_PRGRS));
1193
1194 udelay(200);
1195 }
1196
1197 /* Enable the port by setting the port enable bit of the MAC control register */
mvneta_port_enable(struct mvneta_port * pp)1198 static void mvneta_port_enable(struct mvneta_port *pp)
1199 {
1200 u32 val;
1201
1202 /* Enable port */
1203 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1204 val |= MVNETA_GMAC0_PORT_ENABLE;
1205 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1206 }
1207
1208 /* Disable the port and wait for about 200 usec before retuning */
mvneta_port_disable(struct mvneta_port * pp)1209 static void mvneta_port_disable(struct mvneta_port *pp)
1210 {
1211 u32 val;
1212
1213 /* Reset the Enable bit in the Serial Control Register */
1214 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1215 val &= ~MVNETA_GMAC0_PORT_ENABLE;
1216 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1217
1218 pp->link = 0;
1219 pp->duplex = -1;
1220 pp->speed = 0;
1221
1222 udelay(200);
1223 }
1224
1225 /* Multicast tables methods */
1226
1227 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
mvneta_set_ucast_table(struct mvneta_port * pp,int queue)1228 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1229 {
1230 int offset;
1231 u32 val;
1232
1233 if (queue == -1) {
1234 val = 0;
1235 } else {
1236 val = 0x1 | (queue << 1);
1237 val |= (val << 24) | (val << 16) | (val << 8);
1238 }
1239
1240 for (offset = 0; offset <= 0xc; offset += 4)
1241 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1242 }
1243
1244 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
mvneta_set_special_mcast_table(struct mvneta_port * pp,int queue)1245 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1246 {
1247 int offset;
1248 u32 val;
1249
1250 if (queue == -1) {
1251 val = 0;
1252 } else {
1253 val = 0x1 | (queue << 1);
1254 val |= (val << 24) | (val << 16) | (val << 8);
1255 }
1256
1257 for (offset = 0; offset <= 0xfc; offset += 4)
1258 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1259
1260 }
1261
1262 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
mvneta_set_other_mcast_table(struct mvneta_port * pp,int queue)1263 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1264 {
1265 int offset;
1266 u32 val;
1267
1268 if (queue == -1) {
1269 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1270 val = 0;
1271 } else {
1272 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1273 val = 0x1 | (queue << 1);
1274 val |= (val << 24) | (val << 16) | (val << 8);
1275 }
1276
1277 for (offset = 0; offset <= 0xfc; offset += 4)
1278 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1279 }
1280
mvneta_set_autoneg(struct mvneta_port * pp,int enable)1281 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable)
1282 {
1283 u32 val;
1284
1285 if (enable) {
1286 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1287 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1288 MVNETA_GMAC_FORCE_LINK_DOWN |
1289 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1290 val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1291 MVNETA_GMAC_AN_SPEED_EN |
1292 MVNETA_GMAC_AN_DUPLEX_EN;
1293 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1294
1295 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1296 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1297 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1298
1299 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1300 val |= MVNETA_GMAC2_INBAND_AN_ENABLE;
1301 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1302 } else {
1303 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1304 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1305 MVNETA_GMAC_AN_SPEED_EN |
1306 MVNETA_GMAC_AN_DUPLEX_EN);
1307 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1308
1309 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1310 val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
1311 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1312
1313 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1314 val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE;
1315 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1316 }
1317 }
1318
mvneta_percpu_unmask_interrupt(void * arg)1319 static void mvneta_percpu_unmask_interrupt(void *arg)
1320 {
1321 struct mvneta_port *pp = arg;
1322
1323 /* All the queue are unmasked, but actually only the ones
1324 * mapped to this CPU will be unmasked
1325 */
1326 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1327 MVNETA_RX_INTR_MASK_ALL |
1328 MVNETA_TX_INTR_MASK_ALL |
1329 MVNETA_MISCINTR_INTR_MASK);
1330 }
1331
mvneta_percpu_mask_interrupt(void * arg)1332 static void mvneta_percpu_mask_interrupt(void *arg)
1333 {
1334 struct mvneta_port *pp = arg;
1335
1336 /* All the queue are masked, but actually only the ones
1337 * mapped to this CPU will be masked
1338 */
1339 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1340 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1341 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1342 }
1343
mvneta_percpu_clear_intr_cause(void * arg)1344 static void mvneta_percpu_clear_intr_cause(void *arg)
1345 {
1346 struct mvneta_port *pp = arg;
1347
1348 /* All the queue are cleared, but actually only the ones
1349 * mapped to this CPU will be cleared
1350 */
1351 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1352 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1353 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1354 }
1355
1356 /* This method sets defaults to the NETA port:
1357 * Clears interrupt Cause and Mask registers.
1358 * Clears all MAC tables.
1359 * Sets defaults to all registers.
1360 * Resets RX and TX descriptor rings.
1361 * Resets PHY.
1362 * This method can be called after mvneta_port_down() to return the port
1363 * settings to defaults.
1364 */
mvneta_defaults_set(struct mvneta_port * pp)1365 static void mvneta_defaults_set(struct mvneta_port *pp)
1366 {
1367 int cpu;
1368 int queue;
1369 u32 val;
1370 int max_cpu = num_present_cpus();
1371
1372 /* Clear all Cause registers */
1373 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1374
1375 /* Mask all interrupts */
1376 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1377 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1378
1379 /* Enable MBUS Retry bit16 */
1380 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1381
1382 /* Set CPU queue access map. CPUs are assigned to the RX and
1383 * TX queues modulo their number. If there is only one TX
1384 * queue then it is assigned to the CPU associated to the
1385 * default RX queue.
1386 */
1387 for_each_present_cpu(cpu) {
1388 int rxq_map = 0, txq_map = 0;
1389 int rxq, txq;
1390 if (!pp->neta_armada3700) {
1391 for (rxq = 0; rxq < rxq_number; rxq++)
1392 if ((rxq % max_cpu) == cpu)
1393 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1394
1395 for (txq = 0; txq < txq_number; txq++)
1396 if ((txq % max_cpu) == cpu)
1397 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1398
1399 /* With only one TX queue we configure a special case
1400 * which will allow to get all the irq on a single
1401 * CPU
1402 */
1403 if (txq_number == 1)
1404 txq_map = (cpu == pp->rxq_def) ?
1405 MVNETA_CPU_TXQ_ACCESS(1) : 0;
1406
1407 } else {
1408 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1409 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1410 }
1411
1412 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1413 }
1414
1415 /* Reset RX and TX DMAs */
1416 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1417 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1418
1419 /* Disable Legacy WRR, Disable EJP, Release from reset */
1420 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1421 for (queue = 0; queue < txq_number; queue++) {
1422 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1423 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1424 }
1425
1426 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1427 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1428
1429 /* Set Port Acceleration Mode */
1430 if (pp->bm_priv)
1431 /* HW buffer management + legacy parser */
1432 val = MVNETA_ACC_MODE_EXT2;
1433 else
1434 /* SW buffer management + legacy parser */
1435 val = MVNETA_ACC_MODE_EXT1;
1436 mvreg_write(pp, MVNETA_ACC_MODE, val);
1437
1438 if (pp->bm_priv)
1439 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1440
1441 /* Update val of portCfg register accordingly with all RxQueue types */
1442 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1443 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1444
1445 val = 0;
1446 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1447 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1448
1449 /* Build PORT_SDMA_CONFIG_REG */
1450 val = 0;
1451
1452 /* Default burst size */
1453 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1454 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1455 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1456
1457 #if defined(__BIG_ENDIAN)
1458 val |= MVNETA_DESC_SWAP;
1459 #endif
1460
1461 /* Assign port SDMA configuration */
1462 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1463
1464 /* Disable PHY polling in hardware, since we're using the
1465 * kernel phylib to do this.
1466 */
1467 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1468 val &= ~MVNETA_PHY_POLLING_ENABLE;
1469 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1470
1471 mvneta_set_autoneg(pp, pp->use_inband_status);
1472 mvneta_set_ucast_table(pp, -1);
1473 mvneta_set_special_mcast_table(pp, -1);
1474 mvneta_set_other_mcast_table(pp, -1);
1475
1476 /* Set port interrupt enable register - default enable all */
1477 mvreg_write(pp, MVNETA_INTR_ENABLE,
1478 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1479 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1480
1481 mvneta_mib_counters_clear(pp);
1482 }
1483
1484 /* Set max sizes for tx queues */
mvneta_txq_max_tx_size_set(struct mvneta_port * pp,int max_tx_size)1485 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1486
1487 {
1488 u32 val, size, mtu;
1489 int queue;
1490
1491 mtu = max_tx_size * 8;
1492 if (mtu > MVNETA_TX_MTU_MAX)
1493 mtu = MVNETA_TX_MTU_MAX;
1494
1495 /* Set MTU */
1496 val = mvreg_read(pp, MVNETA_TX_MTU);
1497 val &= ~MVNETA_TX_MTU_MAX;
1498 val |= mtu;
1499 mvreg_write(pp, MVNETA_TX_MTU, val);
1500
1501 /* TX token size and all TXQs token size must be larger that MTU */
1502 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1503
1504 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1505 if (size < mtu) {
1506 size = mtu;
1507 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1508 val |= size;
1509 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1510 }
1511 for (queue = 0; queue < txq_number; queue++) {
1512 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1513
1514 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1515 if (size < mtu) {
1516 size = mtu;
1517 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1518 val |= size;
1519 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1520 }
1521 }
1522 }
1523
1524 /* Set unicast address */
mvneta_set_ucast_addr(struct mvneta_port * pp,u8 last_nibble,int queue)1525 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1526 int queue)
1527 {
1528 unsigned int unicast_reg;
1529 unsigned int tbl_offset;
1530 unsigned int reg_offset;
1531
1532 /* Locate the Unicast table entry */
1533 last_nibble = (0xf & last_nibble);
1534
1535 /* offset from unicast tbl base */
1536 tbl_offset = (last_nibble / 4) * 4;
1537
1538 /* offset within the above reg */
1539 reg_offset = last_nibble % 4;
1540
1541 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1542
1543 if (queue == -1) {
1544 /* Clear accepts frame bit at specified unicast DA tbl entry */
1545 unicast_reg &= ~(0xff << (8 * reg_offset));
1546 } else {
1547 unicast_reg &= ~(0xff << (8 * reg_offset));
1548 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1549 }
1550
1551 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1552 }
1553
1554 /* Set mac address */
mvneta_mac_addr_set(struct mvneta_port * pp,unsigned char * addr,int queue)1555 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1556 int queue)
1557 {
1558 unsigned int mac_h;
1559 unsigned int mac_l;
1560
1561 if (queue != -1) {
1562 mac_l = (addr[4] << 8) | (addr[5]);
1563 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1564 (addr[2] << 8) | (addr[3] << 0);
1565
1566 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1567 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1568 }
1569
1570 /* Accept frames of this address */
1571 mvneta_set_ucast_addr(pp, addr[5], queue);
1572 }
1573
1574 /* Set the number of packets that will be received before RX interrupt
1575 * will be generated by HW.
1576 */
mvneta_rx_pkts_coal_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,u32 value)1577 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1578 struct mvneta_rx_queue *rxq, u32 value)
1579 {
1580 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1581 value | MVNETA_RXQ_NON_OCCUPIED(0));
1582 rxq->pkts_coal = value;
1583 }
1584
1585 /* Set the time delay in usec before RX interrupt will be generated by
1586 * HW.
1587 */
mvneta_rx_time_coal_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,u32 value)1588 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1589 struct mvneta_rx_queue *rxq, u32 value)
1590 {
1591 u32 val;
1592 unsigned long clk_rate;
1593
1594 clk_rate = clk_get_rate(pp->clk);
1595 val = (clk_rate / 1000000) * value;
1596
1597 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1598 rxq->time_coal = value;
1599 }
1600
1601 /* Set threshold for TX_DONE pkts coalescing */
mvneta_tx_done_pkts_coal_set(struct mvneta_port * pp,struct mvneta_tx_queue * txq,u32 value)1602 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1603 struct mvneta_tx_queue *txq, u32 value)
1604 {
1605 u32 val;
1606
1607 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1608
1609 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1610 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1611
1612 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1613
1614 txq->done_pkts_coal = value;
1615 }
1616
1617 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
mvneta_rx_desc_fill(struct mvneta_rx_desc * rx_desc,u32 phys_addr,void * virt_addr,struct mvneta_rx_queue * rxq)1618 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1619 u32 phys_addr, void *virt_addr,
1620 struct mvneta_rx_queue *rxq)
1621 {
1622 int i;
1623
1624 rx_desc->buf_phys_addr = phys_addr;
1625 i = rx_desc - rxq->descs;
1626 rxq->buf_virt_addr[i] = virt_addr;
1627 }
1628
1629 /* Decrement sent descriptors counter */
mvneta_txq_sent_desc_dec(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int sent_desc)1630 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1631 struct mvneta_tx_queue *txq,
1632 int sent_desc)
1633 {
1634 u32 val;
1635
1636 /* Only 255 TX descriptors can be updated at once */
1637 while (sent_desc > 0xff) {
1638 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1639 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1640 sent_desc = sent_desc - 0xff;
1641 }
1642
1643 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1644 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1645 }
1646
1647 /* Get number of TX descriptors already sent by HW */
mvneta_txq_sent_desc_num_get(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1648 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1649 struct mvneta_tx_queue *txq)
1650 {
1651 u32 val;
1652 int sent_desc;
1653
1654 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1655 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1656 MVNETA_TXQ_SENT_DESC_SHIFT;
1657
1658 return sent_desc;
1659 }
1660
1661 /* Get number of sent descriptors and decrement counter.
1662 * The number of sent descriptors is returned.
1663 */
mvneta_txq_sent_desc_proc(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1664 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1665 struct mvneta_tx_queue *txq)
1666 {
1667 int sent_desc;
1668
1669 /* Get number of sent descriptors */
1670 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1671
1672 /* Decrement sent descriptors counter */
1673 if (sent_desc)
1674 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1675
1676 return sent_desc;
1677 }
1678
1679 /* Set TXQ descriptors fields relevant for CSUM calculation */
mvneta_txq_desc_csum(int l3_offs,int l3_proto,int ip_hdr_len,int l4_proto)1680 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1681 int ip_hdr_len, int l4_proto)
1682 {
1683 u32 command;
1684
1685 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1686 * G_L4_chk, L4_type; required only for checksum
1687 * calculation
1688 */
1689 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1690 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1691
1692 if (l3_proto == htons(ETH_P_IP))
1693 command |= MVNETA_TXD_IP_CSUM;
1694 else
1695 command |= MVNETA_TX_L3_IP6;
1696
1697 if (l4_proto == IPPROTO_TCP)
1698 command |= MVNETA_TX_L4_CSUM_FULL;
1699 else if (l4_proto == IPPROTO_UDP)
1700 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1701 else
1702 command |= MVNETA_TX_L4_CSUM_NOT;
1703
1704 return command;
1705 }
1706
1707
1708 /* Display more error info */
mvneta_rx_error(struct mvneta_port * pp,struct mvneta_rx_desc * rx_desc)1709 static void mvneta_rx_error(struct mvneta_port *pp,
1710 struct mvneta_rx_desc *rx_desc)
1711 {
1712 u32 status = rx_desc->status;
1713
1714 if (!mvneta_rxq_desc_is_first_last(status)) {
1715 netdev_err(pp->dev,
1716 "bad rx status %08x (buffer oversize), size=%d\n",
1717 status, rx_desc->data_size);
1718 return;
1719 }
1720
1721 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1722 case MVNETA_RXD_ERR_CRC:
1723 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1724 status, rx_desc->data_size);
1725 break;
1726 case MVNETA_RXD_ERR_OVERRUN:
1727 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1728 status, rx_desc->data_size);
1729 break;
1730 case MVNETA_RXD_ERR_LEN:
1731 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1732 status, rx_desc->data_size);
1733 break;
1734 case MVNETA_RXD_ERR_RESOURCE:
1735 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1736 status, rx_desc->data_size);
1737 break;
1738 }
1739 }
1740
1741 /* Handle RX checksum offload based on the descriptor's status */
mvneta_rx_csum(struct mvneta_port * pp,u32 status,struct sk_buff * skb)1742 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1743 struct sk_buff *skb)
1744 {
1745 if ((status & MVNETA_RXD_L3_IP4) &&
1746 (status & MVNETA_RXD_L4_CSUM_OK)) {
1747 skb->csum = 0;
1748 skb->ip_summed = CHECKSUM_UNNECESSARY;
1749 return;
1750 }
1751
1752 skb->ip_summed = CHECKSUM_NONE;
1753 }
1754
1755 /* Return tx queue pointer (find last set bit) according to <cause> returned
1756 * form tx_done reg. <cause> must not be null. The return value is always a
1757 * valid queue for matching the first one found in <cause>.
1758 */
mvneta_tx_done_policy(struct mvneta_port * pp,u32 cause)1759 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1760 u32 cause)
1761 {
1762 int queue = fls(cause) - 1;
1763
1764 return &pp->txqs[queue];
1765 }
1766
1767 /* Free tx queue skbuffs */
mvneta_txq_bufs_free(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int num,struct netdev_queue * nq)1768 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1769 struct mvneta_tx_queue *txq, int num,
1770 struct netdev_queue *nq)
1771 {
1772 unsigned int bytes_compl = 0, pkts_compl = 0;
1773 int i;
1774
1775 for (i = 0; i < num; i++) {
1776 struct mvneta_tx_desc *tx_desc = txq->descs +
1777 txq->txq_get_index;
1778 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1779
1780 if (skb) {
1781 bytes_compl += skb->len;
1782 pkts_compl++;
1783 }
1784
1785 mvneta_txq_inc_get(txq);
1786
1787 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1788 dma_unmap_single(pp->dev->dev.parent,
1789 tx_desc->buf_phys_addr,
1790 tx_desc->data_size, DMA_TO_DEVICE);
1791 if (!skb)
1792 continue;
1793 dev_kfree_skb_any(skb);
1794 }
1795
1796 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1797 }
1798
1799 /* Handle end of transmission */
mvneta_txq_done(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1800 static void mvneta_txq_done(struct mvneta_port *pp,
1801 struct mvneta_tx_queue *txq)
1802 {
1803 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1804 int tx_done;
1805
1806 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1807 if (!tx_done)
1808 return;
1809
1810 mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1811
1812 txq->count -= tx_done;
1813
1814 if (netif_tx_queue_stopped(nq)) {
1815 if (txq->count <= txq->tx_wake_threshold)
1816 netif_tx_wake_queue(nq);
1817 }
1818 }
1819
mvneta_frag_alloc(unsigned int frag_size)1820 void *mvneta_frag_alloc(unsigned int frag_size)
1821 {
1822 if (likely(frag_size <= PAGE_SIZE))
1823 return netdev_alloc_frag(frag_size);
1824 else
1825 return kmalloc(frag_size, GFP_ATOMIC);
1826 }
1827 EXPORT_SYMBOL_GPL(mvneta_frag_alloc);
1828
mvneta_frag_free(unsigned int frag_size,void * data)1829 void mvneta_frag_free(unsigned int frag_size, void *data)
1830 {
1831 if (likely(frag_size <= PAGE_SIZE))
1832 skb_free_frag(data);
1833 else
1834 kfree(data);
1835 }
1836 EXPORT_SYMBOL_GPL(mvneta_frag_free);
1837
1838 /* Refill processing for SW buffer management */
mvneta_rx_refill(struct mvneta_port * pp,struct mvneta_rx_desc * rx_desc,struct mvneta_rx_queue * rxq)1839 static int mvneta_rx_refill(struct mvneta_port *pp,
1840 struct mvneta_rx_desc *rx_desc,
1841 struct mvneta_rx_queue *rxq)
1842
1843 {
1844 dma_addr_t phys_addr;
1845 void *data;
1846
1847 data = mvneta_frag_alloc(pp->frag_size);
1848 if (!data)
1849 return -ENOMEM;
1850
1851 phys_addr = dma_map_single(pp->dev->dev.parent, data,
1852 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1853 DMA_FROM_DEVICE);
1854 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1855 mvneta_frag_free(pp->frag_size, data);
1856 return -ENOMEM;
1857 }
1858
1859 phys_addr += pp->rx_offset_correction;
1860 mvneta_rx_desc_fill(rx_desc, phys_addr, data, rxq);
1861 return 0;
1862 }
1863
1864 /* Handle tx checksum */
mvneta_skb_tx_csum(struct mvneta_port * pp,struct sk_buff * skb)1865 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1866 {
1867 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1868 int ip_hdr_len = 0;
1869 __be16 l3_proto = vlan_get_protocol(skb);
1870 u8 l4_proto;
1871
1872 if (l3_proto == htons(ETH_P_IP)) {
1873 struct iphdr *ip4h = ip_hdr(skb);
1874
1875 /* Calculate IPv4 checksum and L4 checksum */
1876 ip_hdr_len = ip4h->ihl;
1877 l4_proto = ip4h->protocol;
1878 } else if (l3_proto == htons(ETH_P_IPV6)) {
1879 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1880
1881 /* Read l4_protocol from one of IPv6 extra headers */
1882 if (skb_network_header_len(skb) > 0)
1883 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1884 l4_proto = ip6h->nexthdr;
1885 } else
1886 return MVNETA_TX_L4_CSUM_NOT;
1887
1888 return mvneta_txq_desc_csum(skb_network_offset(skb),
1889 l3_proto, ip_hdr_len, l4_proto);
1890 }
1891
1892 return MVNETA_TX_L4_CSUM_NOT;
1893 }
1894
1895 /* Drop packets received by the RXQ and free buffers */
mvneta_rxq_drop_pkts(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)1896 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1897 struct mvneta_rx_queue *rxq)
1898 {
1899 int rx_done, i;
1900
1901 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1902 if (rx_done)
1903 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1904
1905 if (pp->bm_priv) {
1906 for (i = 0; i < rx_done; i++) {
1907 struct mvneta_rx_desc *rx_desc =
1908 mvneta_rxq_next_desc_get(rxq);
1909 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1910 struct mvneta_bm_pool *bm_pool;
1911
1912 bm_pool = &pp->bm_priv->bm_pools[pool_id];
1913 /* Return dropped buffer to the pool */
1914 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1915 rx_desc->buf_phys_addr);
1916 }
1917 return;
1918 }
1919
1920 for (i = 0; i < rxq->size; i++) {
1921 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1922 void *data = rxq->buf_virt_addr[i];
1923
1924 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1925 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1926 mvneta_frag_free(pp->frag_size, data);
1927 }
1928 }
1929
1930 /* Main rx processing when using software buffer management */
mvneta_rx_swbm(struct mvneta_port * pp,int rx_todo,struct mvneta_rx_queue * rxq)1931 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo,
1932 struct mvneta_rx_queue *rxq)
1933 {
1934 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1935 struct net_device *dev = pp->dev;
1936 int rx_done;
1937 u32 rcvd_pkts = 0;
1938 u32 rcvd_bytes = 0;
1939
1940 /* Get number of received packets */
1941 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1942
1943 if (rx_todo > rx_done)
1944 rx_todo = rx_done;
1945
1946 rx_done = 0;
1947
1948 /* Fairness NAPI loop */
1949 while (rx_done < rx_todo) {
1950 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1951 struct sk_buff *skb;
1952 unsigned char *data;
1953 dma_addr_t phys_addr;
1954 u32 rx_status, frag_size;
1955 int rx_bytes, err, index;
1956
1957 rx_done++;
1958 rx_status = rx_desc->status;
1959 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1960 index = rx_desc - rxq->descs;
1961 data = rxq->buf_virt_addr[index];
1962 phys_addr = rx_desc->buf_phys_addr - pp->rx_offset_correction;
1963
1964 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1965 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1966 mvneta_rx_error(pp, rx_desc);
1967 err_drop_frame:
1968 dev->stats.rx_errors++;
1969 /* leave the descriptor untouched */
1970 continue;
1971 }
1972
1973 if (rx_bytes <= rx_copybreak) {
1974 /* better copy a small frame and not unmap the DMA region */
1975 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1976 if (unlikely(!skb))
1977 goto err_drop_frame;
1978
1979 dma_sync_single_range_for_cpu(dev->dev.parent,
1980 phys_addr,
1981 MVNETA_MH_SIZE + NET_SKB_PAD,
1982 rx_bytes,
1983 DMA_FROM_DEVICE);
1984 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
1985 rx_bytes);
1986
1987 skb->protocol = eth_type_trans(skb, dev);
1988 mvneta_rx_csum(pp, rx_status, skb);
1989 napi_gro_receive(&port->napi, skb);
1990
1991 rcvd_pkts++;
1992 rcvd_bytes += rx_bytes;
1993
1994 /* leave the descriptor and buffer untouched */
1995 continue;
1996 }
1997
1998 /* Refill processing */
1999 err = mvneta_rx_refill(pp, rx_desc, rxq);
2000 if (err) {
2001 netdev_err(dev, "Linux processing - Can't refill\n");
2002 rxq->missed++;
2003 goto err_drop_frame;
2004 }
2005
2006 frag_size = pp->frag_size;
2007
2008 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2009
2010 /* After refill old buffer has to be unmapped regardless
2011 * the skb is successfully built or not.
2012 */
2013 dma_unmap_single(dev->dev.parent, phys_addr,
2014 MVNETA_RX_BUF_SIZE(pp->pkt_size),
2015 DMA_FROM_DEVICE);
2016
2017 if (!skb)
2018 goto err_drop_frame;
2019
2020 rcvd_pkts++;
2021 rcvd_bytes += rx_bytes;
2022
2023 /* Linux processing */
2024 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2025 skb_put(skb, rx_bytes);
2026
2027 skb->protocol = eth_type_trans(skb, dev);
2028
2029 mvneta_rx_csum(pp, rx_status, skb);
2030
2031 napi_gro_receive(&port->napi, skb);
2032 }
2033
2034 if (rcvd_pkts) {
2035 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2036
2037 u64_stats_update_begin(&stats->syncp);
2038 stats->rx_packets += rcvd_pkts;
2039 stats->rx_bytes += rcvd_bytes;
2040 u64_stats_update_end(&stats->syncp);
2041 }
2042
2043 /* Update rxq management counters */
2044 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2045
2046 return rx_done;
2047 }
2048
2049 /* Main rx processing when using hardware buffer management */
mvneta_rx_hwbm(struct mvneta_port * pp,int rx_todo,struct mvneta_rx_queue * rxq)2050 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo,
2051 struct mvneta_rx_queue *rxq)
2052 {
2053 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2054 struct net_device *dev = pp->dev;
2055 int rx_done;
2056 u32 rcvd_pkts = 0;
2057 u32 rcvd_bytes = 0;
2058
2059 /* Get number of received packets */
2060 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2061
2062 if (rx_todo > rx_done)
2063 rx_todo = rx_done;
2064
2065 rx_done = 0;
2066
2067 /* Fairness NAPI loop */
2068 while (rx_done < rx_todo) {
2069 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2070 struct mvneta_bm_pool *bm_pool = NULL;
2071 struct sk_buff *skb;
2072 unsigned char *data;
2073 dma_addr_t phys_addr;
2074 u32 rx_status, frag_size;
2075 int rx_bytes, err;
2076 u8 pool_id;
2077
2078 rx_done++;
2079 rx_status = rx_desc->status;
2080 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2081 data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2082 phys_addr = rx_desc->buf_phys_addr;
2083 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2084 bm_pool = &pp->bm_priv->bm_pools[pool_id];
2085
2086 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2087 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2088 err_drop_frame_ret_pool:
2089 /* Return the buffer to the pool */
2090 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2091 rx_desc->buf_phys_addr);
2092 err_drop_frame:
2093 dev->stats.rx_errors++;
2094 mvneta_rx_error(pp, rx_desc);
2095 /* leave the descriptor untouched */
2096 continue;
2097 }
2098
2099 if (rx_bytes <= rx_copybreak) {
2100 /* better copy a small frame and not unmap the DMA region */
2101 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2102 if (unlikely(!skb))
2103 goto err_drop_frame_ret_pool;
2104
2105 dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2106 rx_desc->buf_phys_addr,
2107 MVNETA_MH_SIZE + NET_SKB_PAD,
2108 rx_bytes,
2109 DMA_FROM_DEVICE);
2110 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2111 rx_bytes);
2112
2113 skb->protocol = eth_type_trans(skb, dev);
2114 mvneta_rx_csum(pp, rx_status, skb);
2115 napi_gro_receive(&port->napi, skb);
2116
2117 rcvd_pkts++;
2118 rcvd_bytes += rx_bytes;
2119
2120 /* Return the buffer to the pool */
2121 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2122 rx_desc->buf_phys_addr);
2123
2124 /* leave the descriptor and buffer untouched */
2125 continue;
2126 }
2127
2128 /* Refill processing */
2129 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2130 if (err) {
2131 netdev_err(dev, "Linux processing - Can't refill\n");
2132 rxq->missed++;
2133 goto err_drop_frame_ret_pool;
2134 }
2135
2136 frag_size = bm_pool->hwbm_pool.frag_size;
2137
2138 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2139
2140 /* After refill old buffer has to be unmapped regardless
2141 * the skb is successfully built or not.
2142 */
2143 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2144 bm_pool->buf_size, DMA_FROM_DEVICE);
2145 if (!skb)
2146 goto err_drop_frame;
2147
2148 rcvd_pkts++;
2149 rcvd_bytes += rx_bytes;
2150
2151 /* Linux processing */
2152 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2153 skb_put(skb, rx_bytes);
2154
2155 skb->protocol = eth_type_trans(skb, dev);
2156
2157 mvneta_rx_csum(pp, rx_status, skb);
2158
2159 napi_gro_receive(&port->napi, skb);
2160 }
2161
2162 if (rcvd_pkts) {
2163 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2164
2165 u64_stats_update_begin(&stats->syncp);
2166 stats->rx_packets += rcvd_pkts;
2167 stats->rx_bytes += rcvd_bytes;
2168 u64_stats_update_end(&stats->syncp);
2169 }
2170
2171 /* Update rxq management counters */
2172 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2173
2174 return rx_done;
2175 }
2176
2177 static inline void
mvneta_tso_put_hdr(struct sk_buff * skb,struct mvneta_port * pp,struct mvneta_tx_queue * txq)2178 mvneta_tso_put_hdr(struct sk_buff *skb,
2179 struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2180 {
2181 struct mvneta_tx_desc *tx_desc;
2182 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2183
2184 txq->tx_skb[txq->txq_put_index] = NULL;
2185 tx_desc = mvneta_txq_next_desc_get(txq);
2186 tx_desc->data_size = hdr_len;
2187 tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2188 tx_desc->command |= MVNETA_TXD_F_DESC;
2189 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2190 txq->txq_put_index * TSO_HEADER_SIZE;
2191 mvneta_txq_inc_put(txq);
2192 }
2193
2194 static inline int
mvneta_tso_put_data(struct net_device * dev,struct mvneta_tx_queue * txq,struct sk_buff * skb,char * data,int size,bool last_tcp,bool is_last)2195 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2196 struct sk_buff *skb, char *data, int size,
2197 bool last_tcp, bool is_last)
2198 {
2199 struct mvneta_tx_desc *tx_desc;
2200
2201 tx_desc = mvneta_txq_next_desc_get(txq);
2202 tx_desc->data_size = size;
2203 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2204 size, DMA_TO_DEVICE);
2205 if (unlikely(dma_mapping_error(dev->dev.parent,
2206 tx_desc->buf_phys_addr))) {
2207 mvneta_txq_desc_put(txq);
2208 return -ENOMEM;
2209 }
2210
2211 tx_desc->command = 0;
2212 txq->tx_skb[txq->txq_put_index] = NULL;
2213
2214 if (last_tcp) {
2215 /* last descriptor in the TCP packet */
2216 tx_desc->command = MVNETA_TXD_L_DESC;
2217
2218 /* last descriptor in SKB */
2219 if (is_last)
2220 txq->tx_skb[txq->txq_put_index] = skb;
2221 }
2222 mvneta_txq_inc_put(txq);
2223 return 0;
2224 }
2225
mvneta_tx_tso(struct sk_buff * skb,struct net_device * dev,struct mvneta_tx_queue * txq)2226 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2227 struct mvneta_tx_queue *txq)
2228 {
2229 int total_len, data_left;
2230 int desc_count = 0;
2231 struct mvneta_port *pp = netdev_priv(dev);
2232 struct tso_t tso;
2233 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2234 int i;
2235
2236 /* Count needed descriptors */
2237 if ((txq->count + tso_count_descs(skb)) >= txq->size)
2238 return 0;
2239
2240 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2241 pr_info("*** Is this even possible???!?!?\n");
2242 return 0;
2243 }
2244
2245 /* Initialize the TSO handler, and prepare the first payload */
2246 tso_start(skb, &tso);
2247
2248 total_len = skb->len - hdr_len;
2249 while (total_len > 0) {
2250 char *hdr;
2251
2252 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2253 total_len -= data_left;
2254 desc_count++;
2255
2256 /* prepare packet headers: MAC + IP + TCP */
2257 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2258 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2259
2260 mvneta_tso_put_hdr(skb, pp, txq);
2261
2262 while (data_left > 0) {
2263 int size;
2264 desc_count++;
2265
2266 size = min_t(int, tso.size, data_left);
2267
2268 if (mvneta_tso_put_data(dev, txq, skb,
2269 tso.data, size,
2270 size == data_left,
2271 total_len == 0))
2272 goto err_release;
2273 data_left -= size;
2274
2275 tso_build_data(skb, &tso, size);
2276 }
2277 }
2278
2279 return desc_count;
2280
2281 err_release:
2282 /* Release all used data descriptors; header descriptors must not
2283 * be DMA-unmapped.
2284 */
2285 for (i = desc_count - 1; i >= 0; i--) {
2286 struct mvneta_tx_desc *tx_desc = txq->descs + i;
2287 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2288 dma_unmap_single(pp->dev->dev.parent,
2289 tx_desc->buf_phys_addr,
2290 tx_desc->data_size,
2291 DMA_TO_DEVICE);
2292 mvneta_txq_desc_put(txq);
2293 }
2294 return 0;
2295 }
2296
2297 /* Handle tx fragmentation processing */
mvneta_tx_frag_process(struct mvneta_port * pp,struct sk_buff * skb,struct mvneta_tx_queue * txq)2298 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2299 struct mvneta_tx_queue *txq)
2300 {
2301 struct mvneta_tx_desc *tx_desc;
2302 int i, nr_frags = skb_shinfo(skb)->nr_frags;
2303
2304 for (i = 0; i < nr_frags; i++) {
2305 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2306 void *addr = page_address(frag->page.p) + frag->page_offset;
2307
2308 tx_desc = mvneta_txq_next_desc_get(txq);
2309 tx_desc->data_size = frag->size;
2310
2311 tx_desc->buf_phys_addr =
2312 dma_map_single(pp->dev->dev.parent, addr,
2313 tx_desc->data_size, DMA_TO_DEVICE);
2314
2315 if (dma_mapping_error(pp->dev->dev.parent,
2316 tx_desc->buf_phys_addr)) {
2317 mvneta_txq_desc_put(txq);
2318 goto error;
2319 }
2320
2321 if (i == nr_frags - 1) {
2322 /* Last descriptor */
2323 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2324 txq->tx_skb[txq->txq_put_index] = skb;
2325 } else {
2326 /* Descriptor in the middle: Not First, Not Last */
2327 tx_desc->command = 0;
2328 txq->tx_skb[txq->txq_put_index] = NULL;
2329 }
2330 mvneta_txq_inc_put(txq);
2331 }
2332
2333 return 0;
2334
2335 error:
2336 /* Release all descriptors that were used to map fragments of
2337 * this packet, as well as the corresponding DMA mappings
2338 */
2339 for (i = i - 1; i >= 0; i--) {
2340 tx_desc = txq->descs + i;
2341 dma_unmap_single(pp->dev->dev.parent,
2342 tx_desc->buf_phys_addr,
2343 tx_desc->data_size,
2344 DMA_TO_DEVICE);
2345 mvneta_txq_desc_put(txq);
2346 }
2347
2348 return -ENOMEM;
2349 }
2350
2351 /* Main tx processing */
mvneta_tx(struct sk_buff * skb,struct net_device * dev)2352 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2353 {
2354 struct mvneta_port *pp = netdev_priv(dev);
2355 u16 txq_id = skb_get_queue_mapping(skb);
2356 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2357 struct mvneta_tx_desc *tx_desc;
2358 int len = skb->len;
2359 int frags = 0;
2360 u32 tx_cmd;
2361
2362 if (!netif_running(dev))
2363 goto out;
2364
2365 if (skb_is_gso(skb)) {
2366 frags = mvneta_tx_tso(skb, dev, txq);
2367 goto out;
2368 }
2369
2370 frags = skb_shinfo(skb)->nr_frags + 1;
2371
2372 /* Get a descriptor for the first part of the packet */
2373 tx_desc = mvneta_txq_next_desc_get(txq);
2374
2375 tx_cmd = mvneta_skb_tx_csum(pp, skb);
2376
2377 tx_desc->data_size = skb_headlen(skb);
2378
2379 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2380 tx_desc->data_size,
2381 DMA_TO_DEVICE);
2382 if (unlikely(dma_mapping_error(dev->dev.parent,
2383 tx_desc->buf_phys_addr))) {
2384 mvneta_txq_desc_put(txq);
2385 frags = 0;
2386 goto out;
2387 }
2388
2389 if (frags == 1) {
2390 /* First and Last descriptor */
2391 tx_cmd |= MVNETA_TXD_FLZ_DESC;
2392 tx_desc->command = tx_cmd;
2393 txq->tx_skb[txq->txq_put_index] = skb;
2394 mvneta_txq_inc_put(txq);
2395 } else {
2396 /* First but not Last */
2397 tx_cmd |= MVNETA_TXD_F_DESC;
2398 txq->tx_skb[txq->txq_put_index] = NULL;
2399 mvneta_txq_inc_put(txq);
2400 tx_desc->command = tx_cmd;
2401 /* Continue with other skb fragments */
2402 if (mvneta_tx_frag_process(pp, skb, txq)) {
2403 dma_unmap_single(dev->dev.parent,
2404 tx_desc->buf_phys_addr,
2405 tx_desc->data_size,
2406 DMA_TO_DEVICE);
2407 mvneta_txq_desc_put(txq);
2408 frags = 0;
2409 goto out;
2410 }
2411 }
2412
2413 out:
2414 if (frags > 0) {
2415 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2416 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2417
2418 netdev_tx_sent_queue(nq, len);
2419
2420 txq->count += frags;
2421 if (txq->count >= txq->tx_stop_threshold)
2422 netif_tx_stop_queue(nq);
2423
2424 if (!skb->xmit_more || netif_xmit_stopped(nq) ||
2425 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2426 mvneta_txq_pend_desc_add(pp, txq, frags);
2427 else
2428 txq->pending += frags;
2429
2430 u64_stats_update_begin(&stats->syncp);
2431 stats->tx_packets++;
2432 stats->tx_bytes += len;
2433 u64_stats_update_end(&stats->syncp);
2434 } else {
2435 dev->stats.tx_dropped++;
2436 dev_kfree_skb_any(skb);
2437 }
2438
2439 return NETDEV_TX_OK;
2440 }
2441
2442
2443 /* Free tx resources, when resetting a port */
mvneta_txq_done_force(struct mvneta_port * pp,struct mvneta_tx_queue * txq)2444 static void mvneta_txq_done_force(struct mvneta_port *pp,
2445 struct mvneta_tx_queue *txq)
2446
2447 {
2448 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2449 int tx_done = txq->count;
2450
2451 mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2452
2453 /* reset txq */
2454 txq->count = 0;
2455 txq->txq_put_index = 0;
2456 txq->txq_get_index = 0;
2457 }
2458
2459 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2460 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2461 */
mvneta_tx_done_gbe(struct mvneta_port * pp,u32 cause_tx_done)2462 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2463 {
2464 struct mvneta_tx_queue *txq;
2465 struct netdev_queue *nq;
2466
2467 while (cause_tx_done) {
2468 txq = mvneta_tx_done_policy(pp, cause_tx_done);
2469
2470 nq = netdev_get_tx_queue(pp->dev, txq->id);
2471 __netif_tx_lock(nq, smp_processor_id());
2472
2473 if (txq->count)
2474 mvneta_txq_done(pp, txq);
2475
2476 __netif_tx_unlock(nq);
2477 cause_tx_done &= ~((1 << txq->id));
2478 }
2479 }
2480
2481 /* Compute crc8 of the specified address, using a unique algorithm ,
2482 * according to hw spec, different than generic crc8 algorithm
2483 */
mvneta_addr_crc(unsigned char * addr)2484 static int mvneta_addr_crc(unsigned char *addr)
2485 {
2486 int crc = 0;
2487 int i;
2488
2489 for (i = 0; i < ETH_ALEN; i++) {
2490 int j;
2491
2492 crc = (crc ^ addr[i]) << 8;
2493 for (j = 7; j >= 0; j--) {
2494 if (crc & (0x100 << j))
2495 crc ^= 0x107 << j;
2496 }
2497 }
2498
2499 return crc;
2500 }
2501
2502 /* This method controls the net device special MAC multicast support.
2503 * The Special Multicast Table for MAC addresses supports MAC of the form
2504 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2505 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2506 * Table entries in the DA-Filter table. This method set the Special
2507 * Multicast Table appropriate entry.
2508 */
mvneta_set_special_mcast_addr(struct mvneta_port * pp,unsigned char last_byte,int queue)2509 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2510 unsigned char last_byte,
2511 int queue)
2512 {
2513 unsigned int smc_table_reg;
2514 unsigned int tbl_offset;
2515 unsigned int reg_offset;
2516
2517 /* Register offset from SMC table base */
2518 tbl_offset = (last_byte / 4);
2519 /* Entry offset within the above reg */
2520 reg_offset = last_byte % 4;
2521
2522 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2523 + tbl_offset * 4));
2524
2525 if (queue == -1)
2526 smc_table_reg &= ~(0xff << (8 * reg_offset));
2527 else {
2528 smc_table_reg &= ~(0xff << (8 * reg_offset));
2529 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2530 }
2531
2532 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2533 smc_table_reg);
2534 }
2535
2536 /* This method controls the network device Other MAC multicast support.
2537 * The Other Multicast Table is used for multicast of another type.
2538 * A CRC-8 is used as an index to the Other Multicast Table entries
2539 * in the DA-Filter table.
2540 * The method gets the CRC-8 value from the calling routine and
2541 * sets the Other Multicast Table appropriate entry according to the
2542 * specified CRC-8 .
2543 */
mvneta_set_other_mcast_addr(struct mvneta_port * pp,unsigned char crc8,int queue)2544 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2545 unsigned char crc8,
2546 int queue)
2547 {
2548 unsigned int omc_table_reg;
2549 unsigned int tbl_offset;
2550 unsigned int reg_offset;
2551
2552 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2553 reg_offset = crc8 % 4; /* Entry offset within the above reg */
2554
2555 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2556
2557 if (queue == -1) {
2558 /* Clear accepts frame bit at specified Other DA table entry */
2559 omc_table_reg &= ~(0xff << (8 * reg_offset));
2560 } else {
2561 omc_table_reg &= ~(0xff << (8 * reg_offset));
2562 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2563 }
2564
2565 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2566 }
2567
2568 /* The network device supports multicast using two tables:
2569 * 1) Special Multicast Table for MAC addresses of the form
2570 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2571 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2572 * Table entries in the DA-Filter table.
2573 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
2574 * is used as an index to the Other Multicast Table entries in the
2575 * DA-Filter table.
2576 */
mvneta_mcast_addr_set(struct mvneta_port * pp,unsigned char * p_addr,int queue)2577 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2578 int queue)
2579 {
2580 unsigned char crc_result = 0;
2581
2582 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2583 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2584 return 0;
2585 }
2586
2587 crc_result = mvneta_addr_crc(p_addr);
2588 if (queue == -1) {
2589 if (pp->mcast_count[crc_result] == 0) {
2590 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2591 crc_result);
2592 return -EINVAL;
2593 }
2594
2595 pp->mcast_count[crc_result]--;
2596 if (pp->mcast_count[crc_result] != 0) {
2597 netdev_info(pp->dev,
2598 "After delete there are %d valid Mcast for crc8=0x%02x\n",
2599 pp->mcast_count[crc_result], crc_result);
2600 return -EINVAL;
2601 }
2602 } else
2603 pp->mcast_count[crc_result]++;
2604
2605 mvneta_set_other_mcast_addr(pp, crc_result, queue);
2606
2607 return 0;
2608 }
2609
2610 /* Configure Fitering mode of Ethernet port */
mvneta_rx_unicast_promisc_set(struct mvneta_port * pp,int is_promisc)2611 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2612 int is_promisc)
2613 {
2614 u32 port_cfg_reg, val;
2615
2616 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2617
2618 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2619
2620 /* Set / Clear UPM bit in port configuration register */
2621 if (is_promisc) {
2622 /* Accept all Unicast addresses */
2623 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2624 val |= MVNETA_FORCE_UNI;
2625 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2626 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2627 } else {
2628 /* Reject all Unicast addresses */
2629 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2630 val &= ~MVNETA_FORCE_UNI;
2631 }
2632
2633 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2634 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2635 }
2636
2637 /* register unicast and multicast addresses */
mvneta_set_rx_mode(struct net_device * dev)2638 static void mvneta_set_rx_mode(struct net_device *dev)
2639 {
2640 struct mvneta_port *pp = netdev_priv(dev);
2641 struct netdev_hw_addr *ha;
2642
2643 if (dev->flags & IFF_PROMISC) {
2644 /* Accept all: Multicast + Unicast */
2645 mvneta_rx_unicast_promisc_set(pp, 1);
2646 mvneta_set_ucast_table(pp, pp->rxq_def);
2647 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2648 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2649 } else {
2650 /* Accept single Unicast */
2651 mvneta_rx_unicast_promisc_set(pp, 0);
2652 mvneta_set_ucast_table(pp, -1);
2653 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2654
2655 if (dev->flags & IFF_ALLMULTI) {
2656 /* Accept all multicast */
2657 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2658 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2659 } else {
2660 /* Accept only initialized multicast */
2661 mvneta_set_special_mcast_table(pp, -1);
2662 mvneta_set_other_mcast_table(pp, -1);
2663
2664 if (!netdev_mc_empty(dev)) {
2665 netdev_for_each_mc_addr(ha, dev) {
2666 mvneta_mcast_addr_set(pp, ha->addr,
2667 pp->rxq_def);
2668 }
2669 }
2670 }
2671 }
2672 }
2673
2674 /* Interrupt handling - the callback for request_irq() */
mvneta_isr(int irq,void * dev_id)2675 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2676 {
2677 struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2678
2679 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2680 napi_schedule(&pp->napi);
2681
2682 return IRQ_HANDLED;
2683 }
2684
2685 /* Interrupt handling - the callback for request_percpu_irq() */
mvneta_percpu_isr(int irq,void * dev_id)2686 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
2687 {
2688 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2689
2690 disable_percpu_irq(port->pp->dev->irq);
2691 napi_schedule(&port->napi);
2692
2693 return IRQ_HANDLED;
2694 }
2695
mvneta_fixed_link_update(struct mvneta_port * pp,struct phy_device * phy)2696 static int mvneta_fixed_link_update(struct mvneta_port *pp,
2697 struct phy_device *phy)
2698 {
2699 struct fixed_phy_status status;
2700 struct fixed_phy_status changed = {};
2701 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2702
2703 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2704 if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2705 status.speed = SPEED_1000;
2706 else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2707 status.speed = SPEED_100;
2708 else
2709 status.speed = SPEED_10;
2710 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2711 changed.link = 1;
2712 changed.speed = 1;
2713 changed.duplex = 1;
2714 fixed_phy_update_state(phy, &status, &changed);
2715 return 0;
2716 }
2717
2718 /* NAPI handler
2719 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2720 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2721 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2722 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2723 * Each CPU has its own causeRxTx register
2724 */
mvneta_poll(struct napi_struct * napi,int budget)2725 static int mvneta_poll(struct napi_struct *napi, int budget)
2726 {
2727 int rx_done = 0;
2728 u32 cause_rx_tx;
2729 int rx_queue;
2730 struct mvneta_port *pp = netdev_priv(napi->dev);
2731 struct net_device *ndev = pp->dev;
2732 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2733
2734 if (!netif_running(pp->dev)) {
2735 napi_complete(napi);
2736 return rx_done;
2737 }
2738
2739 /* Read cause register */
2740 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2741 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2742 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2743
2744 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2745 if (pp->use_inband_status && (cause_misc &
2746 (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2747 MVNETA_CAUSE_LINK_CHANGE |
2748 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2749 mvneta_fixed_link_update(pp, ndev->phydev);
2750 }
2751 }
2752
2753 /* Release Tx descriptors */
2754 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2755 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2756 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2757 }
2758
2759 /* For the case where the last mvneta_poll did not process all
2760 * RX packets
2761 */
2762 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
2763 port->cause_rx_tx;
2764
2765 rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2766 if (rx_queue) {
2767 rx_queue = rx_queue - 1;
2768 if (pp->bm_priv)
2769 rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]);
2770 else
2771 rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]);
2772 }
2773
2774 if (rx_done < budget) {
2775 cause_rx_tx = 0;
2776 napi_complete_done(napi, rx_done);
2777
2778 if (pp->neta_armada3700) {
2779 unsigned long flags;
2780
2781 local_irq_save(flags);
2782 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2783 MVNETA_RX_INTR_MASK(rxq_number) |
2784 MVNETA_TX_INTR_MASK(txq_number) |
2785 MVNETA_MISCINTR_INTR_MASK);
2786 local_irq_restore(flags);
2787 } else {
2788 enable_percpu_irq(pp->dev->irq, 0);
2789 }
2790 }
2791
2792 if (pp->neta_armada3700)
2793 pp->cause_rx_tx = cause_rx_tx;
2794 else
2795 port->cause_rx_tx = cause_rx_tx;
2796
2797 return rx_done;
2798 }
2799
2800 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
mvneta_rxq_fill(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int num)2801 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2802 int num)
2803 {
2804 int i;
2805
2806 for (i = 0; i < num; i++) {
2807 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2808 if (mvneta_rx_refill(pp, rxq->descs + i, rxq) != 0) {
2809 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n",
2810 __func__, rxq->id, i, num);
2811 break;
2812 }
2813 }
2814
2815 /* Add this number of RX descriptors as non occupied (ready to
2816 * get packets)
2817 */
2818 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2819
2820 return i;
2821 }
2822
2823 /* Free all packets pending transmit from all TXQs and reset TX port */
mvneta_tx_reset(struct mvneta_port * pp)2824 static void mvneta_tx_reset(struct mvneta_port *pp)
2825 {
2826 int queue;
2827
2828 /* free the skb's in the tx ring */
2829 for (queue = 0; queue < txq_number; queue++)
2830 mvneta_txq_done_force(pp, &pp->txqs[queue]);
2831
2832 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2833 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2834 }
2835
mvneta_rx_reset(struct mvneta_port * pp)2836 static void mvneta_rx_reset(struct mvneta_port *pp)
2837 {
2838 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2839 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2840 }
2841
2842 /* Rx/Tx queue initialization/cleanup methods */
2843
2844 /* Create a specified RX queue */
mvneta_rxq_init(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)2845 static int mvneta_rxq_init(struct mvneta_port *pp,
2846 struct mvneta_rx_queue *rxq)
2847
2848 {
2849 rxq->size = pp->rx_ring_size;
2850
2851 /* Allocate memory for RX descriptors */
2852 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2853 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2854 &rxq->descs_phys, GFP_KERNEL);
2855 if (!rxq->descs)
2856 return -ENOMEM;
2857
2858 rxq->last_desc = rxq->size - 1;
2859
2860 /* Set Rx descriptors queue starting address */
2861 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2862 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2863
2864 /* Set Offset */
2865 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD - pp->rx_offset_correction);
2866
2867 /* Set coalescing pkts and time */
2868 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2869 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2870
2871 if (!pp->bm_priv) {
2872 /* Fill RXQ with buffers from RX pool */
2873 mvneta_rxq_buf_size_set(pp, rxq,
2874 MVNETA_RX_BUF_SIZE(pp->pkt_size));
2875 mvneta_rxq_bm_disable(pp, rxq);
2876 mvneta_rxq_fill(pp, rxq, rxq->size);
2877 } else {
2878 mvneta_rxq_bm_enable(pp, rxq);
2879 mvneta_rxq_long_pool_set(pp, rxq);
2880 mvneta_rxq_short_pool_set(pp, rxq);
2881 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
2882 }
2883
2884 return 0;
2885 }
2886
2887 /* Cleanup Rx queue */
mvneta_rxq_deinit(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)2888 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2889 struct mvneta_rx_queue *rxq)
2890 {
2891 mvneta_rxq_drop_pkts(pp, rxq);
2892
2893 if (rxq->descs)
2894 dma_free_coherent(pp->dev->dev.parent,
2895 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2896 rxq->descs,
2897 rxq->descs_phys);
2898
2899 rxq->descs = NULL;
2900 rxq->last_desc = 0;
2901 rxq->next_desc_to_proc = 0;
2902 rxq->descs_phys = 0;
2903 }
2904
2905 /* Create and initialize a tx queue */
mvneta_txq_init(struct mvneta_port * pp,struct mvneta_tx_queue * txq)2906 static int mvneta_txq_init(struct mvneta_port *pp,
2907 struct mvneta_tx_queue *txq)
2908 {
2909 int cpu;
2910
2911 txq->size = pp->tx_ring_size;
2912
2913 /* A queue must always have room for at least one skb.
2914 * Therefore, stop the queue when the free entries reaches
2915 * the maximum number of descriptors per skb.
2916 */
2917 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2918 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2919
2920
2921 /* Allocate memory for TX descriptors */
2922 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2923 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2924 &txq->descs_phys, GFP_KERNEL);
2925 if (!txq->descs)
2926 return -ENOMEM;
2927
2928 txq->last_desc = txq->size - 1;
2929
2930 /* Set maximum bandwidth for enabled TXQs */
2931 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2932 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2933
2934 /* Set Tx descriptors queue starting address */
2935 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2936 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2937
2938 txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb),
2939 GFP_KERNEL);
2940 if (!txq->tx_skb) {
2941 dma_free_coherent(pp->dev->dev.parent,
2942 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2943 txq->descs, txq->descs_phys);
2944 return -ENOMEM;
2945 }
2946
2947 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2948 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2949 txq->size * TSO_HEADER_SIZE,
2950 &txq->tso_hdrs_phys, GFP_KERNEL);
2951 if (!txq->tso_hdrs) {
2952 kfree(txq->tx_skb);
2953 dma_free_coherent(pp->dev->dev.parent,
2954 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2955 txq->descs, txq->descs_phys);
2956 return -ENOMEM;
2957 }
2958 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2959
2960 /* Setup XPS mapping */
2961 if (txq_number > 1)
2962 cpu = txq->id % num_present_cpus();
2963 else
2964 cpu = pp->rxq_def % num_present_cpus();
2965 cpumask_set_cpu(cpu, &txq->affinity_mask);
2966 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
2967
2968 return 0;
2969 }
2970
2971 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
mvneta_txq_deinit(struct mvneta_port * pp,struct mvneta_tx_queue * txq)2972 static void mvneta_txq_deinit(struct mvneta_port *pp,
2973 struct mvneta_tx_queue *txq)
2974 {
2975 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2976
2977 kfree(txq->tx_skb);
2978
2979 if (txq->tso_hdrs)
2980 dma_free_coherent(pp->dev->dev.parent,
2981 txq->size * TSO_HEADER_SIZE,
2982 txq->tso_hdrs, txq->tso_hdrs_phys);
2983 if (txq->descs)
2984 dma_free_coherent(pp->dev->dev.parent,
2985 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2986 txq->descs, txq->descs_phys);
2987
2988 netdev_tx_reset_queue(nq);
2989
2990 txq->descs = NULL;
2991 txq->last_desc = 0;
2992 txq->next_desc_to_proc = 0;
2993 txq->descs_phys = 0;
2994
2995 /* Set minimum bandwidth for disabled TXQs */
2996 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2997 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2998
2999 /* Set Tx descriptors queue starting address and size */
3000 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3001 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3002 }
3003
3004 /* Cleanup all Tx queues */
mvneta_cleanup_txqs(struct mvneta_port * pp)3005 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3006 {
3007 int queue;
3008
3009 for (queue = 0; queue < txq_number; queue++)
3010 mvneta_txq_deinit(pp, &pp->txqs[queue]);
3011 }
3012
3013 /* Cleanup all Rx queues */
mvneta_cleanup_rxqs(struct mvneta_port * pp)3014 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3015 {
3016 int queue;
3017
3018 for (queue = 0; queue < rxq_number; queue++)
3019 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3020 }
3021
3022
3023 /* Init all Rx queues */
mvneta_setup_rxqs(struct mvneta_port * pp)3024 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3025 {
3026 int queue;
3027
3028 for (queue = 0; queue < rxq_number; queue++) {
3029 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3030
3031 if (err) {
3032 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3033 __func__, queue);
3034 mvneta_cleanup_rxqs(pp);
3035 return err;
3036 }
3037 }
3038
3039 return 0;
3040 }
3041
3042 /* Init all tx queues */
mvneta_setup_txqs(struct mvneta_port * pp)3043 static int mvneta_setup_txqs(struct mvneta_port *pp)
3044 {
3045 int queue;
3046
3047 for (queue = 0; queue < txq_number; queue++) {
3048 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3049 if (err) {
3050 netdev_err(pp->dev, "%s: can't create txq=%d\n",
3051 __func__, queue);
3052 mvneta_cleanup_txqs(pp);
3053 return err;
3054 }
3055 }
3056
3057 return 0;
3058 }
3059
mvneta_start_dev(struct mvneta_port * pp)3060 static void mvneta_start_dev(struct mvneta_port *pp)
3061 {
3062 int cpu;
3063 struct net_device *ndev = pp->dev;
3064
3065 mvneta_max_rx_size_set(pp, pp->pkt_size);
3066 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3067
3068 /* start the Rx/Tx activity */
3069 mvneta_port_enable(pp);
3070
3071 if (!pp->neta_armada3700) {
3072 /* Enable polling on the port */
3073 for_each_online_cpu(cpu) {
3074 struct mvneta_pcpu_port *port =
3075 per_cpu_ptr(pp->ports, cpu);
3076
3077 napi_enable(&port->napi);
3078 }
3079 } else {
3080 napi_enable(&pp->napi);
3081 }
3082
3083 /* Unmask interrupts. It has to be done from each CPU */
3084 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3085
3086 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3087 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3088 MVNETA_CAUSE_LINK_CHANGE |
3089 MVNETA_CAUSE_PSC_SYNC_CHANGE);
3090
3091 phy_start(ndev->phydev);
3092 netif_tx_start_all_queues(pp->dev);
3093 }
3094
mvneta_stop_dev(struct mvneta_port * pp)3095 static void mvneta_stop_dev(struct mvneta_port *pp)
3096 {
3097 unsigned int cpu;
3098 struct net_device *ndev = pp->dev;
3099
3100 phy_stop(ndev->phydev);
3101
3102 if (!pp->neta_armada3700) {
3103 for_each_online_cpu(cpu) {
3104 struct mvneta_pcpu_port *port =
3105 per_cpu_ptr(pp->ports, cpu);
3106
3107 napi_disable(&port->napi);
3108 }
3109 } else {
3110 napi_disable(&pp->napi);
3111 }
3112
3113 netif_carrier_off(pp->dev);
3114
3115 mvneta_port_down(pp);
3116 netif_tx_stop_all_queues(pp->dev);
3117
3118 /* Stop the port activity */
3119 mvneta_port_disable(pp);
3120
3121 /* Clear all ethernet port interrupts */
3122 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3123
3124 /* Mask all ethernet port interrupts */
3125 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3126
3127 mvneta_tx_reset(pp);
3128 mvneta_rx_reset(pp);
3129 }
3130
mvneta_percpu_enable(void * arg)3131 static void mvneta_percpu_enable(void *arg)
3132 {
3133 struct mvneta_port *pp = arg;
3134
3135 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3136 }
3137
mvneta_percpu_disable(void * arg)3138 static void mvneta_percpu_disable(void *arg)
3139 {
3140 struct mvneta_port *pp = arg;
3141
3142 disable_percpu_irq(pp->dev->irq);
3143 }
3144
3145 /* Change the device mtu */
mvneta_change_mtu(struct net_device * dev,int mtu)3146 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3147 {
3148 struct mvneta_port *pp = netdev_priv(dev);
3149 int ret;
3150
3151 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3152 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3153 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3154 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3155 }
3156
3157 dev->mtu = mtu;
3158
3159 if (!netif_running(dev)) {
3160 if (pp->bm_priv)
3161 mvneta_bm_update_mtu(pp, mtu);
3162
3163 netdev_update_features(dev);
3164 return 0;
3165 }
3166
3167 /* The interface is running, so we have to force a
3168 * reallocation of the queues
3169 */
3170 mvneta_stop_dev(pp);
3171 on_each_cpu(mvneta_percpu_disable, pp, true);
3172
3173 mvneta_cleanup_txqs(pp);
3174 mvneta_cleanup_rxqs(pp);
3175
3176 if (pp->bm_priv)
3177 mvneta_bm_update_mtu(pp, mtu);
3178
3179 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3180 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3181 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3182
3183 ret = mvneta_setup_rxqs(pp);
3184 if (ret) {
3185 netdev_err(dev, "unable to setup rxqs after MTU change\n");
3186 return ret;
3187 }
3188
3189 ret = mvneta_setup_txqs(pp);
3190 if (ret) {
3191 netdev_err(dev, "unable to setup txqs after MTU change\n");
3192 return ret;
3193 }
3194
3195 on_each_cpu(mvneta_percpu_enable, pp, true);
3196 mvneta_start_dev(pp);
3197
3198 netdev_update_features(dev);
3199
3200 return 0;
3201 }
3202
mvneta_fix_features(struct net_device * dev,netdev_features_t features)3203 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3204 netdev_features_t features)
3205 {
3206 struct mvneta_port *pp = netdev_priv(dev);
3207
3208 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3209 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3210 netdev_info(dev,
3211 "Disable IP checksum for MTU greater than %dB\n",
3212 pp->tx_csum_limit);
3213 }
3214
3215 return features;
3216 }
3217
3218 /* Get mac address */
mvneta_get_mac_addr(struct mvneta_port * pp,unsigned char * addr)3219 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3220 {
3221 u32 mac_addr_l, mac_addr_h;
3222
3223 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3224 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3225 addr[0] = (mac_addr_h >> 24) & 0xFF;
3226 addr[1] = (mac_addr_h >> 16) & 0xFF;
3227 addr[2] = (mac_addr_h >> 8) & 0xFF;
3228 addr[3] = mac_addr_h & 0xFF;
3229 addr[4] = (mac_addr_l >> 8) & 0xFF;
3230 addr[5] = mac_addr_l & 0xFF;
3231 }
3232
3233 /* Handle setting mac address */
mvneta_set_mac_addr(struct net_device * dev,void * addr)3234 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3235 {
3236 struct mvneta_port *pp = netdev_priv(dev);
3237 struct sockaddr *sockaddr = addr;
3238 int ret;
3239
3240 ret = eth_prepare_mac_addr_change(dev, addr);
3241 if (ret < 0)
3242 return ret;
3243 /* Remove previous address table entry */
3244 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3245
3246 /* Set new addr in hw */
3247 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3248
3249 eth_commit_mac_addr_change(dev, addr);
3250 return 0;
3251 }
3252
mvneta_adjust_link(struct net_device * ndev)3253 static void mvneta_adjust_link(struct net_device *ndev)
3254 {
3255 struct mvneta_port *pp = netdev_priv(ndev);
3256 struct phy_device *phydev = ndev->phydev;
3257 int status_change = 0;
3258
3259 if (phydev->link) {
3260 if ((pp->speed != phydev->speed) ||
3261 (pp->duplex != phydev->duplex)) {
3262 u32 val;
3263
3264 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3265 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3266 MVNETA_GMAC_CONFIG_GMII_SPEED |
3267 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3268
3269 if (phydev->duplex)
3270 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3271
3272 if (phydev->speed == SPEED_1000)
3273 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3274 else if (phydev->speed == SPEED_100)
3275 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3276
3277 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3278
3279 pp->duplex = phydev->duplex;
3280 pp->speed = phydev->speed;
3281 }
3282 }
3283
3284 if (phydev->link != pp->link) {
3285 if (!phydev->link) {
3286 pp->duplex = -1;
3287 pp->speed = 0;
3288 }
3289
3290 pp->link = phydev->link;
3291 status_change = 1;
3292 }
3293
3294 if (status_change) {
3295 if (phydev->link) {
3296 if (!pp->use_inband_status) {
3297 u32 val = mvreg_read(pp,
3298 MVNETA_GMAC_AUTONEG_CONFIG);
3299 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3300 val |= MVNETA_GMAC_FORCE_LINK_PASS;
3301 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3302 val);
3303 }
3304 mvneta_port_up(pp);
3305 } else {
3306 if (!pp->use_inband_status) {
3307 u32 val = mvreg_read(pp,
3308 MVNETA_GMAC_AUTONEG_CONFIG);
3309 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3310 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3311 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3312 val);
3313 }
3314 mvneta_port_down(pp);
3315 }
3316 phy_print_status(phydev);
3317 }
3318 }
3319
mvneta_mdio_probe(struct mvneta_port * pp)3320 static int mvneta_mdio_probe(struct mvneta_port *pp)
3321 {
3322 struct phy_device *phy_dev;
3323 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
3324
3325 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
3326 pp->phy_interface);
3327 if (!phy_dev) {
3328 netdev_err(pp->dev, "could not find the PHY\n");
3329 return -ENODEV;
3330 }
3331
3332 phy_ethtool_get_wol(phy_dev, &wol);
3333 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
3334
3335 phy_dev->supported &= PHY_GBIT_FEATURES;
3336 phy_dev->advertising = phy_dev->supported;
3337
3338 pp->link = 0;
3339 pp->duplex = 0;
3340 pp->speed = 0;
3341
3342 return 0;
3343 }
3344
mvneta_mdio_remove(struct mvneta_port * pp)3345 static void mvneta_mdio_remove(struct mvneta_port *pp)
3346 {
3347 struct net_device *ndev = pp->dev;
3348
3349 phy_disconnect(ndev->phydev);
3350 }
3351
3352 /* Electing a CPU must be done in an atomic way: it should be done
3353 * after or before the removal/insertion of a CPU and this function is
3354 * not reentrant.
3355 */
mvneta_percpu_elect(struct mvneta_port * pp)3356 static void mvneta_percpu_elect(struct mvneta_port *pp)
3357 {
3358 int elected_cpu = 0, max_cpu, cpu, i = 0;
3359
3360 /* Use the cpu associated to the rxq when it is online, in all
3361 * the other cases, use the cpu 0 which can't be offline.
3362 */
3363 if (cpu_online(pp->rxq_def))
3364 elected_cpu = pp->rxq_def;
3365
3366 max_cpu = num_present_cpus();
3367
3368 for_each_online_cpu(cpu) {
3369 int rxq_map = 0, txq_map = 0;
3370 int rxq;
3371
3372 for (rxq = 0; rxq < rxq_number; rxq++)
3373 if ((rxq % max_cpu) == cpu)
3374 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3375
3376 if (cpu == elected_cpu)
3377 /* Map the default receive queue queue to the
3378 * elected CPU
3379 */
3380 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3381
3382 /* We update the TX queue map only if we have one
3383 * queue. In this case we associate the TX queue to
3384 * the CPU bound to the default RX queue
3385 */
3386 if (txq_number == 1)
3387 txq_map = (cpu == elected_cpu) ?
3388 MVNETA_CPU_TXQ_ACCESS(1) : 0;
3389 else
3390 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3391 MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3392
3393 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3394
3395 /* Update the interrupt mask on each CPU according the
3396 * new mapping
3397 */
3398 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3399 pp, true);
3400 i++;
3401
3402 }
3403 };
3404
mvneta_cpu_online(unsigned int cpu,struct hlist_node * node)3405 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3406 {
3407 int other_cpu;
3408 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3409 node_online);
3410 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3411
3412
3413 spin_lock(&pp->lock);
3414 /*
3415 * Configuring the driver for a new CPU while the driver is
3416 * stopping is racy, so just avoid it.
3417 */
3418 if (pp->is_stopped) {
3419 spin_unlock(&pp->lock);
3420 return 0;
3421 }
3422 netif_tx_stop_all_queues(pp->dev);
3423
3424 /*
3425 * We have to synchronise on tha napi of each CPU except the one
3426 * just being woken up
3427 */
3428 for_each_online_cpu(other_cpu) {
3429 if (other_cpu != cpu) {
3430 struct mvneta_pcpu_port *other_port =
3431 per_cpu_ptr(pp->ports, other_cpu);
3432
3433 napi_synchronize(&other_port->napi);
3434 }
3435 }
3436
3437 /* Mask all ethernet port interrupts */
3438 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3439 napi_enable(&port->napi);
3440
3441 /*
3442 * Enable per-CPU interrupts on the CPU that is
3443 * brought up.
3444 */
3445 mvneta_percpu_enable(pp);
3446
3447 /*
3448 * Enable per-CPU interrupt on the one CPU we care
3449 * about.
3450 */
3451 mvneta_percpu_elect(pp);
3452
3453 /* Unmask all ethernet port interrupts */
3454 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3455 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3456 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3457 MVNETA_CAUSE_LINK_CHANGE |
3458 MVNETA_CAUSE_PSC_SYNC_CHANGE);
3459 netif_tx_start_all_queues(pp->dev);
3460 spin_unlock(&pp->lock);
3461 return 0;
3462 }
3463
mvneta_cpu_down_prepare(unsigned int cpu,struct hlist_node * node)3464 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
3465 {
3466 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3467 node_online);
3468 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3469
3470 /*
3471 * Thanks to this lock we are sure that any pending cpu election is
3472 * done.
3473 */
3474 spin_lock(&pp->lock);
3475 /* Mask all ethernet port interrupts */
3476 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3477 spin_unlock(&pp->lock);
3478
3479 napi_synchronize(&port->napi);
3480 napi_disable(&port->napi);
3481 /* Disable per-CPU interrupts on the CPU that is brought down. */
3482 mvneta_percpu_disable(pp);
3483 return 0;
3484 }
3485
mvneta_cpu_dead(unsigned int cpu,struct hlist_node * node)3486 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
3487 {
3488 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3489 node_dead);
3490
3491 /* Check if a new CPU must be elected now this on is down */
3492 spin_lock(&pp->lock);
3493 mvneta_percpu_elect(pp);
3494 spin_unlock(&pp->lock);
3495 /* Unmask all ethernet port interrupts */
3496 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3497 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3498 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3499 MVNETA_CAUSE_LINK_CHANGE |
3500 MVNETA_CAUSE_PSC_SYNC_CHANGE);
3501 netif_tx_start_all_queues(pp->dev);
3502 return 0;
3503 }
3504
mvneta_open(struct net_device * dev)3505 static int mvneta_open(struct net_device *dev)
3506 {
3507 struct mvneta_port *pp = netdev_priv(dev);
3508 int ret;
3509
3510 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3511 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3512 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3513
3514 ret = mvneta_setup_rxqs(pp);
3515 if (ret)
3516 return ret;
3517
3518 ret = mvneta_setup_txqs(pp);
3519 if (ret)
3520 goto err_cleanup_rxqs;
3521
3522 /* Connect to port interrupt line */
3523 if (pp->neta_armada3700)
3524 ret = request_irq(pp->dev->irq, mvneta_isr, 0,
3525 dev->name, pp);
3526 else
3527 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
3528 dev->name, pp->ports);
3529 if (ret) {
3530 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3531 goto err_cleanup_txqs;
3532 }
3533
3534 if (!pp->neta_armada3700) {
3535 /* Enable per-CPU interrupt on all the CPU to handle our RX
3536 * queue interrupts
3537 */
3538 on_each_cpu(mvneta_percpu_enable, pp, true);
3539
3540 pp->is_stopped = false;
3541 /* Register a CPU notifier to handle the case where our CPU
3542 * might be taken offline.
3543 */
3544 ret = cpuhp_state_add_instance_nocalls(online_hpstate,
3545 &pp->node_online);
3546 if (ret)
3547 goto err_free_irq;
3548
3549 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3550 &pp->node_dead);
3551 if (ret)
3552 goto err_free_online_hp;
3553 }
3554
3555 /* In default link is down */
3556 netif_carrier_off(pp->dev);
3557
3558 ret = mvneta_mdio_probe(pp);
3559 if (ret < 0) {
3560 netdev_err(dev, "cannot probe MDIO bus\n");
3561 goto err_free_dead_hp;
3562 }
3563
3564 mvneta_start_dev(pp);
3565
3566 return 0;
3567
3568 err_free_dead_hp:
3569 if (!pp->neta_armada3700)
3570 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3571 &pp->node_dead);
3572 err_free_online_hp:
3573 if (!pp->neta_armada3700)
3574 cpuhp_state_remove_instance_nocalls(online_hpstate,
3575 &pp->node_online);
3576 err_free_irq:
3577 if (pp->neta_armada3700) {
3578 free_irq(pp->dev->irq, pp);
3579 } else {
3580 on_each_cpu(mvneta_percpu_disable, pp, true);
3581 free_percpu_irq(pp->dev->irq, pp->ports);
3582 }
3583 err_cleanup_txqs:
3584 mvneta_cleanup_txqs(pp);
3585 err_cleanup_rxqs:
3586 mvneta_cleanup_rxqs(pp);
3587 return ret;
3588 }
3589
3590 /* Stop the port, free port interrupt line */
mvneta_stop(struct net_device * dev)3591 static int mvneta_stop(struct net_device *dev)
3592 {
3593 struct mvneta_port *pp = netdev_priv(dev);
3594
3595 if (!pp->neta_armada3700) {
3596 /* Inform that we are stopping so we don't want to setup the
3597 * driver for new CPUs in the notifiers. The code of the
3598 * notifier for CPU online is protected by the same spinlock,
3599 * so when we get the lock, the notifer work is done.
3600 */
3601 spin_lock(&pp->lock);
3602 pp->is_stopped = true;
3603 spin_unlock(&pp->lock);
3604
3605 mvneta_stop_dev(pp);
3606 mvneta_mdio_remove(pp);
3607
3608 cpuhp_state_remove_instance_nocalls(online_hpstate,
3609 &pp->node_online);
3610 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3611 &pp->node_dead);
3612 on_each_cpu(mvneta_percpu_disable, pp, true);
3613 free_percpu_irq(dev->irq, pp->ports);
3614 } else {
3615 mvneta_stop_dev(pp);
3616 mvneta_mdio_remove(pp);
3617 free_irq(dev->irq, pp);
3618 }
3619
3620 mvneta_cleanup_rxqs(pp);
3621 mvneta_cleanup_txqs(pp);
3622
3623 return 0;
3624 }
3625
mvneta_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)3626 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3627 {
3628 if (!dev->phydev)
3629 return -ENOTSUPP;
3630
3631 return phy_mii_ioctl(dev->phydev, ifr, cmd);
3632 }
3633
3634 /* Ethtool methods */
3635
3636 /* Set link ksettings (phy address, speed) for ethtools */
3637 static int
mvneta_ethtool_set_link_ksettings(struct net_device * ndev,const struct ethtool_link_ksettings * cmd)3638 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
3639 const struct ethtool_link_ksettings *cmd)
3640 {
3641 struct mvneta_port *pp = netdev_priv(ndev);
3642 struct phy_device *phydev = ndev->phydev;
3643
3644 if (!phydev)
3645 return -ENODEV;
3646
3647 if ((cmd->base.autoneg == AUTONEG_ENABLE) != pp->use_inband_status) {
3648 u32 val;
3649
3650 mvneta_set_autoneg(pp, cmd->base.autoneg == AUTONEG_ENABLE);
3651
3652 if (cmd->base.autoneg == AUTONEG_DISABLE) {
3653 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3654 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3655 MVNETA_GMAC_CONFIG_GMII_SPEED |
3656 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3657
3658 if (phydev->duplex)
3659 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3660
3661 if (phydev->speed == SPEED_1000)
3662 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3663 else if (phydev->speed == SPEED_100)
3664 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3665
3666 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3667 }
3668
3669 pp->use_inband_status = (cmd->base.autoneg == AUTONEG_ENABLE);
3670 netdev_info(pp->dev, "autoneg status set to %i\n",
3671 pp->use_inband_status);
3672
3673 if (netif_running(ndev)) {
3674 mvneta_port_down(pp);
3675 mvneta_port_up(pp);
3676 }
3677 }
3678
3679 return phy_ethtool_ksettings_set(ndev->phydev, cmd);
3680 }
3681
3682 /* Set interrupt coalescing for ethtools */
mvneta_ethtool_set_coalesce(struct net_device * dev,struct ethtool_coalesce * c)3683 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3684 struct ethtool_coalesce *c)
3685 {
3686 struct mvneta_port *pp = netdev_priv(dev);
3687 int queue;
3688
3689 for (queue = 0; queue < rxq_number; queue++) {
3690 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3691 rxq->time_coal = c->rx_coalesce_usecs;
3692 rxq->pkts_coal = c->rx_max_coalesced_frames;
3693 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3694 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3695 }
3696
3697 for (queue = 0; queue < txq_number; queue++) {
3698 struct mvneta_tx_queue *txq = &pp->txqs[queue];
3699 txq->done_pkts_coal = c->tx_max_coalesced_frames;
3700 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3701 }
3702
3703 return 0;
3704 }
3705
3706 /* get coalescing for ethtools */
mvneta_ethtool_get_coalesce(struct net_device * dev,struct ethtool_coalesce * c)3707 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3708 struct ethtool_coalesce *c)
3709 {
3710 struct mvneta_port *pp = netdev_priv(dev);
3711
3712 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
3713 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
3714
3715 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
3716 return 0;
3717 }
3718
3719
mvneta_ethtool_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * drvinfo)3720 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3721 struct ethtool_drvinfo *drvinfo)
3722 {
3723 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3724 sizeof(drvinfo->driver));
3725 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3726 sizeof(drvinfo->version));
3727 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3728 sizeof(drvinfo->bus_info));
3729 }
3730
3731
mvneta_ethtool_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)3732 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3733 struct ethtool_ringparam *ring)
3734 {
3735 struct mvneta_port *pp = netdev_priv(netdev);
3736
3737 ring->rx_max_pending = MVNETA_MAX_RXD;
3738 ring->tx_max_pending = MVNETA_MAX_TXD;
3739 ring->rx_pending = pp->rx_ring_size;
3740 ring->tx_pending = pp->tx_ring_size;
3741 }
3742
mvneta_ethtool_set_ringparam(struct net_device * dev,struct ethtool_ringparam * ring)3743 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3744 struct ethtool_ringparam *ring)
3745 {
3746 struct mvneta_port *pp = netdev_priv(dev);
3747
3748 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3749 return -EINVAL;
3750 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3751 ring->rx_pending : MVNETA_MAX_RXD;
3752
3753 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3754 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3755 if (pp->tx_ring_size != ring->tx_pending)
3756 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3757 pp->tx_ring_size, ring->tx_pending);
3758
3759 if (netif_running(dev)) {
3760 mvneta_stop(dev);
3761 if (mvneta_open(dev)) {
3762 netdev_err(dev,
3763 "error on opening device after ring param change\n");
3764 return -ENOMEM;
3765 }
3766 }
3767
3768 return 0;
3769 }
3770
mvneta_ethtool_get_strings(struct net_device * netdev,u32 sset,u8 * data)3771 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3772 u8 *data)
3773 {
3774 if (sset == ETH_SS_STATS) {
3775 int i;
3776
3777 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3778 memcpy(data + i * ETH_GSTRING_LEN,
3779 mvneta_statistics[i].name, ETH_GSTRING_LEN);
3780 }
3781 }
3782
mvneta_ethtool_update_stats(struct mvneta_port * pp)3783 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3784 {
3785 const struct mvneta_statistic *s;
3786 void __iomem *base = pp->base;
3787 u32 high, low, val;
3788 u64 val64;
3789 int i;
3790
3791 for (i = 0, s = mvneta_statistics;
3792 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3793 s++, i++) {
3794 switch (s->type) {
3795 case T_REG_32:
3796 val = readl_relaxed(base + s->offset);
3797 pp->ethtool_stats[i] += val;
3798 break;
3799 case T_REG_64:
3800 /* Docs say to read low 32-bit then high */
3801 low = readl_relaxed(base + s->offset);
3802 high = readl_relaxed(base + s->offset + 4);
3803 val64 = (u64)high << 32 | low;
3804 pp->ethtool_stats[i] += val64;
3805 break;
3806 }
3807 }
3808 }
3809
mvneta_ethtool_get_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)3810 static void mvneta_ethtool_get_stats(struct net_device *dev,
3811 struct ethtool_stats *stats, u64 *data)
3812 {
3813 struct mvneta_port *pp = netdev_priv(dev);
3814 int i;
3815
3816 mvneta_ethtool_update_stats(pp);
3817
3818 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3819 *data++ = pp->ethtool_stats[i];
3820 }
3821
mvneta_ethtool_get_sset_count(struct net_device * dev,int sset)3822 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3823 {
3824 if (sset == ETH_SS_STATS)
3825 return ARRAY_SIZE(mvneta_statistics);
3826 return -EOPNOTSUPP;
3827 }
3828
mvneta_ethtool_get_rxfh_indir_size(struct net_device * dev)3829 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
3830 {
3831 return MVNETA_RSS_LU_TABLE_SIZE;
3832 }
3833
mvneta_ethtool_get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * info,u32 * rules __always_unused)3834 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
3835 struct ethtool_rxnfc *info,
3836 u32 *rules __always_unused)
3837 {
3838 switch (info->cmd) {
3839 case ETHTOOL_GRXRINGS:
3840 info->data = rxq_number;
3841 return 0;
3842 case ETHTOOL_GRXFH:
3843 return -EOPNOTSUPP;
3844 default:
3845 return -EOPNOTSUPP;
3846 }
3847 }
3848
mvneta_config_rss(struct mvneta_port * pp)3849 static int mvneta_config_rss(struct mvneta_port *pp)
3850 {
3851 int cpu;
3852 u32 val;
3853
3854 netif_tx_stop_all_queues(pp->dev);
3855
3856 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3857
3858 /* We have to synchronise on the napi of each CPU */
3859 for_each_online_cpu(cpu) {
3860 struct mvneta_pcpu_port *pcpu_port =
3861 per_cpu_ptr(pp->ports, cpu);
3862
3863 napi_synchronize(&pcpu_port->napi);
3864 napi_disable(&pcpu_port->napi);
3865 }
3866
3867 pp->rxq_def = pp->indir[0];
3868
3869 /* Update unicast mapping */
3870 mvneta_set_rx_mode(pp->dev);
3871
3872 /* Update val of portCfg register accordingly with all RxQueue types */
3873 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
3874 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
3875
3876 /* Update the elected CPU matching the new rxq_def */
3877 spin_lock(&pp->lock);
3878 mvneta_percpu_elect(pp);
3879 spin_unlock(&pp->lock);
3880
3881 /* We have to synchronise on the napi of each CPU */
3882 for_each_online_cpu(cpu) {
3883 struct mvneta_pcpu_port *pcpu_port =
3884 per_cpu_ptr(pp->ports, cpu);
3885
3886 napi_enable(&pcpu_port->napi);
3887 }
3888
3889 netif_tx_start_all_queues(pp->dev);
3890
3891 return 0;
3892 }
3893
mvneta_ethtool_set_rxfh(struct net_device * dev,const u32 * indir,const u8 * key,const u8 hfunc)3894 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
3895 const u8 *key, const u8 hfunc)
3896 {
3897 struct mvneta_port *pp = netdev_priv(dev);
3898
3899 /* Current code for Armada 3700 doesn't support RSS features yet */
3900 if (pp->neta_armada3700)
3901 return -EOPNOTSUPP;
3902
3903 /* We require at least one supported parameter to be changed
3904 * and no change in any of the unsupported parameters
3905 */
3906 if (key ||
3907 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3908 return -EOPNOTSUPP;
3909
3910 if (!indir)
3911 return 0;
3912
3913 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
3914
3915 return mvneta_config_rss(pp);
3916 }
3917
mvneta_ethtool_get_rxfh(struct net_device * dev,u32 * indir,u8 * key,u8 * hfunc)3918 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
3919 u8 *hfunc)
3920 {
3921 struct mvneta_port *pp = netdev_priv(dev);
3922
3923 /* Current code for Armada 3700 doesn't support RSS features yet */
3924 if (pp->neta_armada3700)
3925 return -EOPNOTSUPP;
3926
3927 if (hfunc)
3928 *hfunc = ETH_RSS_HASH_TOP;
3929
3930 if (!indir)
3931 return 0;
3932
3933 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
3934
3935 return 0;
3936 }
3937
mvneta_ethtool_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)3938 static void mvneta_ethtool_get_wol(struct net_device *dev,
3939 struct ethtool_wolinfo *wol)
3940 {
3941 wol->supported = 0;
3942 wol->wolopts = 0;
3943
3944 if (dev->phydev)
3945 phy_ethtool_get_wol(dev->phydev, wol);
3946 }
3947
mvneta_ethtool_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)3948 static int mvneta_ethtool_set_wol(struct net_device *dev,
3949 struct ethtool_wolinfo *wol)
3950 {
3951 int ret;
3952
3953 if (!dev->phydev)
3954 return -EOPNOTSUPP;
3955
3956 ret = phy_ethtool_set_wol(dev->phydev, wol);
3957 if (!ret)
3958 device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
3959
3960 return ret;
3961 }
3962
3963 static const struct net_device_ops mvneta_netdev_ops = {
3964 .ndo_open = mvneta_open,
3965 .ndo_stop = mvneta_stop,
3966 .ndo_start_xmit = mvneta_tx,
3967 .ndo_set_rx_mode = mvneta_set_rx_mode,
3968 .ndo_set_mac_address = mvneta_set_mac_addr,
3969 .ndo_change_mtu = mvneta_change_mtu,
3970 .ndo_fix_features = mvneta_fix_features,
3971 .ndo_get_stats64 = mvneta_get_stats64,
3972 .ndo_do_ioctl = mvneta_ioctl,
3973 };
3974
3975 static const struct ethtool_ops mvneta_eth_tool_ops = {
3976 .nway_reset = phy_ethtool_nway_reset,
3977 .get_link = ethtool_op_get_link,
3978 .set_coalesce = mvneta_ethtool_set_coalesce,
3979 .get_coalesce = mvneta_ethtool_get_coalesce,
3980 .get_drvinfo = mvneta_ethtool_get_drvinfo,
3981 .get_ringparam = mvneta_ethtool_get_ringparam,
3982 .set_ringparam = mvneta_ethtool_set_ringparam,
3983 .get_strings = mvneta_ethtool_get_strings,
3984 .get_ethtool_stats = mvneta_ethtool_get_stats,
3985 .get_sset_count = mvneta_ethtool_get_sset_count,
3986 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
3987 .get_rxnfc = mvneta_ethtool_get_rxnfc,
3988 .get_rxfh = mvneta_ethtool_get_rxfh,
3989 .set_rxfh = mvneta_ethtool_set_rxfh,
3990 .get_link_ksettings = phy_ethtool_get_link_ksettings,
3991 .set_link_ksettings = mvneta_ethtool_set_link_ksettings,
3992 .get_wol = mvneta_ethtool_get_wol,
3993 .set_wol = mvneta_ethtool_set_wol,
3994 };
3995
3996 /* Initialize hw */
mvneta_init(struct device * dev,struct mvneta_port * pp)3997 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3998 {
3999 int queue;
4000
4001 /* Disable port */
4002 mvneta_port_disable(pp);
4003
4004 /* Set port default values */
4005 mvneta_defaults_set(pp);
4006
4007 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4008 if (!pp->txqs)
4009 return -ENOMEM;
4010
4011 /* Initialize TX descriptor rings */
4012 for (queue = 0; queue < txq_number; queue++) {
4013 struct mvneta_tx_queue *txq = &pp->txqs[queue];
4014 txq->id = queue;
4015 txq->size = pp->tx_ring_size;
4016 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4017 }
4018
4019 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4020 if (!pp->rxqs)
4021 return -ENOMEM;
4022
4023 /* Create Rx descriptor rings */
4024 for (queue = 0; queue < rxq_number; queue++) {
4025 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4026 rxq->id = queue;
4027 rxq->size = pp->rx_ring_size;
4028 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4029 rxq->time_coal = MVNETA_RX_COAL_USEC;
4030 rxq->buf_virt_addr
4031 = devm_kmalloc_array(pp->dev->dev.parent,
4032 rxq->size,
4033 sizeof(*rxq->buf_virt_addr),
4034 GFP_KERNEL);
4035 if (!rxq->buf_virt_addr)
4036 return -ENOMEM;
4037 }
4038
4039 return 0;
4040 }
4041
4042 /* platform glue : initialize decoding windows */
mvneta_conf_mbus_windows(struct mvneta_port * pp,const struct mbus_dram_target_info * dram)4043 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4044 const struct mbus_dram_target_info *dram)
4045 {
4046 u32 win_enable;
4047 u32 win_protect;
4048 int i;
4049
4050 for (i = 0; i < 6; i++) {
4051 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4052 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4053
4054 if (i < 4)
4055 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4056 }
4057
4058 win_enable = 0x3f;
4059 win_protect = 0;
4060
4061 if (dram) {
4062 for (i = 0; i < dram->num_cs; i++) {
4063 const struct mbus_dram_window *cs = dram->cs + i;
4064
4065 mvreg_write(pp, MVNETA_WIN_BASE(i),
4066 (cs->base & 0xffff0000) |
4067 (cs->mbus_attr << 8) |
4068 dram->mbus_dram_target_id);
4069
4070 mvreg_write(pp, MVNETA_WIN_SIZE(i),
4071 (cs->size - 1) & 0xffff0000);
4072
4073 win_enable &= ~(1 << i);
4074 win_protect |= 3 << (2 * i);
4075 }
4076 } else {
4077 /* For Armada3700 open default 4GB Mbus window, leaving
4078 * arbitration of target/attribute to a different layer
4079 * of configuration.
4080 */
4081 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
4082 win_enable &= ~BIT(0);
4083 win_protect = 3;
4084 }
4085
4086 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4087 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4088 }
4089
4090 /* Power up the port */
mvneta_port_power_up(struct mvneta_port * pp,int phy_mode)4091 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4092 {
4093 u32 ctrl;
4094
4095 /* MAC Cause register should be cleared */
4096 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
4097
4098 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
4099
4100 /* Even though it might look weird, when we're configured in
4101 * SGMII or QSGMII mode, the RGMII bit needs to be set.
4102 */
4103 switch(phy_mode) {
4104 case PHY_INTERFACE_MODE_QSGMII:
4105 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
4106 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
4107 break;
4108 case PHY_INTERFACE_MODE_SGMII:
4109 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
4110 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
4111 break;
4112 case PHY_INTERFACE_MODE_RGMII:
4113 case PHY_INTERFACE_MODE_RGMII_ID:
4114 case PHY_INTERFACE_MODE_RGMII_RXID:
4115 case PHY_INTERFACE_MODE_RGMII_TXID:
4116 ctrl |= MVNETA_GMAC2_PORT_RGMII;
4117 break;
4118 default:
4119 return -EINVAL;
4120 }
4121
4122 /* Cancel Port Reset */
4123 ctrl &= ~MVNETA_GMAC2_PORT_RESET;
4124 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
4125
4126 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
4127 MVNETA_GMAC2_PORT_RESET) != 0)
4128 continue;
4129
4130 return 0;
4131 }
4132
4133 /* Device initialization routine */
mvneta_probe(struct platform_device * pdev)4134 static int mvneta_probe(struct platform_device *pdev)
4135 {
4136 struct resource *res;
4137 struct device_node *dn = pdev->dev.of_node;
4138 struct device_node *phy_node;
4139 struct device_node *bm_node;
4140 struct mvneta_port *pp;
4141 struct net_device *dev;
4142 const char *dt_mac_addr;
4143 char hw_mac_addr[ETH_ALEN];
4144 const char *mac_from;
4145 const char *managed;
4146 int tx_csum_limit;
4147 int phy_mode;
4148 int err;
4149 int cpu;
4150
4151 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
4152 if (!dev)
4153 return -ENOMEM;
4154
4155 dev->irq = irq_of_parse_and_map(dn, 0);
4156 if (dev->irq == 0) {
4157 err = -EINVAL;
4158 goto err_free_netdev;
4159 }
4160
4161 phy_node = of_parse_phandle(dn, "phy", 0);
4162 if (!phy_node) {
4163 if (!of_phy_is_fixed_link(dn)) {
4164 dev_err(&pdev->dev, "no PHY specified\n");
4165 err = -ENODEV;
4166 goto err_free_irq;
4167 }
4168
4169 err = of_phy_register_fixed_link(dn);
4170 if (err < 0) {
4171 dev_err(&pdev->dev, "cannot register fixed PHY\n");
4172 goto err_free_irq;
4173 }
4174
4175 /* In the case of a fixed PHY, the DT node associated
4176 * to the PHY is the Ethernet MAC DT node.
4177 */
4178 phy_node = of_node_get(dn);
4179 }
4180
4181 phy_mode = of_get_phy_mode(dn);
4182 if (phy_mode < 0) {
4183 dev_err(&pdev->dev, "incorrect phy-mode\n");
4184 err = -EINVAL;
4185 goto err_put_phy_node;
4186 }
4187
4188 dev->tx_queue_len = MVNETA_MAX_TXD;
4189 dev->watchdog_timeo = 5 * HZ;
4190 dev->netdev_ops = &mvneta_netdev_ops;
4191
4192 dev->ethtool_ops = &mvneta_eth_tool_ops;
4193
4194 pp = netdev_priv(dev);
4195 spin_lock_init(&pp->lock);
4196 pp->phy_node = phy_node;
4197 pp->phy_interface = phy_mode;
4198
4199 err = of_property_read_string(dn, "managed", &managed);
4200 pp->use_inband_status = (err == 0 &&
4201 strcmp(managed, "in-band-status") == 0);
4202
4203 pp->rxq_def = rxq_def;
4204
4205 /* Set RX packet offset correction for platforms, whose
4206 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4207 * platforms and 0B for 32-bit ones.
4208 */
4209 pp->rx_offset_correction =
4210 max(0, NET_SKB_PAD - MVNETA_RX_PKT_OFFSET_CORRECTION);
4211
4212 pp->indir[0] = rxq_def;
4213
4214 /* Get special SoC configurations */
4215 if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
4216 pp->neta_armada3700 = true;
4217
4218 pp->clk = devm_clk_get(&pdev->dev, "core");
4219 if (IS_ERR(pp->clk))
4220 pp->clk = devm_clk_get(&pdev->dev, NULL);
4221 if (IS_ERR(pp->clk)) {
4222 err = PTR_ERR(pp->clk);
4223 goto err_put_phy_node;
4224 }
4225
4226 clk_prepare_enable(pp->clk);
4227
4228 pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4229 if (!IS_ERR(pp->clk_bus))
4230 clk_prepare_enable(pp->clk_bus);
4231
4232 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4233 pp->base = devm_ioremap_resource(&pdev->dev, res);
4234 if (IS_ERR(pp->base)) {
4235 err = PTR_ERR(pp->base);
4236 goto err_clk;
4237 }
4238
4239 /* Alloc per-cpu port structure */
4240 pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4241 if (!pp->ports) {
4242 err = -ENOMEM;
4243 goto err_clk;
4244 }
4245
4246 /* Alloc per-cpu stats */
4247 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4248 if (!pp->stats) {
4249 err = -ENOMEM;
4250 goto err_free_ports;
4251 }
4252
4253 dt_mac_addr = of_get_mac_address(dn);
4254 if (dt_mac_addr) {
4255 mac_from = "device tree";
4256 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4257 } else {
4258 mvneta_get_mac_addr(pp, hw_mac_addr);
4259 if (is_valid_ether_addr(hw_mac_addr)) {
4260 mac_from = "hardware";
4261 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4262 } else {
4263 mac_from = "random";
4264 eth_hw_addr_random(dev);
4265 }
4266 }
4267
4268 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4269 if (tx_csum_limit < 0 ||
4270 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4271 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4272 dev_info(&pdev->dev,
4273 "Wrong TX csum limit in DT, set to %dB\n",
4274 MVNETA_TX_CSUM_DEF_SIZE);
4275 }
4276 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4277 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4278 } else {
4279 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4280 }
4281
4282 pp->tx_csum_limit = tx_csum_limit;
4283
4284 pp->dram_target_info = mv_mbus_dram_info();
4285 /* Armada3700 requires setting default configuration of Mbus
4286 * windows, however without using filled mbus_dram_target_info
4287 * structure.
4288 */
4289 if (pp->dram_target_info || pp->neta_armada3700)
4290 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4291
4292 pp->tx_ring_size = MVNETA_MAX_TXD;
4293 pp->rx_ring_size = MVNETA_MAX_RXD;
4294
4295 pp->dev = dev;
4296 SET_NETDEV_DEV(dev, &pdev->dev);
4297
4298 pp->id = global_port_id++;
4299
4300 /* Obtain access to BM resources if enabled and already initialized */
4301 bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4302 if (bm_node && bm_node->data) {
4303 pp->bm_priv = bm_node->data;
4304 err = mvneta_bm_port_init(pdev, pp);
4305 if (err < 0) {
4306 dev_info(&pdev->dev, "use SW buffer management\n");
4307 pp->bm_priv = NULL;
4308 }
4309 }
4310 of_node_put(bm_node);
4311
4312 err = mvneta_init(&pdev->dev, pp);
4313 if (err < 0)
4314 goto err_netdev;
4315
4316 err = mvneta_port_power_up(pp, phy_mode);
4317 if (err < 0) {
4318 dev_err(&pdev->dev, "can't power up port\n");
4319 goto err_netdev;
4320 }
4321
4322 /* Armada3700 network controller does not support per-cpu
4323 * operation, so only single NAPI should be initialized.
4324 */
4325 if (pp->neta_armada3700) {
4326 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4327 } else {
4328 for_each_present_cpu(cpu) {
4329 struct mvneta_pcpu_port *port =
4330 per_cpu_ptr(pp->ports, cpu);
4331
4332 netif_napi_add(dev, &port->napi, mvneta_poll,
4333 NAPI_POLL_WEIGHT);
4334 port->pp = pp;
4335 }
4336 }
4337
4338 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_TSO;
4339 dev->hw_features |= dev->features;
4340 dev->vlan_features |= dev->features;
4341 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4342 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4343
4344 /* MTU range: 68 - 9676 */
4345 dev->min_mtu = ETH_MIN_MTU;
4346 /* 9676 == 9700 - 20 and rounding to 8 */
4347 dev->max_mtu = 9676;
4348
4349 err = register_netdev(dev);
4350 if (err < 0) {
4351 dev_err(&pdev->dev, "failed to register\n");
4352 goto err_netdev;
4353 }
4354
4355 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4356 dev->dev_addr);
4357
4358 platform_set_drvdata(pdev, pp->dev);
4359
4360 if (pp->use_inband_status) {
4361 struct phy_device *phy = of_phy_find_device(dn);
4362
4363 mvneta_fixed_link_update(pp, phy);
4364
4365 put_device(&phy->mdio.dev);
4366 }
4367
4368 return 0;
4369
4370 err_netdev:
4371 if (pp->bm_priv) {
4372 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4373 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4374 1 << pp->id);
4375 }
4376 free_percpu(pp->stats);
4377 err_free_ports:
4378 free_percpu(pp->ports);
4379 err_clk:
4380 clk_disable_unprepare(pp->clk_bus);
4381 clk_disable_unprepare(pp->clk);
4382 err_put_phy_node:
4383 of_node_put(phy_node);
4384 if (of_phy_is_fixed_link(dn))
4385 of_phy_deregister_fixed_link(dn);
4386 err_free_irq:
4387 irq_dispose_mapping(dev->irq);
4388 err_free_netdev:
4389 free_netdev(dev);
4390 return err;
4391 }
4392
4393 /* Device removal routine */
mvneta_remove(struct platform_device * pdev)4394 static int mvneta_remove(struct platform_device *pdev)
4395 {
4396 struct net_device *dev = platform_get_drvdata(pdev);
4397 struct device_node *dn = pdev->dev.of_node;
4398 struct mvneta_port *pp = netdev_priv(dev);
4399
4400 unregister_netdev(dev);
4401 clk_disable_unprepare(pp->clk_bus);
4402 clk_disable_unprepare(pp->clk);
4403 free_percpu(pp->ports);
4404 free_percpu(pp->stats);
4405 if (of_phy_is_fixed_link(dn))
4406 of_phy_deregister_fixed_link(dn);
4407 irq_dispose_mapping(dev->irq);
4408 of_node_put(pp->phy_node);
4409 free_netdev(dev);
4410
4411 if (pp->bm_priv) {
4412 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4413 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4414 1 << pp->id);
4415 }
4416
4417 return 0;
4418 }
4419
4420 #ifdef CONFIG_PM_SLEEP
mvneta_suspend(struct device * device)4421 static int mvneta_suspend(struct device *device)
4422 {
4423 struct net_device *dev = dev_get_drvdata(device);
4424 struct mvneta_port *pp = netdev_priv(dev);
4425
4426 if (netif_running(dev))
4427 mvneta_stop(dev);
4428 netif_device_detach(dev);
4429 clk_disable_unprepare(pp->clk_bus);
4430 clk_disable_unprepare(pp->clk);
4431 return 0;
4432 }
4433
mvneta_resume(struct device * device)4434 static int mvneta_resume(struct device *device)
4435 {
4436 struct platform_device *pdev = to_platform_device(device);
4437 struct net_device *dev = dev_get_drvdata(device);
4438 struct mvneta_port *pp = netdev_priv(dev);
4439 int err;
4440
4441 clk_prepare_enable(pp->clk);
4442 if (!IS_ERR(pp->clk_bus))
4443 clk_prepare_enable(pp->clk_bus);
4444 if (pp->dram_target_info || pp->neta_armada3700)
4445 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4446 if (pp->bm_priv) {
4447 err = mvneta_bm_port_init(pdev, pp);
4448 if (err < 0) {
4449 dev_info(&pdev->dev, "use SW buffer management\n");
4450 pp->bm_priv = NULL;
4451 }
4452 }
4453 mvneta_defaults_set(pp);
4454 err = mvneta_port_power_up(pp, pp->phy_interface);
4455 if (err < 0) {
4456 dev_err(device, "can't power up port\n");
4457 return err;
4458 }
4459
4460 if (pp->use_inband_status)
4461 mvneta_fixed_link_update(pp, dev->phydev);
4462
4463 netif_device_attach(dev);
4464 if (netif_running(dev)) {
4465 mvneta_open(dev);
4466 mvneta_set_rx_mode(dev);
4467 }
4468
4469 return 0;
4470 }
4471 #endif
4472
4473 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
4474
4475 static const struct of_device_id mvneta_match[] = {
4476 { .compatible = "marvell,armada-370-neta" },
4477 { .compatible = "marvell,armada-xp-neta" },
4478 { .compatible = "marvell,armada-3700-neta" },
4479 { }
4480 };
4481 MODULE_DEVICE_TABLE(of, mvneta_match);
4482
4483 static struct platform_driver mvneta_driver = {
4484 .probe = mvneta_probe,
4485 .remove = mvneta_remove,
4486 .driver = {
4487 .name = MVNETA_DRIVER_NAME,
4488 .of_match_table = mvneta_match,
4489 .pm = &mvneta_pm_ops,
4490 },
4491 };
4492
mvneta_driver_init(void)4493 static int __init mvneta_driver_init(void)
4494 {
4495 int ret;
4496
4497 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
4498 mvneta_cpu_online,
4499 mvneta_cpu_down_prepare);
4500 if (ret < 0)
4501 goto out;
4502 online_hpstate = ret;
4503 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
4504 NULL, mvneta_cpu_dead);
4505 if (ret)
4506 goto err_dead;
4507
4508 ret = platform_driver_register(&mvneta_driver);
4509 if (ret)
4510 goto err;
4511 return 0;
4512
4513 err:
4514 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4515 err_dead:
4516 cpuhp_remove_multi_state(online_hpstate);
4517 out:
4518 return ret;
4519 }
4520 module_init(mvneta_driver_init);
4521
mvneta_driver_exit(void)4522 static void __exit mvneta_driver_exit(void)
4523 {
4524 platform_driver_unregister(&mvneta_driver);
4525 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4526 cpuhp_remove_multi_state(online_hpstate);
4527 }
4528 module_exit(mvneta_driver_exit);
4529
4530 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4531 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4532 MODULE_LICENSE("GPL");
4533
4534 module_param(rxq_number, int, S_IRUGO);
4535 module_param(txq_number, int, S_IRUGO);
4536
4537 module_param(rxq_def, int, S_IRUGO);
4538 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
4539