1 /* hamachi.c: A Packet Engines GNIC-II Gigabit Ethernet driver for Linux. */
2 /*
3 Written 1998-2000 by Donald Becker.
4 Updates 2000 by Keith Underwood.
5
6 This software may be used and distributed according to the terms of
7 the GNU General Public License (GPL), incorporated herein by reference.
8 Drivers based on or derived from this code fall under the GPL and must
9 retain the authorship, copyright and license notice. This file is not
10 a complete program and may only be used when the entire operating
11 system is licensed under the GPL.
12
13 The author may be reached as becker@scyld.com, or C/O
14 Scyld Computing Corporation
15 410 Severn Ave., Suite 210
16 Annapolis MD 21403
17
18 This driver is for the Packet Engines GNIC-II PCI Gigabit Ethernet
19 adapter.
20
21 Support and updates available at
22 http://www.scyld.com/network/hamachi.html
23 [link no longer provides useful info -jgarzik]
24 or
25 http://www.parl.clemson.edu/~keithu/hamachi.html
26
27 */
28
29 #define DRV_NAME "hamachi"
30 #define DRV_VERSION "2.1"
31 #define DRV_RELDATE "Sept 11, 2006"
32
33
34 /* A few user-configurable values. */
35
36 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
37 #define final_version
38 #define hamachi_debug debug
39 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
40 static int max_interrupt_work = 40;
41 static int mtu;
42 /* Default values selected by testing on a dual processor PIII-450 */
43 /* These six interrupt control parameters may be set directly when loading the
44 * module, or through the rx_params and tx_params variables
45 */
46 static int max_rx_latency = 0x11;
47 static int max_rx_gap = 0x05;
48 static int min_rx_pkt = 0x18;
49 static int max_tx_latency = 0x00;
50 static int max_tx_gap = 0x00;
51 static int min_tx_pkt = 0x30;
52
53 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
54 -Setting to > 1518 causes all frames to be copied
55 -Setting to 0 disables copies
56 */
57 static int rx_copybreak;
58
59 /* An override for the hardware detection of bus width.
60 Set to 1 to force 32 bit PCI bus detection. Set to 4 to force 64 bit.
61 Add 2 to disable parity detection.
62 */
63 static int force32;
64
65
66 /* Used to pass the media type, etc.
67 These exist for driver interoperability.
68 No media types are currently defined.
69 - The lower 4 bits are reserved for the media type.
70 - The next three bits may be set to one of the following:
71 0x00000000 : Autodetect PCI bus
72 0x00000010 : Force 32 bit PCI bus
73 0x00000020 : Disable parity detection
74 0x00000040 : Force 64 bit PCI bus
75 Default is autodetect
76 - The next bit can be used to force half-duplex. This is a bad
77 idea since no known implementations implement half-duplex, and,
78 in general, half-duplex for gigabit ethernet is a bad idea.
79 0x00000080 : Force half-duplex
80 Default is full-duplex.
81 - In the original driver, the ninth bit could be used to force
82 full-duplex. Maintain that for compatibility
83 0x00000200 : Force full-duplex
84 */
85 #define MAX_UNITS 8 /* More are supported, limit only on options */
86 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
87 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
88 /* The Hamachi chipset supports 3 parameters each for Rx and Tx
89 * interruput management. Parameters will be loaded as specified into
90 * the TxIntControl and RxIntControl registers.
91 *
92 * The registers are arranged as follows:
93 * 23 - 16 15 - 8 7 - 0
94 * _________________________________
95 * | min_pkt | max_gap | max_latency |
96 * ---------------------------------
97 * min_pkt : The minimum number of packets processed between
98 * interrupts.
99 * max_gap : The maximum inter-packet gap in units of 8.192 us
100 * max_latency : The absolute time between interrupts in units of 8.192 us
101 *
102 */
103 static int rx_params[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
104 static int tx_params[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
105
106 /* Operational parameters that are set at compile time. */
107
108 /* Keep the ring sizes a power of two for compile efficiency.
109 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
110 Making the Tx ring too large decreases the effectiveness of channel
111 bonding and packet priority.
112 There are no ill effects from too-large receive rings, except for
113 excessive memory usage */
114 /* Empirically it appears that the Tx ring needs to be a little bigger
115 for these Gbit adapters or you get into an overrun condition really
116 easily. Also, things appear to work a bit better in back-to-back
117 configurations if the Rx ring is 8 times the size of the Tx ring
118 */
119 #define TX_RING_SIZE 64
120 #define RX_RING_SIZE 512
121 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct hamachi_desc)
122 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct hamachi_desc)
123
124 /*
125 * Enable netdev_ioctl. Added interrupt coalescing parameter adjustment.
126 * 2/19/99 Pete Wyckoff <wyckoff@ca.sandia.gov>
127 */
128
129 /* play with 64-bit addrlen; seems to be a teensy bit slower --pw */
130 /* #define ADDRLEN 64 */
131
132 /*
133 * RX_CHECKSUM turns on card-generated receive checksum generation for
134 * TCP and UDP packets. Otherwise the upper layers do the calculation.
135 * 3/10/1999 Pete Wyckoff <wyckoff@ca.sandia.gov>
136 */
137 #define RX_CHECKSUM
138
139 /* Operational parameters that usually are not changed. */
140 /* Time in jiffies before concluding the transmitter is hung. */
141 #define TX_TIMEOUT (5*HZ)
142
143 #include <linux/capability.h>
144 #include <linux/module.h>
145 #include <linux/kernel.h>
146 #include <linux/string.h>
147 #include <linux/timer.h>
148 #include <linux/time.h>
149 #include <linux/errno.h>
150 #include <linux/ioport.h>
151 #include <linux/interrupt.h>
152 #include <linux/pci.h>
153 #include <linux/init.h>
154 #include <linux/ethtool.h>
155 #include <linux/mii.h>
156 #include <linux/netdevice.h>
157 #include <linux/etherdevice.h>
158 #include <linux/skbuff.h>
159 #include <linux/ip.h>
160 #include <linux/delay.h>
161 #include <linux/bitops.h>
162
163 #include <linux/uaccess.h>
164 #include <asm/processor.h> /* Processor type for cache alignment. */
165 #include <asm/io.h>
166 #include <asm/unaligned.h>
167 #include <asm/cache.h>
168
169 static const char version[] =
170 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n"
171 " Some modifications by Eric kasten <kasten@nscl.msu.edu>\n"
172 " Further modifications by Keith Underwood <keithu@parl.clemson.edu>\n";
173
174
175 /* IP_MF appears to be only defined in <netinet/ip.h>, however,
176 we need it for hardware checksumming support. FYI... some of
177 the definitions in <netinet/ip.h> conflict/duplicate those in
178 other linux headers causing many compiler warnings.
179 */
180 #ifndef IP_MF
181 #define IP_MF 0x2000 /* IP more frags from <netinet/ip.h> */
182 #endif
183
184 /* Define IP_OFFSET to be IPOPT_OFFSET */
185 #ifndef IP_OFFSET
186 #ifdef IPOPT_OFFSET
187 #define IP_OFFSET IPOPT_OFFSET
188 #else
189 #define IP_OFFSET 2
190 #endif
191 #endif
192
193 #define RUN_AT(x) (jiffies + (x))
194
195 #ifndef ADDRLEN
196 #define ADDRLEN 32
197 #endif
198
199 /* Condensed bus+endian portability operations. */
200 #if ADDRLEN == 64
201 #define cpu_to_leXX(addr) cpu_to_le64(addr)
202 #define leXX_to_cpu(addr) le64_to_cpu(addr)
203 #else
204 #define cpu_to_leXX(addr) cpu_to_le32(addr)
205 #define leXX_to_cpu(addr) le32_to_cpu(addr)
206 #endif
207
208
209 /*
210 Theory of Operation
211
212 I. Board Compatibility
213
214 This device driver is designed for the Packet Engines "Hamachi"
215 Gigabit Ethernet chip. The only PCA currently supported is the GNIC-II 64-bit
216 66Mhz PCI card.
217
218 II. Board-specific settings
219
220 No jumpers exist on the board. The chip supports software correction of
221 various motherboard wiring errors, however this driver does not support
222 that feature.
223
224 III. Driver operation
225
226 IIIa. Ring buffers
227
228 The Hamachi uses a typical descriptor based bus-master architecture.
229 The descriptor list is similar to that used by the Digital Tulip.
230 This driver uses two statically allocated fixed-size descriptor lists
231 formed into rings by a branch from the final descriptor to the beginning of
232 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
233
234 This driver uses a zero-copy receive and transmit scheme similar my other
235 network drivers.
236 The driver allocates full frame size skbuffs for the Rx ring buffers at
237 open() time and passes the skb->data field to the Hamachi as receive data
238 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
239 a fresh skbuff is allocated and the frame is copied to the new skbuff.
240 When the incoming frame is larger, the skbuff is passed directly up the
241 protocol stack and replaced by a newly allocated skbuff.
242
243 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
244 using a full-sized skbuff for small frames vs. the copying costs of larger
245 frames. Gigabit cards are typically used on generously configured machines
246 and the underfilled buffers have negligible impact compared to the benefit of
247 a single allocation size, so the default value of zero results in never
248 copying packets.
249
250 IIIb/c. Transmit/Receive Structure
251
252 The Rx and Tx descriptor structure are straight-forward, with no historical
253 baggage that must be explained. Unlike the awkward DBDMA structure, there
254 are no unused fields or option bits that had only one allowable setting.
255
256 Two details should be noted about the descriptors: The chip supports both 32
257 bit and 64 bit address structures, and the length field is overwritten on
258 the receive descriptors. The descriptor length is set in the control word
259 for each channel. The development driver uses 32 bit addresses only, however
260 64 bit addresses may be enabled for 64 bit architectures e.g. the Alpha.
261
262 IIId. Synchronization
263
264 This driver is very similar to my other network drivers.
265 The driver runs as two independent, single-threaded flows of control. One
266 is the send-packet routine, which enforces single-threaded use by the
267 dev->tbusy flag. The other thread is the interrupt handler, which is single
268 threaded by the hardware and other software.
269
270 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
271 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
272 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
273 the 'hmp->tx_full' flag.
274
275 The interrupt handler has exclusive control over the Rx ring and records stats
276 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
277 empty by incrementing the dirty_tx mark. Iff the 'hmp->tx_full' flag is set, it
278 clears both the tx_full and tbusy flags.
279
280 IV. Notes
281
282 Thanks to Kim Stearns of Packet Engines for providing a pair of GNIC-II boards.
283
284 IVb. References
285
286 Hamachi Engineering Design Specification, 5/15/97
287 (Note: This version was marked "Confidential".)
288
289 IVc. Errata
290
291 None noted.
292
293 V. Recent Changes
294
295 01/15/1999 EPK Enlargement of the TX and RX ring sizes. This appears
296 to help avoid some stall conditions -- this needs further research.
297
298 01/15/1999 EPK Creation of the hamachi_tx function. This function cleans
299 the Tx ring and is called from hamachi_start_xmit (this used to be
300 called from hamachi_interrupt but it tends to delay execution of the
301 interrupt handler and thus reduce bandwidth by reducing the latency
302 between hamachi_rx()'s). Notably, some modification has been made so
303 that the cleaning loop checks only to make sure that the DescOwn bit
304 isn't set in the status flag since the card is not required
305 to set the entire flag to zero after processing.
306
307 01/15/1999 EPK In the hamachi_start_tx function, the Tx ring full flag is
308 checked before attempting to add a buffer to the ring. If the ring is full
309 an attempt is made to free any dirty buffers and thus find space for
310 the new buffer or the function returns non-zero which should case the
311 scheduler to reschedule the buffer later.
312
313 01/15/1999 EPK Some adjustments were made to the chip initialization.
314 End-to-end flow control should now be fully active and the interrupt
315 algorithm vars have been changed. These could probably use further tuning.
316
317 01/15/1999 EPK Added the max_{rx,tx}_latency options. These are used to
318 set the rx and tx latencies for the Hamachi interrupts. If you're having
319 problems with network stalls, try setting these to higher values.
320 Valid values are 0x00 through 0xff.
321
322 01/15/1999 EPK In general, the overall bandwidth has increased and
323 latencies are better (sometimes by a factor of 2). Stalls are rare at
324 this point, however there still appears to be a bug somewhere between the
325 hardware and driver. TCP checksum errors under load also appear to be
326 eliminated at this point.
327
328 01/18/1999 EPK Ensured that the DescEndRing bit was being set on both the
329 Rx and Tx rings. This appears to have been affecting whether a particular
330 peer-to-peer connection would hang under high load. I believe the Rx
331 rings was typically getting set correctly, but the Tx ring wasn't getting
332 the DescEndRing bit set during initialization. ??? Does this mean the
333 hamachi card is using the DescEndRing in processing even if a particular
334 slot isn't in use -- hypothetically, the card might be searching the
335 entire Tx ring for slots with the DescOwn bit set and then processing
336 them. If the DescEndRing bit isn't set, then it might just wander off
337 through memory until it hits a chunk of data with that bit set
338 and then looping back.
339
340 02/09/1999 EPK Added Michel Mueller's TxDMA Interrupt and Tx-timeout
341 problem (TxCmd and RxCmd need only to be set when idle or stopped.
342
343 02/09/1999 EPK Added code to check/reset dev->tbusy in hamachi_interrupt.
344 (Michel Mueller pointed out the ``permanently busy'' potential
345 problem here).
346
347 02/22/1999 EPK Added Pete Wyckoff's ioctl to control the Tx/Rx latencies.
348
349 02/23/1999 EPK Verified that the interrupt status field bits for Tx were
350 incorrectly defined and corrected (as per Michel Mueller).
351
352 02/23/1999 EPK Corrected the Tx full check to check that at least 4 slots
353 were available before resetting the tbusy and tx_full flags
354 (as per Michel Mueller).
355
356 03/11/1999 EPK Added Pete Wyckoff's hardware checksumming support.
357
358 12/31/1999 KDU Cleaned up assorted things and added Don's code to force
359 32 bit.
360
361 02/20/2000 KDU Some of the control was just plain odd. Cleaned up the
362 hamachi_start_xmit() and hamachi_interrupt() code. There is still some
363 re-structuring I would like to do.
364
365 03/01/2000 KDU Experimenting with a WIDE range of interrupt mitigation
366 parameters on a dual P3-450 setup yielded the new default interrupt
367 mitigation parameters. Tx should interrupt VERY infrequently due to
368 Eric's scheme. Rx should be more often...
369
370 03/13/2000 KDU Added a patch to make the Rx Checksum code interact
371 nicely with non-linux machines.
372
373 03/13/2000 KDU Experimented with some of the configuration values:
374
375 -It seems that enabling PCI performance commands for descriptors
376 (changing RxDMACtrl and TxDMACtrl lower nibble from 5 to D) has minimal
377 performance impact for any of my tests. (ttcp, netpipe, netperf) I will
378 leave them that way until I hear further feedback.
379
380 -Increasing the PCI_LATENCY_TIMER to 130
381 (2 + (burst size of 128 * (0 wait states + 1))) seems to slightly
382 degrade performance. Leaving default at 64 pending further information.
383
384 03/14/2000 KDU Further tuning:
385
386 -adjusted boguscnt in hamachi_rx() to depend on interrupt
387 mitigation parameters chosen.
388
389 -Selected a set of interrupt parameters based on some extensive testing.
390 These may change with more testing.
391
392 TO DO:
393
394 -Consider borrowing from the acenic driver code to check PCI_COMMAND for
395 PCI_COMMAND_INVALIDATE. Set maximum burst size to cache line size in
396 that case.
397
398 -fix the reset procedure. It doesn't quite work.
399 */
400
401 /* A few values that may be tweaked. */
402 /* Size of each temporary Rx buffer, calculated as:
403 * 1518 bytes (ethernet packet) + 2 bytes (to get 8 byte alignment for
404 * the card) + 8 bytes of status info + 8 bytes for the Rx Checksum
405 */
406 #define PKT_BUF_SZ 1536
407
408 /* For now, this is going to be set to the maximum size of an ethernet
409 * packet. Eventually, we may want to make it a variable that is
410 * related to the MTU
411 */
412 #define MAX_FRAME_SIZE 1518
413
414 /* The rest of these values should never change. */
415
416 static void hamachi_timer(unsigned long data);
417
418 enum capability_flags {CanHaveMII=1, };
419 static const struct chip_info {
420 u16 vendor_id, device_id, device_id_mask, pad;
421 const char *name;
422 void (*media_timer)(unsigned long data);
423 int flags;
424 } chip_tbl[] = {
425 {0x1318, 0x0911, 0xffff, 0, "Hamachi GNIC-II", hamachi_timer, 0},
426 {0,},
427 };
428
429 /* Offsets to the Hamachi registers. Various sizes. */
430 enum hamachi_offsets {
431 TxDMACtrl=0x00, TxCmd=0x04, TxStatus=0x06, TxPtr=0x08, TxCurPtr=0x10,
432 RxDMACtrl=0x20, RxCmd=0x24, RxStatus=0x26, RxPtr=0x28, RxCurPtr=0x30,
433 PCIClkMeas=0x060, MiscStatus=0x066, ChipRev=0x68, ChipReset=0x06B,
434 LEDCtrl=0x06C, VirtualJumpers=0x06D, GPIO=0x6E,
435 TxChecksum=0x074, RxChecksum=0x076,
436 TxIntrCtrl=0x078, RxIntrCtrl=0x07C,
437 InterruptEnable=0x080, InterruptClear=0x084, IntrStatus=0x088,
438 EventStatus=0x08C,
439 MACCnfg=0x0A0, FrameGap0=0x0A2, FrameGap1=0x0A4,
440 /* See enum MII_offsets below. */
441 MACCnfg2=0x0B0, RxDepth=0x0B8, FlowCtrl=0x0BC, MaxFrameSize=0x0CE,
442 AddrMode=0x0D0, StationAddr=0x0D2,
443 /* Gigabit AutoNegotiation. */
444 ANCtrl=0x0E0, ANStatus=0x0E2, ANXchngCtrl=0x0E4, ANAdvertise=0x0E8,
445 ANLinkPartnerAbility=0x0EA,
446 EECmdStatus=0x0F0, EEData=0x0F1, EEAddr=0x0F2,
447 FIFOcfg=0x0F8,
448 };
449
450 /* Offsets to the MII-mode registers. */
451 enum MII_offsets {
452 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
453 MII_Status=0xAE,
454 };
455
456 /* Bits in the interrupt status/mask registers. */
457 enum intr_status_bits {
458 IntrRxDone=0x01, IntrRxPCIFault=0x02, IntrRxPCIErr=0x04,
459 IntrTxDone=0x100, IntrTxPCIFault=0x200, IntrTxPCIErr=0x400,
460 LinkChange=0x10000, NegotiationChange=0x20000, StatsMax=0x40000, };
461
462 /* The Hamachi Rx and Tx buffer descriptors. */
463 struct hamachi_desc {
464 __le32 status_n_length;
465 #if ADDRLEN == 64
466 u32 pad;
467 __le64 addr;
468 #else
469 __le32 addr;
470 #endif
471 };
472
473 /* Bits in hamachi_desc.status_n_length */
474 enum desc_status_bits {
475 DescOwn=0x80000000, DescEndPacket=0x40000000, DescEndRing=0x20000000,
476 DescIntr=0x10000000,
477 };
478
479 #define PRIV_ALIGN 15 /* Required alignment mask */
480 #define MII_CNT 4
481 struct hamachi_private {
482 /* Descriptor rings first for alignment. Tx requires a second descriptor
483 for status. */
484 struct hamachi_desc *rx_ring;
485 struct hamachi_desc *tx_ring;
486 struct sk_buff* rx_skbuff[RX_RING_SIZE];
487 struct sk_buff* tx_skbuff[TX_RING_SIZE];
488 dma_addr_t tx_ring_dma;
489 dma_addr_t rx_ring_dma;
490 struct timer_list timer; /* Media selection timer. */
491 /* Frequently used and paired value: keep adjacent for cache effect. */
492 spinlock_t lock;
493 int chip_id;
494 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
495 unsigned int cur_tx, dirty_tx;
496 unsigned int rx_buf_sz; /* Based on MTU+slack. */
497 unsigned int tx_full:1; /* The Tx queue is full. */
498 unsigned int duplex_lock:1;
499 unsigned int default_port:4; /* Last dev->if_port value. */
500 /* MII transceiver section. */
501 int mii_cnt; /* MII device addresses. */
502 struct mii_if_info mii_if; /* MII lib hooks/info */
503 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */
504 u32 rx_int_var, tx_int_var; /* interrupt control variables */
505 u32 option; /* Hold on to a copy of the options */
506 struct pci_dev *pci_dev;
507 void __iomem *base;
508 };
509
510 MODULE_AUTHOR("Donald Becker <becker@scyld.com>, Eric Kasten <kasten@nscl.msu.edu>, Keith Underwood <keithu@parl.clemson.edu>");
511 MODULE_DESCRIPTION("Packet Engines 'Hamachi' GNIC-II Gigabit Ethernet driver");
512 MODULE_LICENSE("GPL");
513
514 module_param(max_interrupt_work, int, 0);
515 module_param(mtu, int, 0);
516 module_param(debug, int, 0);
517 module_param(min_rx_pkt, int, 0);
518 module_param(max_rx_gap, int, 0);
519 module_param(max_rx_latency, int, 0);
520 module_param(min_tx_pkt, int, 0);
521 module_param(max_tx_gap, int, 0);
522 module_param(max_tx_latency, int, 0);
523 module_param(rx_copybreak, int, 0);
524 module_param_array(rx_params, int, NULL, 0);
525 module_param_array(tx_params, int, NULL, 0);
526 module_param_array(options, int, NULL, 0);
527 module_param_array(full_duplex, int, NULL, 0);
528 module_param(force32, int, 0);
529 MODULE_PARM_DESC(max_interrupt_work, "GNIC-II maximum events handled per interrupt");
530 MODULE_PARM_DESC(mtu, "GNIC-II MTU (all boards)");
531 MODULE_PARM_DESC(debug, "GNIC-II debug level (0-7)");
532 MODULE_PARM_DESC(min_rx_pkt, "GNIC-II minimum Rx packets processed between interrupts");
533 MODULE_PARM_DESC(max_rx_gap, "GNIC-II maximum Rx inter-packet gap in 8.192 microsecond units");
534 MODULE_PARM_DESC(max_rx_latency, "GNIC-II time between Rx interrupts in 8.192 microsecond units");
535 MODULE_PARM_DESC(min_tx_pkt, "GNIC-II minimum Tx packets processed between interrupts");
536 MODULE_PARM_DESC(max_tx_gap, "GNIC-II maximum Tx inter-packet gap in 8.192 microsecond units");
537 MODULE_PARM_DESC(max_tx_latency, "GNIC-II time between Tx interrupts in 8.192 microsecond units");
538 MODULE_PARM_DESC(rx_copybreak, "GNIC-II copy breakpoint for copy-only-tiny-frames");
539 MODULE_PARM_DESC(rx_params, "GNIC-II min_rx_pkt+max_rx_gap+max_rx_latency");
540 MODULE_PARM_DESC(tx_params, "GNIC-II min_tx_pkt+max_tx_gap+max_tx_latency");
541 MODULE_PARM_DESC(options, "GNIC-II Bits 0-3: media type, bits 4-6: as force32, bit 7: half duplex, bit 9 full duplex");
542 MODULE_PARM_DESC(full_duplex, "GNIC-II full duplex setting(s) (1)");
543 MODULE_PARM_DESC(force32, "GNIC-II: Bit 0: 32 bit PCI, bit 1: disable parity, bit 2: 64 bit PCI (all boards)");
544
545 static int read_eeprom(void __iomem *ioaddr, int location);
546 static int mdio_read(struct net_device *dev, int phy_id, int location);
547 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
548 static int hamachi_open(struct net_device *dev);
549 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
550 static void hamachi_timer(unsigned long data);
551 static void hamachi_tx_timeout(struct net_device *dev);
552 static void hamachi_init_ring(struct net_device *dev);
553 static netdev_tx_t hamachi_start_xmit(struct sk_buff *skb,
554 struct net_device *dev);
555 static irqreturn_t hamachi_interrupt(int irq, void *dev_instance);
556 static int hamachi_rx(struct net_device *dev);
557 static inline int hamachi_tx(struct net_device *dev);
558 static void hamachi_error(struct net_device *dev, int intr_status);
559 static int hamachi_close(struct net_device *dev);
560 static struct net_device_stats *hamachi_get_stats(struct net_device *dev);
561 static void set_rx_mode(struct net_device *dev);
562 static const struct ethtool_ops ethtool_ops;
563 static const struct ethtool_ops ethtool_ops_no_mii;
564
565 static const struct net_device_ops hamachi_netdev_ops = {
566 .ndo_open = hamachi_open,
567 .ndo_stop = hamachi_close,
568 .ndo_start_xmit = hamachi_start_xmit,
569 .ndo_get_stats = hamachi_get_stats,
570 .ndo_set_rx_mode = set_rx_mode,
571 .ndo_validate_addr = eth_validate_addr,
572 .ndo_set_mac_address = eth_mac_addr,
573 .ndo_tx_timeout = hamachi_tx_timeout,
574 .ndo_do_ioctl = netdev_ioctl,
575 };
576
577
hamachi_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)578 static int hamachi_init_one(struct pci_dev *pdev,
579 const struct pci_device_id *ent)
580 {
581 struct hamachi_private *hmp;
582 int option, i, rx_int_var, tx_int_var, boguscnt;
583 int chip_id = ent->driver_data;
584 int irq;
585 void __iomem *ioaddr;
586 unsigned long base;
587 static int card_idx;
588 struct net_device *dev;
589 void *ring_space;
590 dma_addr_t ring_dma;
591 int ret = -ENOMEM;
592
593 /* when built into the kernel, we only print version if device is found */
594 #ifndef MODULE
595 static int printed_version;
596 if (!printed_version++)
597 printk(version);
598 #endif
599
600 if (pci_enable_device(pdev)) {
601 ret = -EIO;
602 goto err_out;
603 }
604
605 base = pci_resource_start(pdev, 0);
606 #ifdef __alpha__ /* Really "64 bit addrs" */
607 base |= (pci_resource_start(pdev, 1) << 32);
608 #endif
609
610 pci_set_master(pdev);
611
612 i = pci_request_regions(pdev, DRV_NAME);
613 if (i)
614 return i;
615
616 irq = pdev->irq;
617 ioaddr = ioremap(base, 0x400);
618 if (!ioaddr)
619 goto err_out_release;
620
621 dev = alloc_etherdev(sizeof(struct hamachi_private));
622 if (!dev)
623 goto err_out_iounmap;
624
625 SET_NETDEV_DEV(dev, &pdev->dev);
626
627 for (i = 0; i < 6; i++)
628 dev->dev_addr[i] = 1 ? read_eeprom(ioaddr, 4 + i)
629 : readb(ioaddr + StationAddr + i);
630
631 #if ! defined(final_version)
632 if (hamachi_debug > 4)
633 for (i = 0; i < 0x10; i++)
634 printk("%2.2x%s",
635 read_eeprom(ioaddr, i), i % 16 != 15 ? " " : "\n");
636 #endif
637
638 hmp = netdev_priv(dev);
639 spin_lock_init(&hmp->lock);
640
641 hmp->mii_if.dev = dev;
642 hmp->mii_if.mdio_read = mdio_read;
643 hmp->mii_if.mdio_write = mdio_write;
644 hmp->mii_if.phy_id_mask = 0x1f;
645 hmp->mii_if.reg_num_mask = 0x1f;
646
647 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
648 if (!ring_space)
649 goto err_out_cleardev;
650 hmp->tx_ring = ring_space;
651 hmp->tx_ring_dma = ring_dma;
652
653 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
654 if (!ring_space)
655 goto err_out_unmap_tx;
656 hmp->rx_ring = ring_space;
657 hmp->rx_ring_dma = ring_dma;
658
659 /* Check for options being passed in */
660 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
661 if (dev->mem_start)
662 option = dev->mem_start;
663
664 /* If the bus size is misidentified, do the following. */
665 force32 = force32 ? force32 :
666 ((option >= 0) ? ((option & 0x00000070) >> 4) : 0 );
667 if (force32)
668 writeb(force32, ioaddr + VirtualJumpers);
669
670 /* Hmmm, do we really need to reset the chip???. */
671 writeb(0x01, ioaddr + ChipReset);
672
673 /* After a reset, the clock speed measurement of the PCI bus will not
674 * be valid for a moment. Wait for a little while until it is. If
675 * it takes more than 10ms, forget it.
676 */
677 udelay(10);
678 i = readb(ioaddr + PCIClkMeas);
679 for (boguscnt = 0; (!(i & 0x080)) && boguscnt < 1000; boguscnt++){
680 udelay(10);
681 i = readb(ioaddr + PCIClkMeas);
682 }
683
684 hmp->base = ioaddr;
685 pci_set_drvdata(pdev, dev);
686
687 hmp->chip_id = chip_id;
688 hmp->pci_dev = pdev;
689
690 /* The lower four bits are the media type. */
691 if (option > 0) {
692 hmp->option = option;
693 if (option & 0x200)
694 hmp->mii_if.full_duplex = 1;
695 else if (option & 0x080)
696 hmp->mii_if.full_duplex = 0;
697 hmp->default_port = option & 15;
698 if (hmp->default_port)
699 hmp->mii_if.force_media = 1;
700 }
701 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
702 hmp->mii_if.full_duplex = 1;
703
704 /* lock the duplex mode if someone specified a value */
705 if (hmp->mii_if.full_duplex || (option & 0x080))
706 hmp->duplex_lock = 1;
707
708 /* Set interrupt tuning parameters */
709 max_rx_latency = max_rx_latency & 0x00ff;
710 max_rx_gap = max_rx_gap & 0x00ff;
711 min_rx_pkt = min_rx_pkt & 0x00ff;
712 max_tx_latency = max_tx_latency & 0x00ff;
713 max_tx_gap = max_tx_gap & 0x00ff;
714 min_tx_pkt = min_tx_pkt & 0x00ff;
715
716 rx_int_var = card_idx < MAX_UNITS ? rx_params[card_idx] : -1;
717 tx_int_var = card_idx < MAX_UNITS ? tx_params[card_idx] : -1;
718 hmp->rx_int_var = rx_int_var >= 0 ? rx_int_var :
719 (min_rx_pkt << 16 | max_rx_gap << 8 | max_rx_latency);
720 hmp->tx_int_var = tx_int_var >= 0 ? tx_int_var :
721 (min_tx_pkt << 16 | max_tx_gap << 8 | max_tx_latency);
722
723
724 /* The Hamachi-specific entries in the device structure. */
725 dev->netdev_ops = &hamachi_netdev_ops;
726 dev->ethtool_ops = (chip_tbl[hmp->chip_id].flags & CanHaveMII) ?
727 ðtool_ops : ðtool_ops_no_mii;
728 dev->watchdog_timeo = TX_TIMEOUT;
729 if (mtu)
730 dev->mtu = mtu;
731
732 i = register_netdev(dev);
733 if (i) {
734 ret = i;
735 goto err_out_unmap_rx;
736 }
737
738 printk(KERN_INFO "%s: %s type %x at %p, %pM, IRQ %d.\n",
739 dev->name, chip_tbl[chip_id].name, readl(ioaddr + ChipRev),
740 ioaddr, dev->dev_addr, irq);
741 i = readb(ioaddr + PCIClkMeas);
742 printk(KERN_INFO "%s: %d-bit %d Mhz PCI bus (%d), Virtual Jumpers "
743 "%2.2x, LPA %4.4x.\n",
744 dev->name, readw(ioaddr + MiscStatus) & 1 ? 64 : 32,
745 i ? 2000/(i&0x7f) : 0, i&0x7f, (int)readb(ioaddr + VirtualJumpers),
746 readw(ioaddr + ANLinkPartnerAbility));
747
748 if (chip_tbl[hmp->chip_id].flags & CanHaveMII) {
749 int phy, phy_idx = 0;
750 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
751 int mii_status = mdio_read(dev, phy, MII_BMSR);
752 if (mii_status != 0xffff &&
753 mii_status != 0x0000) {
754 hmp->phys[phy_idx++] = phy;
755 hmp->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
756 printk(KERN_INFO "%s: MII PHY found at address %d, status "
757 "0x%4.4x advertising %4.4x.\n",
758 dev->name, phy, mii_status, hmp->mii_if.advertising);
759 }
760 }
761 hmp->mii_cnt = phy_idx;
762 if (hmp->mii_cnt > 0)
763 hmp->mii_if.phy_id = hmp->phys[0];
764 else
765 memset(&hmp->mii_if, 0, sizeof(hmp->mii_if));
766 }
767 /* Configure gigabit autonegotiation. */
768 writew(0x0400, ioaddr + ANXchngCtrl); /* Enable legacy links. */
769 writew(0x08e0, ioaddr + ANAdvertise); /* Set our advertise word. */
770 writew(0x1000, ioaddr + ANCtrl); /* Enable negotiation */
771
772 card_idx++;
773 return 0;
774
775 err_out_unmap_rx:
776 pci_free_consistent(pdev, RX_TOTAL_SIZE, hmp->rx_ring,
777 hmp->rx_ring_dma);
778 err_out_unmap_tx:
779 pci_free_consistent(pdev, TX_TOTAL_SIZE, hmp->tx_ring,
780 hmp->tx_ring_dma);
781 err_out_cleardev:
782 free_netdev (dev);
783 err_out_iounmap:
784 iounmap(ioaddr);
785 err_out_release:
786 pci_release_regions(pdev);
787 err_out:
788 return ret;
789 }
790
read_eeprom(void __iomem * ioaddr,int location)791 static int read_eeprom(void __iomem *ioaddr, int location)
792 {
793 int bogus_cnt = 1000;
794
795 /* We should check busy first - per docs -KDU */
796 while ((readb(ioaddr + EECmdStatus) & 0x40) && --bogus_cnt > 0);
797 writew(location, ioaddr + EEAddr);
798 writeb(0x02, ioaddr + EECmdStatus);
799 bogus_cnt = 1000;
800 while ((readb(ioaddr + EECmdStatus) & 0x40) && --bogus_cnt > 0);
801 if (hamachi_debug > 5)
802 printk(" EEPROM status is %2.2x after %d ticks.\n",
803 (int)readb(ioaddr + EECmdStatus), 1000- bogus_cnt);
804 return readb(ioaddr + EEData);
805 }
806
807 /* MII Managemen Data I/O accesses.
808 These routines assume the MDIO controller is idle, and do not exit until
809 the command is finished. */
810
mdio_read(struct net_device * dev,int phy_id,int location)811 static int mdio_read(struct net_device *dev, int phy_id, int location)
812 {
813 struct hamachi_private *hmp = netdev_priv(dev);
814 void __iomem *ioaddr = hmp->base;
815 int i;
816
817 /* We should check busy first - per docs -KDU */
818 for (i = 10000; i >= 0; i--)
819 if ((readw(ioaddr + MII_Status) & 1) == 0)
820 break;
821 writew((phy_id<<8) + location, ioaddr + MII_Addr);
822 writew(0x0001, ioaddr + MII_Cmd);
823 for (i = 10000; i >= 0; i--)
824 if ((readw(ioaddr + MII_Status) & 1) == 0)
825 break;
826 return readw(ioaddr + MII_Rd_Data);
827 }
828
mdio_write(struct net_device * dev,int phy_id,int location,int value)829 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
830 {
831 struct hamachi_private *hmp = netdev_priv(dev);
832 void __iomem *ioaddr = hmp->base;
833 int i;
834
835 /* We should check busy first - per docs -KDU */
836 for (i = 10000; i >= 0; i--)
837 if ((readw(ioaddr + MII_Status) & 1) == 0)
838 break;
839 writew((phy_id<<8) + location, ioaddr + MII_Addr);
840 writew(value, ioaddr + MII_Wr_Data);
841
842 /* Wait for the command to finish. */
843 for (i = 10000; i >= 0; i--)
844 if ((readw(ioaddr + MII_Status) & 1) == 0)
845 break;
846 }
847
848
hamachi_open(struct net_device * dev)849 static int hamachi_open(struct net_device *dev)
850 {
851 struct hamachi_private *hmp = netdev_priv(dev);
852 void __iomem *ioaddr = hmp->base;
853 int i;
854 u32 rx_int_var, tx_int_var;
855 u16 fifo_info;
856
857 i = request_irq(hmp->pci_dev->irq, hamachi_interrupt, IRQF_SHARED,
858 dev->name, dev);
859 if (i)
860 return i;
861
862 hamachi_init_ring(dev);
863
864 #if ADDRLEN == 64
865 /* writellll anyone ? */
866 writel(hmp->rx_ring_dma, ioaddr + RxPtr);
867 writel(hmp->rx_ring_dma >> 32, ioaddr + RxPtr + 4);
868 writel(hmp->tx_ring_dma, ioaddr + TxPtr);
869 writel(hmp->tx_ring_dma >> 32, ioaddr + TxPtr + 4);
870 #else
871 writel(hmp->rx_ring_dma, ioaddr + RxPtr);
872 writel(hmp->tx_ring_dma, ioaddr + TxPtr);
873 #endif
874
875 /* TODO: It would make sense to organize this as words since the card
876 * documentation does. -KDU
877 */
878 for (i = 0; i < 6; i++)
879 writeb(dev->dev_addr[i], ioaddr + StationAddr + i);
880
881 /* Initialize other registers: with so many this eventually this will
882 converted to an offset/value list. */
883
884 /* Configure the FIFO */
885 fifo_info = (readw(ioaddr + GPIO) & 0x00C0) >> 6;
886 switch (fifo_info){
887 case 0 :
888 /* No FIFO */
889 writew(0x0000, ioaddr + FIFOcfg);
890 break;
891 case 1 :
892 /* Configure the FIFO for 512K external, 16K used for Tx. */
893 writew(0x0028, ioaddr + FIFOcfg);
894 break;
895 case 2 :
896 /* Configure the FIFO for 1024 external, 32K used for Tx. */
897 writew(0x004C, ioaddr + FIFOcfg);
898 break;
899 case 3 :
900 /* Configure the FIFO for 2048 external, 32K used for Tx. */
901 writew(0x006C, ioaddr + FIFOcfg);
902 break;
903 default :
904 printk(KERN_WARNING "%s: Unsupported external memory config!\n",
905 dev->name);
906 /* Default to no FIFO */
907 writew(0x0000, ioaddr + FIFOcfg);
908 break;
909 }
910
911 if (dev->if_port == 0)
912 dev->if_port = hmp->default_port;
913
914
915 /* Setting the Rx mode will start the Rx process. */
916 /* If someone didn't choose a duplex, default to full-duplex */
917 if (hmp->duplex_lock != 1)
918 hmp->mii_if.full_duplex = 1;
919
920 /* always 1, takes no more time to do it */
921 writew(0x0001, ioaddr + RxChecksum);
922 writew(0x0000, ioaddr + TxChecksum);
923 writew(0x8000, ioaddr + MACCnfg); /* Soft reset the MAC */
924 writew(0x215F, ioaddr + MACCnfg);
925 writew(0x000C, ioaddr + FrameGap0);
926 /* WHAT?!?!? Why isn't this documented somewhere? -KDU */
927 writew(0x1018, ioaddr + FrameGap1);
928 /* Why do we enable receives/transmits here? -KDU */
929 writew(0x0780, ioaddr + MACCnfg2); /* Upper 16 bits control LEDs. */
930 /* Enable automatic generation of flow control frames, period 0xffff. */
931 writel(0x0030FFFF, ioaddr + FlowCtrl);
932 writew(MAX_FRAME_SIZE, ioaddr + MaxFrameSize); /* dev->mtu+14 ??? */
933
934 /* Enable legacy links. */
935 writew(0x0400, ioaddr + ANXchngCtrl); /* Enable legacy links. */
936 /* Initial Link LED to blinking red. */
937 writeb(0x03, ioaddr + LEDCtrl);
938
939 /* Configure interrupt mitigation. This has a great effect on
940 performance, so systems tuning should start here!. */
941
942 rx_int_var = hmp->rx_int_var;
943 tx_int_var = hmp->tx_int_var;
944
945 if (hamachi_debug > 1) {
946 printk("max_tx_latency: %d, max_tx_gap: %d, min_tx_pkt: %d\n",
947 tx_int_var & 0x00ff, (tx_int_var & 0x00ff00) >> 8,
948 (tx_int_var & 0x00ff0000) >> 16);
949 printk("max_rx_latency: %d, max_rx_gap: %d, min_rx_pkt: %d\n",
950 rx_int_var & 0x00ff, (rx_int_var & 0x00ff00) >> 8,
951 (rx_int_var & 0x00ff0000) >> 16);
952 printk("rx_int_var: %x, tx_int_var: %x\n", rx_int_var, tx_int_var);
953 }
954
955 writel(tx_int_var, ioaddr + TxIntrCtrl);
956 writel(rx_int_var, ioaddr + RxIntrCtrl);
957
958 set_rx_mode(dev);
959
960 netif_start_queue(dev);
961
962 /* Enable interrupts by setting the interrupt mask. */
963 writel(0x80878787, ioaddr + InterruptEnable);
964 writew(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */
965
966 /* Configure and start the DMA channels. */
967 /* Burst sizes are in the low three bits: size = 4<<(val&7) */
968 #if ADDRLEN == 64
969 writew(0x005D, ioaddr + RxDMACtrl); /* 128 dword bursts */
970 writew(0x005D, ioaddr + TxDMACtrl);
971 #else
972 writew(0x001D, ioaddr + RxDMACtrl);
973 writew(0x001D, ioaddr + TxDMACtrl);
974 #endif
975 writew(0x0001, ioaddr + RxCmd);
976
977 if (hamachi_debug > 2) {
978 printk(KERN_DEBUG "%s: Done hamachi_open(), status: Rx %x Tx %x.\n",
979 dev->name, readw(ioaddr + RxStatus), readw(ioaddr + TxStatus));
980 }
981 /* Set the timer to check for link beat. */
982 init_timer(&hmp->timer);
983 hmp->timer.expires = RUN_AT((24*HZ)/10); /* 2.4 sec. */
984 hmp->timer.data = (unsigned long)dev;
985 hmp->timer.function = hamachi_timer; /* timer handler */
986 add_timer(&hmp->timer);
987
988 return 0;
989 }
990
hamachi_tx(struct net_device * dev)991 static inline int hamachi_tx(struct net_device *dev)
992 {
993 struct hamachi_private *hmp = netdev_priv(dev);
994
995 /* Update the dirty pointer until we find an entry that is
996 still owned by the card */
997 for (; hmp->cur_tx - hmp->dirty_tx > 0; hmp->dirty_tx++) {
998 int entry = hmp->dirty_tx % TX_RING_SIZE;
999 struct sk_buff *skb;
1000
1001 if (hmp->tx_ring[entry].status_n_length & cpu_to_le32(DescOwn))
1002 break;
1003 /* Free the original skb. */
1004 skb = hmp->tx_skbuff[entry];
1005 if (skb) {
1006 pci_unmap_single(hmp->pci_dev,
1007 leXX_to_cpu(hmp->tx_ring[entry].addr),
1008 skb->len, PCI_DMA_TODEVICE);
1009 dev_kfree_skb(skb);
1010 hmp->tx_skbuff[entry] = NULL;
1011 }
1012 hmp->tx_ring[entry].status_n_length = 0;
1013 if (entry >= TX_RING_SIZE-1)
1014 hmp->tx_ring[TX_RING_SIZE-1].status_n_length |=
1015 cpu_to_le32(DescEndRing);
1016 dev->stats.tx_packets++;
1017 }
1018
1019 return 0;
1020 }
1021
hamachi_timer(unsigned long data)1022 static void hamachi_timer(unsigned long data)
1023 {
1024 struct net_device *dev = (struct net_device *)data;
1025 struct hamachi_private *hmp = netdev_priv(dev);
1026 void __iomem *ioaddr = hmp->base;
1027 int next_tick = 10*HZ;
1028
1029 if (hamachi_debug > 2) {
1030 printk(KERN_INFO "%s: Hamachi Autonegotiation status %4.4x, LPA "
1031 "%4.4x.\n", dev->name, readw(ioaddr + ANStatus),
1032 readw(ioaddr + ANLinkPartnerAbility));
1033 printk(KERN_INFO "%s: Autonegotiation regs %4.4x %4.4x %4.4x "
1034 "%4.4x %4.4x %4.4x.\n", dev->name,
1035 readw(ioaddr + 0x0e0),
1036 readw(ioaddr + 0x0e2),
1037 readw(ioaddr + 0x0e4),
1038 readw(ioaddr + 0x0e6),
1039 readw(ioaddr + 0x0e8),
1040 readw(ioaddr + 0x0eA));
1041 }
1042 /* We could do something here... nah. */
1043 hmp->timer.expires = RUN_AT(next_tick);
1044 add_timer(&hmp->timer);
1045 }
1046
hamachi_tx_timeout(struct net_device * dev)1047 static void hamachi_tx_timeout(struct net_device *dev)
1048 {
1049 int i;
1050 struct hamachi_private *hmp = netdev_priv(dev);
1051 void __iomem *ioaddr = hmp->base;
1052
1053 printk(KERN_WARNING "%s: Hamachi transmit timed out, status %8.8x,"
1054 " resetting...\n", dev->name, (int)readw(ioaddr + TxStatus));
1055
1056 {
1057 printk(KERN_DEBUG " Rx ring %p: ", hmp->rx_ring);
1058 for (i = 0; i < RX_RING_SIZE; i++)
1059 printk(KERN_CONT " %8.8x",
1060 le32_to_cpu(hmp->rx_ring[i].status_n_length));
1061 printk(KERN_CONT "\n");
1062 printk(KERN_DEBUG" Tx ring %p: ", hmp->tx_ring);
1063 for (i = 0; i < TX_RING_SIZE; i++)
1064 printk(KERN_CONT " %4.4x",
1065 le32_to_cpu(hmp->tx_ring[i].status_n_length));
1066 printk(KERN_CONT "\n");
1067 }
1068
1069 /* Reinit the hardware and make sure the Rx and Tx processes
1070 are up and running.
1071 */
1072 dev->if_port = 0;
1073 /* The right way to do Reset. -KDU
1074 * -Clear OWN bit in all Rx/Tx descriptors
1075 * -Wait 50 uS for channels to go idle
1076 * -Turn off MAC receiver
1077 * -Issue Reset
1078 */
1079
1080 for (i = 0; i < RX_RING_SIZE; i++)
1081 hmp->rx_ring[i].status_n_length &= cpu_to_le32(~DescOwn);
1082
1083 /* Presume that all packets in the Tx queue are gone if we have to
1084 * re-init the hardware.
1085 */
1086 for (i = 0; i < TX_RING_SIZE; i++){
1087 struct sk_buff *skb;
1088
1089 if (i >= TX_RING_SIZE - 1)
1090 hmp->tx_ring[i].status_n_length =
1091 cpu_to_le32(DescEndRing) |
1092 (hmp->tx_ring[i].status_n_length &
1093 cpu_to_le32(0x0000ffff));
1094 else
1095 hmp->tx_ring[i].status_n_length &= cpu_to_le32(0x0000ffff);
1096 skb = hmp->tx_skbuff[i];
1097 if (skb){
1098 pci_unmap_single(hmp->pci_dev, leXX_to_cpu(hmp->tx_ring[i].addr),
1099 skb->len, PCI_DMA_TODEVICE);
1100 dev_kfree_skb(skb);
1101 hmp->tx_skbuff[i] = NULL;
1102 }
1103 }
1104
1105 udelay(60); /* Sleep 60 us just for safety sake */
1106 writew(0x0002, ioaddr + RxCmd); /* STOP Rx */
1107
1108 writeb(0x01, ioaddr + ChipReset); /* Reinit the hardware */
1109
1110 hmp->tx_full = 0;
1111 hmp->cur_rx = hmp->cur_tx = 0;
1112 hmp->dirty_rx = hmp->dirty_tx = 0;
1113 /* Rx packets are also presumed lost; however, we need to make sure a
1114 * ring of buffers is in tact. -KDU
1115 */
1116 for (i = 0; i < RX_RING_SIZE; i++){
1117 struct sk_buff *skb = hmp->rx_skbuff[i];
1118
1119 if (skb){
1120 pci_unmap_single(hmp->pci_dev,
1121 leXX_to_cpu(hmp->rx_ring[i].addr),
1122 hmp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1123 dev_kfree_skb(skb);
1124 hmp->rx_skbuff[i] = NULL;
1125 }
1126 }
1127 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1128 for (i = 0; i < RX_RING_SIZE; i++) {
1129 struct sk_buff *skb;
1130
1131 skb = netdev_alloc_skb_ip_align(dev, hmp->rx_buf_sz);
1132 hmp->rx_skbuff[i] = skb;
1133 if (skb == NULL)
1134 break;
1135
1136 hmp->rx_ring[i].addr = cpu_to_leXX(pci_map_single(hmp->pci_dev,
1137 skb->data, hmp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1138 hmp->rx_ring[i].status_n_length = cpu_to_le32(DescOwn |
1139 DescEndPacket | DescIntr | (hmp->rx_buf_sz - 2));
1140 }
1141 hmp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1142 /* Mark the last entry as wrapping the ring. */
1143 hmp->rx_ring[RX_RING_SIZE-1].status_n_length |= cpu_to_le32(DescEndRing);
1144
1145 /* Trigger an immediate transmit demand. */
1146 netif_trans_update(dev); /* prevent tx timeout */
1147 dev->stats.tx_errors++;
1148
1149 /* Restart the chip's Tx/Rx processes . */
1150 writew(0x0002, ioaddr + TxCmd); /* STOP Tx */
1151 writew(0x0001, ioaddr + TxCmd); /* START Tx */
1152 writew(0x0001, ioaddr + RxCmd); /* START Rx */
1153
1154 netif_wake_queue(dev);
1155 }
1156
1157
1158 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
hamachi_init_ring(struct net_device * dev)1159 static void hamachi_init_ring(struct net_device *dev)
1160 {
1161 struct hamachi_private *hmp = netdev_priv(dev);
1162 int i;
1163
1164 hmp->tx_full = 0;
1165 hmp->cur_rx = hmp->cur_tx = 0;
1166 hmp->dirty_rx = hmp->dirty_tx = 0;
1167
1168 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1169 * card needs room to do 8 byte alignment, +2 so we can reserve
1170 * the first 2 bytes, and +16 gets room for the status word from the
1171 * card. -KDU
1172 */
1173 hmp->rx_buf_sz = (dev->mtu <= 1492 ? PKT_BUF_SZ :
1174 (((dev->mtu+26+7) & ~7) + 16));
1175
1176 /* Initialize all Rx descriptors. */
1177 for (i = 0; i < RX_RING_SIZE; i++) {
1178 hmp->rx_ring[i].status_n_length = 0;
1179 hmp->rx_skbuff[i] = NULL;
1180 }
1181 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1182 for (i = 0; i < RX_RING_SIZE; i++) {
1183 struct sk_buff *skb = netdev_alloc_skb(dev, hmp->rx_buf_sz + 2);
1184 hmp->rx_skbuff[i] = skb;
1185 if (skb == NULL)
1186 break;
1187 skb_reserve(skb, 2); /* 16 byte align the IP header. */
1188 hmp->rx_ring[i].addr = cpu_to_leXX(pci_map_single(hmp->pci_dev,
1189 skb->data, hmp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1190 /* -2 because it doesn't REALLY have that first 2 bytes -KDU */
1191 hmp->rx_ring[i].status_n_length = cpu_to_le32(DescOwn |
1192 DescEndPacket | DescIntr | (hmp->rx_buf_sz -2));
1193 }
1194 hmp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1195 hmp->rx_ring[RX_RING_SIZE-1].status_n_length |= cpu_to_le32(DescEndRing);
1196
1197 for (i = 0; i < TX_RING_SIZE; i++) {
1198 hmp->tx_skbuff[i] = NULL;
1199 hmp->tx_ring[i].status_n_length = 0;
1200 }
1201 /* Mark the last entry of the ring */
1202 hmp->tx_ring[TX_RING_SIZE-1].status_n_length |= cpu_to_le32(DescEndRing);
1203 }
1204
1205
hamachi_start_xmit(struct sk_buff * skb,struct net_device * dev)1206 static netdev_tx_t hamachi_start_xmit(struct sk_buff *skb,
1207 struct net_device *dev)
1208 {
1209 struct hamachi_private *hmp = netdev_priv(dev);
1210 unsigned entry;
1211 u16 status;
1212
1213 /* Ok, now make sure that the queue has space before trying to
1214 add another skbuff. if we return non-zero the scheduler
1215 should interpret this as a queue full and requeue the buffer
1216 for later.
1217 */
1218 if (hmp->tx_full) {
1219 /* We should NEVER reach this point -KDU */
1220 printk(KERN_WARNING "%s: Hamachi transmit queue full at slot %d.\n",dev->name, hmp->cur_tx);
1221
1222 /* Wake the potentially-idle transmit channel. */
1223 /* If we don't need to read status, DON'T -KDU */
1224 status=readw(hmp->base + TxStatus);
1225 if( !(status & 0x0001) || (status & 0x0002))
1226 writew(0x0001, hmp->base + TxCmd);
1227 return NETDEV_TX_BUSY;
1228 }
1229
1230 /* Caution: the write order is important here, set the field
1231 with the "ownership" bits last. */
1232
1233 /* Calculate the next Tx descriptor entry. */
1234 entry = hmp->cur_tx % TX_RING_SIZE;
1235
1236 hmp->tx_skbuff[entry] = skb;
1237
1238 hmp->tx_ring[entry].addr = cpu_to_leXX(pci_map_single(hmp->pci_dev,
1239 skb->data, skb->len, PCI_DMA_TODEVICE));
1240
1241 /* Hmmmm, could probably put a DescIntr on these, but the way
1242 the driver is currently coded makes Tx interrupts unnecessary
1243 since the clearing of the Tx ring is handled by the start_xmit
1244 routine. This organization helps mitigate the interrupts a
1245 bit and probably renders the max_tx_latency param useless.
1246
1247 Update: Putting a DescIntr bit on all of the descriptors and
1248 mitigating interrupt frequency with the tx_min_pkt parameter. -KDU
1249 */
1250 if (entry >= TX_RING_SIZE-1) /* Wrap ring */
1251 hmp->tx_ring[entry].status_n_length = cpu_to_le32(DescOwn |
1252 DescEndPacket | DescEndRing | DescIntr | skb->len);
1253 else
1254 hmp->tx_ring[entry].status_n_length = cpu_to_le32(DescOwn |
1255 DescEndPacket | DescIntr | skb->len);
1256 hmp->cur_tx++;
1257
1258 /* Non-x86 Todo: explicitly flush cache lines here. */
1259
1260 /* Wake the potentially-idle transmit channel. */
1261 /* If we don't need to read status, DON'T -KDU */
1262 status=readw(hmp->base + TxStatus);
1263 if( !(status & 0x0001) || (status & 0x0002))
1264 writew(0x0001, hmp->base + TxCmd);
1265
1266 /* Immediately before returning, let's clear as many entries as we can. */
1267 hamachi_tx(dev);
1268
1269 /* We should kick the bottom half here, since we are not accepting
1270 * interrupts with every packet. i.e. realize that Gigabit ethernet
1271 * can transmit faster than ordinary machines can load packets;
1272 * hence, any packet that got put off because we were in the transmit
1273 * routine should IMMEDIATELY get a chance to be re-queued. -KDU
1274 */
1275 if ((hmp->cur_tx - hmp->dirty_tx) < (TX_RING_SIZE - 4))
1276 netif_wake_queue(dev); /* Typical path */
1277 else {
1278 hmp->tx_full = 1;
1279 netif_stop_queue(dev);
1280 }
1281
1282 if (hamachi_debug > 4) {
1283 printk(KERN_DEBUG "%s: Hamachi transmit frame #%d queued in slot %d.\n",
1284 dev->name, hmp->cur_tx, entry);
1285 }
1286 return NETDEV_TX_OK;
1287 }
1288
1289 /* The interrupt handler does all of the Rx thread work and cleans up
1290 after the Tx thread. */
hamachi_interrupt(int irq,void * dev_instance)1291 static irqreturn_t hamachi_interrupt(int irq, void *dev_instance)
1292 {
1293 struct net_device *dev = dev_instance;
1294 struct hamachi_private *hmp = netdev_priv(dev);
1295 void __iomem *ioaddr = hmp->base;
1296 long boguscnt = max_interrupt_work;
1297 int handled = 0;
1298
1299 #ifndef final_version /* Can never occur. */
1300 if (dev == NULL) {
1301 printk (KERN_ERR "hamachi_interrupt(): irq %d for unknown device.\n", irq);
1302 return IRQ_NONE;
1303 }
1304 #endif
1305
1306 spin_lock(&hmp->lock);
1307
1308 do {
1309 u32 intr_status = readl(ioaddr + InterruptClear);
1310
1311 if (hamachi_debug > 4)
1312 printk(KERN_DEBUG "%s: Hamachi interrupt, status %4.4x.\n",
1313 dev->name, intr_status);
1314
1315 if (intr_status == 0)
1316 break;
1317
1318 handled = 1;
1319
1320 if (intr_status & IntrRxDone)
1321 hamachi_rx(dev);
1322
1323 if (intr_status & IntrTxDone){
1324 /* This code should RARELY need to execute. After all, this is
1325 * a gigabit link, it should consume packets as fast as we put
1326 * them in AND we clear the Tx ring in hamachi_start_xmit().
1327 */
1328 if (hmp->tx_full){
1329 for (; hmp->cur_tx - hmp->dirty_tx > 0; hmp->dirty_tx++){
1330 int entry = hmp->dirty_tx % TX_RING_SIZE;
1331 struct sk_buff *skb;
1332
1333 if (hmp->tx_ring[entry].status_n_length & cpu_to_le32(DescOwn))
1334 break;
1335 skb = hmp->tx_skbuff[entry];
1336 /* Free the original skb. */
1337 if (skb){
1338 pci_unmap_single(hmp->pci_dev,
1339 leXX_to_cpu(hmp->tx_ring[entry].addr),
1340 skb->len,
1341 PCI_DMA_TODEVICE);
1342 dev_kfree_skb_irq(skb);
1343 hmp->tx_skbuff[entry] = NULL;
1344 }
1345 hmp->tx_ring[entry].status_n_length = 0;
1346 if (entry >= TX_RING_SIZE-1)
1347 hmp->tx_ring[TX_RING_SIZE-1].status_n_length |=
1348 cpu_to_le32(DescEndRing);
1349 dev->stats.tx_packets++;
1350 }
1351 if (hmp->cur_tx - hmp->dirty_tx < TX_RING_SIZE - 4){
1352 /* The ring is no longer full */
1353 hmp->tx_full = 0;
1354 netif_wake_queue(dev);
1355 }
1356 } else {
1357 netif_wake_queue(dev);
1358 }
1359 }
1360
1361
1362 /* Abnormal error summary/uncommon events handlers. */
1363 if (intr_status &
1364 (IntrTxPCIFault | IntrTxPCIErr | IntrRxPCIFault | IntrRxPCIErr |
1365 LinkChange | NegotiationChange | StatsMax))
1366 hamachi_error(dev, intr_status);
1367
1368 if (--boguscnt < 0) {
1369 printk(KERN_WARNING "%s: Too much work at interrupt, status=0x%4.4x.\n",
1370 dev->name, intr_status);
1371 break;
1372 }
1373 } while (1);
1374
1375 if (hamachi_debug > 3)
1376 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1377 dev->name, readl(ioaddr + IntrStatus));
1378
1379 #ifndef final_version
1380 /* Code that should never be run! Perhaps remove after testing.. */
1381 {
1382 static int stopit = 10;
1383 if (dev->start == 0 && --stopit < 0) {
1384 printk(KERN_ERR "%s: Emergency stop, looping startup interrupt.\n",
1385 dev->name);
1386 free_irq(irq, dev);
1387 }
1388 }
1389 #endif
1390
1391 spin_unlock(&hmp->lock);
1392 return IRQ_RETVAL(handled);
1393 }
1394
1395 /* This routine is logically part of the interrupt handler, but separated
1396 for clarity and better register allocation. */
hamachi_rx(struct net_device * dev)1397 static int hamachi_rx(struct net_device *dev)
1398 {
1399 struct hamachi_private *hmp = netdev_priv(dev);
1400 int entry = hmp->cur_rx % RX_RING_SIZE;
1401 int boguscnt = (hmp->dirty_rx + RX_RING_SIZE) - hmp->cur_rx;
1402
1403 if (hamachi_debug > 4) {
1404 printk(KERN_DEBUG " In hamachi_rx(), entry %d status %4.4x.\n",
1405 entry, hmp->rx_ring[entry].status_n_length);
1406 }
1407
1408 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1409 while (1) {
1410 struct hamachi_desc *desc = &(hmp->rx_ring[entry]);
1411 u32 desc_status = le32_to_cpu(desc->status_n_length);
1412 u16 data_size = desc_status; /* Implicit truncate */
1413 u8 *buf_addr;
1414 s32 frame_status;
1415
1416 if (desc_status & DescOwn)
1417 break;
1418 pci_dma_sync_single_for_cpu(hmp->pci_dev,
1419 leXX_to_cpu(desc->addr),
1420 hmp->rx_buf_sz,
1421 PCI_DMA_FROMDEVICE);
1422 buf_addr = (u8 *) hmp->rx_skbuff[entry]->data;
1423 frame_status = get_unaligned_le32(&(buf_addr[data_size - 12]));
1424 if (hamachi_debug > 4)
1425 printk(KERN_DEBUG " hamachi_rx() status was %8.8x.\n",
1426 frame_status);
1427 if (--boguscnt < 0)
1428 break;
1429 if ( ! (desc_status & DescEndPacket)) {
1430 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned "
1431 "multiple buffers, entry %#x length %d status %4.4x!\n",
1432 dev->name, hmp->cur_rx, data_size, desc_status);
1433 printk(KERN_WARNING "%s: Oversized Ethernet frame %p vs %p.\n",
1434 dev->name, desc, &hmp->rx_ring[hmp->cur_rx % RX_RING_SIZE]);
1435 printk(KERN_WARNING "%s: Oversized Ethernet frame -- next status %x/%x last status %x.\n",
1436 dev->name,
1437 le32_to_cpu(hmp->rx_ring[(hmp->cur_rx+1) % RX_RING_SIZE].status_n_length) & 0xffff0000,
1438 le32_to_cpu(hmp->rx_ring[(hmp->cur_rx+1) % RX_RING_SIZE].status_n_length) & 0x0000ffff,
1439 le32_to_cpu(hmp->rx_ring[(hmp->cur_rx-1) % RX_RING_SIZE].status_n_length));
1440 dev->stats.rx_length_errors++;
1441 } /* else Omit for prototype errata??? */
1442 if (frame_status & 0x00380000) {
1443 /* There was an error. */
1444 if (hamachi_debug > 2)
1445 printk(KERN_DEBUG " hamachi_rx() Rx error was %8.8x.\n",
1446 frame_status);
1447 dev->stats.rx_errors++;
1448 if (frame_status & 0x00600000)
1449 dev->stats.rx_length_errors++;
1450 if (frame_status & 0x00080000)
1451 dev->stats.rx_frame_errors++;
1452 if (frame_status & 0x00100000)
1453 dev->stats.rx_crc_errors++;
1454 if (frame_status < 0)
1455 dev->stats.rx_dropped++;
1456 } else {
1457 struct sk_buff *skb;
1458 /* Omit CRC */
1459 u16 pkt_len = (frame_status & 0x07ff) - 4;
1460 #ifdef RX_CHECKSUM
1461 u32 pfck = *(u32 *) &buf_addr[data_size - 8];
1462 #endif
1463
1464
1465 #ifndef final_version
1466 if (hamachi_debug > 4)
1467 printk(KERN_DEBUG " hamachi_rx() normal Rx pkt length %d"
1468 " of %d, bogus_cnt %d.\n",
1469 pkt_len, data_size, boguscnt);
1470 if (hamachi_debug > 5)
1471 printk(KERN_DEBUG"%s: rx status %8.8x %8.8x %8.8x %8.8x %8.8x.\n",
1472 dev->name,
1473 *(s32*)&(buf_addr[data_size - 20]),
1474 *(s32*)&(buf_addr[data_size - 16]),
1475 *(s32*)&(buf_addr[data_size - 12]),
1476 *(s32*)&(buf_addr[data_size - 8]),
1477 *(s32*)&(buf_addr[data_size - 4]));
1478 #endif
1479 /* Check if the packet is long enough to accept without copying
1480 to a minimally-sized skbuff. */
1481 if (pkt_len < rx_copybreak &&
1482 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1483 #ifdef RX_CHECKSUM
1484 printk(KERN_ERR "%s: rx_copybreak non-zero "
1485 "not good with RX_CHECKSUM\n", dev->name);
1486 #endif
1487 skb_reserve(skb, 2); /* 16 byte align the IP header */
1488 pci_dma_sync_single_for_cpu(hmp->pci_dev,
1489 leXX_to_cpu(hmp->rx_ring[entry].addr),
1490 hmp->rx_buf_sz,
1491 PCI_DMA_FROMDEVICE);
1492 /* Call copy + cksum if available. */
1493 #if 1 || USE_IP_COPYSUM
1494 skb_copy_to_linear_data(skb,
1495 hmp->rx_skbuff[entry]->data, pkt_len);
1496 skb_put(skb, pkt_len);
1497 #else
1498 skb_put_data(skb, hmp->rx_ring_dma
1499 + entry*sizeof(*desc), pkt_len);
1500 #endif
1501 pci_dma_sync_single_for_device(hmp->pci_dev,
1502 leXX_to_cpu(hmp->rx_ring[entry].addr),
1503 hmp->rx_buf_sz,
1504 PCI_DMA_FROMDEVICE);
1505 } else {
1506 pci_unmap_single(hmp->pci_dev,
1507 leXX_to_cpu(hmp->rx_ring[entry].addr),
1508 hmp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1509 skb_put(skb = hmp->rx_skbuff[entry], pkt_len);
1510 hmp->rx_skbuff[entry] = NULL;
1511 }
1512 skb->protocol = eth_type_trans(skb, dev);
1513
1514
1515 #ifdef RX_CHECKSUM
1516 /* TCP or UDP on ipv4, DIX encoding */
1517 if (pfck>>24 == 0x91 || pfck>>24 == 0x51) {
1518 struct iphdr *ih = (struct iphdr *) skb->data;
1519 /* Check that IP packet is at least 46 bytes, otherwise,
1520 * there may be pad bytes included in the hardware checksum.
1521 * This wouldn't happen if everyone padded with 0.
1522 */
1523 if (ntohs(ih->tot_len) >= 46){
1524 /* don't worry about frags */
1525 if (!(ih->frag_off & cpu_to_be16(IP_MF|IP_OFFSET))) {
1526 u32 inv = *(u32 *) &buf_addr[data_size - 16];
1527 u32 *p = (u32 *) &buf_addr[data_size - 20];
1528 register u32 crc, p_r, p_r1;
1529
1530 if (inv & 4) {
1531 inv &= ~4;
1532 --p;
1533 }
1534 p_r = *p;
1535 p_r1 = *(p-1);
1536 switch (inv) {
1537 case 0:
1538 crc = (p_r & 0xffff) + (p_r >> 16);
1539 break;
1540 case 1:
1541 crc = (p_r >> 16) + (p_r & 0xffff)
1542 + (p_r1 >> 16 & 0xff00);
1543 break;
1544 case 2:
1545 crc = p_r + (p_r1 >> 16);
1546 break;
1547 case 3:
1548 crc = p_r + (p_r1 & 0xff00) + (p_r1 >> 16);
1549 break;
1550 default: /*NOTREACHED*/ crc = 0;
1551 }
1552 if (crc & 0xffff0000) {
1553 crc &= 0xffff;
1554 ++crc;
1555 }
1556 /* tcp/udp will add in pseudo */
1557 skb->csum = ntohs(pfck & 0xffff);
1558 if (skb->csum > crc)
1559 skb->csum -= crc;
1560 else
1561 skb->csum += (~crc & 0xffff);
1562 /*
1563 * could do the pseudo myself and return
1564 * CHECKSUM_UNNECESSARY
1565 */
1566 skb->ip_summed = CHECKSUM_COMPLETE;
1567 }
1568 }
1569 }
1570 #endif /* RX_CHECKSUM */
1571
1572 netif_rx(skb);
1573 dev->stats.rx_packets++;
1574 }
1575 entry = (++hmp->cur_rx) % RX_RING_SIZE;
1576 }
1577
1578 /* Refill the Rx ring buffers. */
1579 for (; hmp->cur_rx - hmp->dirty_rx > 0; hmp->dirty_rx++) {
1580 struct hamachi_desc *desc;
1581
1582 entry = hmp->dirty_rx % RX_RING_SIZE;
1583 desc = &(hmp->rx_ring[entry]);
1584 if (hmp->rx_skbuff[entry] == NULL) {
1585 struct sk_buff *skb = netdev_alloc_skb(dev, hmp->rx_buf_sz + 2);
1586
1587 hmp->rx_skbuff[entry] = skb;
1588 if (skb == NULL)
1589 break; /* Better luck next round. */
1590 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1591 desc->addr = cpu_to_leXX(pci_map_single(hmp->pci_dev,
1592 skb->data, hmp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1593 }
1594 desc->status_n_length = cpu_to_le32(hmp->rx_buf_sz);
1595 if (entry >= RX_RING_SIZE-1)
1596 desc->status_n_length |= cpu_to_le32(DescOwn |
1597 DescEndPacket | DescEndRing | DescIntr);
1598 else
1599 desc->status_n_length |= cpu_to_le32(DescOwn |
1600 DescEndPacket | DescIntr);
1601 }
1602
1603 /* Restart Rx engine if stopped. */
1604 /* If we don't need to check status, don't. -KDU */
1605 if (readw(hmp->base + RxStatus) & 0x0002)
1606 writew(0x0001, hmp->base + RxCmd);
1607
1608 return 0;
1609 }
1610
1611 /* This is more properly named "uncommon interrupt events", as it covers more
1612 than just errors. */
hamachi_error(struct net_device * dev,int intr_status)1613 static void hamachi_error(struct net_device *dev, int intr_status)
1614 {
1615 struct hamachi_private *hmp = netdev_priv(dev);
1616 void __iomem *ioaddr = hmp->base;
1617
1618 if (intr_status & (LinkChange|NegotiationChange)) {
1619 if (hamachi_debug > 1)
1620 printk(KERN_INFO "%s: Link changed: AutoNegotiation Ctrl"
1621 " %4.4x, Status %4.4x %4.4x Intr status %4.4x.\n",
1622 dev->name, readw(ioaddr + 0x0E0), readw(ioaddr + 0x0E2),
1623 readw(ioaddr + ANLinkPartnerAbility),
1624 readl(ioaddr + IntrStatus));
1625 if (readw(ioaddr + ANStatus) & 0x20)
1626 writeb(0x01, ioaddr + LEDCtrl);
1627 else
1628 writeb(0x03, ioaddr + LEDCtrl);
1629 }
1630 if (intr_status & StatsMax) {
1631 hamachi_get_stats(dev);
1632 /* Read the overflow bits to clear. */
1633 readl(ioaddr + 0x370);
1634 readl(ioaddr + 0x3F0);
1635 }
1636 if ((intr_status & ~(LinkChange|StatsMax|NegotiationChange|IntrRxDone|IntrTxDone)) &&
1637 hamachi_debug)
1638 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1639 dev->name, intr_status);
1640 /* Hmmmmm, it's not clear how to recover from PCI faults. */
1641 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1642 dev->stats.tx_fifo_errors++;
1643 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1644 dev->stats.rx_fifo_errors++;
1645 }
1646
hamachi_close(struct net_device * dev)1647 static int hamachi_close(struct net_device *dev)
1648 {
1649 struct hamachi_private *hmp = netdev_priv(dev);
1650 void __iomem *ioaddr = hmp->base;
1651 struct sk_buff *skb;
1652 int i;
1653
1654 netif_stop_queue(dev);
1655
1656 if (hamachi_debug > 1) {
1657 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %4.4x Rx %4.4x Int %2.2x.\n",
1658 dev->name, readw(ioaddr + TxStatus),
1659 readw(ioaddr + RxStatus), readl(ioaddr + IntrStatus));
1660 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1661 dev->name, hmp->cur_tx, hmp->dirty_tx, hmp->cur_rx, hmp->dirty_rx);
1662 }
1663
1664 /* Disable interrupts by clearing the interrupt mask. */
1665 writel(0x0000, ioaddr + InterruptEnable);
1666
1667 /* Stop the chip's Tx and Rx processes. */
1668 writel(2, ioaddr + RxCmd);
1669 writew(2, ioaddr + TxCmd);
1670
1671 #ifdef __i386__
1672 if (hamachi_debug > 2) {
1673 printk(KERN_DEBUG " Tx ring at %8.8x:\n",
1674 (int)hmp->tx_ring_dma);
1675 for (i = 0; i < TX_RING_SIZE; i++)
1676 printk(KERN_DEBUG " %c #%d desc. %8.8x %8.8x.\n",
1677 readl(ioaddr + TxCurPtr) == (long)&hmp->tx_ring[i] ? '>' : ' ',
1678 i, hmp->tx_ring[i].status_n_length, hmp->tx_ring[i].addr);
1679 printk(KERN_DEBUG " Rx ring %8.8x:\n",
1680 (int)hmp->rx_ring_dma);
1681 for (i = 0; i < RX_RING_SIZE; i++) {
1682 printk(KERN_DEBUG " %c #%d desc. %4.4x %8.8x\n",
1683 readl(ioaddr + RxCurPtr) == (long)&hmp->rx_ring[i] ? '>' : ' ',
1684 i, hmp->rx_ring[i].status_n_length, hmp->rx_ring[i].addr);
1685 if (hamachi_debug > 6) {
1686 if (*(u8*)hmp->rx_skbuff[i]->data != 0x69) {
1687 u16 *addr = (u16 *)
1688 hmp->rx_skbuff[i]->data;
1689 int j;
1690 printk(KERN_DEBUG "Addr: ");
1691 for (j = 0; j < 0x50; j++)
1692 printk(" %4.4x", addr[j]);
1693 printk("\n");
1694 }
1695 }
1696 }
1697 }
1698 #endif /* __i386__ debugging only */
1699
1700 free_irq(hmp->pci_dev->irq, dev);
1701
1702 del_timer_sync(&hmp->timer);
1703
1704 /* Free all the skbuffs in the Rx queue. */
1705 for (i = 0; i < RX_RING_SIZE; i++) {
1706 skb = hmp->rx_skbuff[i];
1707 hmp->rx_ring[i].status_n_length = 0;
1708 if (skb) {
1709 pci_unmap_single(hmp->pci_dev,
1710 leXX_to_cpu(hmp->rx_ring[i].addr),
1711 hmp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1712 dev_kfree_skb(skb);
1713 hmp->rx_skbuff[i] = NULL;
1714 }
1715 hmp->rx_ring[i].addr = cpu_to_leXX(0xBADF00D0); /* An invalid address. */
1716 }
1717 for (i = 0; i < TX_RING_SIZE; i++) {
1718 skb = hmp->tx_skbuff[i];
1719 if (skb) {
1720 pci_unmap_single(hmp->pci_dev,
1721 leXX_to_cpu(hmp->tx_ring[i].addr),
1722 skb->len, PCI_DMA_TODEVICE);
1723 dev_kfree_skb(skb);
1724 hmp->tx_skbuff[i] = NULL;
1725 }
1726 }
1727
1728 writeb(0x00, ioaddr + LEDCtrl);
1729
1730 return 0;
1731 }
1732
hamachi_get_stats(struct net_device * dev)1733 static struct net_device_stats *hamachi_get_stats(struct net_device *dev)
1734 {
1735 struct hamachi_private *hmp = netdev_priv(dev);
1736 void __iomem *ioaddr = hmp->base;
1737
1738 /* We should lock this segment of code for SMP eventually, although
1739 the vulnerability window is very small and statistics are
1740 non-critical. */
1741 /* Ok, what goes here? This appears to be stuck at 21 packets
1742 according to ifconfig. It does get incremented in hamachi_tx(),
1743 so I think I'll comment it out here and see if better things
1744 happen.
1745 */
1746 /* dev->stats.tx_packets = readl(ioaddr + 0x000); */
1747
1748 /* Total Uni+Brd+Multi */
1749 dev->stats.rx_bytes = readl(ioaddr + 0x330);
1750 /* Total Uni+Brd+Multi */
1751 dev->stats.tx_bytes = readl(ioaddr + 0x3B0);
1752 /* Multicast Rx */
1753 dev->stats.multicast = readl(ioaddr + 0x320);
1754
1755 /* Over+Undersized */
1756 dev->stats.rx_length_errors = readl(ioaddr + 0x368);
1757 /* Jabber */
1758 dev->stats.rx_over_errors = readl(ioaddr + 0x35C);
1759 /* Jabber */
1760 dev->stats.rx_crc_errors = readl(ioaddr + 0x360);
1761 /* Symbol Errs */
1762 dev->stats.rx_frame_errors = readl(ioaddr + 0x364);
1763 /* Dropped */
1764 dev->stats.rx_missed_errors = readl(ioaddr + 0x36C);
1765
1766 return &dev->stats;
1767 }
1768
set_rx_mode(struct net_device * dev)1769 static void set_rx_mode(struct net_device *dev)
1770 {
1771 struct hamachi_private *hmp = netdev_priv(dev);
1772 void __iomem *ioaddr = hmp->base;
1773
1774 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1775 writew(0x000F, ioaddr + AddrMode);
1776 } else if ((netdev_mc_count(dev) > 63) || (dev->flags & IFF_ALLMULTI)) {
1777 /* Too many to match, or accept all multicasts. */
1778 writew(0x000B, ioaddr + AddrMode);
1779 } else if (!netdev_mc_empty(dev)) { /* Must use the CAM filter. */
1780 struct netdev_hw_addr *ha;
1781 int i = 0;
1782
1783 netdev_for_each_mc_addr(ha, dev) {
1784 writel(*(u32 *)(ha->addr), ioaddr + 0x100 + i*8);
1785 writel(0x20000 | (*(u16 *)&ha->addr[4]),
1786 ioaddr + 0x104 + i*8);
1787 i++;
1788 }
1789 /* Clear remaining entries. */
1790 for (; i < 64; i++)
1791 writel(0, ioaddr + 0x104 + i*8);
1792 writew(0x0003, ioaddr + AddrMode);
1793 } else { /* Normal, unicast/broadcast-only mode. */
1794 writew(0x0001, ioaddr + AddrMode);
1795 }
1796 }
1797
check_if_running(struct net_device * dev)1798 static int check_if_running(struct net_device *dev)
1799 {
1800 if (!netif_running(dev))
1801 return -EINVAL;
1802 return 0;
1803 }
1804
hamachi_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1805 static void hamachi_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1806 {
1807 struct hamachi_private *np = netdev_priv(dev);
1808
1809 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1810 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1811 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1812 }
1813
hamachi_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1814 static int hamachi_get_link_ksettings(struct net_device *dev,
1815 struct ethtool_link_ksettings *cmd)
1816 {
1817 struct hamachi_private *np = netdev_priv(dev);
1818 spin_lock_irq(&np->lock);
1819 mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1820 spin_unlock_irq(&np->lock);
1821 return 0;
1822 }
1823
hamachi_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1824 static int hamachi_set_link_ksettings(struct net_device *dev,
1825 const struct ethtool_link_ksettings *cmd)
1826 {
1827 struct hamachi_private *np = netdev_priv(dev);
1828 int res;
1829 spin_lock_irq(&np->lock);
1830 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1831 spin_unlock_irq(&np->lock);
1832 return res;
1833 }
1834
hamachi_nway_reset(struct net_device * dev)1835 static int hamachi_nway_reset(struct net_device *dev)
1836 {
1837 struct hamachi_private *np = netdev_priv(dev);
1838 return mii_nway_restart(&np->mii_if);
1839 }
1840
hamachi_get_link(struct net_device * dev)1841 static u32 hamachi_get_link(struct net_device *dev)
1842 {
1843 struct hamachi_private *np = netdev_priv(dev);
1844 return mii_link_ok(&np->mii_if);
1845 }
1846
1847 static const struct ethtool_ops ethtool_ops = {
1848 .begin = check_if_running,
1849 .get_drvinfo = hamachi_get_drvinfo,
1850 .nway_reset = hamachi_nway_reset,
1851 .get_link = hamachi_get_link,
1852 .get_link_ksettings = hamachi_get_link_ksettings,
1853 .set_link_ksettings = hamachi_set_link_ksettings,
1854 };
1855
1856 static const struct ethtool_ops ethtool_ops_no_mii = {
1857 .begin = check_if_running,
1858 .get_drvinfo = hamachi_get_drvinfo,
1859 };
1860
netdev_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1861 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1862 {
1863 struct hamachi_private *np = netdev_priv(dev);
1864 struct mii_ioctl_data *data = if_mii(rq);
1865 int rc;
1866
1867 if (!netif_running(dev))
1868 return -EINVAL;
1869
1870 if (cmd == (SIOCDEVPRIVATE+3)) { /* set rx,tx intr params */
1871 u32 *d = (u32 *)&rq->ifr_ifru;
1872 /* Should add this check here or an ordinary user can do nasty
1873 * things. -KDU
1874 *
1875 * TODO: Shut down the Rx and Tx engines while doing this.
1876 */
1877 if (!capable(CAP_NET_ADMIN))
1878 return -EPERM;
1879 writel(d[0], np->base + TxIntrCtrl);
1880 writel(d[1], np->base + RxIntrCtrl);
1881 printk(KERN_NOTICE "%s: tx %08x, rx %08x intr\n", dev->name,
1882 (u32) readl(np->base + TxIntrCtrl),
1883 (u32) readl(np->base + RxIntrCtrl));
1884 rc = 0;
1885 }
1886
1887 else {
1888 spin_lock_irq(&np->lock);
1889 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1890 spin_unlock_irq(&np->lock);
1891 }
1892
1893 return rc;
1894 }
1895
1896
hamachi_remove_one(struct pci_dev * pdev)1897 static void hamachi_remove_one(struct pci_dev *pdev)
1898 {
1899 struct net_device *dev = pci_get_drvdata(pdev);
1900
1901 if (dev) {
1902 struct hamachi_private *hmp = netdev_priv(dev);
1903
1904 pci_free_consistent(pdev, RX_TOTAL_SIZE, hmp->rx_ring,
1905 hmp->rx_ring_dma);
1906 pci_free_consistent(pdev, TX_TOTAL_SIZE, hmp->tx_ring,
1907 hmp->tx_ring_dma);
1908 unregister_netdev(dev);
1909 iounmap(hmp->base);
1910 free_netdev(dev);
1911 pci_release_regions(pdev);
1912 }
1913 }
1914
1915 static const struct pci_device_id hamachi_pci_tbl[] = {
1916 { 0x1318, 0x0911, PCI_ANY_ID, PCI_ANY_ID, },
1917 { 0, }
1918 };
1919 MODULE_DEVICE_TABLE(pci, hamachi_pci_tbl);
1920
1921 static struct pci_driver hamachi_driver = {
1922 .name = DRV_NAME,
1923 .id_table = hamachi_pci_tbl,
1924 .probe = hamachi_init_one,
1925 .remove = hamachi_remove_one,
1926 };
1927
hamachi_init(void)1928 static int __init hamachi_init (void)
1929 {
1930 /* when a module, this is printed whether or not devices are found in probe */
1931 #ifdef MODULE
1932 printk(version);
1933 #endif
1934 return pci_register_driver(&hamachi_driver);
1935 }
1936
hamachi_exit(void)1937 static void __exit hamachi_exit (void)
1938 {
1939 pci_unregister_driver(&hamachi_driver);
1940 }
1941
1942
1943 module_init(hamachi_init);
1944 module_exit(hamachi_exit);
1945